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ABSTRACT OF THE DISSERTATION 

Spatial	memory	networks	in	aging	and	Alzheimer’s	disease	

By	

Freddie	Márquez	

Doctor	of	Philosophy	in	Biological	Sciences 

University	of	California,	Irvine,	2021	

Professor	Michael	A.	Yassa,	Chair	

 

An estimated 6.1 million Americans currently suffer with Alzheimer’s disease (AD) and in the 

absence of effective treatment or a cure, this number could increase to 13.8 million by 2060. One 

of the most common changes that occurs in aging and Alzheimer’s disease is decline in memory 

for everyday experiences (episodic memory). Computational models suggest that the brain uses a 

neural computation known as pattern separation to distinguish among highly similar inputs 

during memory recall. Furthermore, episodic memory has several components: what happened, 

where it happened, and when it happened. The posteromedial cortices are regions that are 

thought to be involved in spatial memory and are early sites that are affected by AD pathology. 

Neuropathological hallmarks of AD include the presence of beta-amyloid (Aβ) plaques, and the 

formation of neurofibrillary tangles (NFT) and neuropil threads. Eventually, this is followed by 

neurodegeneration. In vivo candidate biomarkers for AD include pathological aggregations of 

misfolded proteins (e.g. amyloid plaques, [Ab], and hyperphosphorylated tau tangles, as 

measured by CSF assays, and PET imaging), neuronal dysfunction or atrophy (as measured by 

functional or structural MRI, and total tau levels as measured by CSF assays), and cognitive 

impairment (as measured by neuropsychological tests). However, the relationship between the 



 xv 

pathological, neuroimaging, behavioral, and cognitive markers in the aging brain and in AD 

remains unclear. The goal of this dissertation was to understand how regions of the brain that 

support memory for where events occur (spatial memory) are altered in the context of 

Alzheimer’s disease. We gave participants a spatial pattern separation task, in which we showed 

participants a series of objects on different locations on a screen and tested participants on their 

ability to remember the spatial location of the objects after a delay. We found that cortical 

regions known as the posteromedial network may support spatial pattern separation.  Spatial 

pattern separation task performance was associated with word list delayed recall test commonly 

used in a clinical setting, a relationship that is conditional upon the level of amyloid burden. 

Spatial pattern separation task performance was also associated with AD pathology, and 

cognitive decline. These findings suggest that the pattern separation framework may provide an 

account for understanding mechanistic changes that occur in the progression of AD. Future 

studies of spatial memory should investigate associations between regionally specific effects of 

AD pathology, vascular and immune contributions to AD, and include community-based 

samples of ethnically diverse populations.  
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CHAPTER 1: Background and Significance  

1.1 Background and public health relevance  

Alzheimer’s disease (AD) is the most common age-related dementia, with prevalence continuing 

to increase (Alzheimer's disease facts and figures, 2020). With the exception of AD cases caused 

by genetic mutations (i.e. familial AD), age is the greatest risk factor. Currently, one in ten 

people 65 years of age or older have AD. In addition, the average life expectancy of a person in 

the United States has increased by 9 years and the population of people 65 years of age and 

above has increased by 34 million people (16 million to 50 million) over the last 60 years. 

Today, an estimated 6.1 million Americans are living with AD and in the absence of effective 

treatment or a cure, this number could increase to 13.8 million by 2060 (Alzheimer's disease 

facts and figures, 2020). Thus, a critical goal of biomedical research is to establish indicators (i.e. 

biomarkers) of AD during the preclinical stage allowing for early diagnosis and intervention. 

Understanding the neurobiological processes that support memory could help find links between 

age-related and AD-related changes in the brain and the cognitive changes observed.  

A critical goal of biomedical research is to establish cognitive and biological indicators of AD 

during preclinical and prodromal stages allowing for early diagnosis and intervention (Öhman et 

al., 2021). Biomarkers quantify characteristics of biological processes that can be linked to 

cognitive and clinical endpoints, thus can be used as surrogates of the disease process. 

Computerized cognitive assessments can serve as “digital biomarkers” by probing subtle features 

of cognitive decline during the earliest stages of the disease and can be linked with mechanistic 

biomarkers in a comprehensive approach to improve the efficiency of clinical trials (Papp et al., 

2021). 
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Figure 1. Projected number of people with AD in the US population, 2020 to 2060 

1.2 Biomarkers for Assessing Aging and Alzheimer’s Disease  

1.2.1 The current classification of Alzheimer’s disease  

Identification of pathologic processes prior to the onset of disease symptoms is of critical 

importance to the field. Biomarkers are quantifiable characteristics of biological processes 

related to Alzheimer’s disease that are linked to clinical endpoints and thus can be used as 

surrogates for the disease process. Historically, AD has been viewed as a disease of clinical 

symptoms in the clinical setting. By classifying AD in this manner, its diagnosis would likely 

include a considerable amount of non-AD cases as defined by its pathological characteristics. In 

2011, the National Institute on Aging and the Alzheimer’s Association (NIA-AA) Working 

Group put forth staging criteria that incorporate neuroimaging biomarkers (Sperling et al., 2011). 

The authors presented a conceptual framework and operational research criteria for preclinical 

AD where Stage 1 is characterized by the presence of asymptomatic β-amyloidosis, or increased 
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amyloid burden. Stage 2 includes neuronal injury and evidence of neurodegenerative change. 

Lastly, stage 3 additionally includes evidence of subtle cognitive decline, which is not yet 

sufficient for clinical diagnosis. The new research framework proposed by the NIA-AA defines 

AD pathologically with the use of biomarkers, which could potentially differentiate cases that 

clinically resemble AD such as hippocampal sclerosis. This framework additionally allows for 

staging using either fluid or neuroimaging biomarkers. However, certain features, which may be 

critical for the pathophysiology of the disease, could only be detected using imaging techniques. 

Hippocampal hyperactivity on task-activated functional MRI is one such example. Ewers et al. 

(Ewers et al., 2011) and Leal and Yassa (Leal and Yassa, 2013) include this feature in staging the 

disease and highlight that it seems to appear within a temporally constrained window. Jack and 

Holtzman (Jack and Holtzman, 2013) proposed several time-dependent models of AD that take 

into consideration varying age of onset as well as co-morbid pathologies. 

1.2.2 Pathology and spatiotemporal spread  

Neuropathological staging criteria of AD-related changes originally indicated that although the 

distribution of beta-amyloid (Aβ) neuritic plaques varies widely, neurofibrillary tangles and 

neuropil threads show a distribution pattern that allow for the differentiation of six stages (Braak 

and Braak, 1991). Stages I-II show alterations that are confined to the transentorhinal region, 

which spread to limbic (Stage III-IV), and finally to isocortical regions (Stage V-VI). More 

recently, pathology studies have indicated that intraneuronal aggregations of the protein tau seem 

to precede the extracellular deposition of Aβ by approximately a decade (Braak and Del Tredici, 

2011; Duyckaerts and Hauw, 1997).  Notably, non-argyrophillic tau lesions are thought to first 

appear in the locus coeruleus prior to the appearance of argyrophillic tau lesions caused by 

neurofibrillary tangles (NFTs) within the transentorhinal region of the cerebral cortex (Braak and 
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Tredici, 2015). Intraneuronal inclusions consisting of aggregated protein tau appear in selectively 

vulnerable cell types that appear to spread in a regionally and temporally specific manner that is 

independent of proximity to affected area (Braak and Braak, 1999).  One advantage of using 

brain imaging techniques is that they operate at a higher level of spatiotemporal sensitivity than 

fluid biomarkers, thereby offering an opportunity to stage progression of the disease. Thus far, 

imaging using combinations of in vivo tau-PET and MRI techniques have shown progression 

patterns that largely recapitulate staging based on post-mortem histology (Schöll et al., 2015).   

1.2.3 Biomarker-based staging of Alzheimer’s disease 

Out of the five biomarkers proposed by the NIA-AA, three were imaging biomarkers (amyloid 

PET, structural MRI, and FDG PET). Anatomical information from imaging biomarkers may 

provide crucial disease-staging information. This would imply an advantage for imaging 

biomarkers over fluid biomarkers because imaging can distinguish the different phases of the 

disease both temporally and anatomically. However, in recent years, assays to measure CSF 

biomarkers have been developed for measurement on high-throughput automated platforms, 

including the Fujirebio Lumipulse assay, resulting in a more consistent analytical process. Few 

studies have assessed the agreement of amyloid PET and CSF biomarkers on Lumipulse. 

Consistent with other studies, our data show that when comparing amyloid-PET and composite 

CSF measures of Ab, 18F-Florbetapir was highly correlated with Ab42/40 (r = -0.810, p < 

0.0001), and p-tau/Ab42 (r = -0.841, p < 0.0001) (APPENDIX A). Additionally, using pre-

established cutoffs that were defined based on receiver operating characteristic analysis of 

amyloid PET and the CSF measures, classification performance was high between 18F-
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Florbetapir and composite measures of Ab such as p-tau/Ab42 (AUC = 0.95), and Ab42/40 

(AUC = 0.92) (APPENDIX A).  

The NIA-AA research framework has more recently been updated (Jack et al., 2018; Jack Jr et 

al., 2013) to focus on A/T/N criteria, first proposed by Jack and colleagues (Jack et al., 2016) and 

pave the path to more personalized diagnosis and treatment. The new framework highlights the 

value of positive amyloid biomarkers (A) to specifically indicate AD-related processes. 

Pathological tau (T) is only taken to indicate an AD-related process in the presence of amyloid 

positivity. Finally, (N) biomarkers are thought to provide nonspecific information about neuronal 

injury and neurodegenerative change. The combination of amyloid with other biomarkers can 

then be used to stage AD progression. Additionally, according to this new framework, the 

presence of tau and neurodegeneration in the absence of amyloidosis is considered evidence for 

non-AD pathological processes. An important aspect of the 2018 NIA-AA working group 

framework is the flexibility to include additional biomarkers in future iterations. We recently 

reviewed established and emerging neuroimaging biomarkers for Alzheimer’s disease (Márquez 

and Yassa, 2019). 

1.3 Memory systems and Episodic Memory  

1.3.1 The role of the medial temporal lobe in episodic memory 

The medial temporal lobe contains a set of structures that play an important role in declarative 

long-term memory (facts and events) processing, which is severely impacted in amnestic forms 

of AD. It consists of the hippocampal formation (HF: CA1-4, dentate gyrus – DG, subiculum, 

presubiculum, parasubiculum), perirhinal (PRC), entorhinal (EC), and 
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parahippocampal/postrhinal (PHC/POR) cortices. These structures are highly interconnected and 

support distinct information processing streams (Ranganath and Ritchey, 2012). The lateral 

(LEC) contains neurons and circuits representing information about objects and their complexity, 

object traces over time, and sequences of an event (parameters that represent the specific content 

and temporal order of an event (Deshmukh and Knierim, 2011; Montchal et al., 2019; Reagh and 

Yassa, 2014; Rodo et al., 2017; Tsao et al., 2013, 2018; Van Cauter et al., 2013; Wang et al., 

2018; Wilson et al., 2013a, 2013b). In contrast, studies in animals and in humans indicate that 

the medial EC (MEC) stream contains a high percentage of spatially modulated neurons such as 

grid, head direction, border, aperiodic spatial and object-vector cells (parameters necessary for 

spatial navigation) (Doeller et al., 2010a; Hafting et al., 2005; Høydal et al., 2019; Jacobs et al., 

2013; Killian et al., 2012; Miao et al., 2017; Sargolini et al., 2006; Solstad et al., 2008). 

Neuroanatomical and neuroimaging studies have indicated that the PHC (homologous to the 

POR in rodents) carries visuospatial/contextual information (‘where’ stream) to the MEC, and 

the PER carries item/object information to the LEC (‘what’ stream) (Burwell and Amaral, 1998; 

Maass et al., 2015; Naber et al., 1997; Navarro Schröder et al., 2015; Schultz et al., 2015; Suzuki 

and Amaral, 1994). These two streams converge in the HF, where they are combined and further 

processed to construct a complete memory representation (Eichenbaum et al., 2007; Ranganath 

and Ritchey, 2012; Yassa and Stark, 2011; Yonelinas and Ritchey, 2015).  
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Figure 2. MTL circuits involved in episodic memory 

 

1.3.2 Pattern separation in the hippocampus  

Episodic memory is often defined as records of unique experiences and events that guide 

adaptive behavior; a feature of the brain that is thought to be reliant on the hippocampus (Milner 

et al., 1998; Squire et al., 2004). A key feature of episodic memory is the ability to discriminate 

among highly similar experiences thus creating dissociable experiences from one day to the next. 

Computational models suggest that the brain uses a neural computation known as pattern 

separation to distinguish among highly similar items during memory performance (Marr, 1971).  

This computation is thought to be heavily reliant on the dentate gyrus (DG) and CA3 of the 

hippocampus and serves to create orthogonalized representations from similar inputs (Yassa and 

Stark, 2011). More specifically, the DG is thought to be capable of pattern separation while the 
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CA3 region acts in an auto-associative network capable of both pattern separation as well as 

pattern completion via its recurrent collateral network. Pattern completion in this sense, refers to 

the process by which incomplete representations are “filled in” based on previously stored 

information (Yassa and Stark, 2011).  

1.3.3 Pattern separation and neurocognitive aging  

Through the advances made in neurocognitive aging studies, it is now possible to develop and 

validate behavioral paradigms that can dissociate and provide information about the functional 

integrity of underlying systems. The hippocampal dentate gyrus (DG)/CA3 network is 

hypothesized to engage in minimization of interference among overlapping memories, i.e. 

pattern separation (Yassa and Stark, 2011). This capacity is diminished in aged rats with memory 

impairment (Wilson et al., 2006). Using high-resolution functional MRI, object discrimination 

performance is linked to functional rigidity, or the inability to pattern separate unless interference 

is minimal, as well as hyperactivity in the DG/CA3 region in older adults (Yassa et al., 2011a, 

2011b). The hyperactivity reported is consistent with other studies of hippocampal memory in 

MCI patients (Dickerson et al., 2004, 2005; Miller et al., 2008a) and in older adults with 

subclinical memory impairments (defined by the RAVLT Delay) (Miller et al., 2008b; Yassa et 

al., 2010). Other work has also shown that increased hippocampal activity negatively correlates 

with thinning in several regions, including the entorhinal cortex (EC) (Putcha et al., 2011). This 

work has recently been extended beyond object discrimination to show that aging is associated 

with impaired spatial (Reagh et al., 2014) and temporal (Roberts et al., 2014) discrimination. 

Using a task concurrently taxing object versus spatial mnemonic discrimination, thought to tax 

pattern separation (orthogonalization of similar inputs into dissimilar outputs) in the 
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hippocampus, shows that while older adults without subclinical memory impairments (defined by 

the RAVLT Delay) have major deficits on object discrimination, they only show subtle deficits 

on the comparable spatial discrimination task when compared to young adults (Reagh et al., 

2016). Recent human fMRI studies have identified a functional dissociation within the EC, with 

anterolateral (aLEC) and posteriomedial (pMEC) subregions similar to what is found in rodents 

(Maass et al., 2015). In the task-activated fMRI version of the object versus spatial task, the 

results show domain-general hippocampal engagement, but selective engagement of PRC and 

LEC during object discrimination and engagement of PHC and MEC during spatial 

discrimination (Reagh and Yassa, 2014).  Furthermore, engagement of the DG/CA3 and aLEC 

correlate with performance on the object discrimination task to reveal an imbalance of the 

DG/CA3-aLEC circuit (hyperactivity of DG/CA3 and hypoactivity of the aLEC) in the absence 

of structural thinning of the regions in healthy older adults (Reagh et al., 2018).  

Although it is presently unclear whether dysfunction in these brain regions is exclusive to 

pathological aging, or is also a feature of healthy aging, much evidence suggests that the PRC 

and LEC are among the earliest areas affected (Reagh et al., 2018). As PRC and LEC project to 

the hippocampus, it is likely that disruptions in these input regions also disrupt hippocampal 

computations during object discrimination, but less so during spatial discrimination. Conversely, 

other neighboring cortices thought to process spatial or contextual information (such as PHC and 

MEC) may be relatively spared in the absence of age-related neuropathology. Older adults with 

subclinical memory impairments (defined by the RAVLT Delay) show impaired performance on 

both aspects of the task, which suggests that both the item/object and context/spatial neural 

circuits may be negatively impacted. Studies evaluating mnemonic discrimination of spatial 

information were based on early work in hippocampal-lesioned rodents (Gilbert et al., 1998), 
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which assessed the ability to judge whether stimuli had moved from locations in which they were 

originally presented. The difficulty of discrimination is typically tested by systematically varying 

the metric distance between the study and test phases. Recent studies have used spatial 

mnemonic discrimination tasks and have found that a subset of older adults who were impaired 

(based on the RAVLT) were significantly impaired on the spatial discrimination task compared 

to unimpaired older adults and young adult groups (Reagh et al., 2014; Stark et al., 2010). 

Another study (Holden and Gilbert, 2012), using a delayed-match-to-sample discrimination task 

also showed impairments in the ability for older adults to discriminate spatial information.  

1.3.4 Functional neocortical networks  

 

Functional MRI techniques are based on blood-oxygenation-level-dependent (BOLD) contrast, 

which is associated with neural activity at the population level. Resting-state functional magnetic 

resonance imaging (rsfMRI) studies examine the temporal correlation of the BOLD signal 

between the regions of interest (or functional connectivity) by analyzing task-independent 

spontaneous fluctuations in brain networks (Biswal et al., 1995; Fox and Raichle, 2007). An 

emerging systems-based model of AD considers the large-scale disruptions across the course of 

AD. In preclinical AD, studies have generally noted that resting state fMRI (rsfMRI) is linked to 

metabolic changes (indexed by PET imaging) and precedes neurodegeneration (review by 

Sheline and Raichle, 2013). Most analyses have focused on the default mode network (DMN) 

(Gusnard and Raichle, 2001; Raichle et al., 2001) - a network that involves the medial prefrontal 

cortex, posterior cingulate cortex, precuneus, anterior cingulate cortex, parietal cortex, and the 

medial temporal lobe, including the hippocampus (Buckner et al., 2008; Greicius and Menon, 

2004). As regions within the DMN are highly overlapping with the spatial distribution of both 
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amyloid and tau pathology (Buckner et al., 2008), resting state fMRI can offer important 

information on the integrity of these circuits and the degree to which their synaptic connectivity 

may be affected by the disease process. While some studies have found that alterations to DMN 

connectivity become more dramatic with disease progression, others have found dynamic 

changes that relate to Aβ and tau-specific profiles (Jones et al., 2016; Petrella et al., 2011; Sanz-

Arigita et al., 2010; Schultz et al., 2017; Sepulcre et al., 2016; Supekar et al., 2008; Zhang et al., 

2010). Connectivity changes in other networks have also been reported (Fredericks et al., 2018). 

For example, the interaction between the DMN and the salience network, which consists of 

anterior insula, dorsal anterior cingulate cortex, is associated with increased connectivity in 

amyloid-positive individuals with low neocortical tau, and decreased connectivity as a function 

of elevated Tau-PET signal (Schultz et al., 2017). 

In addition to changes in the DMN, some studies have suggested that connectivity within the 

MTL is also disrupted with aging and AD. For example, Yassa et al. (Yassa et al., 2011a) 

showed an age-related decrease in connectivity between the entorhinal cortex and the dentate and 

CA3 regions of the hippocampus, the extent of which was correlated with memory deficits.  

Functional connectivity is thought to be an early marker of synaptic pathology that may be 

associated with isolation of the hippocampus from its cortical input.  

Beyond the MTL network, the EC is interconnected with a broader neocortical network and is 

thought to provide the neural substrate for integrating spatial and object information (Ranganath 

and Ritchey, 2012). Evidence from the rodent indicates that the lateral entorhinal cortex is 

associated with cortical inputs including the orbitofrontal cortex and the amygdala while the 

medial entorhinal cortex is associated with cortical inputs such as the retrospenial cortex and 

postrhinal cortex, among others (Witter et al., 2017). It is thought that the functions of each of 
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these regions are, in part, due to their connections with these cortical inputs. However, how these 

regions and their computations are altered in Alzheimer’s disease is not understood.  

The RSC plays a key role in spatial memory and navigation, which means that this area 

represents a very important node in a broader spatial processing that includes the HF. The 

retrosplenial cortex (RSC) serves as a source of substantial, direct input to the EC, and 

projections from RSC account for nearly 20% of the total cortical input to the EC (Insausti et al., 

1987). Neuroanatomical tracing data in the nonhuman primate show that the RSC has strong 

connections with the EC. Afferents to the EC originate in both Broca’s area 29 and 30. Although 

these projections are restricted to the caudal one-half of the EC (EI, EC and ECL subfields), 

whereas the rostral one-half of the EC receives little to no projections from the RSC. RSC 

afferents to the EC terminate mostly in layer I in a restricted topographical manner (Insausti and 

Amaral, 2008). Retrograde transport studies have shown that both PRC [area 35] (Kobayashi and 

Amaral, 2003) and PHC [areas TH and TF] project to RSC as well (Kobayashi and Amaral, 

2003).  

1.3.5 Memory systems and PMAT networks 

Although episodic memory is supported by the circuitry of the medial temporal lobes (MTL), 

including the hippocampus, the MTL interacts extensively with a number of specific distributed 

cortical and subcortical structures (Dickerson and Eichenbaum, 2010). Spatial and nonspatial 

information seem to follow distinct parallel processing streams through the medial temporal 

lobes, with the hippocampus combining spatial and non-spatial information to form unified 

cohesive representations of an experience (Inhoff and Ranganath, 2017; Ranganath and Ritchey, 

2012). In this model, spatial processing relies on a posteromedial (PM) system that includes the 
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entorhinal cortex, parahippocampal cortex, retrosplenial cortex, and posterior cingulate cortex, 

whereas object processing relies on an anterior-temporal (AT) system that includes the perirhinal 

cortex, the medial prefrontal cortex, and the anterior cingulate. Previous MRI studies have 

indicated early deterioration of anterior-temporal regions in aging that is linked to deficits in 

object memory (Berron et al., 2018; Reagh et al., 2018). Less attention has focused on the 

structural and functional integrity of the PM network. This is of importance to AD since the PM 

network is one of the earliest regions to show aggregation of beta-amyloid (Ab) pathology 

(Klunk et al., 2004; Palmqvist et al., 2017). Furthermore, functional MRI studies have reported 

amyloid-b-related hyperactivation in hippocampus and posterior-medial regions that seems to 

reflect a failure in task-related deactivation (Elman et al., 2014; Huijbers et al., 2014; Leal et al., 

2017; Mormino et al., 2012; Sperling et al., 2009; Vannini et al., 2012).  

1.3.6 Mild cognitive Impairment and Alzheimer’s Disease  

One of the most common features of AD is decline in the ability to encode and retrieve our daily 

personal experiences, or episodic memory. A crucial component of episodic memory is pattern 

separation, the ability to independently represent and store similar experiences using unique 

neural codes (Marr, 1971; McClelland et al., 1995; Treves and Rolls, 1994; Yassa and Stark, 

2011). Accumulating evidence suggests that the hippocampus possesses unique circuitry that is 

computationally capable of resolving mnemonic interference by using pattern separation (Leal 

and Yassa, 2018). This computation prevents overgeneralization of information and allows for 

efficient storage of episodic memories. Moreover, functional integrity of the hippocampus and 

decline in episodic memory can be attributed to loss of pattern separation (Leal and Yassa, 

2015). Cognitive studies in aged humans have now reliably reported mnemonic discrimination 
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impairment (Stark et al., 2010, 2013; Yassa et al., 2011b) with more dramatic loss in aMCI 

(Bakker et al., 2012; Yassa et al., 2010).  

Spatial memory is a special case of episodic memory that is known to be compromised very 

early in individuals with Alzheimer’s disease (Hope et al., 1994; Lithfous et al., 2013), including 

in preclinical AD (Allison et al., 2016). In healthy brains of both humans and rodents, place cells 

in the hippocampus and grid cells in the medial entorhinal cortex (MEC) form a neural circuit 

that is critical for spatial memory (Doeller et al., 2010b; Ekstrom et al., 2003; Fyhn et al., 2004; 

Morris et al., 1982; O’Keefe and Dostrovsky, 1971; Scoville and Milner, 1957; Steffenach et al., 

2005). The MEC, in particular, contains a high percentage of spatially modulated neurons such 

as grid, head direction, border, aperiodic spatial and object-vector cells (parameters necessary for 

spatial navigation) (Doeller et al., 2010b; Hafting et al., 2005; Jacobs et al., 2013; Killian et al., 

2012; Miao et al., 2017; Sargolini et al., 2006; Solstad et al., 2008). Recent evidence has pointed 

to alterations in the neural coding properties in these networks in AD patients (Jun et al., 2020; 

Kunz et al., 2015). 

CHAPTER 2: Establishing convergent validity of spatial pattern separation  

Introduction  

Remembering where you saw something is important for future behavior. Previous studies have 

demonstrated that mnemonic discrimination tasks are sensitive to hippocampal pattern 

separation, including the spatial pattern separation task. Word list recall is a standard memory 

task that is widely used in the clinical setting. In the current study, our goal was to establish 

convergent validity with a standardized memory task that is often used in a clinical setting. We 

hypothesized that the spatial pattern separation performance would be associated with a 
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standardized word list recall memory task. The current investigation builds on prior work by 

further specifying the nature of the memory phenotype associated with spatial pattern separation 

(e.g., learning vs. interference vs. retention).  

Materials and Methods  

Participants 

A total sample of 84 older adults between 61 and 91 years of age (54 F, mean age = 73.3 years, 

SD = 6.10 years) were included in this study. Forty-five older adults were recruited from the 

Alzheimer’s Disease Research Center (ADRC) Longitudinal Cohort at the University of 

California, Irvine and 39 were recruited from the surrounding Orange County community as part 

of the Biomarker Exploration in Aging, Cognition, and Neurodegeneration (BEACoN) study. 

Participants gave written informed consent in accordance with the Institutional Review Board of 

the University of California, Irvine, and were compensated for their participation.  

Participants in the ADRC subsample (n = 45) were administered the Uniform Data Set (UDS-3) 

battery by a neuropsychologist in order to characterize the sample in accordance with the 

National Alzheimer’s Coordinating Center (NACC) criteria (Weintraub et al., 2018). This is a 

standardized set of neuropsychological tests used by Alzheimer's Disease Centers across the 

United States. The battery includes the Montreal Cognitive Assessment (Nasreddine et al., 2005). 

Craft Story (Craft et al., 1996), Digit Span (Weschler, 1987), Trail making Test Parts A and B 

(Reitan and Wolfson, 1985), and the Benson Complex Figure Test (Possin et al., 2011). For 

statistical comparison between groups, participants were dichotomized into cognitively normal 

(CN) or cognitively impaired (CI), which include Mild Cognitively Impaired (MCI) and 

Cognitively Impaired, Non-Demented (CIND) participants. All participants (n = 84) were 
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administered the spatial pattern separation task, Rey Auditory Verbal Learning Test (RAVLT), 

Mini-Mental State Exam (MMSE). Seven participants from the ADRC subsample were excluded 

from analysis due to confusion with the task instructions.  

Neuropsychological testing  

The spatial pattern separation task was an optimized version of a paradigm previously developed 

by our group (Reagh et al., 2014, 2016, 2018). Participants first studied the location of objects 

during an incidental encoding task with an “Indoor or Outdoor” judgement. A surprise test phase 

was subsequently conducted during which participants viewed the same images again, half of 

which were presented in the same locations (targets) and half were presented in different 

locations (lures). Participants were asked to judge “Same” to correctly identify nondisplaced 

targets or “Different” to correctly identify displaced lures. The Spatial Lure Discrimination Index 

(LDI) was calculated as the proportion of lures correctly identified as “Different” minus the 

proportion of targets incorrectly identified as “Different” to correct for response bias. The Rey 

Auditory Verbal Learning Test (RAVLT) is a standard memory test that was developed to assess 

a variety of memory processes and assesses rate of learning, retention after short- and long-delay 

intervals, and recognition memory. We chose to focus on the RAVLT Delayed Recall 

component of the test (out of 15), as this has been shown to be sensitive to cognitive decline and 

episodic memory deficits with age (Andersson et al., 2006; Vakil and Blachstein, 1997). We 

have also previously reported correlations between spatial pattern separation performance and 

RAVLT word list delayed recall in older adults (Reagh et al., 2014), further motivating our use 

of this measure here to provide convergent validity for the spatial pattern separation task. 

Results 
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Spatial pattern separation is associated with word list recall 

A schematic of the spatial pattern separation task is shown in Figure 3A, and a more detailed 

description can be found in the Methods. Briefly, participants made discrimination/recognition 

judgments on items that were displaced from their original locations during study. The Spatial 

Lure Discrimination Index (LDI) was used as a summary measure of their performance. See 

Methods for details. Demographic information about the participants is displayed in Table 1. 

Demographics 

 Full Sample 
CSF 

subsample 

Sample Size  77 (54 F) 38 (24 F) 

Age (years)  73.3 (6.10) 74.5 (6.22) 

Education (years) 16.5 (2.51) 16.2 (2.58) 

Race   

White 59 (76.6%) 34 (89.5%)  

Asian 15 (19.5%) 4 (10.5%) 

Black or African American 1 (1.3%) 0 (0%)  

More than One Race 2 (2.6%) 0 (0%) 

Ethnicity   

Hispanic 4 (5.2%) 1 (2.6%) 

Non-Hispanic 73 (94.8%) 37 (97.4%)  

Diagnosis   

Normal (n)  67 (52 F) 28 (22 F) 

Impaired (QCI, MCI) (n) 10 (2 F) 10 (2 F) 

Baseline MMSE 28.2 (1.52) 28.3 (1.50) 

RAVLT – learning slope 1.51 (0.543) 1.73 (0.616) 

RAVLT – retroactive 

interference 
0.829 (0.180) 0.798 (0.181) 
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RAVLT – percent forgetting 0.184 (0.219) 0.242 (0.257) 

RAVLT – delayed recall 10.5 (3.59) 9.66 (4.05) 

Ab42/Ab40 0.071 (0.025) 0.071 (0.205) 

t-tau (pg/mL)  405 (266)  405 (266)  

p-tau181 (pg/mL)  55.6 (46.0)  55.6 (46.0)  

 

Table 1: Demographics and neuropsychological test scores. Unless otherwise stated, variables denote 

mean (± SD). Subjects in the CSF subsample were part of the full sample.  

 

Consistent with our prior work, we observed a significant correlation between Spatial LDI and 

delayed recall performance (Pearson’s r = 0.301, p = 0.008; Figure 3B). In considering 

covariates, we observed that sex and clinical status were highly correlated in this sample 

(Pearson r = 0.423, p < 0.001), as the cognitively impaired sample was predominantly male. 

Since our past work with pattern separation tasks had not observed sex differences in 

performance, we opted to only include age and clinical status as covariates in multiple 

regression. The overall model was statistically significant (r = 0.531, F(3,73) = 9.54, p < 0.001), 

revealing a significant main effect of clinical status (B = -4.059, SE = 1.106, t = -3.671, p < 

0.001). Spatial LDI (B = 2.553, SE = 1.377, t = 1.854, p = 0.068) and age (B = -0.115, SE = 

0.060, t = -1.910, p = 0.060) were only marginally significant once clinical status was accounted 

for.  
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Figure 3. Spatial lure discrimination is associated with RAVLT delayed recall. (A) Schematic of the task. 

Participants first completed an encoding task with an incidental “Indoor or Outdoor” judgment, during 

which location objects were studied. Subsequently, a surprise test phase was conducted during which 

participants observed identical targets, and similar lure items with varying displacements. Subjects were 

asked to judge “Same or Different” with the former judgment accurately identifying targets and the latter 

accurately rejecting lures. (B) Spatial Lure Discrimination Index was related to performance on the 

RAVLT Delayed Recall (Pearson r = 0.301, p = 0.008).  

 

To determine whether Spatial LDI was more specifically associated with measures that may be 

more sensitive to robustness again interference, retention across a delay, or learning across trials, 

we further assessed the relationship between Spatial LDI and other measures of memory and 

learning performance derived from the RAVLT. We calculated indices for (1) retroactive 

interference (List A Trial 6/List A Trial 5), a measure of whether new learning is inhibiting 

recall of previously learned information (Loewenstein et al., 2004; Yeung et al., 2019), (2) 

percent forgetting ([List A Trial 5 – List A Trial 7] / [List A Trial 5]), a measure of retention 

over the delay period (Estévez-González et al., 2003; Moradi et al., 2015, 2017), and (3) learning 

slope ([List A Trial 5 – List A Trial 1] / 4), a measure of learning over multiple trials.  
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Figure 4. Spatial lure discrimination is associated with Retroactive Interference. (A-C) A higher 

Spatial LDI was related to higher Rey Auditory Verbal Learning Test (RAVLT) retroactive interference 

(Pearson r = 0.350, p = 0.002). A higher Spatial LDI was related to lower Rey Auditory Verbal Learning 

Test (RAVLT) percent forgetting (Pearson r = -0.304, p = 0.007). Spatial LDI was not associated with 

Rey Auditory Verbal Learning Test (RAVLT) learning slope (Pearson r = 0.016, p = 0.890). 

We found that Spatial LDI was positively associated with retroactive interference scores (Figure 

4A; Pearson r = 0.350, p = 0.002). We further assessed this relationship using multiple linear 

regression with age and clinical status as covariates. The overall model was statistically 

significant (r = 0.425, F(3,73) = 5.354, p = 0.002), revealing a significant main effect of Spatial 

LDI (B = 0.193, SE = 0.073, t = 2.654, p = 0.010) and clinical status (B = -0.126, SE = 0.059, t = 

-2.149, p = 0.035). Age (B = -0.001, SE = 0.003, t = -0.424, p = 0.673) was not a significant 
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predictor. These results suggest that Spatial LDI and clinical status were significantly associated 

with neuropsychological measures retroactive interference.  

We also found that higher Spatial LDI was related to lower percent forgetting (Figure 4B; 

Pearson r = -0.304, p = 0.007). We further assessed this relationship using multiple linear 

regression with age and clinical status as covariates. The overall model was statistically 

significant (r = 0.480, F(3,73) = 7.28, p < 0.001), revealing a significant main effect of clinical 

status (B = 0.206, SE = 0.069, t = 2.988, p = 0.004). Spatial LDI (B = -0.171, SE = 0.086, t = -

1.985, p = 0.051) was only a marginally significant predictor and age (B = 0.006, SE = 0.004, t = 

1.596, p = 0.115) was not a significant predictor. We found that Spatial LDI was not associated 

with learning slope (Figure 4C; Pearson r = 0.016, p = 0.890). Overall, this suggests that Spatial 

LDI is generally more associated with memory interference as opposed to learning or retention-

related deficits per se. 

Discussion  

In a sample of nondemented older adults, we found that performance on a spatial pattern 

separation task was associated with RAVLT retroactive interference in word list recall. RAVLT 

is a standard neuropsychological test of episodic memory and retroactive interference is assumed 

to rely at least partially on the integrity of the hippocampus, providing a strong case for its use in 

assessing memory function (Kuhl et al., 2010; Wagner et al., 2016). We note the RAVLT is 

widely used for cognitive assessment in pre-dementia and dementia in a clinical setting, and is 

helpful for discriminating normally aging individuals from those with mild cognitive impairment 

(MCI) and AD (Balthazar et al., 2010).  



 22 

Our previous work demonstrated that a subset of older adults who scored outside of the young 

norms on RAVLT delayed word list recall (but within age-matched norms) were significantly 

impaired on spatial pattern separation compared to older adults scoring within young adult norms 

as well as young adult groups (Reagh et al., 2014, 2016, 2018; Stark et al., 2010). This suggests 

that the task is sensitive to individual differences with aging. We note that in these studies spatial 

pattern separation performance was significantly correlated with word list recall scores in older 

adults, but not in young adults, although this could be driven by the reduced variability in recall 

scores in young adults.  

Here, we extend and build on prior work by further specifying the nature of the memory 

phenotype associated with spatial pattern separation (e.g., learning vs. interference vs. retention). 

We calculated learning slope, retroactive interference, and percent forgetting scores. We showed 

that the Spatial LDI was significantly associated with retroactive interference, but not with 

percent forgetting or learning slope suggesting that performance on the spatial pattern separation 

task is more likely driven by interference rather than learning or retention deficits. This is 

consistent with prior studies demonstrating that aMCI patients are more susceptible to retroactive 

interference effects than cognitively normal older adults with a task similar to the RAVLT 

(Crocco et al., 2014).  

Overall, our results suggest that spatial pattern separation is a sensitive marker of memory, and 

in particular, to the robustness of memory across interference. This is perhaps not surprising, 

since pattern separation is a computational mechanism that allows us to overcome interference 

from similar experiences (Yassa and Stark, 2011). 
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CHAPTER 3: Spatial pattern separation and PMAT framework 

Introduction  

Cortical pathways to the hippocampus appear to extend from two large-scale cortical systems: a 

posteromedial (PM) system that includes the parahippocampal cortex, retrosplenial cortex, and 

posterior cingulate cortex, and an anterior temporal (AT) system that includes the perirhinal 

cortex (Ritchey et al., 2015). The PMAT framework accounts for differences in the anatomical 

and functional connectivity of the medial temporal lobes. Using data-driven, graph theoretical 

analysis of resting-state functional connectivity data, networks strongly resembling PM and AT 

systems have been identified, in which connectivity was stronger within each network than 

between networks (Ritchey et al., 2014). Links between connectivity and function within the PM 

and AT networks have also been reported in task-activated fMRI studies, in which the PM 

system is associated with spatial processing and the AT system is associated with object 

processing, and temporal precision (Montchal et al., 2019; Reagh and Yassa, 2014). We 

hypothesized that PM functional connectivity would be associated with spatial pattern separation 

task performance.  

Materials and Methods  

Participants 

Forty-five older adults between 61 and 91 years of age were recruited from the Alzheimer’s 

Disease Research Center (ADRC) Longitudinal Cohort at the University of California, Irvine. 

Participants gave written informed consent in accordance with the Institutional Review Board of 

the University of California, Irvine, and were compensated for their participation.  Participants 

were administered the Uniform Data Set (UDS-3) battery by a neuropsychologist in order to 
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characterize the sample in accordance with the National Alzheimer’s Coordinating Center 

(NACC) criteria (Weintraub et al., 2018). This is a standardized set of neuropsychological tests 

used by Alzheimer's Disease Centers across the United States. The battery includes the Montreal 

Cognitive Assessment (Nasreddine et al., 2005). Craft Story (Craft et al., 1996), Digit Span 

(Weschler, 1987), Trail making Test Parts A and B (Reitan and Wolfson, 1985), and the Benson 

Complex Figure Test (Possin et al., 2011). For statistical comparison between groups, 

participants were dichotomized into cognitively normal (CN) or cognitively impaired (CI), which 

include Mild Cognitively Impaired (MCI) and Cognitively Impaired, Non-Demented (CIND) 

participants.  

All participants (n = 45) were administered the spatial pattern separation task, Rey Auditory 

Verbal Learning Test (RAVLT), Mini-Mental State Exam (MMSE). Seven participants from the 

ADRC subsample were excluded from analysis due to confusion with the task instructions. 

Participants in the ADRC subsample additionally underwent resting state fMRI imaging. Of the 

38 participants in the ADRC subsample, two participants were excluded in the imaging analyses 

due to poor signal in the medial temporal lobes.  

MRI data acquisition 

Neuroimaging data were acquired on a 3.0 Tesla Philips Achieva scanner, using a 32-channel 

sensitivity encoding (SENSE) coil at the Neuroscience Imaging Center at the University of 

California, Irvine. A high-resolution 3D magnetization-prepared rapid gradient echo (MP-

RAGE) structural scan (0.65 mm isotropic voxels) was acquired at the beginning of each session 

and used for co-registration. For each subject, resting state EPI scans consisted of a T2*-

weighted echo planar imaging (EPI) sequence using blood-oxygenation-level-dependent (BOLD) 

contrast: repetition time (TR)=3500 ms, echo time (TE)=26 ms, flip angle=70 degrees, 55 slices, 
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100 dynamics per run, 1.8 x 1.8 mm in plane resolution, 1.8 mm slice thickness with a 0.2 mm 

gap, field of view (FOV)=180x109.8x180. Slices were acquired as a partial axial volume and 

without offset or angulation. Four initial “dummy scans” were acquired to ensure T1 signal 

stabilization.  

MRI data preprocessing 

All neuroimaging data were preprocessed and analyzed using Analysis of Functional 

NeuroImages (AFNI) (Cox, 1996). on GNU/Linux and Mac OSX platforms. Analyses largely 

took place in accordance with the standardized afni_proc.py pipeline. Specifically, data were 

corrected for motion (3dvolreg) and slice timing shifts (3dTshift), masked to exclude voxels 

outside the brain (3dautomask), and were smoothed (3dmerge) to a 2.0mm using a Gaussian 

FWHM kernel. Each run was also despiked to further reduce the influence of motion on the data 

(3dDespike). Functional scans were aligned to each subject’s skull-stripped MP-RAGE (align-

epi_anat.py). We defined ROIs based on our prior work (Reagh and Yassa, 2014; Yushkevich et 

al., 2015). We used Advanced Normalization Tools (ANTS) (Avants et al., 2008) to warp each 

individual participant's MP-RAGE structural scan into our custom in-house high-resolution 

template space using nonlinear, diffeomorphic transformation. Parameters from these warps were 

used to also warp functional scans into template space for group analyses. Masks were resampled 

to match the resolution of the fMRI data (1.8x1.8.x2.0mm) and were further masked to exclude 

partially sampled voxels within and across runs (3dcalc). Once we obtained models of ongoing 

BOLD activity per subject (3dDeconvolve), we extracted the average time course across ROIs 

(3dmaskave). A Fisher's r-to-z transformation was applied to each correlation map, to obtain an 

approximately normal distribution of the functional connectivity values and accordingly apply 

parametric statistics (3dcalc). PHC, and RSC ROIs were generated from masks used previously 
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by our group (Reagh and Yassa, 2014). Other cortical ROIs were merged with our mask based 

on the Freesurfer cortical atlas (Dale et al., 1999; Fischl et al., 1999). To assess functional 

connectivity, we calculated the Pearson correlation coefficient between the mean signal intensity 

time courses of each ROI pair.  

Statistical analysis 

All statistical analyses on voxel-averaged data and data visualizations were conducted in Jamovi 

(Version 1.6.23.0), R (version 3.6.3) and GraphPad Prism (Version 8.4.3). Preprocessing and 

first-level analyses of neuroimaging data were conducted in AFNI (Version 16.0) using the 

functions described throughout the Methods section.  

Results  

Spatial pattern separation is associated with PM network functional connectivity  

A subset (n=36) of our participants underwent resting state functional MRI scans, allowing us to 

assess the relationship between spatial pattern separation and functional connectivity in the 

PMAT system. Since our hypotheses were specific to PM regions, we conducted region of 

interest (ROI) analyses in PM and AT cortex and assessed whether resting state fMRI functional 

connectivity among regions constituting these networks is associated with spatial pattern 

separation task performance. Correlation coefficients were calculated between the mean signal 

intensity time courses of each ROI pairs were calculated. ROIs are shown in Figure 5A.  

Regression coefficients were then averaged across all ROI pairs to determine the PM functional 

connectivity and AT functional connectivity. See Methods for details on how fMRI data were 

processed and analyzed. 
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Figure 5. Functional connectivity of the posteromedial system associated with Spatial Lure 

Discrimination Index (A) Anatomical regions of interest (ROIs) used to mask functional data. ROIs 

were generated from masks used previously by our group (PCC = posterior cingulate cortex, RSC = 

retrosplenial cortex,  PHC = parahippocampal cortex, EC = entorhinal cortex, PRC = perirhinal cortex, 

mPFC = medial prefrontal cortex, ACC = anterior cingulate cortex). (B) Higher Spatial LDI was related 

to higher functional connectivity across posteromedial (PM) regions (r = 0.550, p = 0.008). (D) 

Functional connectivity of each pairwise correlation, with PM connectivity shown in the blue square and 

AT connectivity shown in the red square. Asterisks indicate that the correlation is significant (p < 0.05).   

We conducted two multiple regressions. First, we assessed the relationship between PM 

functional connectivity and Spatial LDI, with age and clinical status as covariates. The overall 
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model was statistically significant (r = 0.550, F(3,32) = 4.62, p = 0.009; Figure 5B), revealing PM 

functional connectivity (B = 2.601, SE = 1.083, t = 2.40, p = 0.022), and age (B = -0.008, SE = 

0.004, t = -2.15, p = 0.039) were significant predictors of Spatial LDI. Clinical status was only a 

marginal predictor of Spatial LDI (B = -0.110, SE = 0.054, t = -2.03, p = 0.051). Second, we 

assessed the specificity of this relationship by conducting a multiple regression to test whether 

AT functional connectivity predicted Spatial LDI, covarying for age and clinical status. The 

overall model was statistically significant (r = 0.487, F(3,32) = 3.31, p = 0.032). However, neither 

AT functional connectivity (B = 2.982, SE = 1.878, t = 1.59, p = 0.122), nor age (B = -0.008, SE 

= 0.004, t = -1.92, p = 0.063) or clinical status (B = -0.114, SE = 0.058, t = -1.99, p = 0.056) 

were significant predictors of Spatial LDI. Overall, this suggests that spatial pattern separation is 

associated with PM, but not AT functional connectivity. Figure 5C shows the matrix of 

individual ROI-pair correlations. PM connectivity is shown in the blue square and AT 

connectivity is shown in the red square. 

Discussion   

We have previously shown that object and spatial pattern separation engage parallel networks in 

the rhinal cortex, which are extensions of the PM and AT networks. Specifically, object pattern 

separation engaged the perirhinal and lateral entorhinal cortices (components of the AT 

network), while spatial pattern separation engaged the parahippocampal and medial entorhinal 

cortices (components of the PM network) (Reagh and Yassa, 2014). Recent fMRI studies have 

also demonstrated age-related deficits in object-related processing related to lateral entorhinal 

cortex hypoactivity (Berron et al., 2018; Reagh et al., 2018) and to dysfunction of the AT system 

(Maass et al., 2018). However, an important and open question is to understand how dysfunction 

of the PM network is linked to spatial pattern separation. Our results here address this question 
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by showing that spatial pattern separation is associated with functional connectivity of the larger 

PM network. Interestingly, we do not observe the same associations with AT network 

connectivity.  Overall, these results suggest that spatial pattern separation is a sensitive measure 

of cognitive change in older adults that have higher levels of pathological aggregates (Ab and t-

tau) and is associated with functional connectivity in the PM network, which is implicated in 

spatial memory processing.  

Recent evidence has suggested that AD pathologies differentially target these networks, with Ab 

preferentially targeting the PM network and tau preferentially targeting the AT network (Maass 

et al., 2019). Several studies have also suggested that in the presence of neocortical Ab plaques, 

tau pathology in the temporal lobe further increases but also ‘spreads’ to posteromedial regions 

(Leal et al., 2018; Lockhart et al., 2017; Vemuri et al., 2017) where pathologies converge. Thus, 

an emerging view from recent studies suggest that amyloid potentiates the spread of tau into 

neocortical regions (Schwarz et al., 2016). These regional relationships could not be assessed 

directly here, since CSF measures do not offer insights into network-specific distributions of 

pathology, however, future work with longitudinal PET imaging can be used to further shed light 

on these relationships.  

CHAPTER 4: Spatial pattern separation and Alzheimer’s disease pathology 

Introduction  

While previous studies have reported spatial pattern separation deficits in older adults, these 

studies have been limited in examining the relationship between spatial pattern separation and 

Alzheimer’s disease-related pathology. Previous studies have shown that regions involved in 
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spatial memory are early sites of Ab pathology and that Ab deposition is higher in PM regions 

than in AT regions (Koychev et al., 2020; Maass et al., 2019; Palmqvist et al., 2017). We 

hypothesized that amyloid pathology underlies spatial pattern separation performance deficits 

and alters in the functional connectivity of the PM network.  

Materials and Methods  

Participants 

A total of 45 older adults between 61 and 91 years of age were included in this study. Forty-five 

older adults were recruited from the Alzheimer’s Disease Research Center (ADRC) Longitudinal 

Cohort at the University of California, Irvine. Participants gave written informed consent in 

accordance with the Institutional Review Board of the University of California, Irvine, and were 

compensated for their participation.  Demographic information about the participants is 

displayed in Table 1. 

Participants were administered the Uniform Data Set (UDS-3) battery by a neuropsychologist in 

order to characterize the sample in accordance with the National Alzheimer’s Coordinating 

Center (NACC) criteria (Weintraub et al., 2018). This is a standardized set of neuropsychological 

tests used by Alzheimer's Disease Centers across the United States. The battery includes the 

Montreal Cognitive Assessment (Nasreddine et al., 2005). Craft Story (Craft et al., 1996), Digit 

Span (Weschler, 1987), Trail making Test Parts A and B (Reitan and Wolfson, 1985), and the 

Benson Complex Figure Test (Possin et al., 2011). For statistical comparison between groups, 

participants were dichotomized into cognitively normal (CN) or cognitively impaired (CI), which 

include Mild Cognitively Impaired (MCI) and Cognitively Impaired, Non-Demented (CIND) 

participants.  
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All participants were administered the spatial pattern separation task, Rey Auditory Verbal 

Learning Test (RAVLT), Mini-Mental State Exam (MMSE). Seven participants from the ADRC 

subsample were excluded from analysis due to confusion with the task instructions. 

Cerebrospinal fluid (CSF) was obtained via lumbar puncture (n = 38). 

Results  

Spatial pattern separation is associated with CSF pathology  

A subset (n=38) of our participants underwent CSF lumbar punctures, allowing us to assess the 

relationship between spatial pattern separation and AD pathological features. First, we confirmed 

that the previously identified behavioral relationship between task performance and RAVLT 

delayed recall was present in this subsample (Pearson r = 0.509, p = 0.001; Figure 6A). We 

considered three key CSF pathology measures, Ab42/40 ratio, total tau (t-tau), and phospho-tau-

181 (p-tau). Within our sample, Ab42/40 ratio was correlated with t-tau (Pearson r = -0.475, p = 

0.003), and p-tau (Pearson r = -0.560, p < 0.001). T-tau was also highly correlated with p-tau 

(Pearson r = 0.961, p < 0.001).  

Adjusting for age, and clinical status, Ab42/40 ratio was not directly correlated with Spatial LDI 

(partial r = 0.108, p = 0.531), but we observed a significant correlation between Ab42/40 ratio 

and delayed recall scores (partial r = 0.405, p = 0.014; Figure 6B). We then examined the effect 

of Ab42/40 as a potential moderator of the relationship between Spatial LDI and delayed recall 

using multiple linear regression with age and clinical status as covariates. The overall regression 

was statistically significant (r = 0.769, F(5,32) = 9.280, p < 0.001). This model revealed significant 

main effects of Spatial LDI (B = 28.715, SE = 9.251, t = 3.104, p = 0.004), Ab42/40 (B = 12.082, 
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SE = 3.547, t= 4.407, p = 0.002), and age (B = -0.225, SE = 0.084, t = -2.684, p = 0.011). The 

interaction between Spatial LDI and Ab42/40 ratio was also significant (B = -27.842, SE = 

11.803, t= -2.359, p = 0.025). Clinical status was not a significant predictor of delayed recall (B 

= -2.023, SE = 1.199, t= -1.687, p = 0.101). A simple slopes analysis for the relationship between 

Spatial LDI and delayed recall at upper, middle, and lower tertiles of Ab42/40 shows the 

conditional effect by which Ab42/40 moderates the relationship between Spatial LDI and 

RAVLT delayed recall (Figure 6C). Slopes and 95% confidence intervals for the relationship 

between Spatial LDI and delayed recall at upper, middle, and lower tertile of Ab42/40 ratio 

levels show that the slope of Spatial LDI is significant only in the lower tertile (B = 25.60, SE = 

5.85, t = 4.38, p < 0.001), but not the upper (B = 5.36, SE = 4.76, t = 1.13, p = 0.27), or middle 

tertiles (B = 3.99, SE = 5.20, t = 0.77, p = 0.45; Figure 6D). 
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Figure 6. Relationship between CSF biomarkers, spatial lure discrimination index (LDI), and 

RAVLT delayed recall. (A) Higher Spatial Lure Discrimination Index (LDI) performance was related to 

better performance on the Rey Auditory Verbal Learning Test (RAVLT) delayed recall in the CSF 

subsample (Pearson r = 0.509, p = 0.001). (B) Lower Ab42/40 is associated with worse performance on 

RAVLT Delayed Recall (partial r = 0.405, p = 0.014). (C, D) Slopes and 95% confidence intervals for 

relationship between Spatial LDI and RAVLT delayed recall at upper, middle, and lower tertiles of 

Ab42/40 ratio levels. (E, F) Higher log-transformed levels of total tau (log-tau) were significantly related 

to worse performance on the Spatial LDI (r = -0.466, p = 0.037), and worse performance on the RAVLT 

Delayed Recall (r = -0.628, p < 0.001).  



 34 

Next, we turned our attention to tau pathology measures. Since t-tau and p-tau levels were not 

normally distributed, we log-transformed them. First, we examined the relationship between log 

t-tau and Spatial LDI using multiple linear regression with age and clinical status as covariates. 

The overall model was significant (Figure 6E; r = 0.466, F(3,34) = 3.15, p = 0.037), revealing a 

significant main effect of log t-tau (B = -0.108, SE = 0.053, t = -2.045, p = 0.049). Age (B = -

0.007, SE = 0.004, t = -1.619, p = 0.115) and clinical status (B = -0.037, SE = 0.062, t = -0.596, p 

= 0.555) were not significant predictors. Then, we examined the relationship between log t-tau 

and RAVLT delayed recall using multiple linear regression with age and clinical status as 

covariates. The overall model was significant (Figure 6F; r = 0.628, F(3,34) = 7.38, p < 0.001), 

revealing a significant main effect of log t-tau (B = -0.005, SE = 0.002, t = -2.11, p = 0.042), age 

(B = -0.200, SE = 0.089, t = -2.24, p = 0.032), and clinical status (B = -2.933, SE = 1.373, t = -

2.14, p = 0.040).  

We then repeated the same analyses for p-tau. We first examined the relationship between log p-

tau and Spatial LDI using multiple linear regression with age and clinical status as covariates. 

The overall regression showed that log p-tau was associated with Spatial LDI (r = 0.386, F(3,34) = 

1.98, p = 0.135). Log p-tau (B = -0.053, SE = 0.051, t = -1.045, p = 0.304), age (B = -0.006, SE = 

0.004, t = -1.475, p = 0.150), and clinical status (B = -0.056, SE = 0.067, t = -0.842, p = 0.406) 

were not significant predictors. Then, we examined the relationship between log p-tau and 

RAVLT delayed recall using multiple linear regression with age and clinical status as covariates. 

The overall regression showed that log p-tau was associated with delayed recall (r = 0.628, F(3,34) 

= 7.83, p < 0.001), revealing a significant main effect of log p-tau (B = -0.005, SE = 0.002, t = -

2.11, p = 0.042), age (B = -0.200, SE = 0.089, t = -2.24, p = 0.032), and clinical status (B = -

2.933, SE = 1.373, t = -2.14, p = 0.040). 
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Figure 7. CSF biomarker group differences in functional connectivity. (A,D) A two-tailed two 

sample t-test showed that the Ab positive group had lower PM functional connectivity that the Ab 

negative group (t(34) = 3.014, p = 0.005) and the Ab positive group had lower AT functional connectivity 

than the Ab negative group (t(34) = 3.418, p = 0.002). (B, C, E, F) No differences in PM or AT functional 

connectivity between positive and negative groups of groups of t-tau or p-tau. 

 

We then examined the relationship between CSF pathology markers and PMAT functional 

connectivity. We dichotomized the sample based on published cutoffs for Ab42/40, t-tau and p-

tau and ran two-tailed two-sample t-tests to determine whether there are group differences in 

PMAT functional connectivity. We found that the Ab positive group had lower PM functional 

connectivity (t(34) = 3.014, p = 0.005; Figure 7A) and lower AT functional connectivity (t(34) = 

3.418, p = 0.002; Figure 6D) than the Ab negative group. No significant t-tau or p-tau group 

differences in PM or AT functional connectivity were noted (Figure 7B, C, E, F).  
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Discussion  

Neuropathologically, the presence of protein aggregates comprising of beta amyloid (i.e. neuritic 

plaques) and hyperphosphorylated tau (i.e. neurofibrillary tangles) are hallmark features of AD 

(Jack et al., 2018; McKhann et al., 2011). In AD, abnormal accumulation of amyloid and tau 

proteins in the brain is thought to begin 10–20 years before clinical symptom onset (Bateman et 

al., 2012; Hof et al., 1996; Perl, 2010). Currently, the predominant modalities for assessments of 

these pathologies are cerebrospinal fluid (CSF) and positron emission tomography (PET). CSF 

Aβ42 becomes abnormal in the earliest stages of AD before amyloid PET detection and before 

neurodegeneration starts (Palmqvist et al., 2016). Additionally, the concordance between CSF 

Ab42 and amyloid PET imaging is high, but not perfect (Hansson et al., 2018; Schindler et al., 

2018; Toledo et al., 2015). The ratio of Ab42/40 has been shown to have better agreement with 

amyloid PET imaging compared to levels of Ab42 alone (Alcolea et al., 2019; Janelidze et al., 

2016, 2017; Lewczuk et al., 2017; Schindler et al., 2018). Previous studies have shown that CSF 

Ab42/40 is a sensitive measure of Ab plaques, CSF t-tau is a sensitive measure of 

neurodegeneration, and CSF p-tau is a biomarker associated with both the phosphorylation state 

of tau and neurofibrillary tangle formation (Blennow et al., 2010; Jack et al., 2018; Strozyk et al., 

2003). It is important to also note that while t-tau and p-tau levels in CSF are thought to vary 

proportionately with brain pathology levels, Ab measures in CSF are thought to vary inversely 

with brain pathology (i.e., the higher the CSF Ab, the lower the brain Ab; (Tapiola et al., 2009). 

Our findings support the notion that while CSF measures have often been dichotomized into 

“positive” and “negative” based on reliable cutoffs (Jack et al., 2018), pathological burden can 

be conceptualized on a continuum with a progressively increasing risk of cognitive decline. Here 
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we show that RAVLT delayed recall is associated with Ab42/40, t-tau, and p-tau. However, 

Spatial LDI is only directly associated with t-tau, but not Ab42/40 or p-tau. Importantly, we 

showed that the relationship between Spatial LDI and RAVLT delayed recall is conditional upon 

the level of b-amyloid burden. This suggests Spatial LDI may be a more specific marker to the 

concurrent pathologies of AD, as its sensitivity to tau pathology is increased in the presence of 

lower levels of CSF Ab (i.e. higher levels of brain Ab).  

The relationships among CSF pathology, functional connectivity in specific neural systems, and 

cognition may hold the key to better understanding of how early AD evolves in the aging brain.  

Considerable evidence suggests that pathological processes involving amyloid and tau affect 

brain network function, which in turn may affect cognitive performance (Huijbers et al., 2019; 

Marks et al., 2017; Mormino et al., 2012; Sperling et al., 2009). Converging evidence has 

demonstrated that two distinct cortical pathways converge in the hippocampus: the anterior-

temporal (AT) network and the posteromedial (PM) network (Ranganath and Ritchey, 2012). 

While the AT network has been associated with object memory, the PM network has been 

associated with spatial and contextual memory (Ritchey et al., 2015). The involvement of the PM 

system in spatial processing and spatial memory has been reliably shown in past studies. For 

example, the PM network’s retrosplenial cortex has been associated with spatial updating and 

orienting (Burles et al., 2017), as well as spatial navigation and path integration (Sherrill et al., 

2013).   

This study has a few limitations to consider. We cannot exclude the possibility that our results 

reflect sources of amyloid or tau hypothesized to be non-AD related, such as primary age-related 

tauopathy (Crary et al., 2014; Duyckaerts et al., 2015). As CSF measures of AD pathology are 
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not regionally specific, we cannot determine with certainty whether our findings are the result of 

local or regional effects of AD pathology. 

CHAPTER 5: Spatial pattern separation and cognitive decline    

Introduction  

Given the clinical relevance of spatial memory deficits in early AD as well as the vulnerability of 

the PM network to amyloid pathology, we asked the question: Could a mechanistically validated 

spatial memory task be used as an early diagnostic or predictor of cognitive decline?  To address 

this question, we tested a sample of nondemented older adults that includes cognitively normal 

and cognitively impaired individuals.  We used a memory task tailored to probe spatial pattern 

separation, a high-precision form of object-location association and hypothesized that 

performance on the task would predict longitudinal cognitive decline.  

Materials and Methods  

Participants 

A total sample of 45 older adults between 61 and 91 years of age were included in this study. 

Forty-five older adults were recruited from the Alzheimer’s Disease Research Center (ADRC) 

Longitudinal Cohort at the University of California, Irvine. Participants gave written informed 

consent in accordance with the Institutional Review Board of the University of California, Irvine, 

and were compensated for their participation.   

Participants were administered the Uniform Data Set (UDS-3) battery by a neuropsychologist in 

order to characterize the sample in accordance with the National Alzheimer’s Coordinating 

Center (NACC) criteria (Weintraub et al., 2018). This is a standardized set of neuropsychological 
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tests used by Alzheimer's Disease Centers across the United States. The battery includes the 

Montreal Cognitive Assessment (Nasreddine et al., 2005). Craft Story (Craft et al., 1996), Digit 

Span (Weschler, 1987), Trail making Test Parts A and B (Reitan and Wolfson, 1985), and the 

Benson Complex Figure Test (Possin et al., 2011). For statistical comparison between groups, 

participants were dichotomized into cognitively normal (CN) or cognitively impaired (CI), which 

include Mild Cognitively Impaired (MCI) and Cognitively Impaired, Non-Demented (CIND) 

participants.  

All participants were administered the spatial pattern separation task, Rey Auditory Verbal 

Learning Test (RAVLT), Mini-Mental State Exam (MMSE). Seven participants from the ADRC 

subsample were excluded from analysis due to confusion with the task instructions. Longitudinal 

MMSE scores were obtained as part of a larger battery of tests used at an annual evaluation 

(n=37).  

Results  

Spatial pattern separation predicts annualized decline in MMSE scores  

We assessed the predictive validity of spatial pattern separation by testing whether task 

performance predicted longitudinal cognitive decline. Demographic information about the 

participants is displayed in Table 1. Using the Mini-Mental State Exam (MMSE) as the key 

cognitive outcome of interest, we plotted the trend in individual subject scores over time relative 

to baseline MMSE score (Figure 8A). We calculated MMSE annualized percent change (MMSE 

APC) as the difference between the last MMSE score and the baseline MMSE score divided by 

time in between (in years). We found that baseline Spatial LDI was correlated with MMSE APC 

(Pearson r = 0.545, p = 0.0005; Figure 8B), but baseline RAVLT delayed recall scores (Pearson 

r = 0.240, p = 0.152; Figure 8C), and baseline MMSE scores (Pearson r = -0.189, p = 0.262; 
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Figure 7D) were not correlated with MMSE APC. We then assessed the relationship between 

Spatial LDI and MMSE APC using multiple regression with age, and clinical status as 

covariates. The overall model was significant (r = 0.580; F(3,33) = 5.48, p = 0.003), demonstrating 

that baseline Spatial LDI remained significantly associated with MMSE APC (B = 5.594, SE = 

1.595, t = 3.508, p = 0.001). Age (B = 0.024, SE = 0.041, t = 0.583, p = 0.564), and clinical status 

(B = 0.752, SE = 0.588, t = -1.279, p = 0.210) were not significant predictors.  

 

Figure 8. Spatial discrimination predicts annualized percent change of MMSE scores (MMSE APC). 

(A) MMSE distribution for each participant over time, relative to baseline MMSE score, where blue 

indicates positive changes, green indicates no change, and red represents negative changes. (B) Baseline 

Spatial LDI was significantly associated with MMSE APC (Pearson r = 0.545; p = 0.0005). (C) Baseline 

RAVLT Delayed Recall scores were not associated with MMSE APC (Pearson r = 0.240, p = 0.152). (D) 

Baseline MMSE scores were not associated with MMSE APC (Pearson r = -0.189, p = 0.262).  
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Discussion  

Our results indicate that spatial pattern separation performance may be an informative measure 

with respect to the trajectory of cognitive decline. Here we demonstrate a relationship between 

spatial pattern separation performance at baseline and cognitive decline as assessed by decreases 

in MMSE scores over a 1–2-year period. These relationships were not present with baseline 

RAVLT delayed recall scores, which is a standard neuropsychological tool for evaluating 

memory function and decline. This speaks to the predictive validity of the task and the promise it 

holds for potential use in clinical trials. Furthermore, our participant sample consisted of mostly 

white, highly educated individuals, thus limiting the generalizability of results. Future work 

should attempt to reproduce these findings in community-based samples drawn from ethnically 

diverse populations. 

CHAPTER 6: Synthesis and Future Directions  

General Summary  

The goal of this dissertation was to investigate spatial memory networks in aging and 

Alzheimer’s disease. To investigate the neurobiological mechanisms involved, a series of 

experiments establish relationships between spatial pattern separation and the functional 

connectivity of spatial memory networks, AD pathology, and clinical measures of cognitive 

impairment and decline. Overall, we find that applying a pattern separation framework to the 

changes involved in spatial memory offers a potential mechanistic account for how spatial 

memory is affected in the context of Alzheimer’s disease. For the next sections, I will summarize 

the results from the experiments presented and discuss their impact and relevance more broadly.   
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Vulnerability of the PM network  

These findings suggest that older adults may have distinct changes occurring in the PMAT 

networks that are dependent on the content of the memory being recalled. Previous work reports 

that the spatial pattern separation task to probe spatial memory with a high level of fidelity in 

older adults (Reagh and Yassa, 2014; Reagh et al., 2016, 2018). The task, which is modeled after 

work in rodents, utilizes simple metric displacement to evaluate whether individuals can 

discriminate, across a delay, whether objects moved from their original locations. In this way, it 

is analogous to an object-location memory task but with distance varied being an operational 

metric to specifically test for spatial pattern separation deficits. Previous studies demonstrated 

that spatial pattern separation task performance in healthy older adults was not statistically 

different than that of young adults, despite deficits in the object domain (Reagh et al., 2018).  

In this study of older adults with a range of cognitive performance (nondemented, but clinically 

impaired and unimpaired), we look beyond the hippocampus to formulate a mechanistic account 

for spatial pattern separation performance and use this to understand spatial memory deficits and 

their relationship to Alzheimer’s pathology. These findings suggest that spatial memory deficits 

may arise due to changes in the functional connectivity of the PM network. While pattern 

separation is a computational process that is hypothesized to be supported by the hippocampus, 

specifically the DG, some studies have implicated regions beyond the hippocampus that are 

related to behavioral deficits in aging (Berron et al., 2018; Reagh et al., 2018). These results 

extend on this idea by demonstrating that the PM network, a network that is involved in 

processing of spatial information, helps support pattern separation. Here, we highlight that 

functional connectivity across regions in the PM network is strongly associated with out-of-

scanner performance on the task, consistent with our hypothesis.  
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Here we find that the relationship between spatial pattern separation performance and verbal list 

recall (a standard test of hippocampal integrity) is contingent upon CSF levels of Ab42/40, a 

hallmark pathology of Alzheimer’s disease. Spatial pattern separation performance was also 

inversely correlated with CSF tau levels, consistent with AD-related impairment. These findings 

would suggest that spatial memory is affected by Alzheimer’s disease pathology. However, it is 

unclear whether tau and Ab deposition are driven by an upstream regulator.  

Spatial memory dysfunction and cognitive decline  

Determining how PMAT networks are altered in aging alone versus Alzheimer’s disease may 

help in developing therapeutic targets to alleviate symptoms and potentially shift the PM 

network back to a normal state. In a recent randomized clinical trial with antiseizure drug 

levetiracetam (LEV), the study shows improved performance on spatial memory and executive 

function tasks in patients with Alzheimer’s disease with subclinical epileptiform activity, which 

account for an estimated 60 percent of cases (Vossel et al., 2021). The study concludes that 

additional neuropsychological measures of network hyperexcitability are needed to determine the 

effects of antiseizure drugs on network dysfunction in patients with AD.  

Our results show that performance on the spatial pattern separation task was predictive of 

longitudinal cognitive decline over a 1-2 year period (measured via the Mini-Mental State 

Exam). This would suggest that the spatial pattern separation task is a computerized assessment 

that can potentially serve as a “digital biomarker” by probing subtle features of cognitive decline 

during the earliest stages of the disease. While the task is a highly controlled version of what one 

would experience, and it is not a naturalistic environment, we would encounter similar 

experiences in our everyday lives. For example, older adults may have a difficult time 
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remembering where they parked their car or where they put their keys. These experiences would 

have overlapping representations since they contain information that is highly similar. 

Overall, our results strongly suggest that spatial pattern separation may be a novel candidate for a 

digital biomarker that is mechanistically validated and predictive of cognitive decline. 

Future Directions  

Retroactive interference  

While previous studies have reported relationships between pattern separation tasks and word list 

delayed recall (Reagh et al., 2014; Roberts et al., 2014), our studies show that retroactive 

interference is potentially driving this relationship. Future studies should examine retroactive 

interference as an early indicator of memory dysfunction.   

Vascular and immune contributions 

Our results show that dysfunction of the PM network and Alzheimer’s disease pathology might 

underlie deficits in spatial pattern separation. However, it is unclear how network dysfunction 

and pathological changes are related. Novel candidates for elucidating whether upstream 

regulators are mediating or moderating this effect include inflammatory and neurovascular 

biomarkers. Future work should examine how inflammatory, and vascular indicators interact 

with established indicators such as amyloid and tau.  

Regionally specific effects of AD pathology  

One of the limitations in these experiments is that CSF biomarkers does not allow us to examine 

network specific burden. In vivo detection of amyloid pathology is possible with PET utilizing 
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amyloid-specific radiotracers. These tracers are Food and Drug Administration (FDA) approved 

and routinely being used to detect amyloid in the brains of patients with mild cognitive 

impairment (MCI) and AD. Numerous small-molecule PET tracers suitable for measuring Aβ in 

the living human brain have been developed over the past decade. Three of those tracers have 

been approved to interrogate brain Aβ plaque burden in suspected AD patients. One of those 

tracers is [18F]AV-45 Florbetapir to screen for amyloid positivity. 

PET tracers designed to interrogate NFT burden are under development as a complement to PET 

assessment of Aβ-burden at a pre-symptomatic stage of disease. In addition, a quantifiable 

biomarker of in vivo NFT pathology burden is of great interest as a tool to interrogate disease status 

with direct relevance to target pathology and clinical outcomes to support clinical evaluation of 

novel therapies for AD or other tauopathies. One of the limitations in the development of NFT 

PET tracers preventing the smooth translation of these tracers into clinical imaging studies is that 

NFT pathology and pattern of spread found in AD brain cannot be replicated in an animal model 

of disease. This inability to image pathological NFT burden using PET in animal models removes 

a valuable screening tool for tracer development and hampers the ability to translate imaging 

techniques directly from preclinical to clinical evaluation. Consequently, in vivo preclinical 

imaging signals are not possible and human studies are required to validate the utility of tau tracers. 

Several putative NFT imaging agents have been undergoing testing including [18F]T-807 

(Avid/Lilly), GTP-1 (Genentech), and several compounds developed by Tohoku university, such 

as [18F]THK-5117 or [18F]THK-5351 (GE Healthcare). Of these, [18F]T-807 is the most 

extensively characterized having been studied in several hundred subjects. These PET tracers have 

all been generally well tolerated in early clinical studies (Villemagne et al., 2015; Xia et al., 2013).  

These ligands show increased tracer uptake and retention in brain regions generally consistent with 
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known distribution of NFT pathology in AD brains (i.e. the MTL). Furthermore, [18F]T-807 PET 

imaging has also demonstrated increased uptake and signal retention in patients with prodromal 

AD (i.e., mild cognitive impairment) (Villemagne et al., 2015). It has also demonstrated its 

capacity to detect Braak-stage specific tau binding (Schöll et al., 2015), as well as specificity of 

regional retention in the MTL to memory and hippocampal/entorhinal volume and cortical 

thickness.  

The new [18F]MK-6240 tracer (Merck) showed impressive results in early testing (Hostetler et al., 

2016). Its binding pattern in vitro was consistent with the distribution of phosphorylated tau in 

human AD brain slices. It bound with high affinity to AD brain homogenates rich in NFTs but 

bound poorly to amyloid-plaque rich, NFT-poor AD brain homogenates. PET studies in monkeys 

showed rapid and homogeneous distribution, indicating favorable tracer kinetics. Importantly, 

MK-6240 does not appear to suffer from the off-target binding issues (Hostetler et al., 2016). 

Community-based samples of ethnically diverse populations  

Currently in the United States, Latinos or Hispanics are the second largest racial or ethnic group 

accounting for 18.5% of the population, and Black or African Americans are the third largest 

racial or ethnic group accounting for 13.4% of the population (US Census Bureau, 2020). 

Latinos or Hispanics and Black or African Americans are also disproportionately affected by 

Alzheimer’s disease-related dementia (ADRD; Matthews et al., 2019; Mayeda et al., 2016; Tang 

et al., 2001). However, they are both underrepresented in observational and clinical studies, 

which limits the generalizability of many findings (McGarry and McColley, 2016). 

Latinos or Hispanics, the largest and fastest growing minority in the United States, are an 

admixed group that includes White, Native American, and African ancestry (Hanis et al., 1991). 
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By 2060, the number of Latinos age 65 and older is expected to nearly quadruple, and Latinos 

are projected to have the largest increase in ADRD cases of any racial/ethnic group in the United 

States (Matthews et al., 2019). In the United States, the Food and Drug Administration (FDA) 

recently approved Aduhelm (aducanumab) for the treatment of Alzheimer’s disease. Two 

double-blind, randomized, placebo-controlled dose-ranging studies were conducted: EMERGE 

and ENGAGE. However, in the EMERGE drug trial, out of 1638 participants, 4.1% were Latino 

or Hispanic, 0.7% were Black or African American, and 0.1% were American Indian or Alaskan 

Native (Biogen, 2021a). In the ENGAGE drug trial, out of 1647 participants, 2.2% were Latino 

or Hispanic, and 0.5% were Black or African American (Biogen, 2021b). Furthermore, the most 

common adverse events of the Aduhelm studies were due to cerebrovascular complications such 

as microhemorrhages and Amyloid-Related Imaging Abnormalities – Edema (ARIA-E). This 

may be of concern for Latinos since Latinos also face a high prevalence of cerebrovascular 

disease and higher prevalence of mixed pathologies (Filshtein et al., 2019). Risk factors that may 

contribute to the higher incidence of cerebrovascular disease include a higher prevalence of 

diabetes, cardiovascular disease, high blood pressure, obesity, and sleep apnea (Redline et al., 

2014).  

In California, Latinos or Hispanics are the largest racial or ethnic group accounting for 39.4% of 

the population, and in Orange County they are the largest minority accounting for 34.1% of the 

population (US Census Bureau, 2020). One of the limitations in our study is that the lack of 

racial and ethnic diversity in our sample, consisting of predominantly white individuals, thus 

limiting the generalizability of results. Future work should attempt to reproduce these findings in 

community-based samples drawn from ethnically diverse populations. One advantage with the 

spatial pattern separation task is that whereas auditory verbal learning tasks are dependent on 
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language, the spatial pattern separation task is not, potentially allowing for it to be easily 

adaptable.  
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APPENDIX A 

CSF biomarkers of Alzheimer’s pathology are highly concordant with amyloid-PET in 

cognitively normal older adults 

Introduction 

The presence of protein aggregates comprising of amyloid-β (Aβ; i.e. amyloid plaques) and 

hyperphosphorylated tau (i.e. neurofibrillary tangles) are hallmark features of Alzheimer’s 

disease (AD) (Blennow et al., 2010; Jack et al., 2018; McKhann et al., 2011; Strozyk et al., 

2003). Abnormal accumulation of Aβ and tau proteins in the brain begins 10–20 years before 

clinical symptom onset (Jack Jr et al., 2010), making biomarkers of these proteins key 

components of research criteria for preclinical AD and critical for inclusion criteria and outcome 

measures of clinical trials (Bateman et al., 2012; Dubois et al., 2014; Hof et al., 1996; Perl, 

2010). 

Currently, the predominant and best-established modalities for assessing Aβ and tau 

pathologies in vivo are measuring concentrations within cerebrospinal fluid (CSF) and 

visualizing deposition with positron emission tomography (PET). While PET has the advantage 

of providing information about not only the quantity but the spatial distribution of these proteins, 

CSF can be more easily acquired and therefore may have more utility for early detection of 

pathology. However, validating CSF measures against gold-standard PET is critical to fully 

understanding their utility due to variations in collection and processing methods across studies.  

Recent advances in automated assays to quantify AD biomarkers within CSF overcome 

this variation due to a consistent analytical process. Recent studies comparing the automated 
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Fujirebio Lumipulse assay with the more widely used INNOTEST ELISAs have shown good 

concordance between the two platforms, with the Lumipulse demonstrating reduced intra- and 

inter-assay variability (Bayart et al., 2019). While few studies have assessed the agreement of 

amyloid-PET and CSF biomarkers on the Lumipulse assay, they have consistently shown that 

both ratios of Aβ pathology (i.e. Aβ42/40) and overall Alzheimer’s pathology (i.e. ptau/Aβ42) 

have high agreement with amyloid-PET in classifying amyloid-positivity (Alcolea et al., 2019; 

Campbell et al., 2021; Willemse et al., 2021). However, participants in these studies have mostly 

been clinical or mixed memory cohorts, with a limited number of cognitively normal 

participants, which makes the utility of the Lumipulse assay and its published thresholds for 

amyloid-positivity in preclinical samples undetermined, although critical for research on the 

development of AD. 

In the current study, we validate CSF AD biomarkers derived from the Lumipulse assay 

against amyloid-PET in an entirely cognitively normal sample. We examined the CSF 

biomarkers of Aβ1-40, Aβ1-42, phospho-tau (p-tau181), total tau (t-tau), as well as the Aβ42/40 and 

p-tau/Aβ42 ratios, to test a range of pathological markers against the widely used 18F-Florbetapir 

PET. In this cognitively normal sample, our aims were to (1) determine the strength of 

continuous associations between CSF biomarkers and levels of amyloid-PET, (2) test the 

concordance of previously published thresholds for “positive” CSF biomarkers (i.e. Aβ42/40 and 

ptau/Aβ42) derived from a predominantly clinical sample (Alcolea et al. 2019) with Aβ -PET 

positivity; and (3) determine which CSF biomarkers are most predictive of Aβ-PET 

classification.  

 



 77 

Participants 

Thirty-two (N = 32) cognitively normal (Clinical Dementia Rating [CDR] = 0) older 

adults between 64 and 86 years of age (24 F, mean = 73.5 years, SD = 4.72 years) were recruited 

from the Alzheimer’s Disease Research Center (ADRC) Longitudinal Cohort at the University of 

California, Irvine. Demographic information about the participants is displayed in Table A1. 

Participants gave written informed consent in accordance with the Institutional Review Board of 

the University of California, Irvine, and were compensated for their participation.   

Demographics 

Sample Size 32 

Age (years) 73.5 (4.72) 

Sex 24F (75%) 

Education (years) 16.4 (2.42) 

MMSE (points) 28.2 (1.59) 

APOE Status  

  e4 + 12 (38.7%) 

  e4 -  19 (61.3%) 

  Missing 1 

Ab42 (pg/mL) 616 (298) 

t-tau (pg/mL) 307 (128.00) 

p-tau (pg/mL) 42.4 (20.10) 

Ab42/40  0.069 (0.23) 

p-tau/Ab42 0.098 (0.11) 

FBP Mean SUVR 1.14 (0.18) 

Time between CSF-PET 

(years) 
0.92 (0.82) 
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Table A1. Demographics and summary measures of the cognitively normal older adult cohort. Data 

represents mean (standard deviation) or N (%). MMSE, Mini Mental State Exam; APOE, Apolipoprotein 

E; t-tau, total tau; p-tau, phosphorylated tau181; FBP, 18F-Florbetapir PET; SUVR, standardized uptake 

value ratio. 

 

CSF Acquisition and Processing 

Cerebrospinal fluid (CSF) was obtained from participants via lumbar puncture, performed with 

standard clinical research methods in aseptic fashion by a board-certified neurologist. The CSF 

was collected in a 15mL Falcon tube, placed on ice until processed (within 2 hours), aliquoted 

into 250 microliter volumes and stored at -80 degrees Celsius until use. CSF was always 

collected during a separate session from PET imaging visit with an average time interval of 0.96 

years.  

Ab1-42, Ab1-40, phosphorylated tau181 (p-tau), and total tau (t-tau) were quantified in human CSF 

on the Lumipulse G 1200 automated platform using a chemiluminescent enzyme immunoassay 

(CLEIA) by the UCSD Shirley-Marcos ADRC Biomarker Core. 	 

PET Acquisition and Processing 

All participants in the current study received positron emission tomography (PET) with the 18F-

Florbetapir (FBP) tracer to quantify Ab. PET was performed on an ECAT high Resolution 

Research Tomograph (HRRT, CTI/Siemens, Knoxville, TN, USA). Ten mCi of tracer was 

injected, and four five-minute PET scan frames were collected from 50-70 min post-injection. 

Reconstruction was performed using 3D ordinary Poisson ordered subset expectation 

maximization with attenuation correction, and 4mm Gaussian smoothing. SUVR images were 

coregistered to the T1 image and normalized by a whole cerebellum reference region. Additional 

smoothing using a 6mm Gaussian kernel was then applied to achieve an effective resolution of 
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8mm3. The mean SUVR of a previously validated cortical composite region (FreeSurfer ROIs 

including frontal, cingulate, parietal, and temporal regions; see (Alcolea et al., 2019; Campbell et 

al., 2021; Willemse et al., 2021) was quantified, and used to determine FBP positivity using a 

threshold of >1.11 SUVR.  

Structural MRI 

All participants received a structural MRI on a 3T Prisma scanner (Siemens Medical System) 

with a 32-channel head coil. A whole-brain high resolution T1-weighted volumetric 

magnetization prepared rapid gradient echo image (MPRAGE) was acquired (TR/TE/TI = 

2300/2.38/902 ms, flip angle = 8°, resolution = 0.8mm isotropic, 240 slices acquired sagittally). 

Structural MRIs were used for PET coregistration and were processed through FreeSurfer 

v.6.0 to obtain native-space regions of interest for FBP quantification. 

Statistical Analysis 

Bivariate correlations were used to examine the relationship between CSF biomarkers 

and FBP mean SUVR, covarying for the time between PET and CSF acquisition. Correlation 

plots were generated using GraphPad Prism (v.9.2.0).  

Receiver operator characteristics (ROC) were performed using random forest models 

with Aβ-PET status as the outcome and CSF biomarkers status as predictors.  CSF cutoffs were 

based on Alcolea et al. (2019), with a cutoff of 0.062 for Aβ42/40, and 0.068 for p-tau/Aβ42 

(Alcolea et al., 2019). We compared false positive rate with true positive rate to generate the area 

under the ROC curve (AUC) for each ratio.  

We investigated the most relevant features associated with Ab-PET positivity using 

random forest feature selection importance rates. The Gini impurity importance indicates how 
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often a particular feature was selected for a split, and how large its overall discriminative value 

was to the classification. The top importance features are the ones whose Gini node purity is 

higher, because its absence shows the largest change in the prediction.  

We used cutpointr, a statistical software for the selection of optimal cutoffs implemented 

in R statistical software (version 3.6.3). CSF measures were compared to Ab-PET positivity with 

ROC, and cutoffs showing the highest Youden index were selected. We then compared 

specificity with sensitivity to generate the area under the ROC curve (AUC) for each ratio. 

Demographics 

A total of 32 participants received both CSF and PET measures of Ab and were included in the 

present analysis. Full demographic information of the sample is presented in Table A1. 

Participants were an average age of 73.5 years old, were predominantly female (75%), and 

received CSF and PET measurements within an average of 0.92 years. One participant had 5.75 

years between CSF and PET (classified as positive on both measurements) – all analysis were 

conducted with and without this participant, although results remained consistent regardless of 

inclusion. One participant’s p-tau and t-tau levels were a significant outlier (>2 SD of sample 

mean); this this data point was removed from analyses involving these measures. 

Associations between CSF and PET Measures 

First, we examined the relationship between mean FBP SUVR and CSF measures of AD 

pathology in our cognitively normal sample. There was a significant correlation between FBP 

SUVR and both Ab42 (r = -0.728, p<0.001; Fig A1A) and p-tau (r=0.40, p=0.034; Fig A1B), but 

not t-tau (r = 0.24, p = 0.86; Fig A1C). Additionally, mean FBP SUVR was associated with the 

Ab42/40 ratio (r = -0.81, p<0.001; Fig A1D), indicating that FBP has a strong relationship with 



 81 

AD-specific Ab pathology. Finally, there was a strong association between FBP and p-tau/Ab42, 

a ratio representing total levels of AD-related pathology, which was strongest when using a 

curvilinear model (curvilinear fit: r=0.84, p<0.001; linear fit: r = 0.65; p<0.001; Fig A1E). All 

associations remained significant and of similar correlational values when removing the one 

participant with 5.75 years between PET and CSF. 

 

Figure A1. CSF biomarkers are highly correlated with Ab-PET in cognitively normal older adults. 

Increased 18F-Florbetapir (FBP) mean SUVR was significantly correlated with decreased CSF Ab1-42, 

indicating more Ab (A) and increased p-tau, indicating more phosphorylated tau181; B). There was no 

association between FBP Mean SUVR and total tau (t-tau) (C). FBP mean SUVR was also significantly 

associated with decreased Ab42/40 ratio, indicating more Ab specific to Alzheimer’s disease (D), and 

increased p-tau/Ab42, indicating more overall Alzheimer’s pathology (E). 

 

Concordance between CSF and PET Ab Positivity  

We next determined whether participants classified as Ab+ on PET using a validated 

threshold (>1.11 SUVR; (Landau et al., 2012) would also be considered positive for CSF 

Aβ42/40 using a threshold calculated in a mixed memory cohort (<0.062; (Alcolea et al., 2019). 
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The majority of subjects were concordant on the two measures (30/32, 93.8%; Fig A2A). 

Thirteen participants were classified concordant positive (40.5%), 17 participants as concordant 

negative (53.1%), and one participant was classified into each of the discordant groups. 

To determine the classification performance of CSF Ab42/40 positivity compared to Ab-

PET positivity, we next conducted random forest ROC analyses.  CSF Ab42/40 status predicted 

Ab-PET status with high accuracy (0.93 ± 0.13) and precision (0.93 ± 0.17), with an AUC value 

of 0.92 ± 0.16 (Fig A2B). Results were consistent when using logistic regression models to 

ensure the random forest model did not overfit the data. 

We next tested whether Ab-positivity on PET was also consistent with a positive p-

tau/Ab42 ratio (>0.068, Alcolea et al 2019). Consistent with Ab42/40, the majority of subjects 

were concordant between p-tau/Ab42 and Ab-PET (30/32, 93.8%; Fig A2C), with 13 

participants were classified concordant positive (40.5%), 17 participants as concordant negative 

(53.1%), and one participant was classified into each of the discordant groups. Random forest 

ROC analyses showed that classification performance of p-tau/Ab42 status had high accuracy 

(0.93 ± 0.13) and precision (0.97 ± 0.17) when compared to Ab-PET status, with an AUC value 

of 0.95 ± 0.10 (Fig A2D). 

Finally, we conducted a Gini impurity analysis to test which CSF biomarkers were most 

important in predicting Ab-PET status, when also including age and PET-CSF interval (Fig 

A2E). We measured the importance of each feature with the Gini impurity importance, and these 

measures highlight p-tau/Ab42 as the most relevant features for Ab-positivity, followed by 

Ab42/40. The ranking indicated that the least influential features of the predictions are age, t-tau, 

and PET-CSF interval.  
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Figure A2. Positivity on Ab-PET and CSF biomarkers are highly concordant in cognitively normal 

older adults. (A, C) Concordance for Ab-PET and both CSF Ab42/40 (A) and p-tau/Ab42 (C) was 

93.8% (13 concordant positive, 17 concordant negative, 2 discordant). (B, D) Random Forest ROC 

analyses indicated that both CSF Ab42/40 (B) and p-tau/Ab42 (D) predicted Ab-PET status with high 

accuracy. (E) Gini impurity analysis indicated that CSF p-tau/Ab42 was the more important feature in 

predicting Ab-PET status, with nearly 100% relative importance. The bars represent the importance of 

each feature (error bars represent standard deviation), measured through the sum of all the Gini impurity 

index decreases for each specific feature. 
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Replication of Data-driven CSF Thresholds 

Finally, we recalculated data-driven thresholds for CSF biomarkers that were optimal for our 

cognitively normal sample. CSF measures were compared to Ab-PET positivity, and cutoffs 

showing the highest Youden index were selected. The optimal Ab42/40 cutoff was 0.059 

(Youden index of 0.873; FigA3A), which predicted Ab-PET status with high accuracy (0.937) 

and precision (1.00), with an AUC value of 0.97 (FigA3B). The optimal p-tau/Ab42 cutoff was 

0.081 (Youden index of 0.928; FigA3C), which predicted Ab-PET status with high accuracy 

(0.969) and precision (1.00), with an AUC value of 0.98 (FigA3D). 
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Figure A3. Recalculation of thresholds for CSF Ab42/40 and p-tau/A42 in a cognitively normal 

sample. (A) The optimal threshold for Ab42/40 was determined to be 0.059, representing the highest 

Youden index (0.929). (B) Using the 0.059 cut-off, CSF Ab42/40 status predicted Ab-PET status with 

high accuracy and precision. C) The optimal threshold for p-tau/Ab42 was determined to be 0.081, 

representing the highest Youden index (0.928). (B) Using the 0.081 cut-off, CSF p-tau/Ab42 status 

predicted Ab-PET status with high accuracy and precision. 

 

Discussion  

Our findings support a strong association between CSF biomarkers of AD derived using 

an automated Lumipulse assay with Ab-PET for the first time in an entirely cognitively 

unimpaired sample. Ab-PET and CSF biomarkers of Ab (Ab42/40 and Ab1-42), p-tau, and p-

tau/Ab42 were strongly correlated, which is consistent with previous findings in mixed memory 

cohorts (Alcolea et al., 2019; Campbell et al., 2021; Willemse et al., 2021). We demonstrated 

that CSF Ab42/40 and Ab-PET positivity are highly concordant in cognitively normal older 

adults using a threshold previously calculated in a mixed-memory cohort. Further, CSF p-

tau/Ab42, a marker of overall AD pathology, was the strongest predictor of Ab-PET. Together, 

our results support the accuracy of the automated Lumipulse assay to quantify CSF biomarkers 

of AD in cognitively normal samples, and the utility of these biomarkers in measuring emerging 

AD pathology in aging. 

Our results expand on previous studies investigating CSF biomarker relationships with 

Ab-PET in mixed memory or clinical cohorts (Campbell et al., 2021). A previous study in a 

mixed memory cohort reported that Ab42/40 and p-tau/Ab42 ratios were equally predictive of 

Ab-PET status (Campbell et al., 2021). In our sample, while classification agreement and 

performance were similar between CSF Ab42/40 and p-tau/Ab42 in predicting Ab-PET 

positivity, p-tau/Ab42 demonstrated slightly higher precision than Ab42/40, resulting in a higher 
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AUC value. Furthermore, p-tau/Ab42 was the most important feature selected in predicting Ab-

positivity, followed by Ab42/40. These findings indicate that the p-tau/Ab42 ratio may be more 

sensitive in a cognitively normal sample, as it also accounts for the amount of phosphorylated tau 

pathology, and may more accurately represent overall AD pathology. 

Recalculating data-driven CSF Ab42/40 and p-tau/Ab42 thresholds on our own dataset of 

cognitively normal older adults, we derived a very similar threshold to Alcolea et al. (Alcolea et 

al., 2019). However, our thresholds are slightly lower for Aβ42/40 (0.059) and higher for p-

tau/Aβ42 (0.081) in our cognitively normal sample compared to the cutoff reported in Alcolea et 

al. (0.061 for Aβ42/40 and 0.068 for p-tau/Aβ42) in their mixed memory cohort. This difference 

may be due to our use of a quantitative threshold for defining Ab-PET positivity, while Alcolea 

et al. used visual reads. Further, our thresholds may more accurately measure emerging AD 

pathology, as they were derived without the influence of measures from clinically impaired 

subjects. 

 Limitations of the current study include the relatively small sample size, and the variation 

of time between CSF and PET measurements, however, this was controlled for in all analyses. 

We could not characterize why PET and CSF measures were discordant in our study due to the 

limited in the number of discordant observations (2 participants). Future research should 

investigate the longitudinal changes that occur in concordant individuals compared to those that 

are discordant, and determine whether CSF may be more sensitive and changes prior to PET in 

preclinical samples.  

Overall, our findings support the utility of quantifying CSF biomarkers with the 

automated Lumipulse assay in studies of cognitively normal participants, and emphasize the 
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importance of CSF biomarkers to measure emerging AD pathology in cognitively normal 

samples. 




