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ABSTRACT OF THE DISSERTATION

Robust Speech and Bird Song Processing
using Multi-band Correlograms
and Sparse Representations

by

Lee Ngee Tan
Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2014
Professor Abeer Alwan, Chair

This dissertation focuses on algorithms for robust speech and bird song process-
ing. Many applications perform well under ideal signal conditions, e.g. mnoise-
free, full bandwidth, sufficient training data. However, a large degradation in
performance is generally observed when the input signal condition deviates from
these ideal conditions. This dissertation describes robust algorithms for three
applications, namely human-pitch detection, automatic speech recognition, and
birdsong phrase classification. In the first application, a noise-robust, multi-band
summary correlogram (MBSC)-based pitch detector is proposed. Novel signal
processing schemes, which include comb-filter channel selection and subband re-
liability weighting, are designed to enhance the MBSC’s peak at the most likely
pitch period.

In the second application, a feature enhancement scheme using jointly-sparse
reference and estimated soft-mask representations, is developed for noise-robust
automatic speech recognition (ASR). Reference and estimated soft-mask exemplar-

pairs are extracted from clean and noisy utterance-pairs in the training data.
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Using a sparsity-based dictionary learning algorithm, dictionary representations
are trained from the exemplar-pairs. The sparse linear combination of estimated
soft-mask dictionary representations that best approximates the test utterance’s
estimated soft-mask is applied to the reference soft-mask dictionary to produce
an enhanced soft-mask. This enhanced soft-mask is then used to perform noise

suppression on the spectrogram from which features for ASR are extracted.

In the third application, a simple exemplar-based sparse representation (SR)
classifier is evaluated on limited data for birdsong phrase classification and verifi-
cation. Song recordings of the Cassin’s Vireo are used for performance evaluation.
This study of the SR classifier for bird phrase classification is inspired by a paper
that proposed the SR classifier for face recognition and outlier face detection, and
reported good performance with only 7 training images per subject. Algorithmic
enhancements are subsequently added to the original SR classification framework
to improve the classification accuracy of automatically detected and segmented
phrases, and phrases sang by bird individuals that are not found in the training
set. These algorithmic enhancements include dynamic time warping (DTW) and
frame-based feature normalization prior to SR classification. When the class de-
cisions from DTW and first pass SR classification are different, SR classification
is repeated with frequency-bin-normalized spectrographic features to resolve the

two conflicting decisions.
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CHAPTER 1

Introduction

1.1 Motivation

Since the advent of digital speech processing, many speech applications have
been developed. These include speech coding, speech enhancement, speech syn-
thesis, speaker identification, automatic speech recognition (ASR), etc. As the
processing power of computers increases, more sophisticated digital speech pro-
cessing techniques are made possible. Some examples of popular applications are
speech synthesis in GPS navigation devices, audio search by humming (query
by humming), and speech recognition in many automated telephone surveys and
directory services. Most speech applications give reasonably good performance
when the input speech is free from distortions or closely matched with the data
used in model training. However, the performance of these applications suffers a
large degradation when distortions such as environmental noise and transmission
channel frequency characteristics are present in the input speech signals. Besides
signal distortions, the limitation of data available to statistically train model

parameters could also affect performance.

Similarly, the field of bird song detection and classification requires robust
signal processing techniques to deal with such signal distortions and limited data
conditions. Classifying particular bird calls or song elements becomes especially

challenging in those cases where the song repertoire is diverse, comprising large



numbers of variant syllables or phrases. For example, in some species thousands
of distinct phrases have been observed in their lexicons [1]. In our experience,
the frequencies at which individual bird song elements are observed often resem-
bles a ”Zipf curve”, where a few phrases are heard many times, but the majority
of phrases are rare. Communication in other species, including humans, typi-
cally follows this same relation [2]. The amount of training data available can
also be limited due to the opportunistic nature of bird vocalization collection in
geographical locations of interest. A premium is thus placed on the ability of au-
tomated classifiers to correctly classify birdsong phrases based on limited training
data. The ability of an automated classifier to detect new phrase types that are
not observed in the training set is also important. Accurate phrase verification
or outlier detection could potentially reduce the resources for manual annotation
on newly collected data, since the human annotators can focus on the detected

“outliers” to identify and label potential new phrase classes.

This dissertation focuses on three particular applications, namely noise-robust
pitch detection, noise-robust automatic speech recognition, and birdsong phrase

classification with limited training data.

1.2 Noise-robust pitch estimation and voiced /unvoiced de-

tection

A speech utterance generally contains both voiced and unvoiced units, known as
phonemes. Voiced sounds typically include vocal cord vibration at a rate called
the fundamental frequency (F0). In Fig. 1.1, the time- and frequency-domain
representations of a voiced and an unvoiced speech frame are plotted. The time

waveform of voiced speech frame has a periodic structure with a fundamental
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Figure 1.1: Time- and frequency domain representations of a voiced speech frame

and an unvoiced speech frame.

period of TO = Fio. [ts spectrum has a harmonic structure, with spectral harmonic
peaks spaced FO apart, and located near integer multiples of FO. In contrast, such

a periodic or harmonic structure is absent in an unvoiced speech frame.

1.2.1 Pitch estimation

Fundamental frequency (F0) detection is important for many speech applica-
tions. These applications include speech enhancement, synthesis, coding, source
separation, and auditory scene analysis. A pitch detector performs both pitch
estimation and voiced /unvoiced (V/UV) detection. In pitch estimation, the rate
of vocal-fold vibration is estimated, while in V/UV detection, voiced or quasi-
periodic speech frames are distinguished from the rest of the signal. In general,
pitch estimation can be performed using (1) time-domain, (2) frequency-domain,
or (3) time-frequency-domain signal processing techniques. Time-domain pitch
estimation exploits the signal’s temporal periodicity by computing a temporal cor-
relation or difference function directly from the signal samples. Some well-known

examples of time-domain pitch estimation algorithms are RAPT [3], YIN [4], and



the average magnitude difference function (AMDF') pitch extractor [5], which are
known to give accurate pitch estimates for clean speech. Frequency-domain pitch
estimation relies on the presence of strong harmonic peaks near integer mul-
tiples of FO in the short-time spectral representation. Some examples of such
frequency-domain pitch estimation algorithms are subharmonic-to-harmonic ra-
tio (SHR) [6], dominant harmonics [7], and SWIPE’ (SWIPE’ is a variant of
SWIPE that focuses on harmonics at prime integer multiples of F0) [8]. In
time-frequency-domain pitch estimation algorithms, the input signal is typically
decomposed into multiple frequency subbands, and time-domain techniques are
applied on each subband signal. A popular time-frequency-domain technique is
the auditory-model correlogram-based algorithm inspired by Licklider’s duplex
theory of pitch perception [9], in which frequency decomposition is performed
using an auditory filterbank (for which Gammatone filterbanks [10] are widely
used), followed by autocorrelation (ACR) computation on each subband signal.
The correlogram is formed by vertically stacking all ACR functions to form a
2-D image [11]. Finally, the fundamental period (T0) of the signal is found by
locating the ACR delay lag of the maximum peak in the “summary” correlogram
(SC), which is typically the averaged ACR function. ACR can be applied either
directly on the subband signal or its envelope. The latter is usually performed on
mid- and high-frequency subbands only [12,13]. These subbands have sufficiently
wide bandwidths to capture at least two consecutive harmonic peaks, such that
the resulting filtered signals have an amplitude modulation frequency equal to
FO (a.k.a. beat frequency) [14]. It has been shown that correlogram-based tech-
niques can yield estimates close to human’s perceived pitch for difficult signals
with missing fundamental, inharmonic complexes and noise tones [15,16]. Being
a multi-band approach, correlogram-based techniques also tend to be more noise-

robust than time-domain or frequency-domain algorithms whose parameters are



fixed regardless of the signal’s periodicity in the different subbands. This is be-
cause additional subband selection or weighting schemes, such as those in [12] and
WWB [13], can be implemented to give less emphasis to the noise-dominated sub-
bands. Since the filters in a Gammatone filterbank are narrower and spaced more
closely at lower linear frequencies than at higher frequencies [10], the number of
filters at lower frequencies (within the first 1 kHz) can be almost equivalent to the
number filters in the mid and high frequencies. When the majority of harmonics
at the low frequencies are attenuated due to the transmission channel character-
istics or masked by strong low-frequency noise interference, it is challenging to
design an effective subband selection and weighting scheme to select reliable sub-
band ACRs such that the maximum peak of the resulting summary correlogram

yields the true pitch value.

1.2.2 Voiced/unvoiced detection

Voiced /unvoiced (V/UV) detection can be performed by either utilizing the in-
formation derived from the pitch estimation module, or using a separate module
that is independent of the pitch estimation algorithm. The simplest V/UV detec-
tor is one that applies a constant decision threshold on a single degree-of-voicing
feature computed by the pitch estimation module, e.g., ACR or cepstral peak
amplitudes [17]. To further improve detection accuracy, the initial V/UV deci-
sions are usually smoothed via median filtering [18,19]. A disadvantage of the
constant-threshold scheme is that since the degree-of-voicing feature tends to be
dependent on the signal-to-noise ratio (SNR), a threshold level tuned for a par-
ticular SNR, generally does not work well at different SNRs. Thus, threshold
adaptation techniques have been proposed to improve the noise-robustness of

V/UV detectors. Typically, the threshold is adapted based on long-term statis-



tics (min, max, mean, median, etc.) of degree-of-voicing-related features [19,20].
In this case, V/UV detection performance would tend to degrade under a highly
non-stationary noise condition. Dynamic programming — a tracking algorithm
that integrates V/UV detection with pitch estimation, is another common tech-
nique used for pitch detection [3,21,22]. A dynamic programming algorithm finds
the least-cost path based on some pre-defined voicing and frequency transition
cost functions, leading to performance improvements in both V/UV detection
and pitch estimation through utilizing voicing and pitch information from mul-
tiple frames. However, when a constant value is used to control the voicing
transition cost, such as the voice bias in [3], the V/UV detection performance of
these pitch detectors is also dependent on SNRs. Since it is generally difficult to
perform noise-robust V/UV detection based on the single degree-of-voicing fea-
ture from pitch estimation [23], statistically-trained V/UV classifiers have also
been proposed, especially for applications that do not require pitch estimates to
be computed (e.g., speaker-independent speech recognition). This latter class of
V/UV detectors, which can operate independently from pitch estimation, have
reported robust V/UV detection performance, especially if their parameters are
learned from noisy speech [24,25]. Since pitch estimation is already part of a pitch
detector, the former class of V/UV detectors is of interest in this chapter. There
are also algorithms that perform pitch-tracking using models trained on infor-
mation extracted during pitch estimation. For example, hidden Markov models
(HMMs) are used in WWB [13] to form continuous single or dual pitch contours
for noisy speech. These data-driven algorithms yield robust voicing/pitch detec-
tion performance when the test data has characteristics that are similar to the
data used for training the models, but their performance degrades in mismatch

train/test data conditions.



1.3 Signal processing using sparse representations

This section reviews the framework of using sparse representations for signal
representation and reconstruction, which the proposed algorithms for ASR and
birdsong phrase classification are based on. Most of these materials is extracted

from [26,27].

Many natural signals have a sparse or concise representation when expressed
in a proper basis or dictionary A = [a; as ... a,] € R™" with a; as columns. This
means that a column vector b € R" can be expressed using a small number of
a;’s, as shown in Eq (1.1), i.e. a large fraction of the coefficients in vector x will

be small.
i=1

One example of b and A are an n-pixel image and an orthonormal wavelet basis,
respectively. The small coefficients in x can be discarded or set to zero, so as
to reconstruct a compressed image bg = Axg, where xg is a sparse vector with
all but the largest S coefficients set to zero. This is used in the JPEG-2000 [28]
image data compression scheme to generate an compressed image that has a small

perceptual difference from the original image.

In the situation where only a subset of the coefficients of b is observable, due

to constraints in the data collection equipment or to data loss, we have

Eq. (1.2) can be obtained from Eq. (1.1) by multiplying both sides by a sampling
matrix, ® € R¥*" for extracting specific row coordinates, i.e by = ®b € R* is a
sub-vector of b that contains the subset of k£ observable coefficients in b, and Ay
= ®A € R¥*" is a submatrix of A containing the k rows of A that corresponds

to the k coefficients in b. To obtain a sparse x in this under-determined linear



system of equations, an l; (||z|j; £ 3_, |z;|) minimization problem in Eq. (1.3) can
be formulated, which can be efficiently solved via convex optimization. Greedy

algorithms [29] have also been proposed to recover a sparse solution.

mIiRonHl subject to by, = Ay x (1.3)
me n

Besides using a sub-sampling matrix for ® to obtain an under-determined lin-
ear system of equations such that the /;-minimization problem is meaningful, an
under-determined linear system of equations can also be formed using other ma-
trices for ® € R*<"*™ guch as a random matrix, to reduce the number of linear
equations. On the other hand, if the matrix A is an over-complete dictionary,
or it has a fewer number of rows than columns to begin with, i.e Ae Rm<n)>xn
then dimension reduction may not be necessary to obtain a sparse solution. An
example of such an A matrix is one that is learned from exemplars. Instead
of utilizing conventional orthonormal bases such as the wavelet, discrete cosine
transform (DCT), or Haar basis, the dictionary is derived from feature vector
examples in the training set. Algorithms using exemplar-based dictionaries or
dictionaries learned from exemplars have shown superior performance to tradi-
tional general-purpose bases in applications ranging from audio/image/video en-
hancements, source separation and classification in speech and object recognition,
and bioinformatic data decoding [27]. In this dissertation, sparse representations
obtained or learned from exemplars are utilized in the two applications described
in the following subsections, namely (1) feature enhancement for ASR, and (2)

birdsong phrase classification.

1.3.1 Noise-robust automatic speech recognition

Automatic speech recognition (ASR) converts speech to text, which facilitates

human machine interactions, leading to applications such as automatic call pro-
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Figure 1.2: A general ASR framework

cessing and query-based information systems. ASR applications are also increas-
ingly popular in portable devices such as smart phones, tablets, and navigation

systems, which makes noise-robust speech recognition ever more important.

Generally, ASR involves front-end processing and back-end processing, as
shown in Fig. 1.2. During front-end processing, features are extracted from the
speech signal. During back-end processing, an ASR engine decodes the most likely
sequence of words spoken by matching these features against pre-trained acoustic
and language models. Both front-end and back-end processing techniques have
been proposed to improve the noise robustness of ASR. Front-end processing in-
cludes feature enhancement techniques, such as noise-robust feature extraction
and spectral enhancement. Noise-robust features are reliable features that are
more invariant in noise. These include speech salient features such as normalized
modulation cepstral coefficients (NMCC) [30]) and multi-scale spectro-temporal
features [31]. These features are extracted by focusing on speech formants, which
are high in energy, and more resilient to noise. Noise-invariant features can
also be obtained by reducing the differences between features extracted from
clean speech and noisy speech. One example is the peak-isolation method [32]
that reduces the variability in spectral energies at the valleys by performing

inverse discrete cosine transform (IDCT) on liftered Mel-frequency cepstral co-



efficients (MFCCs), followed by a half-wave rectification on the resulting Mel-
frequency spectrum. Noise-invariant cepstral-based features can also be obtained
using cepstral mean subtraction, variance normalization, and auto-regressive-
mean-averaging (ARMA) filtering [33]. Another feature enhancement technique
is the Stereo Piecewise Linear Compensation for Environments (SPLICE) [34]. It
learns a joint probability distribution of noisy and clean cepstra from clean and
noisy training utterance-pairs (stereo training data), and uses this distribution
to estimate cepstra of clean speech from noisy cepstra. In regards to feature
enhancement techniques that perform spectral enhancement prior to feature ex-
traction, they improve the noise robustness of ASR features that perform well in
a quiet environment (e.g. Mel-frequency cepstral coefficients, MFCCs). Spectral
enhancement can be perform via noise subtraction [35] or noise suppression using
a statistical model-based spectral amplitude estimator [36], Wiener filtering [37],
or a ratio/soft-mask [38,39]. A soft-mask is a time-frequency representation that
can take any real values between 0 and 1. An accurate soft-mask would have
a value closed to 1 for a speech-dominated time-frequency region, and a value
closed to 0 for a noise-dominated region, such that noise is suppressed when
the soft-mask is multiplied to the noisy speech spectra. Back-end processing in-
volves adapting or transforming the trained models [40,41], and modifying the
decoding framework in the ASR engine. In model adaptation, model parameters
are adapted based on a data subset with similar noise characteristics as the test
data, such that the models are more attune in recognizing features extracted from
similarly corrupted speech. In [42], acoustic modeling in the ASR engine is im-
proved by using a deep neural network to compute the posterior probabilities over
hidden Markov model (HMM) states, instead of using Gaussian mixture mod-
els (GMMs). In this dissertation, front-end feature enhancement using spectral

enhancement and stereo training data is the research area of interest.
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With the successful application of compressive sensing / sparsity-based tech-
niques for image processing, such as robust face recognition [43] and image denois-
ing [44], techniques exploiting sparsity in speech for feature enhancement [45-48]
have also been proposed. In [45] and [46], unreliable Mel-spectral components of
noisy speech are estimated/imputed using a sparse linear combination of spectral
representations in the dictionary. This sparse linear combination is computed
from the reliable Mel-spectral components in the noisy speech utterance. The
discrete Haar transform basis forms the dictionary used in [45]; while log Mel-
spectral exemplars (spanning several time frames) extracted from clean training
data form the dictionary used in [46]. Their ASR performances are very sen-
sitive to the accuracy of the binary mask that determines the reliable spectral
components. The dependency on the binary mask is avoided in the feature en-
hancement technique proposed in [47], which uses all Mel-spectral components
(both reliable and unreliable), to derive a soft-mask from the sparse linear com-
bination of clean speech and pure noise Mel-spectral dictionary exemplars that
best approximates the test Mel-spectra. This soft-mask is used to denoise the test
Mel-spectra prior to cepstral feature extraction. This feature enhancement tech-
nique achieves higher word recognition accuracies than the imputation method
on the Aurora-2 noisy digit recognition task [49]. Including noise exemplars ex-
tracted from the test utterance helps to improve recognition accuracy on unseen
noise types (not found in the dictionary) [50]. Another sparsity-based feature
enhancement scheme is proposed in [48], which uses a joint dictionary containing
clean and noisy log-Mel-spectral exemplar-pairs extracted from clean and noisy
utterance-pairs in the training set. The sparse linear combination of the noisy
log-Mel dictionary exemplars that best approximates the test log-Mel spectra is
computed. This sparse activation weighting vector is applied to the corresponding

clean log-Mel dictionary exemplars to reconstruct an enhanced log-Mel spectra.
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This algorithm outperforms the feature enhancement scheme in [47] on a small

vocabulary, in-car noisy speech recognition task [51].

1.3.2 Birdsong phrase classification using limited training data

Bird vocalizations are compositions of short individual units or syllables, each
generally lasting less than a second. Typically, longer and more elaborate songs
are used for mate attraction and territory declaration; shorter calls are often used
for family member contacts and identification, predator announcement or food
information communication [1]. Sound recordings of bird vocalizations are help-
ful in behavioral and population studies [52, 53], especially in dense vegetation
environment, where visual identification is difficult. Automated birdsong clas-
sification has already proved useful for species identification [54-57], individual
recognition [58], and classification of particular syllables or phrases expressed by
birds with complex song structures [59-61]. Much of this research has been re-
viewed by [52] and [53]. Such applications will gain importance with an increasing
general interest in “soundscape ecology” [62], and a more refined understanding

of bird communication.

The classification of birdsong elements is similar to automatic speech recog-
nition (ASR) or keyword-spotting for speech. Thus, some algorithms that have
shown good results for ASR or keyword-spotting have been applied to bird syl-
lable or phrase classification. One of them is the dynamic time warping (DTW)
template-matching technique, which was extensively explored in the 1970’s for
word recognition. The DTW algorithm compares an input sequence with a set
of predefined template sequences for each class, by finding an optimal align-
ment between two sequences through minimizing the cost function. Such DTW

template-matching technique has been proposed for segmented bird call classifi-
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cation [63], as well as automatic recognition of birdsong syllables from continuous
recordings [64]. High classification accuracies were reported when there is little
within-class variability. Besides DTW, hidden Markov models (HMMs)-based
recognizers [65] which has been predominant for ASR systems for the past two
decades, have also been proposed for bird song or song elements recognition.
In [59], the advantages and limitations of DTW and HMMs were evaluated. It
was found that good performance of the DTW-based technique requires careful
selection of templates that may demand expert knowledge, especially in the pres-
ence of noise or confusing short-duration calls. On the other hand, equivalent or
even better performance can be achieved with HMMs based only on segmentation
and labeling of song elements. However, a substantial amount of data is required
to statistically train the HMMs’ parameters to yield good classification accuracy.

Hence, HMM-based techniques are not suitable under limited data conditions.

Besides DTW, support vector machines (SVMs) [66] and the nearest sub-
space classifier [67] have demonstrated good classification accuracies under lim-
ited training data conditions in various applications. The SVM belongs to the
class of maximum margin classifiers. It performs binary (2-class) classification
by finding a decision surface or hyperplane that has maximum distance to the
closest points in the training set, which are termed support vectors [66]. In [68],
it is reported that SVM is able to maintain high classification accuracies with
a reduced amount of training data, outperforming two other machine learning
algorithms — linear discriminant analysis and decision tree. On a content-based
image retrieval (CBIR) task [69], and hyperspectral image classification, SVM
also performs well when trained on a small number training samples. As for the
nearest subspace (NS) classifier [67], it finds the class subspace spanned by the
training vectors that best represents the input test vector. In hyperspectral im-

age classification [70] and face recognition [71], the NS classifier has also shown

13



good classification results given a limited training set.

In addition to the various classification techniques, different features have also
been used to represent birdsong segments (containing multiple syllables) or in-
dividual birdsong elements. These include using the time-frequency spectrogram
explicitly [59,64,72,73|, frequency and energy trajectories [54,74], Mel-frequency
cepstral coefficients (MFCCs) [56,57,59], and other spectrographic image-based
features [75].

1.4 Organization of the dissertation

The organization of this dissertation is as follows:

Chapter 2 proposes a multi-band summary correlogram (MBSC)-based pitch
detection algorithm that is robust to a variety of noise conditions (noise-types
and SNRs). Noise-robustness is achieved through novel signal processing schemes
that enhance the maximum peak in the MBSC. The sensitivity of this degree-of-
voicing feature to noise is reduced, such that good V/UV detection performance
is achievable with a constant threshold and median filtering scheme. This chapter
also includes information on the reference pitch corpora, performance measures
and comparative algorithms that are used to evaluate the algorithms’ pitch esti-

mation and pitch detection performances.

Chapter 3 proposes the feature enhancement scheme based on jointly-sparse
reference and estimated soft-mask representations for noise-robust speech recog-
nition. The algorithm performs feature/spectral enhancement using a joint-
dictionary of soft-mask representations. The Aurora-2 and Aurora-4 noisy speech
databases are used to evaluate the performance of the proposed algorithm against

other sparsity-based feature enhancement schemes. For the Aurora-2 digit ASR
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task, exemplars are randomly selected to form the dictionaries. For the Aurora-
4 large vocabulary ASR task, a sparsity-based dictionary learning algorithm is

applied to the exemplars to build a more complete dictionary.

Chapter 4 proposes the exemplar-based sparse representation classifier for
limited data birdsong phrase classification. The performance of a simple SR
classifier for birdsong phrase classification and verification is investigated, as a
proof of concept of the SR classification technique on bird songs. Dynamic time
warping and an additional SR classification stage are subsequently introduced
into the original SR classification framework, to improve the robustness of the
SR classifier on automatically detected and segmented phrases, and on phrases

sang by bird individuals that are different from those in the training set.

Finally, Chapter 5 summarizes this dissertation, and discusses possible future

works.

15



CHAPTER 2

Multi-band Summary Correlogram-based Pitch

Detector for Noisy Speech

In this chapter, a multi-band summary correlogram (MBSC)-based pitch detec-
tion algorithm (PDA) is proposed. The proposed MBSC PDA performs single-
pitch detection of target speech in noise. The technical details of this algorithm
are explained in the Section 2.1. Section 2.2 describes the corpora, performance
metrics and comparative algorithms used to evaluate pitch estimation and pitch
detection performances. Section 2.3 contains the results and a discussion of the
pitch estimation performance evaluation, while the results and a discussion of the
pitch detection performance evaluation are found in Section 2.4. Content in this
chapter has been published in L. N. Tan, and A. Alwan, “Multi-band summary
correlogram-based pitch detection for noisy speech”, Speech Communication, Vol.

55, 2013, pp. 841-856.

2.1 Proposed MBSC pitch detector

The block diagram in Fig. 2.1 gives an overview of the proposed MBSC pitch
detector. It consists of six main signal processing stages which are explained in

the following subsections.
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Figure 2.1: Block diagram of the proposed pitch detector. Multi-channel outputs

are indicated by thick and bold arrows.

2.1.1 Frequency decomposition using wideband FIR filters

The input speech signal is first decomposed into four subbands using 32-point FIR
filters. Filter cut-off frequencies are shown in Fig. 2.1. A 1-kHz filter bandwidth
is chosen so that at least two harmonics are captured by each filter, for example,
capturing harmonics at 400 Hz and 800 Hz in the first 1 kHz subband for an F0O of
400 Hz — the maximum pitch value of interest in our defined adult pitch range (50
— 400 Hz). When a signal contains more than 1 harmonic of the voiced speech, its
envelope would typically oscillate at an amplitude modulation frequency corre-

sponding to the inter-harmonic separation. A 0.2 kHz overlap between adjacent
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filters results in a spectrum coverage up to 3.4 kHz with four such filters, which
corresponds to the upper cut-off frequency of the G.712-characteristic filter [76].
In our PDA, wideband FIR filters are used instead of a Gammatone filterbank
(e.g., in [12] and [13]), so that useful pitch information in the low-frequency en-
velope can be exploited. In [77], it is shown that inclusion of the low-frequency
band signal envelope is especially useful in improving pitch estimation accuracy
for speech whose low-frequency harmonics are severely attenuated due to G.712-
filtering in telephone speech. In addition, FIR filters that are equally-spaced in
the linear frequency domain (instead of a warped frequency scaling) are used, to
give equal emphasis to all the harmonics in the available frequency range. The
noise-robustness of the algorithm should increase with the number of FIR filters
up to a certain limit, but with a higher cost in computational complexity. Four
FIR filters are sufficient to give a relatively good pitch detection performance for

the development set used.

2.1.2 Envelope extraction per subband

The Hilbert envelope [78] in each subband is extracted by computing the magni-
tude squared of the analytic signal, which is obtained by applying Hilbert trans-
form on the FIR-filtered outputs. It is noted in [79] that the Hilbert envelope
accurately follows the amplitude modulations of a bandpass signal. The Hilbert
envelope is mean-normalized on a frame-by-frame basis before subsequent pro-
cessing. The four mean-normalized envelope streams are denoted as x4(n), where
s =1, 2, 3, and 4 is the stream index, and n refers to the sample index. The
lowpass-filtered, non-envelope stream from the first subband, labeled zy(n), is
also used in subsequent processing (see Fig. 2.1). This non-envelope stream con-

tains valuable information for pitch detection, especially when the first harmonic
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is not attenuated or noise-corrupted, because the stream tends to be more pe-
riodic than the envelopes whose periodicities are more affected by signal energy

variations.

2.1.3 Multi-channel comb-filtering per stream

Multi-channel comb-filtering is performed in the frequency domain, as shown
in Eq. (2.1), by multiplying the input stream spectrum, X(f), with a comb-
function, ¢(f), represented in the frequency domain. X ;,(f) and Yy, ;+(f) denote
the complex discrete Fourier transform (DFT) coefficients of 4(n) in frame ¢, and
its comb-filtered version, respectively. The comb-functions are formulated using
raised-cosines, as shown in Eq. (2.2), where ¢ (f) is the kth channel’s comb-
function with an inter-peak frequency of Fy Hz, and f represents frequency. This
comb-function enhances spectral harmonics spaced F} apart, and suppresses the
energies at the subharmonics. The raised-cosine function is selected due to its
broad spectral peak lobes and smooth peak-to-valley transitions. By selecting
a smooth comb-function [8], a slight signal inharmonicity (harmonic frequency
perturbation from multiples of F0) would not result in sharp energy attenuation,
in comparison to using an impulse-train-like comb-function [6,80], when the signal
is filtered with a comb-function whose F}, is close but not exactly equal to the
true FO. To reduce the dependency of the maximum autocorrelation (ACR) peak
amplitude on the signal’s fundamental period (ACR is applied on comb-filtered
signals in a subsequent processing stage), Ny, the number of samples in x4(n)
that is used to compute Xy s.(f) is made proportional to the time periodicity
enhanced by ¢ (f), i.e., Ty = fs/F} samples, where fs is the sampling frequency.
It is found that Ny = 4T}, samples are sufficient to achieve good pitch estimation

and V/UV detection performance at low SNRs, but is not too large as to severely
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degrade the resolution of V/UV boundary detection at high SNRs. To reduce
the number of unique X ¢ ,(f) computations, Ny is quantized to the multiple of

40 samples that is closest to 47}.

Yo olf) = Xt (f) ci(f), if s =0 1)
k,s,t — .
Xist(f)eu(f), it s=1,2,3, or 4

Lreosnf/B) i 05 Fy < f < 1 kHz

ce(f) = ' (2.2)
0 , otherwise

CZ(f) = di(f) e (f) (2.3)

dp(f) = 1+ min(1, F;/ ) (2.4)

From Eq. (2.1), it can be seen that constant-magnitude comb-functions —
ck(f), are applied on the envelope streams, s > 1; while decreasing-amplitude
comb-functions — ¢¢(f), are used on the non-envelope stream, s=0. Eq. (2.3)
obtains ¢f(f) by multiplying c;(f) with a decreasing function, dj(f), which is
expressed in Eq. (2.4). In ¢}(f), the first harmonic has the largest gain of 2,
while the gains of the higher harmonics decrease towards 1. Filtering xo(n) with
a cl(f) whose F}, is near the true pitch value would boost the strength of the first
harmonic relative to the higher ones. This helps reduce over-estimation errors in
the presence of a very strong non-fundamental harmonic, such as in G.712-filtered
telephone speech. Boosting the first harmonic in zs>1(n) is unnecessary, since the
first harmonic of a Hilbert envelope is usually stronger than its higher harmonics.
To reduce subharmonic estimation errors, decreasing-amplitude comb-functions
have also been used in other comb-filter-based pitch estimation algorithms [8,80].
However, these comb-filter-based algorithms apply only one group of comb-filters

(with various peak intervals) that spans the same frequency range. Thus, these

algorithms depend heavily on the prominence of the lower frequency harmonics to
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Figure 2.2: Peak deviation at high frequencies between a simulated signal (thick
blue line) with an inter-harmonic peak separation of 204 Hz, and a comb-filter

(thin red line) with inter-peak separation of 200 Hz.

obtain an accurate pitch estimate, and these harmonics can be masked by noise
or attenuated in bandpass-filtered speech (e.g., telephone, hand-held radios [81],
etc.). By incorporating separate comb-filters that span different subbands, the

pitch detection performance of our PDA is more robust to such distortions.

In the proposed pitch detection algorithm, envelope extraction precedes comb-
filtering, in contrast to an earlier pitch estimation algorithm proposed in [77],
which performs comb-filtering prior to envelope extraction. One reason for this
modification is to retain high-frequency harmonic information of a signal under
the limitation of a finite F0,, as illustrated in Fig. 2.2. The spectrum of a
simulated time-domain periodic impulse train (thick blue line) that has an FO =
204 Hz is plotted with a ¢;(f) that has a FO; of 200 Hz (thin red line). Although
the peak interval of the two functions has a small relative difference of 2%, only
the low- and mid-frequency harmonics of the impulse train fall near the spectral
peaks of the comb-filter. This would result in undesirable attenuation for the

high-frequency harmonics.

Through the process of Hilbert envelope extraction, signals are down-converted
to baseband, such that their harmonics are located at the multiples of F0, and

the harmonic amplitudes decrease with frequency. This effect is illustrated in
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Figure 2.3: (a)-(c) Magnitude spectra (thick blue line) of simulated periodic
signals containing a set of spectral harmonic components separated by 204 Hz that
are placed at different frequency locations: (a) High-freq subband; (b) Low-freq
subband; (c) Same as (b) but shifted down by 120 Hz. (d) Magnitude spectrum
of the Hilbert envelope computed from the time-domain signals corresponding to
the spectra in (a), (b), and (c). A comb-filter (thin red line) with an inter-peak

frequency of 200 Hz is superimposed in (a)-(d).

Fig. 2.3 for three different periodic signals. Following the example in Fig. 2.2,
the FO of the simulated signal is set to 204 Hz. The periodic signals are simu-
lated using a summation of cosine waveforms, i.e. ) . A;cos(2nf;t) . Fig. 2.3a
plots the magnitude spectrum (thick blue line) of the signal containing cosine
components with f; corresponding to the 13th to 16th harmonic frequencies in
the fourth subband; Fig. 2.3b plots the the magnitude spectrum of the signal

containing cosine components with f; corresponding to the 1st to 4th harmonic
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Figure 2.4: (a)-(d) ACR functions of time-domain signals whose magnitude spec-

tra are plotted in Fig. 2.3(a)-(d), respectively.

in the first subband, while Fig. 2.3c plots a shifted version of 2.3b that has been
shifted down by 120 Hz, to simulate frequency-shifted data. Fig. 2.3d plots the
magnitude spectrum of the Hilbert envelope computed from all three periodic
signals represented by 2.3a-c. The magnitude spectra of the Hilbert envelopes
computed from all three periodic signals looked identical, thus only 1 version is
plotted in 2.3d. The comb-function, ¢(f) with an inter-peak frequency of 200 Hz
(thin red line) is also superimposed on all magnitude spectra. In 2.3a and 2.3c, it
is clear that comb-filtering will lead to undesirable attenuation of the harmonic

components if envelope extraction is not performed prior to comb-filtering.

To highlight the advantage of performing envelope extraction for all subbands
(independent of comb-filtering), ACR functions of the time-domain signals rep-

resented in Fig. 2.3a-d are plotted in Fig. 2.4a-d, respectively. The true T0O = 39
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samples (*." fc=8000Hz/F0=204Hz). The maximum ACR peak in Fig. 2.4a-d are
respectively located at ACR lags of 7 = 42, 39, 29 and 39 samples. Hence, it is
evident a more accurate FO estimate can be obtained from the Hilbert envelope
extracted from high-frequency subband signal and frequency-shifted, compared
to using the original signals. In 2.4b, although the maximum ACR peak is lo-
cated at the true TO, this peak is less prominent compared to that observed in
2.4d, due to additional strong peaks that are present at 7 = 20, 59, ... samples.
Thus, 7 = 20 could be erroneously taken as the signal’s T0 estimate, if one selects
the best TO estimate by taking the first prominent ACR peak in 2.4b, instead
of the maximum ACR peak. Our earlier paper [77] had also reported a signifi-
cant reduction in FO estimation errors for G.712-filtered speech, when the Hilbert

envelope of the low-frequency band is utilized.

2.1.4 HSR-based comb-channel selection per stream
2.1.4.1 HSR computation

Harmonic-to-subharmonic energy ratio (HSR) is a measure computed to aid the
selection of reliable comb-filter channels per stream. Comb-filters defined in Sec-
tion 2.1.3 capture the harmonic energy of the signal. To capture the subharmonic
or inter-harmonic energy, inverted comb-filters, ¢ (f) and ¢{~(f), are designed
to pair with each ¢;(f) and c(f), as shown in Egs. (2.5) and (2.6). Fig. 2.5
plots the ¢ (f), cx (f), c(f), and ¢/~ (f) with an inter-peak frequency, F}, of 200
Hz. The HSR of the kth channel in stream s, denoted by ¢s.(k), is computed

using Eq. (2.7). For a comb-function whose inter-peak frequency, Fy, is close to
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Figure 2.5: Comb-filters with an inter-peak frequency of Fy, = 200 Hz. (a) Non-

decreasing comb-filter, c¢;(f) and its inverted counterpart, ¢, . (b) Decreasing

comb-filter, ¢ (f) and its inverted counterpart, ¢ .

the input signal’s true pitch value, its HSR would be high.

1— c(f),if 0.5 Fp < f <1 kHz

G (f) = - s
0 , otherwise
() = di(f) e, (f) (2.6)
A2 (P (DR i s =
doa(k) = S Xkt (F) ) S | Xsa(F) ()P, i 5 = 0 .

Do 1 Xhst () ex(N)P/ 2o [ X (f) e (), if s =1,2,3,4
In the presence of noise, one frame of speech might be more corrupted than its
neighboring frames, such that inter-frame peak consistency in g, (k) is affected.
Since the pitch contour of natural speech generally varies smoothly in time, a
lowpass IIR filter is applied on ¢ (k) to improve its inter-frame peak consistency,

as shown in Eq. (2.8). This time-smoothed HSR is denoted by s (k).

QS,t(k) =0.5 gs,t—l(k> + 0.5 qs,t(k) (28)

25



2.1.4.2 'Tri-stage channel selection

The proposed PDA does not use the computed HSR directly for pitch estimation,
because the HSR computed at a subharmonic can sometimes be as high as or
higher than the HSR at an Fj near the true FO. Instead, the HSR is used to
identify reliable comb-channels in each stream. Channel selection is performed on
a per stream basis (i.e., channels selected in stream s = 0 are independent of those
selected in other streams), using a novel tri-stage selection process designed to
improve both pitch estimation and voicing detection performance. The flowchart
of this tri-stage channel selection is shown in row (I) of Fig. 2.6, while row (II)
shows the HSR, ¢, (k), for a particular x,;(n) in blue, with the channels selected
in each stage indicated by the red asterisks. Row (III) of Fig. 2.6 contains the
ACRs computed from the comb-filtered outputs of channels selected in Stage 2.
For ease of visualization and comprehension of the selection algorithm described
subsequently, F} instead of channel index k, is used for labeling the horizontal
axes in the HSR plots, and a “clean” voiced frame example is used to show a

clear subharmonic relationship in the HSR peaks.

In Stage 1, channels corresponding to peaks in ¢, ,(k) that have an amplitude
greater than 1 are selected (Fig. 2.6(Ila)). Taking the peaks in (k) ensures
that only the best-matched comb-filters among their neighbors with similar Fj,
are selected, while setting an amplitude threshold of 1 selects the channels whose

harmonic energy is greater than its subharmonic counterpart.

If x4(n) has a pitch value of f;, there should be peaks in ¢s,(k) at Fj, = fo,
and its subharmonics, i.e., at Fj, ~ fy/2. Hence, in Stage 2, comb-channels with
Fy, = f, and 0.5f, are retained (if both are selected in Stage 1, see Fig. 2.6(1Ib)).
To implement this selection scheme, HSR is also evaluated using cx(f) with Fj

that are half of those defined in the original search array. Since voiced speech
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Figure 2.6: (I) Flowchart of the tri-stage channel selection. (II) HSR, §s.(k)
(blue line) and selected channels (red asterisks) in (a) Stage 1, (b) Stage 2, and
(c) Stage 3, of a particular xz4(n) with fy ~ 260 Hz, for a clean voiced frame.
(III) ACRs computed from comb-filtered outputs of channels selected in Stage 2.
Channels with Fj ~ 130 Hz and 260 Hz are selected after this tri-stage selection

process in this example.

is generally not perfectly harmonic, especially in noise, the subharmonic channel

selection criterion is relaxed to within +20% of 0.5f,.

From Fig. 2.6(IIb), it can be observed that besides comb-channels with Fj, =
fo and fo/2, comb-channels with F}, corresponding to lower subharmonic frequen-
cies (fo/i, 7 > 2) might also be selected. The number of these lower subharmonic
frequencies within the pitch range of interest increases with fy. Since longer
frame lengths (V) are used in comb-channels with lower Fj, stopping channel

selection at Stage 2 would result in early/late detections of a voicing onset /offset,
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especially when fj is high. Hence, a third selection stage is implemented to make
the number of channels selected less dependent on f;. An energy-normalized
ACR is computed from each comb-filtered, time-domain signal, y s (n) (inverse-
FFT of Yy s:(f)), of the selected channels in Stage 2. If the pitch value is fj,
the maximum ACR peak should still be located at 7 = f,/fy samples, even for
the subharmonic comb-channels, as shown in the ACRs plotted in row (III) of
Fig. 2.6. To retain comb-channels with Fy, = fy and f;/2, channels whose max-
imum ACR peak is located within a 20% deviation tolerance of 7 = f;/F} or
T = 0.5fs/F} are selected in Stage 3, as shown in Fig. 2.6(Ilc). Retaining an
additional subharmonic channel with Fj, = f,/2 helps improve voicing detection

at low SNRs.

2.1.5 SC computation per stream

After channel selection, a correlogram matrix representation, R, (%', 7), is formed
per stream by vertically stacking the energy-normalized ACR functions of the
selected K channels, where K is the total number of channels selected in stream
s, and k' = 1,2,..., K, represents renumbered indices of the selected channels.
Instead of a simple average of the selected channels’ ACRs to get each stream’s
summary correlogram (SC), as done in [12], an HSR-based weighted averaging
scheme is performed by multiplying the stream’s HSR-based channel-weighting
function, ¢s(k'), to its corresponding correlogram matrix, R .(k’,7), to obtain
the stream SC, r4(7), as shown in Egs. (2.9) - (2.11). A value of one is subtracted
from ¢s,(k') in Eq. (2.11) to increase the relative differences of the values in
¢s¢(K"), since every value in g, (k') is greater than one. The process of computing
the HSR-weighted stream SC from the selected channels’” ACRs is also illustrated

in Fig. 2.7, which is performed on a babble noise-corrupted voiced speech frame
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at 5 dB SNR that has a fundamental period ~ 68 samples. Fig. 2.8 shows the
HSR~weighted stream SC computed at each s, for same babble noise-corrupted

voiced speech frame.

Ts,t(T) - Z ¢s,t(k,)Rs,t(k,> 7-) (29)

N Qsu(E)
R NI 210
Qsi(K) = Gsu(K) =1 (2.11)

Through this weighting scheme, ACRs from the more reliable channels (with
higher HSR) will have a greater impact on their stream SC, r4,(7), resulting in
a more prominent ACR peak at the most likely pitch period of the signal. Peak
prominence in each stream SC is also due to the use of harmonically-enhanced
comb-filtered signals in the individual channel’s ACR computation. This effect is
shown in Fig. 2.9 for the same 5 dB SNR babble noise-corrupted voiced speech
frame used in Fig. 2.7. Row (I) plots the energy-normalized ACR function of pre-
comb-filtered x4(n). A frame length of 4 times the true fundamental period (T0),
is used to compute these ACRs for a fair comparison. Row (II) plots the SCs
obtained by using a simple average of selected channels’” ACRs in each stream,
while row (III) plots the SC, r,,(7), obtained using the proposed HSR-based
weighting scheme. In this example, it is evident that the SCs in row (II) for
s=1, 3, and 4 have a more prominent peak compared to the respective stream’s
ACR of pre-comb-filtered x4(n) in row (I), and the HSR-weighted SCs in row
(III) for s=0, 3, and 4 have a more prominent peak at the true TO compared to

the equal-channel-weighted SCs in row (II).
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2.1.6 MBSC computation

The stream SCs are further fused into one multi-band summary correlogram
(MBSC), rm*(r). The contributions of the stream SCs are determined by a
stream-reliability-weighting function, wy(s), as shown in Eq. (2.12). It is observed
that the maximum HSRs in the more reliable streams are higher. In addition,
reliable 7, ,(7) tend to have similar peak locations. Hence, the values of w,(s) in
Eq. (2.13) are made dependent on two factors: (1) a within-stream reliability
factor, ay(s), based on the maximum value of Qs,(k’) in each stream, as shown
in Eq. (2.14); (2) a between-stream reliability factor, 5;(s), that corresponds to
the number of r,:(7) whose maximum peak position, g:(s), falls within 10% of
its own, as defined in Eqs. (2.15) - (2.17). A stricter deviation tolerance of 10%
is set in Eq. (2.16) compared to the 20% tolerance allowed in channel selection,
because there is a high tendency of assigning a large 5;(s) to an unreliable 7, 4(7)

when a larger tolerance is set.
4

o (r) = Zwt(s) 75.4(T) (2.12)
wi(s) — ai(s) Bi(s)
¢(s) ST on(s) Buls) (2.13)
ay(s) = max Qs (k) (2.14)

Pils) = ZPt(S,SI) (2.15)

/ Lif [1— 28] < 0.1
pi(s,s’) = o (2.16)
0, otherwise

g1(s) = argmax peak 7,4(7) (2.17)
20<7<160

Fig. 2.10a and 2.10b show the within- and between- stream-reliability factors,
a(s) and [B(s), respectively, that are computed from the same speech frame exam-

ple used in Fig. 2.8. Fig. 2.10c shows the stream-reliability-weighting function,
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Figure 2.10: (a) Within-stream reliability factor, a(s), (b) between-stream reli-
ability factor, 5(s), (c) stream-reliability-weighting function, w(s), and (d) the
MBSC obtained using the proposed stream-reliability weighting scheme. These
are computed at the same babble noise-corrupted voiced frame as that used in

Fig. 2.8.

w(s) computed from «(s) and S(s), while Fig. 2.10d shows the MBSC obtained
when this w(s) is applied to the stream SCs, ry(7), in Fig. 2.8.

Fig. 2.11a plots the MBSC (in blue solid line) obtained by applying an equal-
stream-weighting scheme on the stream SCs, r4,(7), in Fig. 2.8. On the other
hand, Fig. 2.11b plots the MBSC (in blue solid line) obtained with the proposed
stream-reliability-weighting scheme on the same SCs. When these two multi-band
SCs are compared to their counterparts (in red dashed lines) calculated from clean
speech, it can be observed that difference in MBSC peak amplitudes between the
clean and the 5 dB versions are larger with the equal-stream-weighting, compared
to the proposed weighting technique. The differences between the two schemes
will be larger if there are fewer reliable stream SCs than those present in this
example. Thus, the stream-reliability-weighting scheme reduces the variability
of the maximum peak amplitude in the MBSC for noisy speech, such that this

amplitude becomes a robust indicator of the frame’s degree of voicing.

To improve the inter-frame consistency of the MBSC’s maximum peak loca-

tion across a continuous voiced segment, the same lowpass IIR filter in Eq. (2.8)
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Figure 2.11: MBSCs computed using (a) an equal-stream-weighting scheme, and
(b) the proposed stream-reliability weighting scheme on the stream SCs, plotted
in row (III) of Fig. 2.9.

is applied on r™*(7) to obtain a time-smoothed 7#(7). Time-smoothing also
slows down the rate of decrease of peak amplitudes, which in turn improves the

detection of weak voiced frames at voicing offsets.

2.1.7 Pitch estimates and V/UV decisions

From 7"(7), pitch candidates corresponding to the 10 highest peaks with am-
plitudes greater than 0 are identified. Each peak and its immediate neighbors
are fitted by a parabola, and the amplitude and lag position corresponding to
the maximum point of this parabola are the refined pitch measurements for the
respective pitch candidate [4]. To favor the pitch candidate with the smallest
MBSC lag position when peaks of similar amplitudes are present, an empirically-
determined, linearly decreasing lag-weighting function, A(7) = 1— %7‘, is multi-
plied to the interpolated peak amplitudes [3], where Ty = 160 is the maximum

number of samples in one period (given an 8-kHz signal, and the minimum FO set

at 50 Hz). The lag position of the best pitch candidate (the one with the highest
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lag-weighted peak amplitude) gives the estimated pitch period.

As for V/UV detection, a constant threshold is applied on the maximum
interpolated peak amplitude (prior to lag-weighting) to obtain the initial binary
V/UV decision for each frame. This is followed by a 5-point median filtering in

time on these initial decisions to get the final V/UV detection outputs.

2.2 Database, comparative algorithms, and performance

metrics

2.2.1 Reference pitch corpora for development and evaluation

The two popular pitch corpora for speech — Keele [82] and CSTR [83] are used to
generate narrowband noisy speech, with a sampling rate of 8 kHz (downsampled
from the original clean version at 20 kHz). The dataset generated from Keele
corpus is the development (dev) set used for algorithmic parameter tuning, while
the dataset generated from the CSTR corpus is treated as the evaluation (eval)
set. The reference pitch contours (provided in the corpora) are derived from

laryngograph signals recorded simultaneously.

2.2.1.1 Dev set — Noise-added Keele

The Keele corpus contains a phonetically balanced story read by five adults from
each gender: one file per speaker, each about 30 seconds long. To simulate
bandlimited noisy speech, the data is down-sampled and mixed it with three
real-world noise types — babble, car (volvo), and machine gun. These are sample
noise files from the NOISEX-92 corpus [84] (available at http://spib.rice.

edu/spib/select_noise.html). They are selected for their different degrees
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Table 2.1: Characteristics of the noise-types used to generate noisy speech

Noise type Spectral characteristics
Babble Non-stationary speech-shaped harmonics
Car Highly stationary low-frequency noise
Machine gun Highly non-stationary, containing:

- No-noise time segments
- Short bursts of energy covering all frequencies

- Each burst is followed by a longer low-frequency noise

of stationarity and spectral characteristics as presented in Table 2.1 and Fig.
2.12. The noise files are also downsampled to 8 kHz before adding them to clean
speech at 20, 15, 10, 5, and 0 dB SNR using the Filtering-and-Noise-adding-
Tool (FaNT) [85]. Speech with fullband or G.712 [76] spectral characteristics is
generated by setting the “-m snr_4khz” or “-f g712” option, respectively in FaNT.
The ITU G.712 characteristic filter has a flat bandpass response between 300 and
3400 Hz. Since fundamental harmonics below 300 Hz are attenuated, the G.712

dataset is a more challenging corpus than its fullband counterpart.

2.2.1.2 Eval set — Noise-added CSTR

The CSTR corpus contains about 5 minutes of speech from an adult male and
an adult female (50 sentences each). The phonemes in the sentences are biased
towards voiced fricatives, nasals, liquids and glides, for which accurate pitch
estimation is difficult. Since the pitch contours in the reference files are not
computed at a regular rate of 100 Hz, linear interpolation and extrapolation
are applied to obtain a reference pitch value at every 10 ms for performance

evaluation.
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Figure 2.12: Spectrograms of the three noise types: (a) babble, (b) car noise, and

(¢) machine gun.
2.2.2 Algorithms for comparison

The following pitch estimation/detection algorithms are evaluated on the same
pitch corpora for comparison purposes. These algorithms are selected because
they are popular benchmarking algorithms — RAPT [3] used in Wavesurfer [86],
YIN [4]) — or they employ signal processing techniques that have similarities to our
proposed pitch detector — SHR [6], SWIPE, SWIPE’ [8], WWB [13]. The default
parameter values proposed in these algorithms are used, unless specified otherwise
in this chapter. The following parameters are set common in all algorithms —

sampling rate = 8 kHz, pitch range from 50 to 400 Hz, and frame rate = 100 Hz.
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1. RAPT [3]. This is a time-domain pitch detection algorithm that is im-
plemented in Wavesurfer [86]. This algorithm uses cross-correlation to
obtain FO candidates, followed by a dynamic programming algorithm to
yield the final pitch contour. The Wavesurfer software is available at

www . speech.kth.se/wavesurfer/download.html.

2. YIN [4]. This is a time-domain pitch estimation algorithm in which a series
of improvements on the classic AC algorithm are introduced to reduce FO
estimation errors. This improved AC-based technique reported high FO
estimation accuracies for clean speech and music. YIN’s MATLAB code is

available at audition.ens.fr/adc/sw/yin.zip.

3. SHR [6]. This pitch detection algorithm has a frequency domain PEA
based on a subharmonic-to-harmonic ratio (SHR), and a rule-based V/UV
detection algorithm based on time-domain parameters. SHR is the ratio of
the spectrum’s subharmonic amplitude summation to its harmonic coun-
terpart. FO estimation is performed on frames with energies higher than
the estimated noise floor, with a subsequent V/UV detection based on a
correlation value and zero-crossing rate of the extracted frame. To down-
load SHR’s MATLAB code, search for “pitch determination algorithm” at

www .mathworks.com/matlabcentral/fileexchange.

4. SWIPE and SWIPE’ [8]. SWIPE and SWIPE’ (a variant of SWIPE) are
recently proposed comb-based, frequency domain F0 estimation algorithms.
In contrast to SWIPE, SWIPE’ uses only the first and prime harmonics in
its decaying comb-function for FO estimation, which significantly reduces
subharmonic errors. It was shown in [8] that SWIPE’ outperformed 12 other
PEAs when evaluated on Keele, CSTR, a pathological voice database, and

a music database. The MATLAB code is available at www.cise.ufl.edu/
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~acamacho/publications/swipep.m

. WWB [13]. This multi-pitch-tracker is a time-frequency-domain, correlo-
gram-cum-statistical-model-based F0 tracker proposed by Wu et. al (2003).
It performs frequency decomposition using a Gammatone filterbank, and
computes AC on each channel. For the mid- and high-frequency channels,
signal envelopes are extracted prior to AC computation. This is followed by
channel and peak selections to enhance the peak corresponding to the true
fundamental period in the SCgram. Statistical information on the peaks
in the SCgram are post-processed using a hidden Markov model (HMM)-
framework to perform pitch tracking. It is shown in [13] that this algo-
rithm yields reliable single and double FO contours for noisy speech. With
its original code, less than 6 s of speech can be processed even after the
"MAX_SAMPLES” value is maximized to a value that avoids insufficient
memory problem at runtime. This is not a problem for the CSTR dataset
since the maximum utterance length is 5 s. To work around this issue for
the Keele dataset, the input data is broken into 5-seconds long segments
with 100 ms overlap. The multi-segment FO outputs are then concatenated
into a single file by removing the last 4 values in the former segment, and
first 5 values in the latter segment for each pair of overlapping segments.
This concatenation procedure results in the correct number of FO outputs
in the final concatenated file, and the minimum FO tracking error for the 8
kHz fullband clean Keele corpus. Codes for this pitch tracker is available

at www.cse.ohio-state.edu/~dwang/pnl/shareware/wu-tsap03.
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2.2.3 Performance metrics

Two experiments are conducted: Experiment 1 focuses only on pitch estimation
accuracy, and all voiced frames in the reference pitch contours are evaluated,
i.e. assuming V/UV detection is perfect. Experiment 2 evaluates pitch detection
accuracy by taking into account both pitch estimation and V/UV detection er-
rors. The performance metric used for performance evaluation in Experiment 1
is the gross pitch error for all reference voiced frames (GPE, sy ), while the key
performance metric in Experiment 2 is the pitch detection error (PDFE). These

performance metrics are explained in the following subsections.

2.2.3.1 Experiment 1: Pitch estimation

Since perfect V/UV detection is assumed in Experiment 1, only pitch estimation
errors can occur under this pitch detection scenario. Hence, the gross pitch error
computed over all voiced frames noted in the reference files is the performance
metric used in this experiment. This popular performance metric, denoted by
GPE, sy in Eq. (2.18), has also been used by developers of comparative algo-
rithms in [4,6,8]. Ny and Np .y are the number of reference voiced frames, and
the number of frames with gross pitch errors (estimated and reference FO differ

by more than 20%), respectively.
o NP,rer
GPEepy = ~2rV 5 100% (2.18)
Ny

To ensure there is an FO estimate for almost every reference voiced frame, voicing-
related parameters in RAPT, SHR and WWB are altered - RAPT’s “VO_BIAS”
to 1; SHR’s “CHECK_VOICING” to 0; and state transitions probabilities (£2; —
;) in WWB are set to 0, except for Qg — Qy, O — Qy, and Qy — €, which
are set to 1. For the proposed MBSC algorithm, the estimate given by the best
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pitch candidate of each frame is used for computing GPE,.sy .

2.2.3.2 Experiment 2: Pitch detection

Both pitch estimation and V/UV detection accuracies are of interest in Experi-
ment 2. Three performance metrics are computed — Gross Pitch Error (GPE),
Voicing Decision Error (V DE) [17], and Pitch Detection Error (PDE) [87]. In
contrast to Experiment 1, GPFE in Eq. (2.19) is only computed over the reference
voiced frames that is detected by the respective algorithm, whose count is repre-
sented by Ny, and Np is the number of frames with gross pitch errors. VDFE
in Eq. (2.20) is the percentage of V/UV detection errors. Ny _py is the num-
ber of voiced frames misclassified as unvoiced, and vice versa for Ny _y, while
N is the number of frames in the utterance. A pitch detector can have a low
GPE, but a high VDFE because many challenging voiced frames are misclassified
as unvoiced, and vice versa, which makes pitch detection performance compar-
ison based on these two separate metrics difficult. Thus, PDE in Eq. (2.21),
which represents the percentage of pitch detection errors is the key performance
metric used for comparative evaluation in this experiment. The PDE takes into
account all possible mutually exclusive pitch detection errors that can occur in
any given frame, i.e., voiced-to-unvoiced, unvoiced-to-voiced, or gross pitch error.
This performance metric is formally defined in [87], and it has also been used for
pitch detection performance evaluation in [88] and [12]. Fig. 2.13 [87] gives an
illustration of the pitch error frames, Nv_ v, Nyyv_yv, and Np that are found,
when a detected FO contour is compared against the reference FO contour that

contains N frames.

N
GPE = —2 x 100% (2.19)
Nyy
N N,
VDE = V*UV; T2V % 100% (2.20)
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Figure 2.13: An illustration of frames with pitch detection errors in an utterance.
Np is the number of frames with gross pitch errors, Ny _y is the number of
voiced frames misclassified as unvoiced, and vice versa for Nyy_,v. Nyy is the
number of reference voiced frames that is detected as voiced, while N is the total

number of frames in the utterance.

Ny_uv + Nyvoy + Np

PDE =
N

x 100% (2.21)

For RAPT, SHR, and WWB, pitch detection performance evaluation is con-
ducted using the algorithms’ default settings. As for pitch estimation algorithms
— YIN, SWIPE, and SWIPE’, V/UV detection is performed using the same con-
stant thresholding and median filtering scheme as that used in our proposed
algorithm. The threshold level (varied in steps of 0.025) that gives the lowest
averaged VDE for noisy speech in the Keele (dev) corpus is used. Table 2.2
shows the threshold levels tuned for these algorithms and the proposed MBSC
PDA.
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Table 2.2: Degree-of-voicing feature and the constant threshold level applied in

Experiment 2

Algorithm Degree-of-voicing feature Value
YIN Aperiodicity measure 0.425
SWIPE Max. normalized inner product 0.175
SWIPE’ Max. normalized inner product 0.175
MBSC Max. peak amplitude in 7m(7) 0.375

2.3 Experiment 1: Pitch estimation performance evalua-

tion
2.3.1 Results

The GPE,.py for the Keele (dev set) and CSTR corpora (eval set) are shown in
this section. To reduce the amount of data presented, the GPE, sy results are
averaged on a per noise-type or a per SNR basis. Table 2.3 contains the results for
clean CSTR speech, while Tables 2.4 and 2.5 show the mean GPE, sy obtained
by averaging on a per noise-type and a per SNR basis, respectively. The lowest
value in each column is boldfaced to indicate the best-performing algorithm in
each case. Note that the GPE, .y obtained for the eval and dev sets have similar

trends. For the Keele (dev) corpus results, please refer to Tables 2.6 to 2.8.

SWIPE’ has the lowest GPE, sy for fullband clean speech. For G.712 clean
speech, WWB has the lowest GPE,.;. In these cases, the absolute difference

between MBSC and the best performing algorithm is small, less than 0.4%.

For noisy speech, MBSC achieves the lowest mean GPE, sy, whether it is

averaged over SNRs for each noise-type or averaged over noise-types at each
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Table 2.3: Average GPE, ;v (%) for clean CSTR (eval) corpus, assuming perfect
V/UV detection. Boldfaced numbers indicate the best performance.

Algorithm Clean, fullband Clean, G.712

RAPT 9.63 10.4
YIN 4.02 7.76
SHR 3.78 11.0
SWIPE 3.69 10.2
SWIPE’ 3.49 13.7
WWB 4.11 4.19
MBSC 3.83 4.50

SNR. A minimum overall GPE,. sy of 7.85% and 9.66% are achieved for fullband
and G.712-filtered noisy speech in the CSTR (eval) corpora, respectively.

2.3.2 Discussion

In general, GPE,.sy is higher for the G.712-filtered data compared to its full-
band version because of an increase in over-estimation (doubling/tripling) error,
especially for low-pitched utterances whose fundamental harmonic is severely at-
tenuated after G.712-filtering. The reverse trend is observed in some cases for the
RAPT and WWB algorithms when the reductions in under-estimation errors for
G.712-filtered, high-pitched utterances exceed increases in over-estimation errors

for the low-pitched utterances.

The low GPE,.sv achieved by SWIPE” and SWIPE for clean fullband speech
shows that their comb-filter-based pitch estimation algorithm is effective in re-

ducing harmonic and subharmonic errors, which are usually the main error con-

tributors for clean speech. However, for the G.712 version, SWIPE’ and SWIPE
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Table 2.4: GPE, ;v (%) averaged across SNRs from 20 to 0 dB per noise-type for
noise-corrupted, fullband / G.712 CSTR (eval) corpus, assuming perfect V/UV

detection.
Algorithm Babble Car Mach. Gun Avg. All
RAPT 342 /311 11.3 /127 255 /192  23.7/21.0
YIN 189 /226 968 /164 120/ 152 13.5 / 18.1
SHR 16.7 /249 635 /175 11.0 /175 11.4 /19.9
SWIPE 19.3 /244 741 /270 11.3 /186  12.7 /233
SWIPE’ 176 /286 723 /332 10.7/238 119 /285
WWB 209 /188 646 /971 739 /854 11.6 /123
MBSC 12,5 / 13.7 5.06 / 8.47 5.95/6.76 7.85 /9.66

Table 2.5: GPE, ;v (%) averaged across noise-types per SNR for noise-corrupted,
fullband / G.712 CSTR (eval) corpus, assuming perfect V/UV detection.

Algorithm 20 dB 10 dB 0 dB Avg. All
RAPT 13.3 /112 219 /187 374/356 23.7/210
YIN 463 /888 9.39/154 304/328 135 /181
SHR 464 /127 898 /180 228 /31.0 11.4/19.9
SWIPE 509 /145 101 /218 252 /352 12.7/23.3
SWIPE’ 473/19.7 899 /277 245/391 119/ 285
WWB 563 /618 9.71/9.70 21.1/237 116/123
MBSC 4.16 / 5.34 6.00 /8.24 15.1 /17.1 7.85 / 9.66
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Table 2.6: Average GPE,.ry (%) for clean Keele (dev) corpus, assuming perfect
V/UV detection.

Algorithm Clean, fullband Clean, G.712
RAPT 5.08 5.32
YIN 3.04 6.83
SHR 2.18 8.18
SWIPE 2.09 8.46
SWIPE’ 2.07 11.46
WWB 6.56 6.49
MBSC 2.01 3.33

Table 2.7: GPE,.py (%) averaged across SNRs from 20 to 0 dB per noise-type

for noise-corrupted, fullband / G.712 Keele (dev) corpus, assuming perfect V/UV

detection.
Algorithm Babble Car Mach. Gun Avg. All
RAPT 226 /254 956 /118 208 /173 17.7 / 18.2
YIN 15.0 /23.0 10.3 /189 11.5/16.5 12.2 /194
SHR 12.8 /22.7 575 /175 928 /16.0 9.28 / 18.7
SWIPE 11.7 /214 597 /265 101 /173 928 /21.7
SWIPE’ 11.1 /259 6.15/329 9.52/21.8 892/ 26.9
WWB 156 /141 795/104 938 /100 11.0 /115
MBSC 8.29 /119 3.54/7.44 3.85/5.83 5.23/8.39

are not among the top three best-performing algorithms, and the performance
of SWIPE’ is worse than SWIPE. This is because SWIPE and SWIPE’ use a

decreasing amplitude comb-filter, so its performance degrades significantly when
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Table 2.8: GPE, ;v (%) averaged across noise-types per SNR for noise-corrupted,
fullband / G.712 Keele (dev) corpus, assuming perfect V/UV detection.

Algorithm 20 dB 10 dB 0 dB Avg. All
RAPT 780 /7.76 153 /156 32.0 /336 17.7 /182
YIN 370 /844 846 /161 285/369 12.2/19.4
SHR 297 /102 6.83/165 20.5/318 928 /187
SWIPE 296 /11.9 697 /196 204 /356 9.28/21.7
SWIPE’ 274 /163 652 /257 20.0/39.9 892/ 26.9
WWB 721 /744 9.09/961 185/192 11.0 /115
MBSC 2.22 /4.00 3.64 /6.59 11.4/16.5 5.23 /8.39

the lower harmonics in the signal are missing or heavily attenuated in the G.712-
filtered data. The degradation is more severe for SWIPE’ that heavily relies on
the first and prime harmonics (many non-prime harmonics of higher frequencies

are ignored) in its comb-filter.

Although MBSC is not the best performing algorithm for clean speech in the
eval set, it still has the lowest average GPE,.;y at a high SNR of 20 dB, as
shown in Table 2.5. MBSC’s low GPE,.sy under different noise-types and SNR
levels shows that the proposed algorithm gives robust pitch estimation accuracy
under a wide range of noise conditions. From Table 2.4, it is also observed that
accurate pitch estimation is challenging for babble noise-corrupted speech for all
the algorithms investigated. This is because babble noise also has a harmonic
structure — it is difficult to estimate a correct pitch from the speech harmonics

when an interfering set of harmonics is present.

Pitch estimation performance of the algorithms are also evaluated on frequency-

shifted speech, i.e., harmonics are present at n fy+ ¢, where n is a positive integer,
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Table 2.9: Average GPE,.sv (%) for frequency-shifted, clean CSTR (eval) corpus,

assuming perfect V/UV detection.

Algorithm Freq-shift, fullband Freqg-shift, G.712

RAPT 58.29 54.95
YIN 59.65 56.98
SHR 56.23 58.69
SWIPE 58.89 61.35
SWIPE’ 58.63 63.17
WWB 54.48 54.33
MBSC 23.88 17.43

fo is the pitch value, and ¢ is the amount of frequency offset. This frequency-shift
phenomenon can occur due to a carrier frequency offset between the transmitter
and receiver. It is commonly found in received speech of communication systems
that use the single sideband suppressed carrier (SSB-SC) modulation scheme,
which are popular for voice transmission in the high frequency (HF) radio spec-
trum by amateur radio, commercial, and military operators [89]. Frequency-
shifted speech are generated from clean CSTR corpus, with and without G.712-
filtering. The GPE,.;v obtained by each algorithm is shown in Table 2.9. A
frequency shift of 6 = -120 Hz is chosen because this amount of frequency shift
is found in some of the preliminary speech data recorded for the DARPA Robust
Automatic Transcription of Speech (RATS) program [81,90].

The comparative algorithms generally output a pitch estimate that is either
the first positive frequency of the shifted harmonics, or the frequency of the
strongest shifted harmonic. For WWB, its mid- and high-frequency subbands’

ACRs are also computed from the envelopes of subband signals containing mul-
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tiple harmonics. Thus, these ACRs contain information for accurate pitch es-
timation. However, ACRs computed from the individual shifted, low-frequency
harmonics, (captured by the narrowband Gammatone filters at the low frequen-
cies) provide pitch information that is inconsistent with the envelope ACRs. As
a result, the pitch estimation accuracy of WWB is only slightly better than the

other time-, or frequency-domain algorithms evaluated in this case.

The usage of signal envelopes in all subbands of the proposed MBSC-based al-
gorithm leads to a significantly (> 30%) lower GPE,. sy in comparison to other al-
gorithms, since the inter-harmonic frequency separation is invariant for frequency-
shifted speech. Thus, the subband signals’ amplitude modulation frequency will
still be equal to true F0. However, the GPE, sy of clean, frequency-shifted data
is not as good as that achieved for the normal clean speech. This is because for
frames with FO that is close to 240 Hz (twice the amount of frequency shift),
shifting the spectrum down by 120 Hz results in short-time spectra with har-
monics near odd multiples of 120 Hz. As such, the HSR of the low-frequency,
non-envelope stream (i.e. s=0) will be high for the comb-channel with F} near

120, and low for the comb-channel with F}, near the true FO of 240 Hz. This

fs
1207

produces a ry_(7) with a strong peak near lag value, 7 = and a deep valley
fs

near the true pitch period of 7 = 575.

Although r,4(7) for the envelope streams

fs
2407

(s =1, 2, 3, and 4), have their maximum peaks at 7 ~ they also have

their second-strongest peak at twice this lag value, by nature of the AC function.

fs

Thus, the resulting MBSC would have a stronger peak at 7 ~ 155,

especially if

a¢(s = 0) is larger than those of the other streams.
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2.4 Experiment 2: Pitch detection performance evalua-

tion
2.4.1 Results

Tables 2.10 to 2.18 present the GPE, VDE, and PDFE obtained for the CSTR
(eval) corpus, arranged according to the data characteristics and noise-types —
Table 2.10 for clean speech, Tables 2.11 to 2.14 for 4-kHz fullband noisy speech,
and Tables 2.15 to 2.18 for G.712-filtered noisy speech, respectively. The lowest
value in each column is boldfaced. Note that similar trends in pitch detection
performance are observed for the eval and dev sets. For pitch detection results

of the Keele (dev) corpus, please refer to Tables 2.10 to 2.27.

For clean fullband and G.712-filtered speech in the eval set, it can be observed
in Table 2.10 that RAPT has the lowest VDFE and PDE.

For noisy speech in the eval set, although MBSC does not always have the
lowest GPFE and V DE among the algorithms at each individual noise-condition,
it still has the lowest PDFE because both its GPE and VDE are low. MBSC
also has the lowest GPE, VDE and PDE when averaged over all noise-types
investigated at each SNR (tabulated in Tables 2.14 and 2.18), thus it also has
the best overall pitch detection performance (shown in the right column of these

tables), for both fullband and G.712 noisy speech.

2.4.2 Discussion

For clean speech, MBSC has a slightly higher PDE than RAPT because the
longer frame length defined in MBSC can cause an early onset and late offset

detection of voiced segments. RAPT’s good pitch detection performance for
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clean speech is mainly attributed to its low V DE. The usage of a short 7.5 ms
frame in RAPT produces sharper transitions at voicing boundaries. In addition,
RAPT derives its voicing transition costs in its dynamic programming algorithm
based on inter-frame energy ratio and spectral difference, which provide good
indications of voicing transition boundaries for clean and some cases of high SNR

noise conditions.

For noisy speech, MBSC’s low overall PDFE is attributed to its good pitch
detection performance over various SNRs and noise-types. MBSC has the lowest
average PDE at both high (20 dB) and low (0 dB) SNRs, which can be observed
in Tables 2.14 and 2.18. Similarly, MBSC also has the lowest average PDFE for
each noise-type, as seen in the last column of these two tables. These results
affirm that the pitch detection performance of the proposed MBSC is robust
against a variety of noise conditions. This also shows that the proposed signal
processing schemes are generally effective in enhancing MBSC’s peak amplitude
at the true pitch period, since low VDFE is achievable with the simple constant

V/UV threshold detection scheme.

For babble noise-corrupted speech, MBSC has a slightly higher V DE than
RAPT because some of the harmonic-containing babble noise frames are erro-
neously enhanced and misclassified as voiced speech. However, MBSC still has
the lowest PDFE because of its higher pitch estimation accuracy for babble noise-
corrupted speech compared to other algorithms. In the case of car noise-corrupted
speech, some comparative algorithms have lower G P Es than MBSC because there
is a higher proportion of frames with a pitch estimation error for the additional
weakly voiced frames detected by MBSC, but missed by the other algorithms
(thus the VDEs of these algorithms are higher than MBSC’s). Machine gun

noise is highly non-stationary, such that there is a large variation in SNR within
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each machine gun noise-corrupted speech utterance. Since the MBSC peak en-
hancement schemes improve the algorithm’s noise-robustness under a wide range
of SNRs, MBSC gives superior performance in GPE, VDE and PDFE compared

to other algorithms for machine gun noise-corrupted speech at all SNR levels.

Table 2.10: GPE, VDE, and PDE (%) for clean CSTR (eval) corpus.

Clean, Fullband Clean, G.712

Algorithm

GPE VDE PDE GPE VDE PDE
RAPT 255 499 5.93 286 5.70 6.75
YIN 1.98 738 810 486 797  9.79
SHR 227 795 881 943 9.32 13.1
SWIPE 200 6.18 6.93 746  9.05 11.8
SWIPE’ 1.95 701 7.75 107 9.85 13.9
WWB 1.91 813 882 1.93 825 895
MBSC 1.85 5.82  6.52 1.90 6.67 7.37
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Table 2.19: Average GPE, VDE, and PDE (%) for clean Keele (dev) corpus.

Clean, Fullband Clean, G.712

Algorithm

GPE VDE PDE GPE VDE PDE
RAPT 224 3.95 5.07 274 494 6.28
YIN 1.67 454 534 398 6.15 7.94
SHR 1.97 132 142 759 134 17.1
SWIPE 1.05 519  5.70 461 841 104
SWIPE’ 1.02 538  5.89 713 955 125
WWB 291 892 10.2 3.03 9.06 104
MBSC 1.19 497  5.55 1.59 556 6.28
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Besides being a robust feature for V/UV detection in a pitch detection appli-
cation, the maximum MBSC peak amplitude is also a reliable frame-level degree-
of-voicing feature that can be used to enhance the noise-robustness of other speech
applications. One such application is speech activity detection (SAD). A speed-
optimized version of the proposed MBSC PDA is one of the algorithms used in
SRI’s SAD system for the DARPA Robust Automatic Transcription of Speech
(RATS) project [91]. The RATS data was collected by the Linguistic Data Con-
sortium (LDC) by retransmitting conversational telephone speech through eight
different communication channels using multiple signal transmitters/transceivers,
listening station receivers, and signal collection and digitization apparatus [81].
The RATS rebroadcasted data contain a wide array of real transmission distor-
tions, including band limitation, strong channel noises, nonlinear speech distor-
tions (e.g., clipping), frequency shifts, high energy burst in non-transmission time
intervals. One-dimensional discrete cosine transform (DCT) is applied to a long-
term window containing 30 MBSC’s maximum peak amplitudes from consecutive
time frames, and the first 4 DCT coefficients are used to build the speech and
non-speech Gaussian mixture models (GMMs). Table 2.28 shows the equal error
rate (EER) (probability of missed speech detection = probability of false speech
detection) for different input features on the RATS SAD Dev-1 and Dev-2 sets,
which is published in [91]. MBSC has a higher EER for the Dev-2 set because
there is a significant amount of non-speech tonal interferences in Dev-2. Tonal
interference causes false speech detection because the proposed algorithm does
not differentiate between signal periodicity in speech and non-speech. However,
when MBSC features are combined with MFCCs, which capture information
regarding the spectral shapes of speech signals, false alarms caused by tonal in-
terferences are suppressed, since their spectral shapes do not resemble speech.

This MFCC+MBSC feature combination also has the lowest EERs for Dev-1
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Table 2.28: EER (%) for RATS SAD Dev-1 and Dev-2 sets obtained by SRI’s

SAD system.
Features Dev-1 Dev-2
MBSC 4.10 6.15
MFCC 2.05 2.70
MFCC+MBSC  1.65 2.45
and Dev-2.

2.5 Conclusion

The proposed MBSC PDA involves several algorithmic novelties to improve the
robustness of its pitch detection performance. For frequency decomposition, four
wideband FIR filters equally-spaced in the linear frequency scale are used. The
low-frequency wideband FIR filter in the MBSC PDA facilitates the use of signal
envelope in this band, which contributes to a higher pitch estimation accuracy
for bandpass-filtered speech. The FIR filters have equal separation in the lin-
ear frequency range so that there is no bias towards harmonics in particular
frequency ranges. This helps avoid a significant performance degradation when
several harmonics in a particular frequency band are masked by noise. Besides
the Hilbert signal envelope of each subband, the non-envelope signal stream from
the low-frequency subband is also used. Multi-channel comb-filtering is performed
separately for each subband stream. This is in contrast to other comb-filter-based
algorithms that apply comb-functions spanning the full spectrum, making them
highly dependent on prominent low-frequency harmonics to perform well, espe-

cially if the comb-functions have decreasing amplitude with frequency (e.g. [8,80]).
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To derive the peak-enhanced MBSC, an SC is first computed for each stream us-
ing an HSR-weighted-average of the ACRs computed from comb-filtered outputs
of selected channels. These SC streams are further fused to form the MBSC
based on their within-stream and between-stream reliability factors. Together,
the proposed signal processing schemes (subband multi-channel comb-filtering,
HSR-based channel-selection-and-weighting, stream-reliability-weighting) helps
to enhance the maximum MBSC peak at the most likely pitch period, which
improves the accuracy of pitch estimation, as well as V/UV detection. The
variability of the maximum MBSC peak amplitude with SNRs is reduced, such
that robust V/UV detection is achieved by simply applying a constant threshold
on this single feature, followed by median filtering — without requiring additional
features (6], a separate V/UV detection module, or a pitch continuity tracking al-
gorithm involving dynamic programming [3], or statistically-trained, data-driven
modeling techniques [13]. To ascertain that the threshold is not highly data-
dependent, our evaluations involve separate development and evaluation data

sets.

When the pitch estimation accuracy is evaluated on every voiced frame (as-
suming perfect V/UV detection) in Experiment 1, noise-robustness of the pro-
posed algorithm’s pitch estimation accuracy is shown through the low average
gross pitch error (GPE,.py) achieved for noisy speech at various SNRs and noise-
types.

When pitch detection performance is assessed based on both pitch estimation
and voicing detection accuracies in Experiment 2, the MBSC-based pitch detec-
tor has the lowest average pitch detection error (PDFE) under various SNRs and
noise types. This shows that the novel peak-enhancement schemes are generally

effective in boosting the MBSC’s peak at the true pitch period, since the sim-
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ple constant threshold V/UV detection scheme still yields good pitch detection

performances for many of the noise conditions.
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CHAPTER 3

Feature enhancement using jointly-sparse
reference and estimated soft-mask
representations for noise-robust speech

recognition

In this chapter, a feature enhancement technique for noise-robust speech recog-
nition using jointly-sparse reference soft-mask (SM,e) and estimated soft-mask
(SMeg¢) representations is proposed. Dictionary learning is used to derive the
jointly-sparse SM,; and SM dictionaries from soft-mask exemplar-pairs ex-
tracted from the training set. By solving an [;-minimization problem, the sparse
linear combination of SMy representations that best resembles the target ut-
terance’s SM; is found. The same sparse linear combination is applied to the
SM,.¢ dictionary representations to obtain an enhanced soft-mask for denoising
the target utterance’s Mel-spectrogram before MFCC extraction. The proposed
technique is evaluated against other sparse representation-based feature enhance-
ment techniques on the Aurora-2 database — a noisy digit speech corpus, and
the Aurora-4 database — a 5000-word vocabulary noisy speech corpus. For the
Aurora-4, additional noisy test sets produced by mixing other noise types to
Aurora-4’s clean test data to evaluate the algorithms’ performance on unseen

noise types. This chapter is based on L. N. Tan and A. Alwan, “Feature en-
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Figure 3.1: Joint soft-mask dictionary learning (training phase)

hancement using sparse reference and estimated soft-mask exemplar-pairs for

noisy speech recognition,” in Proc. ICASSP, 2014, pp. 1729-1733.

3.1 Proposed JDictMask feature enhancement algorithm

3.1.1 Joint soft-mask dictionary learning

Fig. 3.1 summarizes the joint soft-mask dictionary learning scheme. First, Y.[f, ]
and Y, [f, t], the Mel-frequency magnitude spectrogram (Mel-spectrogram) of the
clean and noisy versions of each training utterance-pair, are computed by applying
Mel-filter weighting on the respective pre-emphasized short-time FFT magnitude
spectrum in each frame. Each time-frequency (T-F) unit in the spectrogram is
denoted by two indices, f and ¢, which indicate the Mel-frequency bin and time
frame, respectively. The SM,¢ at each T-F unit, M, [f, t], is computed by taking
the ratio of Z.[f,t] — a noise-subtracted version of Y.[f, | —to Y,[f, ], as shown in
Eq. (3.1). Z.is calculated by subtracting the ambient noise Mel-spectrogram, N,
from Y,, with negative values set to 0, as shown in Eq. (3.3). N, has a constant

noise spectral value in time at each frequency bin, and these constant values are
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the 25th percentile of individual frequency bin’s Mel-spectrogram magnitudes
found in the first and last 20 time frames of Y,. Similarly, the SM.y, denoted by
M.[f,t], is computed by taking the ratio of Z, to Y,, (Eq. (3.2)), where Z, is
the noise-subtracted version of Y,,. The noise Mel-spectrogram, N,, in Eq. (3.4),
is estimated using the minimum statistics (MS) noise estimation technique [92]
implemented in the “estnoisem” function of Voicebox [93]. The MS technique is
not used to estimate N, because some of the speech energy tends to leak into the

estimated noise spectra, resulting in over-estimation of the ambient noise.

M, [f, 1] = min(Z[f,t]/Ya[f, 1], 1) (3.1)
Mc[f 1] = Zulf 1]/ Yl 1] (3.2)
Ze[f 1] = max(Ye[f, t] = Ne[f,t],0) (3.3)
Znlf ] = max(Yo[f, t] — Nnlf,t],0) (3.4)

Fig. 3.2 shows the SM,.s computed with and without ambient noise subtrac-
tion on a clean training utterance. In the presence of a low-frequency noise,
the high-frequency energy in the noisy spectra is very similar to that in the
clean spectra. Thus, the SM,.s computed without ambient noise subtraction has
values close to 1 at the high Mel-frequency bins (Fig. 3.2a), resulting in poor
high-frequency noise suppression at non-speech regions. With ambient noise sub-
traction (Eq. 3.4), the resulting SM,¢; have lower values at non-speech regions
across all frequencies (Fig. 3.2b), and hence better noise suppression across all
frequencies. Ambient noise subtraction is also helpful in generating a SM,; with
good noise suppression property when the clean training utterances contain a
consistent low-energy background noise (e.g. hum or tones) from the recording

equipment.
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(a) Reference soft-mask computed without noise subtraction

Mel-frequency bin indices

100 200 300 400 500 600
Frame indices

Figure 3.2: Reference soft-mask, SM,e, computed with/without ambient noise

subtraction in the clean training utterance

To avoid memory overload, a subset of randomly selected soft-mask exemplar-
pairs from the training utterances is used to learn jointly-sparse SM,.s and SMg
dictionaries. This soft-mask exemplar-pair subset is obtained as follows. Soft-
mask exemplar-pairs (m’, m’) are extracted from the same T-F region of each
clean and noisy training utterance-pair. Note that clean and noisy training
utterance-pairs required for these soft-mask exemplar-pairs extraction can be
easily generated by adding noise to clean training data. Each i-th exemplar,
mi€RFT*L is formed by concatenating the columns in M,[1:F ¢:(+T-1)|eRF*T
that contains F'=23 Mel-frequency bins, and T=11 consecutive frames (covers
about one phoneme interval). The notation a:b represents the range of integers
{a, a+1, ... , b}. T=11is also used in [48], and the feature enhancement scheme
in [47] reported good performance with T=10. FEight such exemplar-pairs are
obtained by randomly selecting ¢ — the starting frame of the region. To enable
joint learning, each (mf, m!) exemplar-pair is concatenated to form m?eR*!Tx1

(see Eq. (3.5)), which serves as the input to the dictionary learning algorithm.
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Table 3.1: MexTrainDL parameters for dictionary learning

param.K = 4000 param.posAlpha = 1
param.lambda = 0.15 param.posD = 1
param.batchsize = 10000 param.whiten = 0

param.mode = 2 param.iter = 100

The joint dictionary, DER*T*L s learned using the mezTrainDL function in the
Dictionary Learning and Matrix Factorization toolbox of the SPArse Modeling
Software (SPAMS) [94,95], which solves the optimization problem in Eq. (3.6).
The mexTrainDL parameters listed in Table 3.1 are used, which resulted in a joint
D containing L = 4000 representations. A dictionary of this size was used in our
preliminary experiment on the Aurora-2 noisy digit recognition task [96], and
it also gives reasonable performance for the Aurora-4 database. The SM,. and
SM.g; dictionaries, D, and D, (eacheR*T*F) are subsequently obtained by ex-
tracting the relevant rows in D, as shown in Eq. (3.7). The final SM,¢ and SMg
dictionaries that are used during feature enhancement, D, and D,, are computed
in Egs. (3.8) and (3.9). They are obtained by normalizing the columns in both
De and [?T by the L2-norm of the corresponding Je column in De. This ensures
that all columns in D, (on which the [;-minimization optimization is performed

during feature enhancement) have unit norm.

mint 37, 0.5]jm’ — Da’[[3 + Alla’]

such that of > 0, d/ > 0, ||d/]|2 < 1
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Speech Mel-spec extraction » Mel-spec enhancement —» MFcC > MFCCs
7'y extraction
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Mel-spec computed | L] Estimated | M, Sparse
using Min. Statistics |_,| soft-mask » softmask [*—D,, D,
noise estimation 7 computation reconstruction

Figure 3.3: The proposed feature enhancement algorithm using jointly-sparse
soft-mask dictionaries (during MFCC extraction in both training and testing

phases)

D=[d"d .. d" = | (3.7)

D,
D, = [d},d?, ..., d**™], where d’ = d;/||d;||2 (3.8)
D, = [d}, d?, ..., d*], where d' = d'/||d||, (3.9)

3.1.2 Feature enhancement using learned soft-mask dictionaries

The proposed feature enhancement technique is illustrated in Fig. 3.3. The SMg
of the input utterance, M., is computed as described in Section 3.1.1, and a SMg
vector, m?, is derived by concatenating the columns in each M,[1:F, j:(j+T-1)]
region, for j = 1, 2, ... . By solving the Lasso [;-minimization problem [97] in
Eq. (3.10), 27, the sparse linear combination of D, entries that best approximates
each m? is found. The SolveLasso function in the SparseLab toolbox [98] is used
to perform “nnlasso” (non-negative Lasso) with a maximum of 50 iterations,
and with Agop = 0.15. The value of X in Eq. (3.10) is iteratively updated in
SparseLab’s Lasso implementation, and the algorithm terminates when A < Agop
or the maximum iteration is reached. The enhanced soft-mask vector, 1/ is

then reconstructed by multiplying the same sparse vector, 2/ to D, as shown
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in Eq. (3.11). Each m/ is shaped back into rectangular T-F regions at their
respective frame positions, and overlapping T-F units are averaged [47] to obtain
the enhanced soft-mask of the entire utterance, M. Amplitudes in M are upper-
bounded to 1 before they are multiplied to the original Mel-spectrum to yield
the enhanced Mel-spectrum, X[f,t] (see Eq. (3.12)). A 39-dimension MFCC
feature vector (includes C0-C12, and their deltas and double-deltas) is computed
from the enhanced Mel-spectrum at each frame. Feature mean and variance
normalization (MVN) is applied on a per utterance basis to produce the final

feature vector for ASR.

min A|[#7||; + 0.5|m] — D.a’||3 such that 27/ > 0 (3.10)
m! = D, x! (3.11)
X[f.#] = min(M[f, 1], 1) Y[f,1] (3.12)

3.2 Sparsity-based algorithms for comparison

The following sparsity-based feature enhancement algorithms are implemented

for comparative purposes:

3.2.1 JDictLgMel

This JDictLgMel algorithm [48] uses jointly-sparse clean and noisy speech log-
Mel-spectral dictionaries. It is implemented with the same joint dictionary learn-
ing procedure (in Section 3.1.1) on log-Mel-spectral exemplar-pairs extracted
from clean and noisy speech training utterance-pairs. The sparse linear com-
bination of noisy log-Mel-spectral dictionary entries that best approximates the

target’s log-Mel-spectra is found by solving the same Lasso expression, with the
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same parameter settings. The denoised log-Mel-spectrum, from which MFCCs
are computed, is obtained by applying the sparse solution to the clean log-Mel-

spectral dictionary.

3.2.2 DictMelMask

In this DictMelMask algorithm [47], the clean speech and pure noise dictionaries,
D, and D,,, each containing 4000 Mel-spectral representations, are separately
learned using the same dictionary learning parameters in Table 3.1. They are
combined to form D = [Dy, D,] that has 8000 entries. The rows and columns
of D are normalized to yield the final dictionary. The sparse linear combination
of the dictionary entries that best represents the target Mel-spectrum is found
by solving a similar /;-minimization problem (using 200 iterations) with the Eu-
clidean distance in Eq. (3.10) replaced by the generalized Kullback-Leibler (KL)
divergence, and different \ values to penalize the activation weights of speech and
noise representations. To reduce the run-time, I implemented the iterative up-
date to end when ||xy - xx_1||2/||zk|]2 < 0.01, where zy and z;_; are the sparse
solutions obtained in the current and previous iterations, respectively. Clean
speech (S) and pure noise (N) Mel-spectra are separately reconstructed using
the corresponding sparse weights and dictionary representations. A soft-mask is
then computed by taking the ratio S/(S + N), which is multiplied to the target

Mel spectrum before MFCC extraction.
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3.3 Experiment on noisy digit speech recognition

3.3.1 The Aurora-2 database and experimental setup

The Aurora-2 noisy digit speech recognition task is used as a preliminary study on
the effectiveness of the proposed soft-mask-based feature enhancement technique.
The Aurora-2 database contains recordings of American adults uttering strings
of (1 to 7) digits. There are two training sets — (1) clean, (2) multi-conditional.
The multi-conditional training set contains I'TU G.712-filtered [76] clean speech
and noisy speech (SNRs between 20 and 5 dB). Suburban train, babble, car, or
exhibition hall noise is artificially added to clean speech to generated each noisy
utterances in the multi-conditional training set. Since the exemplar dictionar-
ies are already computed with knowledge of the noisy training utterances, the
HMDMs are trained using the multi-conditional set. There are three testing sets
— (1) Test A, (2) Test B, and (3) Test C. Test A and Test B contains G.712-
filtered speech (SNRs between 20 to -5 dB). The noise-types in Test A are the
same as those found in the multi-conditional training set, while a different set
of noise-types (restaurant, street, airport, train-station) is found in Test B. Test
C contains ITU MIRS-filtered [76] utterances, and the noise-types involved are
suburban-train and street noises. The major difference between the frequency
characteristics of G.712 and MIRS filters is that the former has a flat response in
the range between 300 and 3400 Hz, while the latter has a rising response with a
greater attenuation at lower frequencies (illustrated in Fig. 1 of [49]). MIRS sim-
ulates the telecommunication terminal input frequency response in the technical

specification GSM 03.50 [99].

The standard hidden Markov model (HMM) architecture [49] is used for the
ASR system, which is built using the HTK software package [100]. A 16-state
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HMM, with 3 Gaussian mixture models (GMMs) per state is used to model each
digit, assuming a diagonal covariance feature matrix. Two pause models — “sil”
and “sp” are also defined. The sil HMM consists of 3 states, with 6 GMMs per
state. It is used to model silence intervals at the start and end of each speech
file. The sp HMM consists of a single state that is tied to state 2 of the sil HMM.
This sp HMM is used to model short pauses in-between words. The language
model enables the test utterance to be modeled by any sequence of digits, with
the flexibility of inserting a sil at the start and end of the utterance, and inserting

a sp between digits.

In this preliminary study, noise subtraction was not performed on clean Mel-
spectrogram in computing SMy, i.e. treat Z. = Y. in Eq. (3.3). The soft-mask
exemplar-pairs in the joint dictionary, D are randomly selected and no dictionary
learning algorithm is involved. Dictionary learning is less essential in a digit
recognition task, since Aurora-2 is a 11-word (0-9, and “oh”) small vocabulary
corpus. Four exemplar-pairs are randomly selected from each clean and noisy
training utterance-pair. From this initial subset, 4000 (m’,m’) exemplar-pairs
are randomly selected, and each exemplar-pair is concatenated to form each d
column in D, as shown in Eq. (3.7). For the comparative sparsity-based feature
enhancement algorithms, their dictionary exemplars are extracted from the same
4000 (K x T) T-F regions as the exemplars used in the proposed algorithm.
The parameter Ay, to the SolveLasso function is set to its default value of 0.
Feature enhancement and utterance level MVN are applied during both training

and testing.
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3.3.2 Results

ASR performance is measured in terms of word accuracy (Wacc), which is defined
in Eq. (3.13).

No. of words correctly recognized — No. of words inserted
Wacc =

3.13
No. of words spoken (3.13)

For comparison, the Wacc results on Aurora-2 using plain MFCCs (i.e. no
enhancement), and ETSI-AFE’s [37] MFCC features, which is a state-of-the-art
algorithm for the Aurora-2 ASR task, are also included. From Table 3.2, it can
be observed that the DictMelMask method has the best performance, on aver-
age, for Test A. However, for Tests B and C, the performance of sparsity-based
methods (JDictLgMel, DictMelMask) that utilize spectral-based dictionaries de-
creases sharply, such that their Waccs are lower than those obtained by MFCCs.
The ETSI-AFE algorithm has the best performance for Test B. The proposed
JDictMask technique that uses joint SM ¢ and SMy exemplars has the best per-
formance in Test C, and comparable performance with ETSI-AFE for Test sets
A and B. The proposed JDictMask also has significant gains in Wacc over the
other sparsity-based methods for Tests B and C at low SNRs.

3.3.3 Discussion

Comparative methods using Mel-spectral exemplars, whether with dual (or joint)
dictionaries (in the case of JDictLgMel), or with a combined dictionary (in the
case of DictMelMask), perform well when the test noise and channel frequency
characteristics match those present in the dictionary, as observed for Test A.
However, the performance of these methods for Tests B and C suffers a large
degradation when spectral shape mismatches are present. On the other hand,

the proposed technique using the dual soft-mask exemplar dictionaries, is less
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Table 3.2: Wacc (%) obtained on Aurora-2 using the multi-condition training
set, with mean and variance normalization (MVN) applied. The highest Wacc

among all algorithms are in bold.

Algorithm 20dB 10dB 0dB | Avg.
Test A
MFCC 98.53 95.99 72.73 | 91.03

ETSI-AFE [37] | 98.68 96.23 76.45 | 92.21
JDictLgMel [48] | 97.83 9572 74.09 | 91.06
DictMelMask [47] | 98.53 96.38 80.19 | 93.03

JDictMask 98.70 96.57 75.25 | 91.95
Test B
MFCC 98.57 96.21 73.24 | 91.29

ETSI-AFE [37] 98.52 96.36 75.09 | 91.81
JDictLgMel [48] 97.80 95.03 66.21 | 88.71
DictMelMask [47] | 98.50 95.65 69.72 | 90.05

JDictMask 98.56 96.54 74.34 | 91.74
Test C
MFCC 98.48 95.20 72.50 | 90.59

ETSI-AFE [37] 98.37 9531 72.84 | 90.87
JDictLgMel [48] 97.32  91.69 56.99 | 84.61
DictMelMask [47] | 98.33  94.90 63.60 | 88.21
JDictMask 98.28 95.84 75.37 | 91.50
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sensitive to such spectral shape mismatches, with less performance degradation
observed across the three test sets. Fig. 3.4 plots the denoised log-Mel spectro-
grams obtained by the sparse exemplar-based techniques evaluated in this study
for a test utterance corrupted by airport noise (in Test set B, which is not present
in the multi-conditional training set) at 0 dB SNR. In this example, the proposed
technique does a better job in noise suppression at the beginning of the utterance.
One possible reason is that the estimated mask is computed using a noise estima-
tion algorithm that does not make any assumption regarding the noise spectral

shape present in the utterance.

An ASR experiment using enhanced MFCCs obtained by directly applying
the estimated soft-mask, M., to the noisy Mel-spectrum, was also conducted.
The average Wacc obtained with MVN on test sets A, B, and C are 88.66%),
89.65% and 86.74%, respectively, which are 3-5% worse than those achieved with
the proposed algorithm. This shows that the sparse mask reconstruction step is

essential in enhancing ASR performance, since noise estimation is not perfect.

The advantage of using a soft-mask as part of feature enhancement can also
be observed by comparing the performance of JDictLgMel with the soft-mask-
based feature enhancement methods (DictMelMask and JDictMask). Generating
denoised spectra by applying a soft-mask on the original noisy spectra tends to be
more error-forgiving compared to reconstructing it from clean spectral exemplars
as done in the JDictLgMel method. A decrease of 2-3 % in absolute Avg. Wacc
is observed for all test sets when the denoised Mel-spectra () is reconstructed
directly from the sparse linear combination of clean exemplars (Wacc results of
this variant implementation are not shown), instead of reconstructing it indirectly

via the soft-mask in the DictMelMask method.

Supplementing the dictionary with artificial noise exemplars or noise exem-
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(a) Clean log—Mel spectrogram

(c) Enhanced log—Mel spectrogram using JDictLgMel
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Figure 3.4: Log-Mel spectrograms of a test utterance corrupted by airport noise
at 0 dB SNR. (a) Clean log-Mel spectrogram, (b) Noisy log-Mel spectrogram, (c)—
(e) Enhanced log-Mel spectrograms obtained using the JDictlgMel, DictMelMask,

and JDictMask, respectively.
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plars extracted from the initial frames of test utterance [101] can improve the
performance of DictMelMask on mismatched noise conditions. However, the fo-
cus of this study is to investigate the algorithms’ performance with exemplars
extracted solely from the training data. Noise exemplars extracted from the ini-
tial frames of test utterance will be incorporated in the DictMelMask algorithm
in the comparative performance evaluation on the large vocabulary speech recog-

nition task in the next section.

3.4 Experiment on large vocabulary speech recognition

3.4.1 The Aurora-4 database and experimental setup

The Aurora-4 database [102] is a standard speech corpus for noisy continuous
speech recognition evaluation. It is formed by artificially adding six noise types
(airport, babble, car, restaurant, street, and train) at varying signal-to-noise ra-
tios (SNRs) to the original 5000-word vocabulary Wall Street Journal (WSJO0)
corpus [103], which contains clean “read” speech utterances corresponding to
sentences read from Wall Street Journal newspapers. For a training utterance,
the noise (one of six types) and SNR conditions (between 10 and 20 dB in steps
of 1 dB) were randomly chosen. For each of the six test conditions, the SNR was
randomly chosen between 5 and 15 dB in steps of 1 dB. The 8 kHz Sehnheiser
microphone data set with G.712 filtering in Aurora-4 is used for training and
performance evaluation. Since the exemplars for building the dictionaries are
already computed with knowledge of the noisy training utterances, the 7138 files
in the Aurora-4’s multi-noise training list is used for training the Hidden Markov
Models (HMMs). The exemplars for dictionary learning are extracted from the

noisy speech files in the same list and their corresponding clean speech versions.
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The same noise types exist in the training and testing sets of Aurora-4. Addi-
tional noisy test sets are generated by adding NOISEX-92’s [84] F16, factory,
pink, and white noises to Aurora-4’s clean test data, to evaluate the algorithms’
performance under unseen noise conditions. The HTK software package [100] is
used to build a HMM-based ASR system using the CMU dictionary [104] and a
bigram language model (LM) with an insertion penalty of -4, and an LM scale
factor of 15. Word-internal triphone models with 8 Gaussian mixture components

(16 mixtures for the silence model) are trained.

In addition to the algorithms that are used for performance comparison in
Aurora-2, the DictMelMask-onlineNoise algorithm — a variant implementation of
the DictMelMask feature enhancement scheme — is also evaluated on Aurora-4. It
appends 20 additional noise Mel-spectral exemplars to the combined dictionary,
D. These 20 noise exemplars are obtained from the first and last ten 23x11
T-F Mel-spectrogram regions of the target utterance, assuming speech absence

in these regions.

3.4.2 Results

Tables 3.3 and 3.4 show the word recognition accuracy (Wacc) obtained using
various soft-mask dictionaries with the proposed JDictMask method, for test sets
involving the seen and unseen noise types, respectively. “Rand-noCleanDenoise”
refers to the case when 4000 soft-mask exemplar-pairs are randomly selected
from the initial exemplar subset to derive the dictionaries as done in [96] (i.e.
mezTrainDL function is not used). “DL-noCleanDenoise” means joint dictionary
learning is used instead of random selection, while “DL-cleanDenoise” refers to
the case where the dictionaries are learned using SM,; exemplars computed with

an additional ambient noise subtraction step, as shown in Eqs. (3.1) and (3.3).
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Dictionary learning improves the averaged Wacc for seen noise types, as well
as unseen noise types, with Wacc increments observed in the majority of the noise
types evaluated. This is an evidence that dictionary learning helps in generating a
more complete (or evenly distributed) representations, compared to using random
selection. When the additional ambient noise subtraction step is used to generate
the SM,¢s exemplars, a more significant improvement in the averaged Wacc is

observed on unseen noise types than the seen noise types.

Tables 3.5 and 3.6 show the Acc’s achieved by the various sparsity-based
feature enhancement techniques with multi-noise training, for the seen and unseen

noise types, respectively.

The JDictLgMel technique has the worst performance. ETSI-AFE has a sim-
ilar averaged Acc as plain MFCCs on seen noise types, and the best performance
on the unseen pink and white noise types. The DictMelMask and DictMelMask-
onlineNoise techniques have slightly higher averaged Acc’s than the proposed
JDictMask technique on the seen noise types. On the unseen noise types, Dict-
MelMask’s averaged Acc is worse than JDictMask by more than 5%. With ad-
ditional target noise exemplars obtained with the assumption that the first and
last 200 ms of the test utterance contains pure noise, DictMelMask-onlineNoise
improves DictMelMask’s performance on unseen noise types. However, JDict-
Mask still has the highest averaged Acc for the unseen noise types — it performs
significantly better than ETSI-AFE on F16 and factory noises, and significantly

better than DictMelMask-onlineNoise on pink and white noises.

3.4.3 Discussion

The proposed JDictMask technique performs better than DictMelMask and Dict-

MelMask-onlineNoise on speech corrupted with car, train, pink and white noises
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(in both seen and unseen noise types) that are relatively stationary, in which
noise estimation tends to be more accurate. On the other hand, ETSI-AFE per-
forms better than JDictMask on unseen, stationary pink and white noises because
JDictMask has more insertion errors, even though it has a higher percentage of
correctly recognized words. On seen, stationary car and train noises, the insertion
errors of JDictMask are better controlled. This is likely because the silence model
has been trained with similar seen noise remnants in the non-speech portions of
the training data. These results suggest that the performance of JDictMask can
potentially improve with more accurate noise estimation on both stationary and

non-stationary noise types.

JDictLgMel performs significantly worse than plain MFCCs on Aurora-4, on
both seen and unseen noise types. This shows the weakness of direct spectral
reconstruction from dictionary representations, even when the representations
are learned via dictionary learning. The learned dictionary might still be insuf-
ficient to cover all possible spectral variations, especially for a large vocabulary
task. Performing spectra enhancement via a soft-mask, as done in DictMelMask,
DictMelMask-onlineNoise, and JDictMask, is more error-forgiving, and yields

better performance.

With our MATLAB implementation, the feature enhancement step in JDict-
Mask takes ~z3xreal-time (RT) on an Intel Xeon 2.6 GHz processor (non-parallel
computing). DictMelMask and DictMelMask-onlineNoise takes ~32xRT due
to the larger number of dictionary representations and iterations used in the
[;-minimization. When the maximum number of iterations is reduced to 50,
DictMelMask-onlineNoise takes ~20xRT, and yields lower averaged Acc of 79.56%

and 67.05% for seen and unseen noise types, respectively.
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3.5 Conclusion

A feature enhancement scheme using jointly-sparse reference (SM,q) and esti-
mated (SMg) soft-mask representations is proposed. SM.y is the ratio of a
noise-subtracted Mel-spectrogram to its original noisy Mel-spectrogram (the noise
spectrogram is estimated from the same noisy speech utterance). SM,r is the ra-
tio of the clean Mel-spectrogram to the noisy Mel-spectrogram. Ambient noise is
subtracted from the clean Mel-spectrogram to obtain a SM,. with better noise
suppression properties at non-speech regions. The jointly-sparse SM,qr and SMg;
dictionaries are trained via a sparsity-based dictionary learning algorithm. The
sparse linear combination of SM dictionary representations that best approx-
imates the target SMy is found by solving an [;-minimization problem. This
sparse vector is applied to the SM, dictionary to produce an enhanced soft-
mask for Mel-spectrogram denoising before MFCC extraction. On the Aurora-2
noisy digit speech recognition task, the proposed JDictMask algorithm has the
highest averaged word accuracy on noisy speech whose channel frequency char-
acteristics are different from the training set. On the Aurora-4 large vocabulary
speech recognition task, the proposed JDictMask algorithm has the highest av-
eraged word accuracy on speech corrupted with noise types not found in the
training set. It also performs well on speech corrupted with relatively station-
ary noise types found in the training set. This shows that the proposed feature
enhancement scheme is robust to channel and noise mismatches, and its ASR
performance can potentially improve further with a more accurate noise estima-
tion scheme. Compared to the DictMelMask algorithm that has a higher word
recognition accuracy of about 2% (on average) under matched noise conditions,
the proposed algorithm is about 10 times more computationally efficient, which

is an advantage when runtime is of importance.
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CHAPTER 4

An Exemplar-based Sparse Representation
Classifier for Birdsong Phrase Classification

using Limited Training Data

In this chapter, an exemplar-based sparse representation (SR) classification tech-
nique is described. This technique can perform well with limited data, as shown

by a birdsong phrase classification task.

This research is a collaboration with UCLA Ecology and Evolutionary Biol-
ogy (EEB) department. Prof. Charles Taylor and Prof Martin Cody of the EEB
department, together with George Kossan and Kantapon Kaewtip provided as-
sistance in data annotation and analysis. This chapter is based on the following
publications:

L. N. Tan, K. Kaewtip, M. L. Cody, C. E. Taylor, and A. Alwan, “Evaluation of a
sparse representation-based classifier for bird phrase classification under limited
data conditions,” in Proc. Interspeech, 2012, pp. 2522-2525.

L. N. Tan, G. Kossan, M. L. Cody, C. E. Taylor, A. Alwan, “A sparse representation-
based classifier for in-set bird phrase verification and classification with limited

training data,” in Proc. ICASSP, 2013, pp. 763-767.
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Figure 4.1: A spectrogram of a CAVI song segment. The phrase boundaries are

marked by black lines, while the syllable boundaries are marked by white lines.

4.1 The CAVI Database

The birdsong phrases were obtained from song recordings of male Cassin’s Vireos
(abbreviated as “CAVI” in singular, or “CAVIs” in plural in this paper). This
species is found commonly in many coniferous and mixed-forest bird communities
in far western North America. Only the males of this species give full songs, and

“... a jerky series of burry phrases, separated

their songs have been described as
by pauses of > 1 second. Each phrase is made up of 2 to 4 notes [syllables|, with
song often alternating between ascending and descending phrases ...” The “song
lis] repeated tirelessly, particularly when [the singing male is] unpaired ...” [105].
Fig. 4.1 shows the Mel-spectrogram of a CAVI song segment containing three

different phrases separated by about 1.5 s, each consisting of two syllables.

The song recordings were obtained from two separate data collections con-
ducted in a mixed conifer-oak forest at approximately 800 m elevation (38°29'04"N,
120°38'04”"W), near the city of Volcano in California, USA. The first data collec-
tion was done between April and June 2010, when two different males, denoted

by CAVI1 and CAVI2, on adjacent territories were recorded. The recordings
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and annotations for this 2010 collection are available online at http://taylor0.
biology.ucla.edu/al/bioacoustics/. The second data collection was done
between April and August 2012, and song recordings from four territorial males,
denoted by CAVI3-CAVI6, were used in this study. Songs were recorded using
a Marantz PMD 670 with a Telinga parabolic reflector and a Sennheiser omni-
directional microphone. They were saved in WAV-format (16-bit, mono) with a
sampling rate of 44.1 kHz. Each file contains songs from a single CAVI, with
occasionally other species songs/calls in the background. Manual annotation was
performed using the Praat software [106] to note the phrase identity, and the
start and end times of each phrase in the song, based on both visual spectrogram
inspection and auditory recognition. In our recordings, the phrase durations are
between 0.12 to 1.25 s, with a mean duration of 0.36 s. Each individual CAVT has
10 - 55 unique phrase types (which is dependent on the number of songs recorded
from the individual CAVI), and 101 unique phrase classes are observed in the
combined CAVI dataset. Fig. 4.2(a)—(f) show the distribution of the phrases
sang by each CAVI.

Figs. 4.3 and 4.4 show the linear frequency spectrograms and Mel-spectrograms
of 12 of these phrase classes, respectively. It can be observed that the acoustic
signatures of some classes are very similar to each other. For example, the first
two classes in the first row of Figs. 4.3 and 4.4 resemble each other except at the
starting and ending portions of the phrase. The phrase classes in the last row also
have very similar ascending and descending frequency signatures. Some phrases
have a long pause between syllables, which can be observed in the spectrograms
plotted in the second row of Figs. 4.3 and 4.4. Linear frequency spectrograms
are used in the SR classification algorithm described in Section 4.2, while Mel-
spectrograms are used in the DTW-SR-2pass classification algorithm described

in Section 4.3.
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4.2 A study on the efficacy of an exemplar-based sparse
representation classifier for birdsong phrase classifi-

cation and verification

In this study, an exemplar-based SR classification technique that is first pro-
posed for face recognition [71] is applied to classification and verification of CAVI
phrases. The spectrographic feature extraction framework and the SR classifi-
cation algorithm are described. Comparison with the NS and SVM classifiers is

conducted using the same features and performance evaluation framework.

4.2.1 Spectrographic feature extraction

From Fig. 4.3, it can be observed that phrases from different classes may have
very similar dominant frequency trajectories in the majority of the phrase seg-
ment. Since manual phrase identification is performed via spectrogram inspec-
tion, to avoid hand-crafting features that will be sufficiently discriminative, fea-
tures are explicitly derived from spectrograms. Another reason for using features
directly extracted from spectrograms is related to the sparse linear combination
of feature vectors used in the SR classification technique. For example, feature
vectors containing frequency values would not work well with this SR classifica-
tion framework because two different phrase classes whose frequency trajectories
are a factor (or multiple) of each other would likely be misclassified to each other.
Sparsity-based techniques that rely image pixel intensities or time-frequency en-
ergies in spectrograms as features, have reported good performance in several
image and speech applications [43,44,46,47]. Although spectrographic features
are generally not noise-robust without additional signal processing, they yield rea-

sonable classification accuracies for our task because the majority of segmented
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phrase tokens in our database has a high signal-to-noise ratio (SNR).

The spectrographic feature extraction algorithm is summarized in Fig. 4.5.
The sampling rate was first reduced to 20 kHz because little energy is found above
10 kHz. Since every phrase token has a variable file duration, a file-duration-
dependent frame shift is used to compute its spectrogram, so as to generate a
spectrographic feature vector of the same dimension for each token. This file-
duration-dependent frame shift is calculated as shown in Eq. (4.1), to ensure
that the spectrogram of each file always contains 64 frames in time. The round(.)
operator rounds off the input argument to the nearest integer. The starting
sample index for frame ¢ is denoted by S; , while D and W denote file duration
and frame length in number of samples, respectively. This translates to a frame
shift of between 3 to 16 ms for the phrase durations present in the database. A
frame length of 20 ms is used, thus W = 400 samples.

D-WwW
63

Sy = round (1+ ) , t=0,1,...,63. (4.1)

A 512-point FFT is computed at each frame, and their magnitudes are con-
verted to decibels (dB) units. It was observed that most of the bird phrase
acoustic energy falls within 1.5 and 6.5 kHz, hence only the 128 FFT bins cor-
responding to this 5-kHz bandwidth in the spectrogram are retained. Next, this
128-by-64 spectrographic image is normalized so that it takes values between 0
and 255 (inclusive), as shown in Eq. (4.2):

_ 255 (X(f> t) B Xmin)
B Xmax - Xmin

Xoorm(f,1) (4.2)

where X,rm(f,t) and X(f,t) are the post- and pre-normalized spectrographic
pixels, respectively, with frequency bin index f, and frame index ¢. X, and

Xinax are the corresponding minimum and maximum values of the pre-normalized
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spectrogram. Finally, the normalized spectrographic image is reshaped into a

8192-by-1 feature vector by concatenating the columns in X, (f, ).

The dimension of the feature vector is then reduced by doing a principal com-
ponent analysis (PCA) on the training set. Mean subtraction is not performed
before computing the eigenvectors because omitting it yields higher phrase clas-
sification accuracies for all classifiers evaluated. For our performance evaluation,
the feature dimension is reduced to three different values, d = 32, 50 and 128,
which corresponds to image resizing factors of 1/16, 1/12 and 1/8, respectively.
The dimensionally reduced feature vectors are subsequently normalized to unit
length before they are passed into the classifier for training and testing. These
same features are used in all the classification techniques for a fair comparison.
The feature dimension, d, is varied to investigate the performance dependency of
the proposed and comparative classification algorithms on the dimension of the

feature vectors.
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4.2.2 Sparse representation (SR) classifier

The SR classification algorithm summarized in Eqs. (4.3) — (4.6), follows “Algo-
rithm 1”7 described in [71]. The SR classifier finds a sparse linear combination of
training feature vectors that best represents the test feature vector, b. This linear
combination is found by solving for a sparse vector z = [z[1], 2[2], ..., z[m]] eR™*!
via the /;-minimization convex optimization problem defined in Eq. (4.3). In this
case, each column, a¢;€RP*!, in dictionary matrix A = [ay, ag, ..., @,y ]ERP*™ co
tains one exemplar or feature vector from the training set, and m = Kn, where
K is the total number of classes in the training set, and n is the number of
training samples per class. Generally, the exemplars in the dictionary matrix
are normalized to unit length [43,47] so as not to bias towards the selection of
exemplars with larger feature values when the [y solver tries to minimize ||z||;.
The difference tolerance, ¢ is usually set to a small value, to allow a small degree
of differences between the test feature vector and the one reconstructed using a
sparse linear combination of the training feature vectors. Normalizing the test
feature vector to unit length enables € to be fixed to a constant value, instead of
varying it proportional to the Euclidean norm of each test vector. The [; solver
used to solve Eq. (4.3) is the [;-MAGIC MATLAB toolbox [107], with ¢ set to
0.05.

min ||z||; subject to |[Ax — by < e (4.3)

r, =b— Ady(x) , for k=1,2,.... K. (4.4)

xli], if a; € class k
dx(x) =y, where yli] = (4.5)

0 , otherwise

Ogsgr = arg];rnin 7% 2 (4.6)

K max; [|0; () [[1/ [zl — 1
K -1

gsr = SCl(z) = € [0,1] (4.7)
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After the sparse representation is found, the residual vector, r;, between b and
Adi(z) is computed in Eq. (4.4) for each of the K classes in the training set.
The 0y (x) function outputs a vector, y, whose coefficients, y[i] = z[i] if a; is a
training feature vector from class k. All other coefficients in y are set to zero, as
shown in Eq. (4.5). The class that yields the minimum residual norm, ||7gl|2, is

the output decision, Oggr of the SR classifier, as shown in Eq. (4.6).

The confidence measure of the SR classifier, gsg, that is used for phrase veri-
fication is the sparsity concentration index (SCI(z)). The SCI(z) was used suc-
cessfully for outlier face rejection in [43,71]. This confidence index measures the
maximum concentration of the computed sparse = coefficients on a single in-set
phrase class, and is computed using Eq. (4.7). At one extreme, SCI(z)=1 when
the coefficients of only one phrase class are activated in x. At the other extreme,
SCI(z)=0 when the coefficients of all classes are equally activated. In general,
the sparse solution, x, computed from an in-set phrase would have large non-zero
coefficients corresponding to training feature vectors from the same phrase class.
This is illustrated in Figs. 4.6a(i)-b(ii). Fig. 4.6b(i) shows the spectrogram
of a test sample from an in-set class. Fig. 4.6b(ii) shows the sparse x solution
computed with the test feature vector extracted from the spectrogram in Fig.
4.6b(i). The sum of the first three x coefficients in Fig. 4.6b(ii) is large because
the first three training feature vectors in A, whose spectrograms are plotted in
Fig. 4.6a(i) - a(iii), are of the same phrase class and have very similar phrase
spectrographic profile as the test phrase in Fig. 4.6b(i). On the other hand, an
out-of-set bird phrase in Fig. 4.6¢(i), would have coefficients distributed across
multiple in-set classes, as observed in Fig. 4.6¢(ii), since it is usually not well

represented by any single class.
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Figure 4.6: Examples of sparse vectors x computed from in-set and out-of-set bird
phrases with manually detected time boundaries. There are 3 training samples
per in-set class. a(i)-a(iii) plot the spectrograms of the training phrases whose
corresponding feature vectors are stored in the first three columns of matrix A.
b(i) plots the spectrogram of a test phrase of the same class as a(i)-a(iii). c(i)
plots the spectrogram of a test phrase from an out-of-set class. b(ii), and c(ii)
plot the sparse vector x computed using the feature vector extracted from the

spectrogram on its respective left.
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4.2.3 Comparative classification algorithms
4.2.3.1 Support vector machine (SVM) classifier

The multi-class SVM classifier is implemented using the software tool known as
LIBSVM [108], which uses a one-against-one decomposition strategy. The SVM
classifier’s confidence measure, gsyy, for phrase verification is the probability
estimate of the most-likely class [109] computed by LIBSVM. The Gaussian radial
basis function (RBF), K(y, z) = exp(—y|ly — 2||?) is the selected kernel, and a
cross-validation (CV) training strategy is used to select an optimal pair of i.
regularization factor (a.k.a soft margin parameter), C' € {271,2° ..., 27} and ii.
the RBF parameter, v € {274,273 ...,2°}. This parameter tuning is done for
all pairs of n and d, except when n = 3 and d = 128. For this pair, only C' is
tuned using CV, with a fixed v = 4, because a significant decrease (> 20% in
absolute difference) in the classification accuracy is observed with a CV-tuned ~
value, due to over-fitting to the small set of training set when d is large. When
a linear kernel function is used, it gives better classification accuracies than the
RBF only at d = 128 when n = 3, 4, and 5. Even in these cases, the linear SVM
still performs significantly worse than the comparative algorithms. Hence, only

the RBF SVM results will be presented.

4.2.3.2 Nearest subspace (NS) classifier

The classical NS classifier [110] finds the class subspace that best represents the
test vector, b. First, the orthonormal basis of each phrase class is found by per-
forming singular value decomposition (SVD) on a matrix Ay, where each column
in A, contains one feature vector from class k in the training set. The first n left

singular vectors, uq, ..., u, in the orthogonal matrix U, form the orthonormal
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basis, Py, of class k’s subspace. The output of the NS classifier, Oyg, is the class
that yields the minimum residual norm between b and its class-subspace projec-
tion, as shown in Eqs. (4.8) and (4.9). The NS classifier’s confidence measure,
qns, that is used for phrase verification is computed using the minimum residual

norm, as shown in Eq. (4.10)

ry=b—P,PLb (4.8)
Ons = arg min 7|2 (4.9)
gns = 1 — ||Toxs||2 (4.10)

4.2.4 Performance evaluation framework

In-set Verificati
Input _,| Feature |0 In-set o | In-set Veritication Class

Phrase | Extraction| | Classification | ¢ %g;;%%llydu(l)i a:] _bLabel

A 4

Figure 4.7: The classification and verification evaluation framework

The block diagram in Fig. 4.7 illustrates the common framework used with
each classification algorithm to perform birdsong phrase classification and verifi-
cation. The dimension-reduced spectrographic feature vector, b is extracted from
the test segment, followed by the in-set classification. Note that no token from
the out-of-set classes is used for training. For each test sample, the classifier
outputs an in-set class label — O, and a confidence measure — ¢, regarding the
correctness of O. In-set/out-of-set verification is performed by applying a fixed
threshold on ¢. If ¢ is larger than the threshold, the test sample would be de-
tected as an in-set class, and the decision O will be the final class label attributed
to the input bird phrase. Otherwise, the test sample is detected as an out-of-set

class, and given the class label named “Others”.
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The 2010 CAVI database is used in this study. The training and testing sets
contains phrases from the same pair of CAVI individuals. There are 63 phrase
classes, each with 1 to 69 tokens. The more frequently observed K = 32 phrase
classes that have at least 10 tokens are used for the closed-set classification task.
There are 1034 tokens in this closed-set, and they form the in-set training and
test data. The 82 tokens of the remaining 31 classes form the out-of-set test
data, which are used together with the in-set tokens for the in-set/out-of-set

verification task.

Phrase classification accuracy (Acc) is evaluated on the test samples that
belong to the in-set classes. It is calculated as shown in Eq. (4.11), where Ci,
is the number of in-set test samples that are classified correctly, and Ny, is the

total number of in-set test samples.

® % 100% (4.11)

m

Acc =

The performance measures of the verification task are pp.; — the proportion
of in-set phrases that is correctly identified as in-set (true positives), and ppa —
the proportion of out-of-set phrases that is incorrectly identified as in-set (false
positives). They are calculated as shown in Eqgs. (4.12) and (4.13), where Dy, is
the number of in-set test samples that are correctly detected as in-set, Dy, is the
number of out-of-set test samples that are correctly detected as out-of-set, and

Nyt is the total number of out-of-set test samples.

Din
Pper = 7= % 100% (4.12)
Dou
pra =1 — =22 % 100% (4.13)
Nout
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Besides evaluating the classification and verification performances separately,
the classifiers’ joint classification and verification performances are evaluated as
well. This joint task can also be considered as a 33-phrase class (32 in-set classes +
1 out-of-set class) bird phrase classification task. The joint classification accuracy,

JAcc, is calculated by taking an average of the percentage of in-set bird phrases

Ci
Nin

that is correctly classified (32), and the percentage of out-of-set bird phrases

that is correctly labeled as “Others” (%), as shown in Eq. (4.14). Taking
the average of these two components ensures that an equal importance is placed
on the classification accuracies of both in-set and out-of-set test samples, which
is necessary since the number of in-set test tokens (N, = 1034—Kn>800) is
much greater than the number of out-of-set test tokens (Nyy = 82). Otherwise,
the results would be biased towards the classification accuracy of in-set phrase

tokens, and the selected threshold would yield an undesirably high pr4 for the

verification task.

C’in D out
_I_
N in N out

JAcc = 0.5 ( ) x 100% (4.14)

4.2.5 Results
4.2.5.1 Classification accuracy of in-set test samples

To evaluate classification accuracy of in-set phrases, the verification threshold is
set to -1, so that none of the in-set test samples is detected as out-of-set. Table
4.1 tabulates Acc, the phrase classification accuracies of the in-set test samples,
with different pairs of n (number of training samples per class) and d (feature
dimension), for the classifications techniques evaluated. For each case, the results
were obtained by averaging the Acc’s of five independent experiments, whereby

training samples are randomly selected in each experiment. In general, the Acc
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Table 4.1: Average Acc (%) for different values of n and d. The highest value for

each case is boldfaced.

n Classifier | d =32 | d=50 | d =128
SR 89.3 90.2 N.A
3 SVM 79.0 79.5 76.7
NS 86.0 86.7 87.6
SR 91.9 | 92.6 92.9
5 SVM 86.6 87.6 89.4
NS 89.6 90.6 91.5
SR 92.8 93.6 93.8
7 SVM 89.2 90.0 91.2
NS 91.6 91.9 92.5

improves with increasing n and d for all three classifiers. No results are shown
for the SR classifier at n = 3 and d = 128 because there are more columns than
rows in matrix A such that Eq. (4.3) becomes an over-determined linear system,

and the [; solver used is unable to find a feasible = solution.

The Acc’s achieved by the SR classifier are consistently the highest com-
pared to the SVM and NS classifiers in all cases. The McNemar test [111] was
performed to evaluate the statistical significance of SR classifiers performance
against the SVM and NS classifiers. A p-value of less than 0.03 is obtained for
all the cases tabulated above, indicating that the improvement in bird phrase
classification accuracies of the SR classifier over the other two classifiers is of
statistical significance. The performance gain of the SR classifier over the com-
parative algorithms increases as n decreases. For example, the SR classifier’s Acc

is 1.2% higher (absolute difference) than the NS classifier’s at n = 7 and d = 32,

114



and the Acc difference increases to 3.3% at n = 3, with the same d. This implies
that the performance of the SR classifier is more robust in limited training data
condition, compared to the NS and SVM classifiers. One reason for the good per-
formance of the SR classifier is that spectrograms of phrases from the same class
are generally very similar to one another for this test set, except for small time
differences in the silence intervals in the beginning and end of a phrase segment,
due to human inconsistencies in specifying phrase boundaries during the manual

annotation process.

4.2.5.2 Performance of in-set/out-of-set verification

The performance of the classifiers for in-set bird phrase verification are evaluated
based on the receiver operating characteristic (ROC) curve, which plots ppe
versus ppa. 10 show the performance trends of the classifiers’” with different
values of n and d, Fig. 4.8 plots the ROC curves of each classifier when n is
varied at a fixed d = 50, while Fig. 4.9 plots the ROC curves when d is varied at
a fixed n = 5.

In Fig. 4.8, it is observed that the performance of all classifiers generally
improves as n increases. It is also observed in Fig. 4.8b that when d = 50, the
SR classifier has the highest ppe; for ppa < 0.2 among the other classifiers, and
the NS classifier has the second-best performance, with an ROC curve that is very
similar to the SR classifier’s at higher pr4. Fig. 4.9 shows that the SR classifier’s
verification performance has a greater improvement over the NS classifier when d
= 128 (Fig. 4.9b) compared to d = 50 (Fig. 4.8b). At d = 32, the SR classifier’s
performance is slightly worse than the NS’s for pp4 > 0.2 % (see Fig. 4.9a). The
SVM classifier performs significantly worse than the SR and NS classifiers in this

verification task.
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Table 4.2: Average JAcc (%) for different values of n and d. The highest value

for each case is boldfaced.

n Classifier | d =32 | d=50 | d= 128

SR 81.8 83.6 N.A.
3 SVM 73.5 74.8 72.4
NS 79.8 79.6 82.3

SR 83.9 87.0 88.6

bt SVM 75.3 76.8 7.3
NS 82.0 84.7 84.7
SR 85.5 88.2 89.6
7 SVM 8.7 80.8 81.6
NS 84.5 86.4 86.4

4.2.5.3 Joint classification and verification performance

Table 4.2 shows the averaged JAcc obtained by the classifiers for this joint classi-
fication and verification task, with different values of n and d. For each pair of n
and d, the verification threshold is varied between 0 and 1, in steps of 0.005, and
the value that yields the highest average Acc (over the five experiments) is the
threshold used for each classifier. The SR classifier achieves the highest JAcc in
all cases, except when n = 3 and d = 128 (for which the SR classifier is not able to
generate a classification output) because Eq. (4.3) becomes an over-determined
linear system in this case, and the [; solver used is unable to find a feasible x

solution.

Note that the JAcc values are generally lower than the Acc’s reported in
Section 4.2.5.1 for all classifiers, due to additional verification errors. This is

especially true for the SVM classifier whose verification performance is poor as
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observed in the ROC curves in Section 4.2.5.2. Thus, SVM’s JAcc is much lower
than the SR and NS classifiers in all cases. In general, the improvement in JAcc
of the SR classifier over the second-best performing algorithm (NS classifier)
increases with d at a fixed n, due to the SR classifier’s increasing verification
performance gain over the other algorithms. This is also true in the case of n
= 7, when the SR classifier’s in-set classification accuracy, Acc (prior to in-set
verification), is just slightly higher than the SVM and NS classifiers. On the other
hand, at d = 32, even though SR’s verification performance is slightly worse than
NS’s, as observed in the ROC curves in Section 4.2.5.2, the SR classifier still has

a higher JAcc due to its superior in-set phrase classification performance.

4.2.6 Discussion

In general, the SR classifier has a better in-set classification performance over
a wider range of conditions compared to the nearest neighbor (NN) and NS
classifiers, because the L1 minimization algorithm selects the smallest subset of
training exemplars that best represents the test vector, i.e. it is not dependent
solely on the nearest exemplar (as in an NN classifier), nor on the subspace
spanned by all the training exemplars of a class (as in an NS classifier). However,
this also means that the SR classifier would be more sensitive to classification
errors due to outliers or mislabeled exemplars in the training set, since the SR
classifier might misclassify a test vector that is in close proximity to a single or a
neighborhood of outlier(s) or mislabeled exemplar(s). For the SVM classifier, if
the outliers are not one of the support vectors, its decision boundary would not
be affected by these outliers. On the other hand, when the classes in training
data are non-separable by the SVM, the SR classifier might have an advantage

over the SVM classifier, depending on similarity between the test vector and the
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training exemplars from the same class. This is the most likely scenario that
led to the SR classifiers superior performance over the SVMs. An evidence of
over-fitting with the RBF-based SVM classifier is also observed when n is small
and d is high, since its Acc at n = 3 and d = 128 are lower than those obtained

at d = 32 or 50 with the same n.

The SCI of the SR classifier is generally a robust measure for the verifica-
tion task because the sparse x vector is computed with full (global) information
from all phrase classes in the training set [71]. In contrast, each class residual of
the NS classifier is separately computed using information only from its respec-
tive phrase class; while LibSVM’s probability estimates [109] are obtained by
combining pair-wise class probabilities derived from each one-against-one binary
classifier in the multi-class SVM. The SCI yields the best ROC curve at d = 128,
and a comparable performance to the NS classifier’s residual measure at d = 32.
The additional between-class differences that are retained in the training exem-
plars when a larger d is used, result in a higher sparse weight concentration on
the correct in-set class, which in turn improve the reliability of the SCI measure
for this verification task. However, for the SR algorithm, the maximum d allowed

is also upper-bounded by the total number of training samples.

The joint classification and verification accuracy, JAcc of the SR classifer is
also the least sensitive to verification threshold perturbations compared to the
NS and SVM. This is shown in Fig. 4.10, which plots the variation of JAcc with
the threshold used in each classifier, for a particular experiment with n = 5 and
d = 50 (similar trends in JAcc are observed at other values of n and d). The
JAcc of the SR classifier has the broadest peak lobe, while the NS classifier has

the narrowest.
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Figure 4.10: JAcc variation with verification threshold for an experiment with n

=5 and d = 50.

4.2.7 Conclusion

The SR classifier that had reported good face recognition and outlier rejection
performance [43,71] was applied to limited data, bird phrase classification and
verification. The data set consists of manually-segmented birdsong phrases from
two male Cassin’s Vireos. The training set contains only bird phrases from the
32 in-set phrase classes. The SR classifier obtains the highest in-set classification
accuracies compared to NS and SVM classifiers. An increasing performance gain
over the latter two classifiers was observed with a decreasing number of tokens
per phrase used for training. This suggests that the SR classifier is a promising
technique for bird phrase classification when the amount of training data is lim-
ited. When the feature dimension is large enough, the SR’s sparsity concentration
index (SCI) is also a more reliable measure for distinguishing between in-set and
out-of-set bird phrases in the verification task, compared to the NS classifier’s
residual, and the SVM classifier’s probability estimate. Besides evaluating the
classification and verification performances separately, a joint classification and
verification performance evaluation is conducted, in which the classifier has to

classify the bird phrases into one of the 33 phrase classes, consisting of 32 in-set
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phrase classes, and 1 collective out-of-set class for the remaining phrase classes.
The SR classifier also outperforms the NS and the SVM classifiers in this joint

task, due to its good performances for both in-set classification and verification.

4.3 Dynamic time warping and a two-pass sparse repre-

sentation classifier for birdsong phrase classification

When the feature extraction scheme used in the preliminary study (which varies
the amount of inter-frame overlap to obtain spectrograms of the same dimensions
for different phrase segments) is applied to automatically segmented phrases or
phrases from different bird individuals, spectrographic features from the same
phrase class tend to be time-misaligned. This results in large within-class feature

variabilities, and low classification accuracies.

In this section, an improved SR-based classification algorithm is developed
[112] to reduce within-class feature variabilities. This DTW-SR-2pass classifica-
tion algorithm consists of dynamic time warping (DTW), feature normalization,
and a two-pass SR classification. The algorithm improves classification accuracy
when acoustic variations due to individual bird differences and phrase segmen-
tation inconsistencies exist. Two separate test sets are formed — one contain-
ing phrases from the bird individuals found in the training set, and the other
containing phrases from a different group of bird individuals. Besides manually-
segmented phrases, performance evaluation is also conducted on automatically
detected and segmented phrases obtained using an existing energy-based detec-

tion and segmentation algorithm. [54].
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Figure 4.11: Flow chart of the proposed two-pass sparse representation classifica-
tion framework. Ox is the class decision of classifier X, where X is either DTW,

SR (from 1st-pass SR), or SR2 (from 2nd-pass SR).

4.3.1 Proposed DTW-SR-2pass classification algorithm

The flow chart in Fig. 4.11 summarizes the proposed bird phrase classification
algorithm, abbreviated DTW-SR-2pass. The algorithm applies dynamic time
warping on the training Mel-spectrograms, followed by a two-pass SR classifica-
tion. Mel-spectrogram generation and the signal processing performed in each

stage are described in the following subsections.

4.3.1.1 Mel-spectrogram generation

A Mel-spectrogram is computed from each bird phrase segment in both the train-
ing and testing sets. Fig. 4.12 shows the various steps involved in generating each
Mel-spectrogram. The segment is first downsampled from 44.1 kHz to 20 kHz
because little phrase energy is found above 10 kHz. It is then split into multiple
20 ms frames, with 50% overlap (10 ms shift). A Hamming window is applied
to each frame, followed by a 512-point FFT to obtain the power spectrum of

each frame. The Mel-spectrogram is generated by applying a 23-channel Mel-
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Figure 4.12: Block diagram on Mel-spectrogram generation
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Figure 4.13: Distribution of Mel filters in the frequency range of interest

filterbank (shown in the Fig. 4.13) that covers the 1.5 — 6.5 kHz frequency range
of the power spectrum, in which most of the CAVI phrase energy falls within.
When energies in multiple linear-frequency bins are summed to produce each
frequency bin component in the Mel-spectrogram, it results in smoother energy
transitions across frequency bins. This can be observed by comparing the linear
frequency spectrograms in Fig. 4.3 to the Mel-spectrograms in Fig. 4.4. Using
Mel-spectrograms instead of linear-frequency power spectrograms yields a higher
classification accuracy when tested on DTW, SVM and SR classifiers in a pre-
liminary experiment. This is likely because the energy in the same frequency bin
and frame of Mel-spectrograms from the same phrase class are more similar to

one another, compared to the case when linear frequency spectrograms are used.

4.3.1.2 Dynamic time warping of the training set using Mel-spectro-

grams

Next, dynamic time warping is applied on each training Mel-spectrogram to yield

a time-warped version that is more similar to and has the same number of frames
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Figure 4.14: The valid DTW paths permitted to reach point (7,7)
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as that in the test Mel-spectrogram (whose phrase class is to be determined).

This is done by computing the optimal path through a similarity matrix, ©,

where each O(i, 7) is a cosine similarity measure (see Eq. (4.15)) that emphasizes

the similarity in spectral shape, instead of energy values, between vectors s; and

rj, which are the i-th frame of the test Mel-spectrogram, and the j-th frame of

the training Mel-spectrogram, respectively. Cosine similarity has also been found

to be a good spectral similarity measure for performing DTW in [73,113]. Com-

puting the cosine similarity using a linear power scale rather than a log power

scale Mel-spectrogram yields a higher classification accuracy with the DTW clas-

sifier (the same trend is also reported in [113]). Hence, the linear power scale

Mel-spectrogram is used.

D(i,j) = max

. silr;
O(i, j) = .

RERIE

;

D(i-1,j-2) + £0(i,j-1) + 10(i,j), Path 1

D(i-1,5-1) + ©(i,j), Path 2

D(i-2,j-1) + ©(i-1,j) + O(i,j), Path 3

\

d= D(i = M-1,7)

max
FE[N-T-1,..,N+T-1]
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If Path 1, 7 = 3(r; +1j1)
If Path 3, fl = 7:2‘_1 =Ty

Fig. 4.14 illustrated the Type I local path constraints [114] imposed, which
limit the minimum and maximum scale of time-warping to 0.5 and 2, respectively.
The intermediate accumulative score, D(i, j), is computed recursively for i = 0,
1, ... , M-1, and for j = -7, -T+1, ... ,-1,0,1, .. , N+T-1, where M
and N denotes the number of frames in the test and training segments within
the detected time boundaries, respectively. T is the additional number of frames
extended beyond the training segment boundaries that are used to generate each
training Mel-spectrogram. In Eq. (4.16), the © values are weighted by 0.5 for
Path 1, so as not to double count the similarity score with the same frame of the
test spectrogram, i.e. s;. This makes d, the final accumulative score of the optimal
path found between the test spectrogram and the current training spectrogram
comparable across all training spectrograms or samples. For each training sample,
d is computed using Eq. (4.17), which allows the optimal path to stop at any
frame within the last 27+1 frames of the extended training Mel-spectrogram,
while covering all the test frames. The algorithm also permits paths starting
within the first 2741 frames of the extended training Mel-spectrogram. This
flexibility (that resulted from setting 7" > 0) improves classification accuracies
when there is phrase position variation within the segment due to inconsistently
determined time boundaries. Large phrase position variations can exist when an
automatic segmentation algorithm is used. To obtain the time-warped training
spectrogram, R= [T, ...y Tar—1], that has the same number of frames as the test
spectrogram, the optimal path is back-tracked as shown in Eq. (4.18). Fig. 4.15

shows an example of a training Mel-spectrogram before and after DTW to match
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the test Mel-spectrogram.

The phrase class of the training sample that yields the highest d, over all
training samples, is the classification decision of this DTW classifier, Oprw. The
DTW decision is used in a subsequent step in deciding whether a second-pass of

SR classification is necessary.

4.3.1.3 Feature normalization prior 1st-pass SR classification

To emphasize spectral shape similarity over spectral amplitude similarity, all
time-warped training Mel-spectrograms and the test Mel-spectrogram are nor-
malized to have the same Euclidean norm for every frame, prior to amplitude
log-compression. For simplicity, the vector of values in each frame is normalized
such that it has a Euclidean norm of 1. Fig. 4.16 shows the log Mel-spectrograms
of two samples from the same phrase class without frame normalization (Figs.
4.16a and 4.16¢), and with frame normalization (Figs. 4.16b and 4.16d). It can
be observed that the features of these two samples become more similar with the

additional frame normalization.

4.3.1.4 Dimension reduction and SR classification

After frame normalization and log-compression, the frames of each Mel-spectro-
gram are concatenated to form a single feature vector per sample. The dimension
of the feature vector is then reduced to p, by performing a principal component
analysis (PCA). The principal components are the leading p = min(m, P) eigen-
vectors computed from the matrix containing m = Kn feature vectors for train-
ing, where K is the total number of phrase classes in the training set, n is the
number of training samples per class, and P is a user-specified dimension. The

final p-by-1 feature vector is obtained by normalizing the dimensionally reduced
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Figure 4.15: An example to illustrate the effect of DTW on the training Mel-
spectrogram. (a) and (b) show the training Mel-spectrograms before and after
DTW, respectively, to match the test Mel-spectrogram shown in (¢). Amplitude

log-compression has been applied to give a clearer visual display of the spectro-

grams in this figure.
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Figure 4.16: An example to show that frame normalization improves within-
class spectral shape similarity. (a) and (c) show the log Mel-spectrograms of two
phrases from the same class without frame normalization, while (b) and (d) show
the frame-normalized log Mel-spectrograms of the same phrase segments on their

respective left.

vector to unit length (this is done in both training and test sets).

The SR classification algorithm is the same as that described in Section 4.2.2.
Dimension reduction ensures that Eq. (4.3) is not an over-determined linear
system of equations, such that a solution x, can always be found. The output
decision of the SR classifier, Ogg in Eq. (4.6), is the class decision of the 1st-pass
SR classification. Ogg is compared with Optw that is computed during DTW.
If they are the same, it is the final class decision of the proposed algorithm,
i,e. Osgra = Osg = Oprw. The spg_bpdn function in the SPGL1 MATLAB
toolbox [115,116] is used to solve Eq. (4.3). The SPGL1 toolbox’s [; optimization
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is more speed-efficient than [;-MAGIC’s (the toolbox that was used in the earlier

study), while achieving similar classification performance.

4.3.1.5 2nd-pass of SR classification

If Oprw # Osr, a second (2nd)-pass of SR classification is activated. SR clas-
sification in the 2nd-pass is performed using only the training samples from the
two conflicting phrase classes, and with a modification to the feature normaliza-
tion step. Instead of frame normalization, frequency bin normalization is per-
formed on the time-warped training Mel-spectrograms and the original test Mel-
spectrogram, such that the Euclidean norm of the values in each frequency bin is
equal to one. This provides a different perspective of the features to the SR clas-
sifier in the 2nd-pass. Experimental results show that normalizing by frequency
bin in the 2nd-pass improves the classification accuracy of the 1st-pass by more
than 2% on average, while using frame normalization in the 2nd-pass gives an
improvement of less than 1%. Subsequent steps after feature normalization follow
the same procedure as that used in the 1st-pass of SR classification, which include
log-compression, dimension reduction, and sparse vector computation. The class
with the smaller residual norm of the two classes in the 2nd-pass, is the final class
decision of the proposed algorithm. Note that the computation time required to
perform the [;-minimization optimization in the 2nd-pass is much less than that

used in the 1st-pass, since the dictionary matrix involved is significantly smaller.

Fig. 4.17 shows an example of a test sample that is misclassified in the 1st-pass
of SR classification, but correctly classified in the 2nd-pass. In the 1st-pass, the
SR classifier misclassified the test sample to the phrase class of a training sample
whose frame-normalized, log Mel-spectrogram resembles its own, except for the

rising frequency trend between frames 5 and 10. This can be observed by com-
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Figure 4.17: An example to illustrate the advantage of performing a 2nd-pass of
SR classification with features derived from frequency bin-normalized log Mel-
spectrograms. The Mel-spectrograms of a test sample with frame normalization,
and frequency bin normalization, are shown in (a) and (d), respectively. (b)
Frame-normalized Mel-spectrogram of the training sample that corresponds to
the largest coefficient of the sparse solution vector plotted in (c¢), which is ob-
tained in the Ist-pass of SR classification. (e) Frequency bin-normalized, Mel-
spectrogram of the training sample that corresponds to the largest coefficient of
the sparse solution vector plotted in (f), which is obtained in the 2nd-pass of SR

classification.
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paring the test Mel-spectrogram in Fig. 4.17a to the training Mel-spectrogram in
Fig. 4.17b, which corresponds to the largest x coefficient (in Fig 4.17¢) computed
in the lst-pass. On the other hand, the DTW classifier gives the correct class
decision in this case. With frequency bin normalization performed in the 2nd-
pass, the SR classifier is able to correctly classify the test sample. The frequency
bin-normalized, log Mel-spectrogram of the same test sample is shown in Fig.
4.17d. Fig. 4.17e shows the frequency bin-normalized, log Mel-spectrogram of
the training sample that corresponds to the largest = coefficient (in Fig 4.17f)
computed in the 2nd-pass. Note that three training samples per phrase class is
used in this example, and the three largest x coefficients in Fig 4.17f correspond

to training samples of the same phrase class as the test sample.

The parameters of the proposed DTW-SR-2pass algorithm are tuned using
the set of values listed in Table 4.3. The classification results of the best config-
uration is presented in Section 4.3.4, while performance variations with different

parameter values are presented in Section 4.3.5.3.

Table 4.3: The various parameter values used to find the best configuration of

the proposed algorithm

Parameter Values
PCA dimension, P 32, 64, 128
Difference tolerance, 0.025, 0.05, 0.1, 0.2
DTW frame extension, 7" 0, 5, 10, 20, 30, 40
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4.3.2 Training and test data
4.3.2.1 Manually-segmented CAVI phrases for training and testing

CAVI3, CAVI4, and CAVI5 in the 2012 collection are selected as the “training
CAVIs” for their variety of phrase classes (refer to Fig. 4.2 for the distribution of
the phrases sang by each of the six bird individual in the CAVI database), so that
there is a larger number of phrase classes available to train the classifier. The
remaining CAVIs are the “test CAVIs”. Phrase classes with at least n samples or
tokens from the training CAVIs are used for training. Let K be the total number
of classes that satisfies this condition. In each experiment, n training samples
from the training CAVIs in each of these K classes are randomly selected, and
the average results of five such experiments are reported for each test condition.
Two test sets containing phrases from these K classes are formed for performance
evaluation — 1) Test A contains phrases produced by the training CAVIs that are
not used for training, and 2) Test B contains phrases produced by the test CAVTs.
Table 4.4 shows the value of K as n varies from one to five, and the number of

manually-segmented test phrases in each of the two test sets.

4.3.2.2 Test segments obtained with an automatic detection and seg-

mentation algorithm

Besides evaluating the classification accuracy on segments whose time boundaries
are derived from human annotations, performance evaluation is also conducted on
test segments whose time boundaries are derived from an automatic detection and
segmentation algorithm. The bird syllable detection and segmentation algorithm
selected is the time-frequency energy-based algorithm proposed in [54], which is

also used in [117,118]. The energy threshold values in a MATLAB code [119] of
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Table 4.4: The number of classes found in the training set, K, that has at least
n training samples per class, for n = 1, 2, ..., 5. The total number of manually-

segmented test phrases in Test A and Test B at each value of n are also tabulated.

No. of manually-segmented test phrases in

n K

Test A Test B
1 81 419 1269
2 67 352 1208
3 61 2901 1138
4 50 241 1061
5 43 198 821

this algorithm is modified such that more than 90% of the phrase segments are
detected, with almost all time boundaries staying within 100 ms of the human
detected time boundaries. The details of this syllable detection and segmentation

algorithm are described below:

1. Compute the linear frequency power spectrogram, as described in Section
4.3.1.1, for each 10-second file segment. Extract the frequency bins be-
tween 1.5 and 6.5 kHz, and convert the spectrogram amplitudes to dB, i.e.
Q(f,t) = 101logy, |S(f,t)|?, where |S(f,t)]? is the power spectrogram, with

f and t denoting the frequency and frame indices, respectively.
2. Find the maximum value in each frame, ¢(t) = max Q(f,1).
3. Initialize the syllable detection frame vector, r(t) = 0, V¢
4. Set n = 0.

5. Find the maximum value in ¢(t) and its corresponding frame index, such
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that a, = max q(t), and t,, = argmax ¢(t)
t

6. Find the n-th syllable boundary by increasing t; and t, separately until
q(t, —t1) < a, — 15 and q(t, + t2) < a, — 15. The n-th syllable segment
detected will be located at frames, 7, = [t, —t; + 1,...,t, + 3 — 1].

7. Set r(1,) = 1 and ¢(7,) = —oo. Increase n by 1.

8. Repeat steps 5 — 7, till a,, < ag — 15. This will yield n syllable segments.

This syllable detection and segmentation algorithm is performed separately
for every 10-second segment of each sound file, assuming that there are phrases
present in every 10-second long segment. Since the algorithm’s detection thresh-
old is dependent on ay — the global maximum energy of the input spectrogram,
dividing each sound file into smaller chunks (some of which are more than 5 min-
utes in length) improves the detection rate, when there is energy variation across
different parts of the sound file. After the above detection and segmentation al-
gorithm is performed on all 10-s segments (the last file segment can be less than
10 s long) in the sound file, the syllable detection frame vector, r(t), of adjacent
segments are concatenated, and a 21-point median smoothing is performed on
this concatenated vector. Two successive detected syllables are merged into a
single detected segment if the in-between pause is less than 0.5 s and the sum of
these two syllables” durations. Only segments of duration between 0.1 and 1.5 s
are retained. This is slightly wider than the range of phrase duration noted in hu-
man annotations, to allow for some errors in machine-segmented time boundaries.
Finally, these automatically detected segments are each considered a valid phrase
detection, if it has some time overlap with a manually-segmented phrase. These
automatically detected and segmented phrases are referred to as the “machine-

segmented” phrase segments in this dissertation. Histograms of the time dif-
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ference between the machine-segmented and human-annotated time boundaries
(machine-segmented time boundary minus human-annotated time boundary) for
all machine-segmented phrase segments of the training CAVIs and test CAVIs are
plotted in Fig. 4.18. Figs. 4.18a and 4.18b show the histograms of time differ-
ences observed in training CAVIs’ phrases at the left/starting and right/ending
time boundaries, respectively; while Figs. 4.18c and 4.18d show the histograms
of time differences observed in test CAVIs’ phrases. All histograms are roughly
Gaussian in shape, with 35-60% of the time differences falling within -0.025 to
0.025 s, and about 5% of the machine-segmented phrase segments has a time

boundary difference exceeding 0.2 s.

When machine-segmented phrase segments are used for training, it yields
about 2% lower classification accuracy on the machine-segmented test phrases (for
all classification algorithms evaluated), compared to using manually-segmented
training phrases. Hence, manually-segmented phrase segments are still used to
train the classifiers in the performance evaluation of machine-segmented test
phrase segments. Table 4.5 shows the number of machine-segmented test phrase
segments/samples in Test A (from the training CAVIs) and Test B (from the
test CAVIs), as n varies from one to five. Care is taken to ensure that the
machine-segmented training CAVIs’ test phrase segments are distinct from the

manually-segmented phrases in the training set.

4.3.3 Comparative algorithms
4.3.3.1 Dynamic time warping (DTW) classifier

The dynamic time warping-based classifier used for performance comparison is
the same as the one described in Section 4.3.1.2, in which the cosine similarity

measure is used to compute the similarity between the Mel-spectrogram frames of
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Figure 4.18: Histograms of time boundary differences between machine-
segmented and manually-segmented phrases from the training and test CAVIs.
(a) and (b) show the histograms of left and right boundary time differences ob-
served in phrases of the training CAVIs, respectively. (c) and (d) show the
histograms of left and right boundary time differences observed in phrases of the

test CAVls, respectively.

the training sample and the test sample. The classification accuracy is calculated

based on the decision of the DTW classifier, Oprw.

4.3.3.2 Sparse representation (SR) classifier

This SR classifier is similar to our previous implementation in [72], in which
no DTW is involved. Instead, a phrase-duration-dependent frame shift is cal-

culated, so that the spectrogram of each phrase segment (of variable duration)
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Table 4.5: The total number of machine-segmented test phrases from the K
training classes in Test A and Test B, as n varies between 1 to 5. K is the
number of classes found in the training set that has at least n training samples

per class.

No. of machine-segmented test phrases in

n K

Test A Test B
1 81 396 1218
2 67 336 1159
3 61 277 1049
4 50 228 1021
5 43 190 788

always contains 64 frames in time. A 64-frame Mel-spectrogram is computed,
followed by the frame normalization, log-compression, dimension reduction, and
[;-minimization schemes described in Sections 4.3.1.3 and 4.3.1.4. The class that

yields the minimum residual norm, is the decision of this SR classifier.

4.3.3.3 DTW-SR-1pass classifier

This DTW-SR-1pass classifier is similar to our proposed DTW-SR-2pass algo-
rithm, but without the 2nd-pass of SR classification. The decision, Osg (see
Section 4.3.1.4), is used to compute the classification accuracy of this DTW-SR-
1pass classifier. It enables assessment of the performance gain obtained with the

additional 2nd-pass of SR classification.
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4.3.3.4 Support vector machine (SVM) classifier

The multi-class support vector machine (SVM) classifier is implemented using
a popular SVM software library known as LIBSVM [108]. Like the SR classi-
fier described in Section 4.3.3.2, this SVM classifier does not incorporate DTW,
and a frame-normalized, log Mel-spectrogram with 64 frames is computed. The
input feature vector to the SVM is the frame-concatenated vector of this Mel-
spectrogram. No dimension reduction is performed and the linear kernel is used
because experiments show that this configuration yields better classification per-
formance, compared to using dimension reduction or the Gaussian radial ba-
sis function (RBF) kernel, under the limited training data condition. The in-
nate multi-class SVM classifier in LIBSVM uses a one-against-one decomposition
scheme. However, this one-against-one decomposition scheme breaks down when
there are less than 3 samples per class to train the SVM. Hence, the one-against-
all decomposition strategy is implemented based on a code modification found in
the list of LIBSVM’s frequency asked questions (FAQ). The optimum regulariza-
tion factor (a.k.a soft margin parameter), C, is determined from {27!,2° ..., 23}
by evaluating which of these values gives the highest classification accuracy on

the training samples.

4.3.3.5 DTW-SVM-2pass classifier

The DTW-SVM-2pass classifier is similar to the proposed DTW-SR-2pass clas-
sifier. The SR classification stage (including dimension reduction) in each pass is
replaced by the linear SVM classifier described in Section 4.3.3.4. It enables as-

sessment of the performance difference between the two classification techniques

(SR and SVM) with the proposed DTW framework.
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4.3.4 Results
4.3.4.1 Classification accuracy on manually-segmented test phrases

In this section, the classification accuracies (Acc) of the classifiers on manually-
segmented test phrases are presented. Table 4.6 shows the Acc of the comparative
algorithms and the proposed DTW-SR-2pass classifier. The values of P, ¢ and T'
for the DTW-SR-based classifiers that give the best performance on this dataset
are 128, 0.05, and 5, respectively. The results of the DTW and DTW-SVM-2pass
classifiers shown are obtained with 7" set to 5 (which is also the best value for
each classifier). For the SR classifier, the best results shown is obtained with P

= 128 and ¢ = 0.1.

The results in Table 4.6 show that the proposed DTW-SR-2pass classifier
achieves the highest classification accuracies on manually-segmented test phrases
from Tests A and B. Both SVM and DTW-SVM-2pass classifiers perform worse
than their SR-based counterparts by about the same amount of degradation,
which are = 4% lower in averaged (across n) Acc for Test A, and =~ 3% lower in

averaged Acc for Test B.

It is also observed that the SR and SVM classifiers that do not have DTW
incorporated, perform worse. When DTW is applied on the training Mel-spectro-
grams, the averaged Acc of the DTW-SR-1pass classifier is higher than the SR
classifier’s by about 3% for Test A, and more than 13% for Test B. The averaged
Acc of the DTW-SR-1pass and DTW-SR-2pass are also better than the DTW
classifier’s. With the additional 2nd-pass SR classification, the averaged Acc of
DTW-SR-2pass increases by more than 2% over those achieved by DTW-SR-

1pass, on both test sets.
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Table 4.6: Acc (%) obtained by the different classifiers on manually-segmented
test phrases in test sets A and B, as the number of training samples per class, n,

varies between 1 to 5.

Manually-segmented test phrases in Test A

Algorithm n=1 n=2 n=3 n=4 n=5 Average
DTW 76.0 855 91.2 944 96.5 88.7
SR 73.7 844 88.6 92.0 95.7 86.9
SVM 68.9 80.4 85.0 885 91.7 82.9

DTW-SVM-2pass 75.5 86.4 91.8 944 954 88.7
DTW-SR-1pass 741 834 929 964 98.3 90.0
DTW-SR-2pass 80.7 90.9 94.8 96.8 98.6 924

Manually-segmented test phrases in Test B

Algorithm n=1 n=2 n=3 n=4 n=5 Average
DTW 73.7 833 899 913 922 86.1
SR 60.0 715 778 80.9 81.1 74.2
SVM 585 694 745 771 78.1 71.5

DTW-SVM-2pass  75.3 85.8 91.1 924 925 87.4
DTW-SR-1pass 74.6 86.3 91.2 934 94.1 87.9
DTW-SR-2pass 80.3 90.4 93.6 94.3 94.3 90.6
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Table 4.7: Acc (%) obtained by the different classifiers on machine-segmented

test phrases in test sets A and B, as n varies between 1 to 5.

Machine-segmented test phrases in Test A

Algorithm n=1 n=2 n=3 n=4 n=5 Average
DTW 609 72.7 779 851 86.9 76.7
SR 36.2 444 459 498 523 45.7
SVM 349 435 439 46.8 50.3 43.9

DTW-SVM-2pass 62.7 76.3 844 87.8 90.0 80.2
DTW-SR-1pass 62.5 80.1 854 914 935 82.6
DTW-SR-2pass 68.0 81.3 86.4 91.7 93.7 84.2

Machine-segmented test phrases in Test B

Algorithm n=1 n=2 n=3 n=4 n=5 Average
DTW 58.2 69.6 769 79.5 818 73.3
SR 349 422 446 494 51.6 44.6
SVM 32.5 386 404 432 464 40.2

DTW-SVM-2pass 62.7 744 838 86.0 864 78.7
DTW-SR-1pass 62.6 76.0 852 86.5 88.0 79.7
DTW-SR-2pass 67.5 80.2 86.0 88.8 89.4 824
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4.3.4.2 Classification accuracy on machine-segmented test phrases

Classification accuracies (Acc) of the comparative algorithms and the proposed
DTW-SR-2pass on machine-segmented test phrases are tabulated in Table 4.7.
The optimum values of P and ¢ for the SR and DTW-SR-based classifiers are the
same as those for the manually-segmented test phrases (in Section 4.3.4.1). For
the DTW frame extension parameter, 7', it is found that increasing it from 5 to 30
frames improves the classification accuracy of the machine-segmented bird phrase
segments whose time boundaries are less consistent than those obtained from
human annotators. The results of the DTW and DTW-SVM-2pass classifiers

shown are also obtained with 7T set to 30.

The classification accuracies in Table 4.7 on machine-segmented test phrases
show similar performance trends as those observed in Table 4.6. The proposed
DTW-SR-2pass classifier has the highest averaged Acc for both CAVI test sets,
followed by DTW-SR~1pass, DTW-SVM-2pass, D'TW, SR and SVM.

The classification accuracies on machine-segmented test phrases are lower
than those obtained for manually-segmented test phrases. This is mainly due
to time boundary errors present in the machine-segmented phrase segments. A
shorter segment with missing portions of the test phrase would lead to misclas-
sified to classes that are more similar to the detected sub-segment. For example,
the phrase shown in the top left corner of Fig. 4.4 may be classified to the phrase
on its right, if some of its beginning and end portions are missing. A longer
phrase segment might also be misclassified if there are substantial background

noise in the additional frames detected.
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4.3.5 Discussion
4.3.5.1 On the importance of DTW

On the manually-segmented test phrases, the SR and SVM classifiers without
DTW perform worse than a DTW classifier, with a larger Acc performance degra-
dation observed on phrase segments in Test B than those in Test A. This shows the
benefit of using DTW to reduce the mismatch between the training and test data.
Error analysis reveals that such data mismatch exists due to individual bird vari-
ations in producing phrases from the same class, environmental differences in the
source to microphone propagation (due to different sound propagation distance,
and reverberation in dense vegetation), and the subjective differences between hu-
man annotators in determining the phrase segment boundaries. Fig. 4.19 shows
a time mismatch between Mel-spectrograms from the same phrase class when a
phrase-duration-dependent frame shift is used to generate Mel-spectrograms with
a fixed number of frames. The human-annotated time boundary at the end of
the phrase in Fig. 4.19b is marked earlier than that in Fig. 4.19a because the
phrase energy towards the end of the spectrogram reached a human-determined

intensity threshold at that point.

The importance of DTW in reducing time boundary mismatch is further ex-
emplified on automatically detected and segmented bird phrases. The SR and
SVM classifiers without DTW suffer a large performance degradation (30 — 45%
absolute decrement in Acc, in contrast to the 5 — 15 % decrement observed in clas-
sifiers with DTW) in comparison to their performance on manually-segmented
bird phrases. This is because only those machine-segmented phrase segments with
time boundaries that are very close to their manually-segmented counterparts are

correctly classified.
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Figure 4.19: Time mismatch observed between Mel-spectrograms of two
manually-segmented phrases from the same class that are generated using a
phrase-duration-dependent frame shift. The white arrows on these 64-frame Mel-
spectrograms in (a) and (b) note the time instances of the low frequency regions

in the phrase segments.

4.3.5.2 On the performance gain of DTW-SR-2pass over DTW-SR-

1pass

When the results of DTW-SR-1pass classifier are compared with those of the
DTW-SR-2pass classifier, it is evident that the largest performance gain is ob-
served in the case when there is only n = 1 training sample per phrase class. The
2nd-pass of the SR classification aims to resolve the conflicting class decisions of

DTW-SR-1pass and DTW. The DTW classifier compares the test sample to every
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training sample separately, and obtains the correct decision if there is a training
sample in the correct class that has the highest cosine similarity with the test
sample. In contrast, the SR classifier generally classifies correctly if the sparse
solution in Eq. (4.3) is concentrated at the coefficients corresponding to the cor-
rect phrase class. When there are more than one training samples per class, the
SR classification framework has the advantage of using a linear combination of
(all or a few) training samples from the correct phrase class (together with some
training samples from other classes) to reconstruct a vector that resembles the
test feature vector. When there is only one training sample per phrase class, the
advantage of DTW-SR-1pass over DTW with a linear combination framework is
largely reduced. Even if the single training sample from the correct class is closest
to the test sample, but not by a large margin compared to other training sample,
there is a larger possibility of finding a sparse linear combination of training sam-
ples from multiple classes that resembles the test sample, in which the coefficient
corresponding to the correct class is not the largest. Analysis reveals that among
the conflicting class decisions in which either DTW or DTW-SR-1pass is correct,
DTW-SR-1pass is correct for approximately 77% of them in the case when n =
5, and this percentage decreases to 53% when n = 1. When only the two con-
flicting classes’ training feature vectors (obtained from frequency bin-normalized
Mel-spectrograms) are used in the 2nd-pass of SR classification, the SR classifier

is able to derive a correct class decision for 70-90% of these cases.

4.3.5.3 Parameter sensitivity of DTW-SR-2pass’s classification per-

formance

The proposed DTW-SR-2pass classification performance is relatively consistent

compared to DTW-SR-1pass, across the different parameter values of P (PCA di-
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mension) and ¢ (difference tolerance) investigated. Figs. 4.20a and 4.20b plot the
averaged Acc (averaged across n) achieved with different P values for manually-
segmented and machine-segmented test CAVIs’ phrase segments (in Test B), re-
spectively, while ¢ and T' (DTW frame extension) are fixed at their optimal value.
Similarly, Figs. 4.20c and 4.20d plot the Acc variations with ¢ (while P and T
are fixed at their optimal value), for manually-segmented and machine-segmented
test CAVIs’ phrase segments, respectively. The Acc of the DTW classifier is con-
stant in Figs. 4.20a—d because its algorithm is independent of P and €. The Acc
range of DTW-SR-2pass is less than 2% in the range of P and ¢ evaluated, while
the Acc range of DTW-SR-1pass is larger. There are also some values of P and ¢
for which DTW-SR-1pass performs worse than the DTW classifier. The reduced
Acc variation observed for the proposed DTW-SR-2pass classifier is mainly due
to the 2nd-pass stage, which takes into account the class decision of the DTW

classifier, whose performance does not change with P and ¢.

Figs. 4.20e and 4.20f plot the averaged Acc achieved by DTW, DTW-SR-
1pass and DTW-SR-2pass with different 7" values (while P and e are fixed at
their optimal value), for manually-segmented and machine-segmented test CAVIs’
phrases, respectively. As T varies, the Acc variations of DTW, DTW-SR-1pass
and DTW-SR-2pass are similar to one another. Comparing these figures, we
conclude that increasing 7' can result in performance degradation (about 2%)
for manually segmented phrases. For machine-segmented phrases, on the other

hand, increasing 1" beyond 0 is beneficial.

4.3.5.4 Real-time performance of DTW-SR-2pass

Table 4.8 shows the real-time (RT) performance of the proposed DTW-SR-2pass
classification algorithm (written in MATLAB) on an Intel i7 2.67 GHz processor
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with 4 GB RAM (without parallel-computing). It varies from 0.5 to 1.5xRT,
depending on the parameter settings, and the number of training samples used.
In general, the computation time increases with 7" because DTW is done on a
larger number of frames. The computation time also increases as n and P increase
because there are more elements in the dictionary matrix, A, on which the [;-
minimization in Eq. (4.3) is performed. On the other hand, the /;-minimization

requires less computation time when a larger tolerance, ¢, is used.

Table 4.8: Real-time (RT) performance in xRT of the DTW-SR-2pass classifier

with various values of €, P, T, and n.

n=3 and T'=H €=0.05 and P=128
eN P 32 64 128 T~n 1 3 5
0.025 1.09 1.15 1.19 0 0.53 1.09 1.15
0.05 0.97 1.03 1.04 10 0.56 1.09 1.26
0.1 0.86 0.91 0.92 20 059 1.19 1.34
0.2 0.84 0.86 0.87 30 0.65 1.29 1.47

4.3.6 Conclusion

A DTW-SR-2pass classification framework that combines dynamic time warping
(DTW) with a two-pass sparse representation (SR) classification is proposed for
limited data birdsong phrase classification. Mel-spectrograms of the training
samples are dynamically-time-warped to the Mel-spectrogram of each test sample
to obtain training Mel-spectrograms that have the same number of time frames
as the test Mel-spectrogram. This is followed by feature normalization, which
performs frame normalization and amplitude log compression. PCA dimension

reduction is performed, and the dimension-reduced feature vectors are used to
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perform the 1st-pass SR classification. If the class decision of the Ist-pass SR
classification is different from the decision of the DT'W classifier that is computed
(as a by product) during the DTW stage, a 2nd-pass SR classification is performed
using the training samples solely from the two conflicting classes. Frequency
bin normalization (instead of frame normalization) is performed on the Mel-

spectrograms in the 2nd-pass.

The training set contains a few training samples (n = 1 — 5) per phrase class
from a few bird individuals, and the test data is split into two sets — Test A
which contains phrases sang by the same CAVI individuals found in the training
set, and Test B which contains phrases sang by another group of CAVI individ-
uals. Performance evaluations are conducted on both manually-segmented and
machine-segmented phrases. Compared to the DTW, SVM-based, and SR, (with-
out DTW) classifiers evaluated, the proposed DTW-SR-2pass classifier achieves
the highest classification accuracies on both manually-segmented and machine-
segmented phrases. DTW helps in reducing the mismatch between the training
and test phrase segments. Incorporating the 2nd-pass SR classification leads to
improvement in classification performance and reduction in parameter sensitivity

compared to using only a one-pass SR classification framework.
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CHAPTER 5

Summary and Future Work

In this dissertation, robust algorithms for pitch detection, automatic speech recog-
nition (ASR), and birdsong phrase classification are presented. Noise-robustness
of pitch detection is achieved using multi-band summary correlograms, while
sparse representations are used to improve the noise-robustness of ASR, and the

accuracy of birdsong phrase classification in limited data condition.

5.1 Multi-band summary correlogram (MBSC)-based pitch

detector for noisy speech

In Chapter 2, a multi-band summary correlogram (MBSC)-based pitch detection
algorithm is described. The pitch detection algorithm performs pitch estimation
and voiced /unvoiced (V/UV) detection via novel signal processing schemes that
are designed to enhance the MBSC’s peaks at the most likely pitch period. Four
wideband FIR filters are used to perform frequency decomposition, such that
multiple harmonics fall within each subband. This facilitates the use of signal
envelopes in all subbands for pitch estimation (including the low-frequency band),
since signals that contain F0O-spaced harmonics will be amplitude-modulated at
the rate of FO. Besides the signal envelopes, the low-frequency band signal is
also retained for subsequent processing. Each of these subband signal/envelope

streams are furthered filtered using a comb-filterbank, in which each channel con-
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sists of a comb-filter with a particular inter-peak separation in an adult human’s
pitch range. Harmonic-to-Subharmonic Ratio (HSR)-based comb-channel selec-
tion and weighting schemes are performed to yield individual stream’s summary
correlogram. This is followed by stream-reliability-weighting to combine these
summary correlograms into a single MBSC. V/UV detection is performed by ap-
plying a constant threshold on the maximum peak of the MBSC. Narrowband
noisy speech sampled at 8 kHz are generated from Keele (development set) and
CSTR - Centre for Speech Technology Research (evaluation set) corpora. Both
4-kHz fullband speech, and G.712-filtered telephone speech are simulated. When
evaluated solely on pitch estimation accuracy, assuming voicing detection is per-
fect, the proposed algorithm has the lowest gross pitch error for noisy speech in
the evaluation set among the algorithms evaluated (RAPT, YIN, etc.). The pro-
posed pitch detection algorithm also achieves the lowest average pitch detection
error, when both pitch estimation and voicing detection errors are taken into

account.

5.2 Jointly-sparse estimated and reference soft-mask rep-

resentations for noise-robust speech recognition

In Chapter 3, a novel JDictMask feature enhancement scheme that uses jointly-
sparse reference soft-mask (SM,¢f) and estimated soft-mask (SMeg) representa-
tions is presented. SM,¢ is the ratio of clean Mel-spectrum to the noisy Mel-
spectrum computed from a clean and noisy utterance-pair in the training data,
while SM is the ratio of a denoised Mel-spectrum to the original noisy Mel-
spectrum. The denoised Mel-spectrum is obtained by subtracting the noise spec-
trum (estimated using the minimum statistics noise estimation algorithm) from

the original noisy spectrum. The sparse linear combination of SMy dictionary
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representations that best approximates the SM of the test speech utterance is
found by solving an /;-minimization problem. An enhanced soft-mask is generated
by applying the same sparse linear combination to the SM,¢ dictionary represen-
tations. This soft-mask is used to enhance the Mel-spectrogram before MFCCs
are extracted. Using multi-noise training and dictionary representations made
up of exemplar-pairs extracted from clean and noisy utterance-pairs in the train-
ing data, the joint soft-mask-based feature enhancement scheme achieves higher
word accuracies in the presence of mismatch noise-types and channel character-
istics on the Aurora-2 noisy digit recognition task, compared to other existing
feature enhancement techniques that utilizes Mel-spectral-based dictionary rep-
resentations. When the JDictMask feature enhancement scheme is extended to
the Aurora-4 large vocabulary noisy speech recognition task, a sparsity-based dic-
tionary learning is used to derive jointly-sparse SM,.s and SM dictionaries from
an initial subset of soft-mask exemplar-pairs extracted from the training set. An
additional ambient noise subtraction is performed on the clean Mel-spectrogram
to derive a SM,.s that can better suppress noise at non-speech regions. On the
Aurora-4 speech recognition task with multi-noise training, the JDictMask fea-
ture enhancement scheme also has the highest averaged word accuracy on speech
corrupted with stationary and non-stationary out-of-set noise-types. In addition,

it performs well on speech corrupted with relatively stationary in-set noise-types.
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5.3 Exemplar-based sparse representation classifier for lim-
ited data birdsong phrase classification and/or verifi-

cation

In Chapter 4, a study on the efficacy of an exemplar-based sparse representation
(SR) classifier for limited data birdsong phrase classification and verification is
conducted. This exemplar-based SR classification technique is first proposed for a
facial image recognition task [71]. The evaluation database in this study contains
manually-segmented Cassins Vireo (CAVI) song phrases from two bird individuals
in the 2010 collection, and only phrase samples of 32 phrase classes (a.k.a. in-set
classes) are used for training. A 64-frame, dynamic range normalized spectrogram
is computed from each phrase segment using a duration-dependent frame shift,
followed by dimension reduction using PCA, to obtain the feature vector of each
phrase segment. The SR classifier finds a sparse linear combination of exemplars
(or training feature vectors) that best approximates the test feature vector, by
solving an [;-minimization problem. The phrase class that has the minimum
Euclidean distance between the test vector and the vector reconstructed from
that class’s training vectors, is the SR classifier’s decision. A threshold is applied
on the sparsity concentration index (SCI) computed by the SR classifier to verify
whether a phrase belongs to one of the in-set phrases classes. On the 32-class in-
set phrase classification task, the SR classifier outperforms the nearest subspace
(NS) and support vector machine (SVM) classifiers when three to seven training
samples per phrase are used. On the joint in-set bird phrase classification and
verification and classification task, in which the classifier has to classify each
phrase into one of 33 phrase classes — 32 in-set classes, and 1 collective out-of-set

category — the SR classifier also has the highest classification accuracy compared
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to the NS and SVM classifiers, due to good performances in both classification

and verification.

Subsequently, an improved exemplar-based SR classification algorithm, DTW-
SR-2pass, that is robust to within-class phrase variations from bird individual
differences and segmentation variabilities is proposed. It involves dynamic time
warping (DTW) and a two-pass SR classification. A fixed frame shift is used to
compute the Mel-spectrogram of each phrase segment. The Mel-spectrograms of
all training samples undergo DTW such that they have the same number of time
frames as the test Mel-spectrogram. DTW improves the similarity between train-
ing and test phrases in the presence of individual bird differences in producing
phrases of the same class, and helps when the phrase segment time boundaries are
inconsistently determined by a human annotator or by machine. DTW also com-
putes a class decision as a by-product, which corresponds to the training sample
that is most similar to the test sample. Frame normalization and amplitude log
compression is performed on the spectrogram, followed by PCA dimension reduc-
tion and the 1st-pass SR classification. When the class decisions from DTW and
the 1st-pass SR classification are different, SR classification is performed a sec-
ond time with dynamically time-warped training Mel-spectrograms from these
two conflicting classes. In this 2nd-pass SR classification, frequency bin nor-
malization (instead of frame normalization) is performed on the training and test
Mel-spectrograms. For training, one to five samples per phrase class from three of
the six CAVI individuals in the 2010 and 2012 collections are used. Song phrases
from the remaining three CAVIs are used for testing. Compared to a DTW-based
classifier, SVMs, and the simple SR classifier (without DTW) used in the earlier
study, the DTW-SR-2pass classifier achieves the highest classification accuracies

on manually-segmented phrases, as well as automatically-segmented phrases.
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5.4 Future work

5.4.1 Pitch detection

The MBSC-based pitch detector is unable to distinguish between harmonic struc-
tures from speech and non-speech. One way to improve the algorithm’s pitch
detection accuracy in the presence of harmonic noise is to incorporate a speech
activity detector that can differentiate harmonic noise from voiced speech. One
can also extend the MBSC single-pitch detection algorithm to a multi-pitch de-
tection algorithm by incorporating a pitch continuity tracking scheme to track

the pitch variations of overlapping speech from multiple speakers.

5.4.2 Feature enhancement

The current reference and estimated soft-mask dictionary representations are
obtained assuming that the clean and noisy training utterance-pairs are time-
synchronized and that the noise is additive in nature. This leads to the assump-
tion that the spectrogram amplitudes of the clean training utterance are always
smaller than the spectrogram amplitudes in the corresponding noise-corrupted
time-frequency regions of the noisy version. As such, the values in the reference
soft-mask exemplars and the reconstructed reference soft-mask (that is used for
Mel-spectrogram denoising) are bounded to the range between 0 and 1 in the
JDictMask feature enhancement scheme. Future work can investigate the use
of the JDictMask feature enhancement scheme on noisy speech that has been
transmitted through a communication channel. The above assumptions might
no longer be true for these speech signals due to transmission delay, automatic
gain control, and channel distortion. In this case, the clean and noisy training

utterance-pairs would have to be pre-processed prior to reference soft-mask com-
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putation. For example, the clean and noisy utterance-pairs would have to be
time-synchronized, followed by spectrogram amplitude adjustment or soft-mask
dynamic range normalization, to ensure that the reference soft-mask values are

nearly zero for noise-dominated regions, and nearly one for noise-free regions.

5.4.3 Birdsong phrase classification

Besides phrase classification of a single bird species, future work can investigate
and extend the use of the proposed sparse representation framework to bird songs
and /or species recognition. Noise-robustness of the classification algorithm can
also be improved by either denoising the spectrogram prior to feature extrac-
tion, or extracting only the reliable time-frequency spectrographic features for

classification and verification.
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