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Applying Deep Learning Models on the Brain Connectome for Improving Cognitive 

Predictions of Parkinson’s Disease 

by 

Alex Nguyen 

 

Abstract 

Parkinson’s disease (PD) is one of the most prevalent progressive, neurodegenerative disorders            

that affects motor and cognitive function. It is characterized by tremors, rigidity and bradykinesia              

and eventually progresses to cognitive decline in late stages. Currently, there is no cure for PD.                

The standard therapy for treatment merely slows progression, to an extent, and provides             

temporary symptomatic relief. This is largely due to the lack of clinical biomarkers to              

successfully identify PD in early stages, resulting in a huge gap of knowledge surrounding the               

progression and disease stage. Recent advancements in MR clinical imaging have provided            

substantial anatomical datasets for subsets of populations affected by PD. In addition, there has              

been increasing focus on the implementation of artificial intelligence within the study of the brain               

network. In 2012, Raj et. al proposed the network diffusion model (NDM) based on the diffusion                

equation that provides analytical projections on baseline atrophy rate. In this study, we applied a               

deep learning model, autoencoder, to predict future motor and cognitive states using features             

acquired at baseline. We found that by implementing the autocoder with the NDM, prediction              

accuracy was improved when compared to using stepwise linear regression alone. This novel             

and innovative approach to neurodegenerative diseases, such as PD, has great potential for             

enhancing statistical power within the clinic, by providing clinicians to make more informed             

therapy decisions for PD patients. Not only does it reduce subjectivity, but it allows the clinician                

to assess motor and cognitive states at any given time point in the future. 
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1. Introduction 

1.1  Parkinson’s Disease and Neurodegeneration 

Parkinson’s Disease (PD) is one of the most common neurodegenerative diseases, and is             

marked by the progressive decay of dopaminergic neurons, the spread-like development of            

Lewy pathology, and the toxic misfolding of α-synuclein (α-syn) in a "prion-like" fashion. PD              

ultimately manifests itself into motor deficits including tremors, rigidity, and bradykinesia.           

Typically, PD is diagnosed through the assessment of motor deficits, which occur during later              

stages of the disease when 80% of the dopamine concentration in the brain has already been                

depleted. In addition to motor-control dysfunction, PD patients may also experience cognitive            

disturbances, for example, depression and anxiety​1​. Brain atrophy has been most commonly            

identified in the Substantia nigra pars compacta region, causing considerable reduction in            

striatal dopamine. This reduction is currently believed to be responsible for the previously             

described symptoms​2​. PD is currently an incurable condition and all current therapies focus on              

reducing the speed of progression and provide symptomatic relief​2​. 

 

The goal of this project is to investigate how accurately a deep-learning model (autoencoder)              

can predict future motor and cognitive states of a patient using only (i) features collected at                

baseline, and (ii) analytical predictions given by the network diffusion model developed by Raj et               

al. (2012). Currently, there are no clear biomarkers for PD diagnosis and prognosis. An accurate               

prediction of the future motor/cognitive state of a patient may reveal those with higher risk of                

functional decline, help the patient with life planning, and provide an individualized standard of              

care. There have been numerous studies on the predictive capabilities of machine learning and              

deep learning models for Alzheimer's disease with varying success in the recent decade​3​.             

Contrastingly, the few studies available for PD show several limitations such as (i) a large               
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variability in the results due to the ill-posed nature of the problem, (ii) a smaller sample size as                  

compared to AD datasets, and (iii) the lack of longitudinal atrophy progression for individual              

patients.  

 

The spread of Lewy pathology was recently shown to occur along the local and long-range fiber                

projections, thereby suggesting a process of “network spread”​4​. On this account, the structural             

connectome of the brain - often referred to as the brain’s anatomic connectivity network or               

connectome - surfaced as a powerful tool for understanding the progression of neurological             

disorders since it is the natural place upon which many of the brain’s complex interactions and                

phenomena take place. This type of spread has been mathematically presented by Raj et al.               

(2015) and has shown success in predicting longitudinal atrophy patterns in Alzheimer’s            

Disease​5​. The mathematical model is based on dispersion mechanisms arbitrated and bound by             

the connective network of the brain, described as the “network diffusion” model. 

 

Currently, there are only a handful of studies that have explored the NDM for PD. Remarkably,                

these studies demonstrate important and innovative potential for understanding disease          

progression of PD in order to provide more precise treatment for each individual. Therefore, we               

hypothesize that the implementation of the NDM along with deep learning may predict future              

cognitive states with higher accuracy than using machine-learning methods alone.  

 

1.2  Neural Networks 

The use of artificial intelligence has been tested and proven with relatively high specificity and               

sensitivity in a number of studies as a way of assisting with a clinical diagnosis​6,7,8​. These                

studies may also remove some subjectivity from clinician’s scores as well as support the              
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diagnosis by providing high statistical and quantitative data. Overall, not many machine learning             

studies have been conducted for staging PD or to predict cognitive performance versus the              

amount of studies used for early diagnosis predictions​9​. To take this a step further, the               

implementation of a deep learning network may help detect more complex patterns in larger              

datasets without the need of having to selectively extract meaningful features.  

 

Deep learning models have multiple levels of nonlinear modules that transform raw data into              

more abstract representations and thus, learn complex functions​10​. Usually, a large amount of             

well-curated and high-quality data is used as input and the model will learn on that data.                

Predictors are fed into the neural network and processed by activation functions in the hidden               

layers and finally linked to the desired output. Weights and biases are adjusted accordingly at               

each layer to reduce the mean square error. By employing this highly sophisticated deep neural               

network architecture, we aim to successfully predict future cognitive and motor decline that             

strongly correlate to changes in the brain network.  

 
 
1.3  Cognitive and Motor Tests 

Often the initial step in the clinical decision making process for PD is a chain of cognitive and                  

behavioral assessments. For the purpose of this study, one cognitive and one motor test are               

predicted separately by the proposed autoencoder deep learning model.  

 

The Montreal Cognitive Assessment (MoCA) has been shown to be more sensitive compared to              

the Mini Mental State Examination for determining cognitive symptoms in PD patients​11,12​. It is              

useful for differentiation between different cognitive stages of PD (no cognitive impairment, mild             

cognitive impairment, and dementia). Although results via MoCA show promise, this test comes             
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with some limitations. Previous studies have demonstrated that MoCA is subjective based on             

the clinician and the participant at the time of testing​11​. This test may also be limited by its                  

cumulative scoring basis of subtests, where biases can occur, however, only the cumulative             

score is taken into consideration for the prediction model. New studies are being conducted to               

evaluate the current MoCA scoring with the goal of providing a new scale that better reflects the                 

cognitive score for the person taking the test. 

 

According to the Movement Disorder Society, the Unified Parkinson’s Disorder Rating Scale            

Part III (MDS-UPDRS-III) was developed to provide an efficient and reliable test to evaluate the               

motor capabilities of PD patients​13​. Greffard et al. (2006) concluded that the MDS-UPDRS-III             

score is linearly linked to neuronal density which also represents the extent of neuron damage​14​.  
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2. Methods 

 

2.1  Study Data 

The data utilized in this study was obtained from the Parkinson’s Progression Markers Initiative              

(PPMI) database, which was established to identify PD progression biomarkers and to help             

advance the understanding of the disease mechanism​15​. The PPMI database contains           

numerous clinical, imaging, and biospecimen biomarker tests that are longitudinally collected           

from a cohort of newly diagnosed PD subjects and healthy control participants located at              

multiple centers.  

 

All of the data extraction, neural network modeling, and statistical analysis are performed with              

Matlab R2018a (MATLAB, Natick, MA) and especially with the neural network toolbox on an              

Intel Core i7-2620M CPU @2.7GHz and 8GB of ram. For data extraction, CSV files were               

downloaded from the database and were imported into the Matlab environment for feature             

extraction. The utilized baseline-demographic information, biological-specimen features, and        

imaging data are listed in its entirety in ​Table A ​in the Appendix​. Up-to-date biological               

specimen collection, measurement protocols, and structural magnetic resonance imaging (MRI)          

acquisition protocols can be found in more detail at ppmi-info.org.  

 

Inclusion criteria for subjects include having all available data for demographics, biological            

specimens, as well as cognitive and behavioral assessment information at baseline listed in             

Table A in the Appendix. Subjects with one category missing will be included . The averages               1

are calculated separately for the normal cognition patients and the mild cognitively impaired             

1 There are 5 PD patients with missing baseline serum IGF data and 2 PD patients with missing CSF 
amyloid beta 1-42 data 
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patients according to their baseline MoCA score. The replacement of missing independent            

variable data is performed in order to increase the sample data size. To limit the amount of                 

subject dropout for missing data, averages were used as replacements for data. Data             

replacement with the average is applied as to not affect the overall average. Subjects must also                

have longitudinal data available for the prediction outcomes of MDS-UPDRS-III and MoCA.            

When the subject has more than 2 input features missing, that subject was excluded from the                

study. Overall, 120 PD subjects and 42 healthy controls (HC) at baseline were included in this                

study with their mean/standard deviation shown in ​Table 1. With the inclusion of subjects at four                

different time points (one, two, three, and four years past baseline); study subject dropout is               

observed and the amount of remaining subjects is presented in ​Table 2. MDS-UPDRS-III and              

MoCA scores are averaged from the remaining subjects at each time point and is displayed in                

Figure 1. Although, there continues to be progression variability among patients, predicting            

future disease states becomes one of the difficult questions being addressed with this study. 

 

Table 1​: Demographic and clinical characteristics of PPMI cohort at baseline. 

 Male Female Age MoCA MDS-UPDRS-III 

HC (n=42) 27 15 59.3 ± 11.0  28.5 ± 1.2 - 

PD (n=120) 77 43 60.1 ± 9.4 27.4 ± 2.1 20.8 ± 8.6 

 
 
 
Table 2​: Number of PD subjects with available longitudinal test score data past baseline. 

 BL 1  year 2 years 3 years 4 years 

MoCA 120 100 101 103 95 

MDS-UPDRS-III 120 93 84 84 76 
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Figure 1​: Average change (plus/minus 1 standard deviation shown with the blue error bars) in               
MDS-UPDRS-III (left) and MoCA (right) scores on the entire dataset. The dashed red line is the                
best fit line of the data with a corresponding slope and intercept. An average increase of 2                 
MDS-UPDRS-III points per year and a smaller average decrease in MoCA points is observed. 
 
 
 
We bin the MDS-UPDRS-III scores into 3 categories, lightly mild, more mild, and moderate plus               

severe. These categories and optimal cutoff scores maximize the sample size in each group,              

and were validated in a study performed by Martínez-Martín et al. (2015)​16​. MoCA scores were               

similarly binned into 3 categories, normal cognition, borderline mild cognitive impairment, and            

mild cognitive impairment (MCI). See ​Table 3-4 for details on the number of observations in                

each category. 

 
 
Table 3​: Amount of subjects in each binned MDS-UPDRS-III category with the cutoff values              
chosen as 21 and below for lightly mild, between 22 and 32 for more mild, and 33 and above for                    
moderate and severe. 

 BL 1  year 2 years 3 years 4 years 

Lightly Mild 69 41 27 24 22 

More Mild 39 31 34 23 26 

Moderate + 
Severe 

12 21 23 37 28 
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Table 4​: Amount of subjects in each binned MoCA category with the cutoff values chosen as 28                 
and above for normal, 26 and 27 for borderline MCI, and 25 and lower as MCI and dementia. 

 BL 1  year 2 years 3 years 4 years 

Normal 64 50 42 44 51 

Borderline 
MCI 

37 18 31 24 16 

MCI + 
Dementia 

19 32 28 35 28 

 

 
2.2  Structural MRI Acquisition 

Structural MRI data are only acquired at baseline and is used to retrospectively determine              

whether or not baseline structural atrophy can be used to predict cognitive outcomes in PD               

patients. According to the PPMI protocol, structural MR images must consist of a 3-dimensional              

T1-weighted scan, using either a Magnetization Prepared Rapid Gradient Echo (MPRAGE) or a             

Spoiled Gradient Recalled (SPGR) sequence​15​. The field of view must include the vertex,             

cerebellum, and pons, and have a slice thickness of no greater than 1.5mm without an interslice                

gap​15​. The repetition time and echo time are not mandated by PPMI and thus set according to                 

the individual manufacturer’s recommendations. 

 

2.3  Deformation-based Morphometry and the Brain Connectome 

One set of medical imaging features used for cognitive and motor score prediction is              

deformation-based morphometry (DBM). DBM is a calculation of regional brain atrophy based            

on the displacement to a standard parcellation template. These atrophy values are computed by              

spatial normalization of structural MRI scans to the same MNI152-2009c template, which is             

provided in thanks to Zeighami et al. (2015)​17​. From the PPMI database, baseline structural MRI               

scans were analyzed on 232 PD subjects and 117 HC participants and corresponding atrophy              
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maps are generated. In addition, corresponding baseline atrophy maps could only be matched             

to a subset of subjects and about half of the DBM atrophy values were excluded from the study.                  

Spatial smoothing is performed on the gray matter maps obtained from the MRI scans, hence,               

local image intensity reflects gray matter density. The final baseline DBM atrophy map includes              

78 brain regions; where atrophy values from cerebellum regions are removed.  

 

Due to recent advances in diffusion tensor imaging, the human brain connectome has seen              

much utilization and impact in the neuroscience community. The connectome can be in the form               

of a map or matrix representing neural connections within the brain. It can help us understand                

the interactions that are going on inside the brain and can add to our knowledge of                

understanding the brain and how cognitive changes occur​18​. An anatomical connectome is            

generated by using a fully automated fiber tractography algorithm​19​. After the construction of the              

brain connectome, an anatomical connection strength (ACS) map is derived by counting the             

number of nodes connecting two regions from each healthy control and taking an average​19​.              

This is an estimation of the potential flow of information being sent between the two regions.                

The ACS map is used to calculate the predicted rate of atrophy using the network diffusion                

model.  

 

2.4  Network Diffusion Model 

Various studies on neurodegenerative diseases have demonstrated that certain proteins such           

as tau, beta amyloid, and alpha-synuclein have a prion-like spread​20,21​. More specifically, studies             

on PD progression reveals spread of misfolded proteins to neocortical and cortical regions of              

the brain through the brain network​22,23​. The Network Diffusion Model (NDM) proposed by Raj.              

et al (2012) predicts atrophy rate based on the anatomical connectivity strength between brain              
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regions​24​. The NDM is a deterministic mathematical model that predicts regional atrophy rate             

based on the heat diffusion equation and regulated by the brain network connectivity.  

 

For this study, a simplified linear baseline atrophy slope is calculated by first calculating the               

Laplacian matrix, ​L​, given by ​Equation 1​. ​A is the adjacency matrix or ACS map in this case. ​D                   

is the diagonal matrix derived from the column-wise sum of the ACS map. A normalized               

Laplacian is calculated with ​Equation 2​. Lastly, in order to obtain our analytical baseline atrophy               

rate, the normalized Laplacian, which is representative of the heat diffusion equation, is             

multiplied with the baseline DBM atrophy values.  

 

                                 ​ ​(1) D AL =  −   

                        ​(2)D  L DLnorm =  −1/2 −1/2
 

 
 
2.5  Stepwise Linear Regression 

We implement a classical statistical technique as a starting point in order to compare the               

proposed deep learning model on this specific application. Stepwise Linear Regression (SLR)            

fits a dependent prediction output vector by adding or subtracting a linear combination of              

independent input predictor variables based on the added value it provides to the model while               

maintaining statistical significance.  

 

SLR is performed with all baseline features including demographic information, biomarker tests,            

DBM atrophy values and with or without the NDM to test if it will improve the prediction                 

accuracy. First, we separate the entire dataset into a 90% training set and a 10% hold-out                
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testing set. The 10% dataset is set aside to be used as a type of gold standard to be used to                     

test the final prediction model. A 10-fold cross validation is performed on the remaining 90%               

training dataset where the observations were split into 90% training and 10% validation. This              

process is repeated ten times where each 10% validation set is different for each iteration.               

Averages of the ten prediction accuracies is calculated at each future time point and is shown in                 

Table 6-7​. The implemented deep learning model is also validated using 10-fold cross             

validation. 

 

2.6  Autoencoder 

Currently, we are researching and implementing the autoencoder as our unsupervised learning            

model. Our autoencoder is fully connected and utilizes backpropagation and scaled conjugate            

gradient descent for training. The training phase stops when either the maximum number of              

iterations is complete or when a local minimum is found. This type of neural network is able to                  

encode or compress an input vector into a smaller representation of data. The decoder function               

can approximately expand the reduced vector back into its original size. The encoder and              

decoder transfer functions are set accordingly in order to minimize the mean square error of the                

reconstructed vector and the original input vector. To achieve this, the logistic sigmoid function              

is chosen, which transforms data nonlinearly as opposed to the positive saturating linear             

function. The latter transforms data linearly, which is not desirable for minimizing error on our               

application. Given these two transfer function options, it can be concluded that the logistic              

sigmoid function provides greater optimization. The global error cost function of the proposed             

autoencoder is based on the adjusted mean square error function. See ​Figure 2 for              

architectural details. 
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Figure 2​: Architecture of the implemented deep autoencoder neural network. First, the 78 brain              
atrophy regions and the 78 predicted atrophy slopes were reduced down to a chosen size i.e.                
20, 10, or 5. The reduced features were added onto another input layer with 36 baseline                
predictors. The features are fed into the network and into the softmax classification layer. 
 
 
 
First, the 78 brain atrophy regions and the 78 predicted atrophy rates are reduced down to a                 

smaller representation of data with two hidden layers. This forces the autoencoder to learn a               

smaller representation of the atrophy values. The reduced imaging features with and without the              

addition of the analytical projections obtained from the NDM are combined with baseline             

demographics and biospecimen measurements. Stacking of the individual sparse autoencoders          

at each layer creates a deep autoencoder network. A supervised softmax classification layer is              

used to to link the input to the desired output. The softmax layer generates a probability matrix                 

for each possible class. The entire deep autoencoder model is finely tuned at the end so that it                  
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only takes one iteration to improve all of the weights simultaneously. To fine tune the model, we                 

implement backpropagation on the entire stacked autoencoder network by retraining it on the             

training data in a supervised fashion. 

 

The starting weights and biases are set randomly at the start of each model training with a                 

normal distribution of a small value close to, but not equal to zero. Weights and biases are                 

learnable parameters of the autoencoder model and are adjusted towards values that have             

correct output. When developing a deep neural network, certain hyperparameters must first be             

declared before training a model. Optimal hyperparameters are not known beforehand and            

different values are systematically experimented in a sequential search by changing one            

variable at a time​25​. Performance results from the validation set is recorded and the best               

hyperparameters are saved for the final model.  

 

In order to prevent overfitting of the training data, we declare specific parameters for the L2                

weight regularization, sparsity regularization, and sparsity proportion coefficients terms onto the           

cost function at the start of model training. L2 regularization helps drive outlier weights closer to                

zero. By regularizing or shrinking the L2 weight coefficient, prediction accuracy may be             

improved and the variance may be reduced. The larger the sparsity regularization parameter,             

the greater its impact on activated training data. The sparsity proportion specifies the amount of               

training examples a neuron reacts with, whereas the sparsity regularization term controls the             

impact of sparsity for faster optimization and evaluation of the model. By implementing this              

restriction on sparsity, this pressures the neural network to reduce and store only the essential               

features of the data. The investigated range of hyperparameters is shown in ​Table 5​. 
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Table 5​: Researched autoencoder hyperparameters and optimal parameters were observed for           
different prediction outcomes. 

Hyperparameters Feature 
Reduction 

Size 

Hidden 
Layer 

Neuron 
Size 

L2 weight 
Regularization 

Sparsity 
Regularization 

Sparsity 
Proportion 

Test Range 5xN - 20xN 20/10, 20/5 0.001 - 0.009 2 - 6 0.05 - 0.2 

Optimal for 
MDS-UPDRS-III 

20xN 20/10 0.005 3 0.2 

Optimal for 
MoCA 

5xN 20/10 0.006 4 0.1 

 
 
 
The deep autoencoder network trains with all baseline features. Initially, the model was             

optimized on a 80/10/10 split of the data where 80% of the data is used for training, 10% is used                    

for developing and improving performance, and the final 10% is tested for validation. In order to                

verify the developed model, 10-fold cross validation is applied on the training data set. The               

average prediction accuracy is then calculated and is shown in​ Table 8-9​. 

 

2.7  Statistical Analysis 

Using the Pearson’s linear correlation coefficient, each baseline input predictor is correlated to             

the binned outcome of MDS-UPDRS-III or MoCA. Values of P < 0.05 are considered statistically               

significant. The range of the correlation coefficient span from -1 to +1, where a value of -1 is a                   

perfect negative correlation and a value of +1 is a perfect positive correlation. All statistically               

significant input predictors are presented in ​Table B and C in the Appendix​. More input               

variables are shown to be correlated to MoCA than with MDS-UPDRS-III as well as having a                

stronger relationship strength. 
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3. Results 

In this study, we predict a variety of outcomes including raw future scores, binned future scores,                

raw change in scores, and binned change in scores. The best prediction accuracy results came               

from predicting future scores binned into three categories. For a standard comparison, research             

on a classical regression method is performed to evaluate the performance between a classical              

regression method and an emerging and novel deep learning model. The best hyperparameters             

for the autoencoder model to predict future motor and cognitive decline are detailed in ​Table 5​.  

 

3.1  Predicting Motor Scores 

For predicting future motor scores, prediction outcome data from MDS-UPDRS-III are classified            

into three categories consisting of lightly mild, more mild, and moderate. The mild category is               

split into two in order to equalize the histogram of the amount of subjects in each bin. Prediction                  

accuracy results are represented in ​Table 6 as the average of 10 iterations from 10-fold cross                

validation, as detailed in section 2.5. The results show a decrease in prediction accuracy as the                

time difference increases after baseline. Efficiency, of both the SLR and autoencoder model             

with the NDM, decreases more notably when predicting at year 3 and 4 past baseline versus the                 

earlier years.  

 

The addition of the network diffusion model did not significantly improve the prediction accuracy              

in either models, there was a slight improvement for SLR with NDM at year 4. In general, the                  

average accuracy did improve when using the Autoencoder model at all time points. When              

implementing the autoencoder model, an improvement of about 20-30% is observed. A            

distribution of the prediction accuracy of only the autoencoder is shown in ​Figure 3 with the                
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center point as the average and the error bars as one standard deviation. The autoencoder               

model has the potential to accurately predict future motor decline with up to the 80% accuracy. 

 

Table 6​: Accuracy results of MDS-UPDRS-III prediction for two tested models both predicting 3              
categories of MDS-UPDRS-III which are lightly mild, more mild, and moderate.  

 Stepwise Linear 
Regression 

without NDM 

Stepwise Linear 
Regression with 

NDM 

Autoencoder 
without NDM 

Autoencoder 
with NDM 

1 year 53.10% 52.10% 72.12% 69.10% 

2 years 54.42% 45.78% 72.68% 70.25% 

3 years 41.53% 34.86% 59.73% 56.96% 

4 years 34.73% 39.68% 62.84% 59.34% 

 
 

 
 

Figure 3​: Autoencoder prediction accuracy distribution plot of MDS-UPDRS-III from 10-fold           
cross-validation. 
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3.2  Predicting Cognitive Scores 

We separated the prediction of future categories of MoCA into three categories for the same               

reason as MDS-UPDRS-III. Ideally, we aim to normalize the amount of subjects across all three               

categories. These three categories are normal cognition, borderline mild cognitive impairment,           

and mild cognitive impairment. Prediction accuracy results for MoCA are represented in ​Table 7              

as the average of 10 iterations from 10-fold cross validation. The efficiency of the SLR and                

autoencoder model varies across all future time points where poorer results are observed at              

years 2 and 3, with better results seen at opposite ends of the predicted time frame.  

 

By comparing the performance of the SLR model with and without the NDM, results indicate the                

addition of the NDM improves the prediction accuracy at year 3 and 4 but not at the earlier time                   

points. When the autoencoder model was trained with and without the NDM, the addition of the                

NDM improved the prediction accuracy at all future time points except at year 2. The 1%                

difference in average prediction accuracy at year 2 with and without the NDM is not significant                

and may be a result of poorly optimized hyperparameters at each future time point.  

 

Overall, the average accuracy increased when using the Autoencoder model at all time points              

by about 10-20%. A distribution for the prediction accuracy of MoCA using only the autoencoder               

model is shown in ​Figure 4 with the center point as the average and the error bars as one                   

standard deviation. The autoencoder model is proven to be the better method for predicting the               

future cognitive state of PD patients. 
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Table 7: Accuracy results of MoCA prediction for two tested models both predicting 3 categories               
of MoCA which are normal cognition, borderline mild cognitive impairment, and mild cognitive             
impairment.  

 Stepwise 
Linear 

Regression 
without NDM 

Stepwise 
Linear 

Regression 
with NDM 

Autoencoder 
without NDM 

Autoencoder 
with NDM 

1 year 52.00% 46.00% 50.00% 54.00% 

2 years 36.64% 35.82% 48.44% 47.44% 

3 years 37.73% 40.73% 42.01% 43.81% 

4 years 41.22% 43.22% 52.67% 58.12% 

 
 
 

 
 
Figure 4​: Autoencoder prediction accuracy distribution plot of MoCA from 10-fold           
cross-validation. 
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4. Discussion 

The goal of this study is to investigate the precision how precisely a deep learning model can                 

predict future motor and cognitive states of a patient using only (i) features collected at baseline,                

and (ii) analytical predictions given by the network diffusion model developed by Raj et al.               

(2012). We implement an autoencoder deep learning model, which shows an improvement in             

prediction accuracy over classical stepwise linear regression and provides further evidence for            

using deep learning to increase predictive performance. We test a range of hyperparameters             

and optimal values are selected depending on the anticipated outcome. The network diffusion             

model was also assessed to determine if it added value to the predictive model. 

 

The stepwise linear regression model did worse overall when compared to the performance of  

the autoencoder deep learning model. This is due to PD progression variability among every              

patient and the non linearity of neurodegeneration. Thus, a linear regression model may perform              

poorly on non-linear neurodegeneration patterns. This study provides validation that deep           

learning models may be better suited for predicting nonlinear future outcomes.  

 

4.1  Comparison between SLR and Autoencoder  

The addition of the predicted atrophy slope rate from the NDM improved the prediction accuracy               

for future MoCA but not for future MDS-UPDRS-III scores. For MDS-UPDRS-III predictions, both             

models did not benefit from the additional analytical projections provided by the NDM. This may               

be due to the fact that motor control is mostly in the deep subcortical brain regions such as the                   

basal ganglia and additional data on the predicted atrophy rate of other brain regions became               

noise​14​. To address this issue, feature extraction of only brain regions associated with motor              

control may be used for predicting MDS-UPDRS-III rather than using all brain regions. 
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Predicting future cognition is improved when we add the NDM as additional predictors for both               

SLR and the autoencoder at year 3 and 4. Studies have reported that cognitive function of PD                 

patients strongly correlates with the overall normalized brain size. Additionally, investigators           

observe atrophy in many cortical and subcortical brain regions​26​. A higher percentage of the 78               

atrophy values now have more impact on the prediction model due to the addition of cortical                

brain regions such as the frontal and parietal lobes.  

 

The prediction models benefit more from having more statistically significant brain regions with a              

P-value of less than 0.05 meaning that there is stronger evidence supporting our hypothesis.              

Referring to ​Tables B and C in the Appendix​, more DBM atrophy values and predicted NDM                

atrophy rates show correlation to the future MoCA categories than compared with            

MDS-UPDRS-III. The addition of more predictors improved the performance of the autoencoder            

model.  

 

4.2  Justification and Rationale 

Studies show that DBM is the optimal method to detect sub cortical irregularities when applied               

to temporal lobe epilepsy when compared to voxel-based morphometry (VBM)​27​. Based off of             

the data shared with our lab from Zeighami and group, we decided against using VBM because                

it does not accurately reflect all of the MRI data and it is noted that VBM may be less sensitive                    

to subcortical atrophy​17​. However, DBM is still not a fully accurate representation and errors may               

be introduced into the atrophy maps due to technical limitations of image processing pipelines              

and hardware limitations of imaging modalities. 
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For this study, adopting the autoencoder deep learning model is promising for its ability to               

reduce dimensionality without reducing the meaningful data qualities as well as removing noise             

from data. Dimensionality reduction is particular helpful for decreasing the size of the dataset in               

order to improve the efficiency of developing and training a model. This model also learns only                

on the input data and does not require any type of feature engineering or extraction. Despite all                 

of the freely accessible and different types of autoencoders, we choose to work with the stacked                

autoencoder that forms a neural network, however, there are many other approaches to deep              

learning and this is just the starting point for our specific usage case. Future work is being done                  

on predicting two categories instead of three. Our study data set only consists of newly               

diagnosed PD patients whom many patients do not suffer from severe motor or cognitive              

decline. It may be more relevant to be able to predict if a patient will convert from mild to                   

moderate motor dysfunction or from normal to mild cognitive impairment for cognitive decline.             

By splitting the mild category for MDS-UPDRS-III and splitting the normal cognition category for              

MoCA, both predictive models generally show low specificity and low sensitivity. The range of              

the middle categories is slim and the model has a difficult time with classification. 

 
 
4.3  Limitations  

The PPMI database is one of the largests of its kind, however, it still lacks in the amount of                   

subjects as well as longitudinal data. Validation of the NDM and autoencoder model was limited               

to the PPMI database size and by the narrow timespan range of 1 to 4 years past baseline.                  

Missing baseline data from some subjects, such as serum IGF and CSF amyloid beta              

measurements, causes the dataset to shrink in size if too many baseline predictors are missing.               

The small size of the data set may not be optimal for deep learning applications and machine                 
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learning may be used instead. Deep learning models improve in skill as more data is given for                 

training.  

 

The NDM outputs a linear atrophy rate and this limits the researched prediction model’s ability               

to account for variability in disease progression where atrophy can be faster or slower at               

different stages of the disease. This can not be independently verified due to the fact that                

structural MRI were only imaged at baseline and at no other future timepoints. There is no                

ground truth to compare the network diffusion model to for this specific application.  

 

There is a wide variability in atrophy patterns as well as cognitive and motor tests between each                 

PD patient. Specifically, there may be some clinician subjectivity for MoCA and MDS-UPDRS-III             

tests. There may be variability between different subjects from different study centers with             

different test proctors. Total scores were only considered for this study. Bias may be introduced               

if a patient performed satisfactory overall but perhaps very poorly in a select group of sub                

categories. The “gold standard” diagnosis and prognosis of PD is a more comprehensive, formal              

testing by a neuropsychologist. The addition of that high quality testing data may help with the                

training of the neural network.  

 

Hyperparameters could have been explored in more detail. A wider range as well as a finer step                 

size within the tested hyperparameters can be investigated, however, this will increase the time              

and computational power required for training and validation. 
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4.4  Future work  

One way to potentially improve the proposed deep learning model is to add more variables as                

predictors, where a fuller dataset can be used by the model to learn a better representation of                 

the data. This can be done by extracting more data from the PPMI database such as the                 

extensive amount of available genetic factors that may benefit more from deep learning which              

can extract more meaningful representations of the data when compared to machine learning             

techniques. As an ongoing PPMI study, more patients will be added to the study leading to an                 

increase of potential subjects for a more substantial data set. Additional subjects have been              

added recently and longitudinal data is still in the process of collection and organization. 

 

Due to the smaller starting data set, machine learning applications may be better suited. Leave               

one out validation may also be performed but it is more computationally expensive to retrain a                

model the amount of times there are for the number of observations. Other deep learning               

models that were considered at the start of the study are the deep boltzmann machines,               

convolutional neural networks, and generative adversarial networks. Additional research is          

required for further validation of the network diffusion model as well as its implementation with               

Parkinson’s disease. 
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Appendix 

Table A​: List of all baseline input predictors 
 ​Demographics 
           Sex 
           Age 
           Years of formal education 

 ​Biospecimens  
           Serum Insulin-like Growth Factor-1 
           CSF α-synuclein 
           CSF Aβ42 
           CSF Total tau 
           CSF Phosphorylated tau 

 Cognitive and Behavioral Assessments 
           MoCA 
           Hopkins Verbal Learning Test (3 sections) 
               Immediate Recall, Delayed Recognition Hits, Delayed Recognition False Alarms 
           Benton Judgement of Line Orientation 
           Semantic Fluency Total Score 
           Symbol Digit Modalities Score 
           UPSIT 
           Geriatric Depression Scale (GDS-15) 
           Impulse control - QUIP (7 sections) 
               + (Gambling, Sex, Buying, Eating, Hobbies, Punding, Walking or Driving) 
           SCOPA-AUT 
           MDS-UPDRS (5 sections) 
               Part I, Part 1 Patient Questionnaire, Part II Patient Questionnaire, Part III, Total 
          Hoehn & Yahr 
          Modified Schwab England ADL 

 ​Imaging 
          Striatal Binding Ratio (4 regions) 
              Left caudate, right caudate, left putamen, right putamen 
          78 deformation-based morphometry atrophy values 
          78 analytical atrophy rate predictions given by the network diffusion model 
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Table B​: Pearson’s linear correlation coefficients of baseline predictors at four time points past              
baseline to MDS-UPDRS-III. 

 Predictor R value P value 

1 year 

Hoehn and Yahr  0.3424 0.0008 
IGF 0.2836 0.0059 

SCOPA-AUT 0.2267 0.0289 
SBR Right Putamen -0.2039 0.0451 

DBM Region 34 -0.2050 0.0487 
NDM Region 34 -0.2051 0.0486 

Symbol Digit Modalities Score -0.3087 0.0026 
Modified Schwab England ADL -0.3450 0.0007 

2 years 

Hoehn and Yahr  0.3848 0.0003 
NDM Region 68 0.3040 0.0049 
 DBM Region 68 0.3023 0.0052 
NDM Region 67 0.2686 0.0135 
 DBM Region 67 0.2635 0.0155 

QUIP Positive Sex 0.2600 0.0169 
 DBM Region 47 0.2233 0.0411 
NDM Region 47 0.2196 0.0448 
 DBM Region 30 0.2150 0.0495 
NDM Region 2 -0.2188 0.0455 

NDM Region 40 -0.2232 0.0413 
NDM Region 36 -0.2243 0.0403 
 DBM Region 45 -0.2262 0.0386 
NDM Region 45 -0.2558 0.0188 

Symbol Digit Modalities Score -0.2754 0.0112 
HVLT Immediate Recall -0.2850 0.0086 

HVLT Delayed Recognition Hits -0.3313 0.0021 
DBM Region 8 -0.4030 <0.0001 
NDM Region 8 -0.4134 <0.0001 

Modified Schwab England ADL -0.4134 <0.0001 

3 years 

DBM Region 33 0.2674 0.0139 
NDM Region 33 0.2620 0.0160 
Hoehn and Yahr  0.2588 0.0175 
NDM Region 69  0.2479 0.0230 
DBM Region 69 0.2426 0.0262 
NDM Region 21 0.2305 0.0349 
DBM Region 21 0.2246 0.0399 
Alpha-Synuclein -0.0699 0.0171 

SBR Right Caudate -0.0858 0.0471 
SBR Left Caudate -0.0939 0.0164 
SBR Left Putamen -0.1192 0.0412 

SBR Right Putamen -0.1282 0.0489 
DBM Region 20 -0.2276 0.0373 
NDM Region 20 -0.2899 0.0075 
NDM Region 49 -0.2918 0.0071 

Modified Schwab England ADL -0.4134 0.0065 
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 Predictor R value P value 

 
4 years 

Age 0.3701 0.0010 
SCOPA-AUT 0.3121 0.0061 

 NDM Region 68 0.2733 0.0170 

NDM Region 67 0.2615 0.0225 

DBM Region 68 0.2588 0.0234 
Hoehn and Yahr  0.2561 0.0256 
DBM Region 67 0.2280 0.0476 

Semantic Fluency Total Score -0.2273 0.0483 

NDM Region 78 -0.2281 0.0475 
Modified Schwab England ADL -0.2348 0.0412 

DBM Region 78 -0.2349 0.0411 

DBM Region 63 -0.2356 0.0405 
SBR Left Putamen -0.2449 0.0330 

DBM Region 24 -0.2557 0.0258 

NDM Region 77 -0.2628 0.0218 
SBR Right Putamen -0.2629 0.0218 

DBM Region 77 -0.2681 0.0192 

NDM Region 24 -0.2753 0.0161 
HVLT Delayed Recognition Hits -0.2809 0.0140 

SBR Right Caudate -0.3100 0.0064 
SBR Left Caudate -0.3104 0.0064 

Symbol Digit Modalities Score -0.3121 0.0061 
UPSIT Total Score -0.3121 0.0061 

Benton Judgement of Line -0.3769 0.0008 
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Table C​: Pearson’s linear correlation coefficients of baseline predictors at four time points past 
baseline in relation to MoCA. 

 Predictor R value P value 

1 year 

Age 0.4325 <0.0001 
NDM Region 42 0.3758 <0.0001 
MDS-UPDRS-I 0.3212 0.0011 
DBM Region 42 0.2623 0.0084 

MDS-UPDRS-Total 0.2614 0.0086 
HVLT Delayed Recognition False Alarms 0.2554 0.0103 

NDM Region 28 0.2353 0.0185 
SCOPA-AUT 0.2295 0.0216 

NDM Region 48 0.2188 0.0287 
MDS-UPDRS-III 0.2012 0.0447 
NDM Region 40 -0.2080 0.0378 
NDM Region 36 -0.2093 0.0366 
DBM Region 73 -0.2181 0.0293 
DBM Region 1 -0.2228 0.0259 
DBM Region 4 -0.2289 0.0219 

 ABeta 1-42 -0.2290 0.0219 
 DBM Region 40 -0.2331 0.0196 
 DBM Region 35 -0.2420 0.0153 
 NDM Region 74 -0.2513 0.0117 
 NDM Region 77 -0.2591 0.0092 
 DBM Region 36 -0.2602 0.0089 
 NDM Region 78 -0.2630 0.0082 
 UPSIT -0.2633 0.0081 
 DBM Region 74 -0.2648 0.0077 
 DBM Region 78 -0.2725 0.0061 
 DBM Region 77 -0.2750 0.0056 
 HVLT Delayed Recognition Hits -0.2779 0.0051 
 Symbol Digit Modalities Score -0.3820 <0.0001 
 Semantic Fluency Total Score -0.4330 <0.0001 
 HVLT Immediate Recall -0.4546 <0.0001 

2 years 

Age 0.3880 <0.0001 
MDS-UPDRS-I 0.2992 0.0024 
NDM Region 42 0.2547 0.0102 

HVLT Delayed Recognition False Alarms 0.2463 0.0130 
GDS Score 0.2334 0.0188 

SCOPA-AUT 0.2255 0.0234 
QUIP Positive Walking or Driving 0.1971 0.0481 

Benton Judgement of Line -0.1995 0.0455 
NDM Region 75 -0.2081 0.0368 
DBM Region 34 -0.2085 0.0364 
DBM Region 73 -0.2118 0.0335 

ABeta 1-42 -0.2265 0.0227 
DBM Region 38 -0.2333 0.0189 
NDM Region 76 -0.2363 0.0174 
NDM Region 36 -0.2365 0.0173 
DBM Region 75 -0.2432 0.0143 
DBM Region 76 -0.2561 0.0097 
NDM Region 35 -0.2631 0.0079 
NDM Region 77 -0.2710 0.0061 
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 Predictor R value P value 

2 years 

NDM Region 78 -0.2767 0.0051 
DBM Region 36 -0.2806 0.0045 
DBM Region 78 -0.2845 0.0039 
DBM Region 77 -0.2877 0.0035 

Semantic Fluency Total Score -0.3127 0.0015 
DBM Region 35 -0.3303 0.0001 

Symbol Digit Modalities Score -0.3889 <0.0001 
HVLT Immediate Recall -0.4023 <0.0001 

3 years 

Age 0.4250 <0.0001 
NDM Region 42 0.3318 <0.0001 
NDM Region 27 0.2634 0.0072 
MDS-UPDRS-III 0.2348 0.0170 
NDM Region 49 0.2302 0.0193 
DBM Region 42 0.2253 0.0221 

Sex 0.2036 0.0391 
NDM Region 4 -0.1956 0.0477 

NDM Region 34 -0.2021 0.0407 
DBM Region 63 -0.2024 0.0404 
NDM Region 39 -0.2030 0.0397 

Benton Judgement of Line -0.2140 0.0300 
DBM Region 34 -0.2187 0.0265 
DBM Region 1 -0.2234 0.0233 

DBM Region 33 -0.2240 0.0230 
Modified Schwab England ADL -0.2253 0.0221 

NDM Region 75 -0.2263 0.0216 
DBM Region 2 -0.2272 0.0210 

NDM Region 77 -0.2443 0.0129 
DBM Region 59 -0.2510 0.0105 
NDM Region 36 -0.2623 0.0074 
NDM Region 74 -0.2655 0.0067 
DBM Region 39 -0.2673 0.0063 
DBM Region 37 -0.2679 0.0062 
DBM Region 4 -0.2712 0.0056 

NDM Region 76 -0.2724 0.0054 
NDM Region 40 -0.2753 0.0049 
DBM Region 77 -0.2831 0.0038 
DBM Region 75 -0.2839 0.0037 
NDM Region 35 -0.2885 0.0031 
DBM Region 38 -0.2930 0.0027 
DBM Region 74 -0.2963 0.0024 
NDM Region 73 -0.3036 0.0018 
DBM Region 76 -0.3065 0.0016 
NDM Region 78 -0.3135 0.0013 

UPSIT -0.3144 0.0012 
DBM Region 40 -0.3156 0.0012 
DBM Region 73 -0.3312 <0.0001 
DBM Region 78 -0.3319 <0.0001 
DBM Region 36 -0.3365 <0.0001 

HVLT Delayed Recognition Hits -0.3656 <0.0001 
DBM Region 35 -0.3888 <0.0001 

HVLT Immediate Recall -0.4410 <0.0001 
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 Predictor R value P value 

3 years 
Symbol Digit Modalities Score -0.4839 <0.0001 
Semantic Fluency Total Score -0.5617 <0.0001 

4 years 

Age 0.5087 <0.0001 
SCOPA-AUT 0.3401 <0.0001 

NDM Region 42 0.2886 0.0046 
MDS-UPDRS-Total 0.2784 0.0063 

HVLT Delayed Recognition False Alarms 0.2766 0.0067 

MDS-UPDRS-III 0.2423 0.0180 

MDS-UPDRS-I Patient Questionnaire 0.2412 0.0185 
DBM Region 39 -0.2046 0.0467 
NDM Region 76 -0.2170 0.0347 
NDM Region 78 -0.2230 0.0298 
DBM Region 37 -0.2241 0.0290 
DBM Region 75 -0.2284 0.0260 
NDM Region 34 -0.2341 0.0224 
DBM Region 40 -0.2344 0.0222 

Benton Judgement of Line -0.2375 0.0205 
DBM Region 34 -0.2391 0.0196 
DBM Region 78 -0.2432 0.0176 
NDM Region 74 -0.2454 0.0165 
NDM Region 73 -0.2459 0.0163 
DBM Region 76 -0.2492 0.0149 
DBM Region 74 -0.2683 0.0086 
DBM Region 73 -0.2699 0.0082 
NDM Region 77 -0.2732 0.0074 

UPSIT -0.2749 0.0070 

DBM Region 38 -0.2798 0.0060 
NDM Region 36 -0.2872 0.0048 
DBM Region 77 -0.2981 0.0033 
DBM Region 36 -0.3350 <0.0001 

HVLT Delayed Recognition Hits -0.3392 <0.0001 
NDM Region 35 -0.3667 0.0003 
DBM Region 35 -0.3998 <0.0001 

HVLT Immediate Recall -0.5056 <0.0001 
Symbol Digit Modalities Score -0.5229 <0.0001 
Semantic Fluency Total Score -0.5301 <0.0001 
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Table D ​: Brain region labels 
1 Hippocampus (right) 40 Pallidum (right) 
2 Hippocampus (left)  41 Precentral gyrus (left) 
3 Amygdala (right) 42 Precentral gyrus (right) 
4 Amygdala (left) 43 Straight gyrus (left) 
5 Anterior temporal lobe, medial part (right) 44 Straight gyrus (right) 
6 Anterior temporal lobe, medial part (left) 45 Anterior orbital gyrus (left) 
7 Anterior temporal lobe, lateral part excluding superior 

temporal gyrus (right) 
46 Anterior orbital gyrus (right) 

8 Anterior temporal lobe, lateral part excluding superior 
temporal gyrus (left) 

47 Inferior frontal gyrus (left) 

9 Parahippocampal and ambient gyri (right) 48 Inferior frontal gyrus (right) 
10 Parahippocampal and ambient gyri (left) 49 Superior frontal gyrus (left) 
11 Superior temporal gyrus, central part (right) 50 Superior frontal gyrus (right) 
12 Superior temporal gyrus, central part (left) 51 Postcentral gyrus (left) 
13 Middle and inferior temporal gyrus (right) 52 Postcentral gyrus (right) 
14 Middle and inferior temporal gyrus (left) 53 Superior parietal gyrus (left) 
15 Fusiform (lateral occipitotemporal) gyrus (right)  54 Superior parietal gyrus (right) 
16 Fusiform (lateral occipitotemporal) gyrus (left)  55 Lingual gyrus (left) 
17 Insula (left) 56 Lingual gyrus (right) 
18 Insula (right) 57 Cuneus (left) 
19 Lateral remainder of occipital lobe (left) 58 Cuneus (right) 
20 Lateral remainder of occipital lobe (right) 59 Medial orbital gyrus (left) 
21 Cingulate gyrus, anterior part (left) 60 Medial orbital gyrus (right) 
22 Cingulate gyrus, anterior part (right) 61 Lateral orbital gyrus (left) 
23 Gyrus cinguli, posterior part (left) 62 Lateral orbital gyrus (right) 
24 Gyrus cinguli, posterior part (right) 63 Posterior orbital gyrus (left) 
25 Middle frontal gyrus (left) 64 Posterior orbital gyrus (right) 
26 Middle frontal gyrus (right) 65 Subgenual frontal cortex (left)  
27 Posterior temporal lobe (left) 66 Subgenual frontal cortex (right)  
28 Posterior temporal lobe (right) 67 Subcallosal area (left) 
29 Inferolateral remainder of parietal lobe (left) 68 Subcallosal area (right) 
30 Inferolateral remainder of parietal lobe (right) 69 Pre-subgenual frontal cortex (left) 
31 Caudate nucleus (left) 70 Pre-subgenual frontal cortex (right) 
32 Caudate nucleus (right) 71 Superior temporal  gyrus, anterior part (left) 
33 Nucleus accumbens (left) 72 Superior temporal  gyrus, anterior part (right) 
34 Nucleus accumbens (right) 73 Left Red Nucleus 
35 Putamen (left) 74 Right Red Nucleus 
36 Putamen (right) 75 Left Substantia Nigra 
37  Thalamus (left) 76 Right Substantia Nigra 
38  Thalamus (right) 77 Left Subthalamic Nucleus 
39 Pallidum (left) 78 Right Subthalamic Nucleus 
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