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The chromatin remodeler ACF acts as a dimeric motor to space 
nucleosomes
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Abstract

Evenly spaced nucleosomes directly correlate with condensed chromatin and gene silencing. The 

ATP-dependent chromatin assembly factor (ACF) forms such structures in vitro and is required 

for silencing in vivo. ACF generates and maintains nucleosome spacing by constantly moving a 

nucleosome towards the longer flanking DNA faster than the shorter flanking DNA. But how the 

enzyme rapidly moves back and forth between both sides of a nucleosome to accomplish 

bidirectional movement is unknown. We show that nucleosome movement depends cooperatively 

on two ACF molecules, suggesting that ACF functions as a dimer of ATPases. Further, the 

nucleotide state determines whether the dimer closely engages one vs. both sides of the 

nucleosome. Three-dimensional reconstruction by single particle electron microscopy of the 

ATPase-nucleosome complex in an activated ATP state reveals a dimer architecture in which the 

two ATPases face each other. Our results suggest a model in which the two ATPases work in a 

coordinated manner, taking turns to engage either side of a nucleosome, thereby allowing 

processive bidirectional movement. This novel dimeric motor mechanism differs from that of 

dimeric motors such as kinesin and dimeric helicases that processively translocate unidirectionally 

and reflects the unique challenges faced by motors that move nucleosomes.

Chromatin-remodeling motors play essential roles in organizing the chromatin state for 

regulating eukaryotic genomes, yet how they carry out their myriad activities is poorly 

understood. Their substrate, the nucleosome, contains 147 bp of DNA wrapped in ~1.5 turns 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Author Information. Correspondence and requests for materials should be addressed to G.J.N. (Geeta.Narlikar@ucsf.edu) and Y.C. 
(YCheng@ucsf.edu).
3These authors contributed equally to this work
Author Contributions. L.R.R. and J.G.Y. performed the bulk of the experiments. J.G.Y. performed the AUC and footprinting 
experiments. L.R.R. performed the fluorescence-based binding and FRET-based activity assays. N.N. and L.R.R. performed the EPR-
based experiments, P.P. helped design the EPR experiments, T.J.P conducted the deconvolution analysis of the EPR data, and R.C. 
helped design and analyze the EPR experiments. Y.C. and L.R.R. designed and performed the EM-based experiments, and Y.C. and 
A.A. conducted the analysis of the EM data. L.R.R., J.G.Y., and G.J.N. designed and interpreted most of the experiments. L.R.R., 
J.G.Y., R.C., Y.C. and G.J.N. wrote the manuscript.

This paper is dedicated to Daniel Herschlag in honor of his 51st birthday.

Supplementary Information accompanies the paper on www.nature.com/nature.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2010 June 24.

Published in final edited form as:
Nature. 2009 December 24; 462(7276): 1016–1021. doi:10.1038/nature08621.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/nature


around an octamer of histone proteins. Even the smallest movement of the histone octamer 

relative to the DNA presumably requires a coordinated process of breaking and reforming 

the many histone-DNA contacts. The ACF chromatin-remodeling complex exemplifies the 

task, as it is able to move nucleosomes to create evenly spaced nucleosomal arrays that 

contain equal DNA on either side of each nucleosome1-10. These evenly spaced arrays are 

important for packaging the underlying DNA into silent chromatin structures in vivo1-10.

ACF is part of the ISWI family of remodeling complexes. The ATPase subunits of ISWI 

complexes can move nucleosomes by themselves while the accessory subunits modulate this 

basic activity11-15. The human ACF complex consists of one ATPase subunit, SNF2h and 

one accessory subunit, Acf16,7. SNF2h is part of the SF2 family of DExx box proteins that 

includes helicases and nucleic acid translocases16. The ATPase domain of SNF2h has two 

RecA-like domains, which are thought to form a cleft within which ATP binds. SNF2h also 

has an alpha-helical extension comprised of three additional domains, HAND, SANT and 

SLIDE which are thought to play a role in binding flanking DNA17,18. We showed 

previously that ACF generates a dynamic equilibrium in which nucleosomes with equal 

flanking DNA on either side accumulate8. Our data implied that ACF achieves the dynamic 

equilibrium by constantly sampling either side of the nucleosome. This sampling mechanism 

raised the question of how ACF efficiently switches back and forth between both sides of a 

nucleosome. We hypothesized that understanding how the ATP state affects interactions of 

the enzyme with the nucleosome would provide insight into the sampling process.

Previous work has shown that ISWI enzymes require the H4 N-terminal tail for maximal 

activity19-23. The role of the H4 tail is not known, but it has been hypothesized that an 

acidic patch on the ATPase domain of ISWI enzymes may interact with the basic patch, 

K16R17H18R19, on the H4 tail17,19,20,21,24,25. These previous observations imply that the 

ATPase subunit contacts the H4 tail and that the contacts may change during the ATPase 

cycle. We therefore used changes in the mobility of the H4 tail as a handle to follow how 

changes in the nucleotide state alter interactions between SNF2h and the nucleosome. We 

used electron paramagnetic resonance (EPR) spectroscopy for these studies26. We 

covalently attached a maleimide spin label to a cysteine introduced in place of an alanine at 

position 15 on the H4 tail (A15C-MSL, Supplementary Fig.1b), which is directly adjacent to 

the basic patch. Thermal fluctuations cause a spin label attached to a protein to undergo 

motion in a spatial region defined by the adjacent protein surface. The resulting EPR 

spectrum is a highly sensitive measure of the region accessible to the probe. Conformational 

changes can thus be detected via changes in probe mobility, and these are monitored as 

changes in the EPR spectrum. EPR can also resolve and quantify multiple states and is 

particularly powerful in monitoring transitions between unstructured and structured regions 

of proteins. The A15C-MSL nucleosomes were assembled using an asymmetric DNA 

template comprising the 601 positioning sequence with 60 bp of flanking DNA on one side 

(0-601-60, Fig. 1a and Supplementary Fig. 1a)27. The presence of the probe did not alter the 

maximal rate of nucleosome remodeling by SNF2h (data not shown).

In the absence of SNF2h, the EPR spectrum of the A15C-MSL probe indicated a highly 

mobile probe (Fig. 1a, top spectrum). The high mobility of the probe in unbound 

nucleosomes suggested that the H4 N-terminal tails are largely unstructured. Next, we 
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determined how binding of SNF2h altered the mobility of the H4 tail. When the 

nucleosomes were saturated with SNF2h in the absence of nucleotide (apo state), the EPR 

spectrum shows two sets of spectral components as indicated by the arrows (Fig 1a, middle 

spectrum). The inner spectral components (blue arrows) are indicative of a highly mobile 

probe whereas the wider set of spectral components (highlighted by the red dashed lines) 

and the broadening of the central peak are indicative of a second state with more restricted 

mobility. A given peak height in the left-most immobilized spectral component represents 

4.1 times more spins than the same peak height for the mobile component. Deconvolution of 

the spectra indicated that about half of the H4 tails were in each of the two states (56±5.4% 

in the immobilized state, see Supplementary Fig. 2 for fitting and quantification method)28. 

In the presence of ADP, the immobilized subpopulation also constituted half of the probes 

(spectra not shown). Our attempts to trap the SNF2h-nucleosome complex in the ATP state 

using ATP analogs were unsuccessful as these analogs either supported low levels of 

remodeling (AMP-PNP, ATPγS) or did not bind with detectable affinity (AMP-PCP). We 

were however able to mimic an activated ATP state using the analog, ADP•BeFx. In contrast 

to the data in the apo state and with ADP, almost all of the probe on the H4 tail became 

immobilized in the presence of SNF2h and ADP•BeFx (91.5±2.6% of probe in the 

immobilized peak). This change is shown by the increase in spectral intensity of the 

immobilized component (left-most peak, Fig. 1a, bottom spectrum). This dramatic increase 

in the amount of probes immobilized indicated that both H4 tails were bound by SNF2h in 

the presence of ADP•BeFx. Together, these data indicate that SNF2h induces nucleotide-

dependent changes in the H4 tail conformation such that in the apo and ADP states, half the 

H4 tails are immobilized and in an activated ATP state mimicked by ADP•BeFx, all H4 tails 

are bound.

The EPR data raised two possibilities for how SNF2h binds the nucleosome in the apo and 

ADP states: (a) SNF2h symmetrically binds both H4 tails and each H4 tail exists in a two-

state equilibrium between mobile and immobile states (with an equilibrium constant of 1) or, 

(b) SNF2h asymmetrically binds only one of the two H4 tails. For model (a), we expect 

immobilization to increase upon lowering temperature as the highly mobile state is 

entropically favored whereas the structured immobile state is enthalpically favored, as seen 

for docking of the kinesin neck linker29. The fraction of H4 tails immobilized was 

unchanged, within error, from 23°C to 4°C (Fig. 1d, 54.6% immobilized at 4°C and 23°C). 

A van't Hoff plot of the equilibrium constant for H4 tail mobility as a function of 

temperature yields a ΔH of 0.76 kJ/mol, and ΔS of 4.4×10-3 kJ/mol-K (Supplementary Fig. 

3), values that are substantially smaller than the favorable ΔH of 50 kJ/mol and unfavorable 

ΔS of 0.17 kJ/mol-K for docking of the kinesin neck linker29. These data rule out model (a) 

and provide strong support for the asymmetric binding of model (b). To further test model 

(b) we used hydroxyl radical footprinting of the same nucleosome construct to follow 

changes in ACF contacts as a function of nucleotide state (Fig. 1c). In the apo state, ACF 

binding induces asymmetric protection of nucleosomal DNA: protection is observed in the 

SHL(−2) region, but not the SHL(+2) region, consistent with other ISWI complexes and 

with model (b)9,30. In contrast, in the ADP•BeFx state, ACF binding results in significant 

protection in both SHL(−2) and SHL(+2) regions, consistent with the EPR data.
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The asymmetry with respect to H4 tail binding observed in the apo state could arise either 

(a) due to the presence of asymmetric flanking DNA or (b) due to structural constraints 

placed by the apo state. To distinguish between these possibilities we repeated the EPR 

experiment using nucleosomes with 60bp of flanking DNA on both sides (60-601-60 

template). Apo-SNF2h still bound only one of the two H4 tails in the context of this 

symmetric nucleosome (Fig. 1b). These data strongly support a model in which apo-SNF2h 

can only bind one H4 tail at a time, and the availability of flanking DNA biases which side 

of the nucleosome the enzyme binds preferentially. Together the above data suggest that the 

enzyme switches between an asymmetric conformation where it interacts with one H4 tail at 

a time in the apo state and a more symmetric conformation where it binds both H4 tails in 

the ADP•BeFx state.

The observation that SNF2h binds both H4 tails in the presence of ADP•BeFx suggests that 

either (a) one SNF2h molecule bridges both H4 tails or, (b) SNF2h binds as a dimer such 

that each ATPase contacts an H4 tail. To distinguish between these models we first 

investigated the oligomeric state of SNF2h alone. Using equilibrium analytical ultra-

centrifugation we found that unbound SNF2h is a monomer (data not shown). Because 

several well-studied dimeric helicases dimerize upon binding their DNA substrates, we next 

determined if SNF2h dimerizes on nucleosomes31. If dimerization of SNF2h is tightly 

coupled to nucleosome binding we expected to see cooperative SNF2h binding. We 

measured the binding to nucleosomes by taking advantage of our observation that the 

fluorescence of a Cy3 dye attached near the entry site of the DNA increases upon SNF2h 

binding (Fig. 2a). We find that in the apo state, SNF2h binds to the nucleosome 

cooperatively, consistent with previous observations of cooperative binding by the 

Drosophila ISWI protein32. The Hill Coefficient of 1.8 suggests that at least two molecules 

of SNF2h bind in a manner such that binding of one molecule is strongly coupled to binding 

of the second (Fig. 2b). The EPR data from Figure 1 and the Hill Coefficient of 1.8, together 

suggest that in the apo state, SNF2h binds as a dimer but only one of the two SNF2h 

molecules engages an H4 tail.

To determine whether two SNF2h molecules were necessary to mediate maximal 

nucleosome remodeling, we measured the dependence of chromatin remodeling activity on 

SNF2h concentration using a FRET-based method (Fig. 2c). The rate constant of remodeling 

also depends cooperatively on SNF2h concentration with a Hill Coefficient of 1.8 (Fig. 2d, 

left panel). We next determined if the entire ACF complex also functions most effectively as 

a dimer. We analogously saw a cooperative dependence of the remodeling rate constant on 

ACF concentration with a Hill Coefficient of 1.9 (Fig. 2d, right panel). Together, these data 

strongly suggest that the predominant functional form of ACF is a dimer of ATPases.

A hallmark of dimeric motors such as kinesin and the E. coli Rep helicase is that they cycle 

between states in which one motor subunit is engaged with the substrate and states in which 

both motor subunits are transiently engaged31. By working in coordinated pairs, one motor 

subunit can serve as an anchor to the other moving motor to prevent dissociation from the 

substrate. The ATP state helps regulate the affinity of the motor for the substrate. Our EPR 

results suggest that a SNF2h dimer analogously cycles between at least two states, one in 

which only one ATPase engages an H4 tail and another in which both ATPases engage the 
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two H4 tails. To determine if these different conformational states reflect states with 

different affinities, we measured the affinity of SNF2h for the nucleosome in different ATP 

states (Fig. 2e). In the presence of ADP, SNF2h bound cooperatively but with slightly 

weaker affinity than in the apo state. In both the apo and ADP states, the high cooperativity 

of binding indicates that binding of one SNF2h molecule by itself is very weak and requires 

the presence of another SNF2h molecule to increase its overall affinity. The cooperativity 

could arise either from direct SNF2h-SNF2h contacts or could be mediated through a 

conformational change in the nucleosome without direct SNF2h-SNF2h contacts. In the 

presence of ADP•BeFx, the K1/2 for SNF2h binding is ~3-fold lower than that in the apo 

state indicating a stronger binding affinity. Further, SNF2h binding in the presence of 

ADP•BeFx is not cooperative (Hill Coefficient =1). These data suggest that in presence of 

ADP•BeFx the affinity of each SNF2h molecule is sufficiently high such that binding of one 

SNF2h molecule is no longer highly dependent on the presence of the other.

Our finding that two ATPases are required for maximal nucleosome remodeling raises the 

question of how the nucleosome structure accommodates two SNF2h molecules. Other 

dimeric motors, such as kinesin and helicases, are oriented such that each ATPase subunit 

can take turns translocating on the polymeric substrate in the same direction31. We used 

negative stain electron microscopy to visualize the complex of SNF2h with nucleosomes in 

the presence of ADP•BeFx (Fig. 3 and Supplementary Fig. 4 and Supplemental Methods). 

Nucleosomes with 60bp of flanking DNA (0-601-60) were incubated with SNF2h 

concentrations comparable to the K1/2 for nucleosomes in the presence of ADP•BeFx, 

adsorbed to a glow discharged carbon film, and negatively stained with uranyl formate. The 

specimen was imaged at tilt angles of 60° and 0° (Supplementary Fig. 5). A total of 10,059 

pairs of particles were interactively selected from 100 image pairs. Classification of particles 

from images of untilted specimen shows three distinct classes (Fig. 3a, b) that can be clearly 

recognized as a nucleosome by itself and a nucleosome with either one or two SNF2h 

molecules bound. On average ~70% of the complexes contained two SNF2h molecules 

bound. The singly bound SNF2h molecules could reflect the use of non-saturating SNF2h, a 

technical necessity to prevent particle crowding on the grid. In the complexes with two 

SNF2h molecules bound, the flanking DNA was not clearly visible in the two-dimensional 

(2D) class averages, possibly because the flanking DNA is flexible and gets averaged out. 

An alternative possibility is that in most of the complexes, the flanking DNA is rearranged 

due to interaction with a domain of SNF2h. Consistent with this possibility we do not clearly 

observe the extended HAND-SANT-SLIDE domain that has been shown to interact with 

flanking DNA in the apo state17. We hypothesize that there may be a conformational 

rearrangement of the HAND-SANT-SLIDE domain in the presence of ADP•BeFx. Further, 

no large region of direct contact between the two SNF2h molecules is apparent, consistent 

with the Hill Coefficient of 1.0 in this state (Fig. 2e).

In the 2D class averages, the region of each SNF2h monomer that interacts with the 

nucleosome appears to contain two globular lobes (Fig. 3a). These lobes may represent the 

two RecA-related ATP binding folds observed in SF2 family motors33,34. The two lobes 

are also apparent in the 2D class averages of SNF2h alone (Fig. 3c and Supplementary Fig. 

6). Three-dimensional (3D) reconstructions of the nucleosome with two (or one) SNF2h 

bound were calculated using the well-established random conical tilt approach to a 
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resolution of ~ 27 Å without the explicit application of any two-fold symmetry (Fig. 3a and 

Supplementary Figs 5 and 7)35. The two SNF2h molecules face each other on the 

nucleosome, and seem to obey the 2-fold symmetry of the nucleosome with one putative 

ATPase domain at SHL(+2) and one at SHL(−2) (Fig. 3a, 2-fold or opposing symmetry 

most apparent in the middle panel). Consistent with the EPR and footprinting data in Figure 

1, each SNF2h monomer seems to directly contact one H4 N-terminal tail and the SHL(−2)/

(+2) regions in the ADP•BeFx state. While the overall architecture appears almost 

symmetric, given the 27 Å resolution, any local structural asymmetries that may exist 

between the two SNF2h molecules cannot be resolved.

The above architecture raises the question of how the dimeric partners cooperate rather than 

compete in a “tug of war.” Our findings suggest an “alternating action” model schematized 

in Figure 4. In this model, each ATPase takes turns in engaging the flanking DNA on either 

side and the corresponding H4 tail at SHL(−2) or (+2)9,17. An ability of the two ATPases to 

take turns, as suggested by our observation that the apo state of the enzyme engages only 

one H4 tail at a time, would help avoid a “tug of war” situation. The ATPase that engages 

the longer DNA hydrolyzes ATP faster, as previously shown8,36. This ATPase becomes the 

leading ATPase and sets the direction of nucleosome movement by translocating on 

nucleosomal DNA37,38. The leading ATPase generates a DNA loop/wave that can 

propagate across the histone octamer as suggested previously39-41. The second, subordinate 

ATPase could then further act as another anchor to stabilize the intermediate while the 

leading ATPase is translocating (Fig. 4, mimicked by ADP•BeFx). Interaction with the 

second H4 tail may help in the binding of the subordinate ATPase. In the simplest version of 

this model, the subordinate ATPase does not bind or hydrolyze ATP once the leading 

ATPase fires42. This division of labor between identical subunits is analogous to hexameric 

helicases where occupancy of one ATPase subunit regulates the affinity of an adjacent 

subunit for nucleotide43. Whether the communication between the two ATPases is direct or 

through the nucleosome remains an important future question. A variation of this model in 

which the non-leading ATPase also hydrolyzes ATP is described in Supplementary Figure 8. 

Successive rounds of sampling and translocation would then equalize the DNA on either 

side of a nucleosome. A dimer-based mechanism is also indicated by single-molecule data 

showing that dimeric ACF complexes can switch the direction of nucleosome translocation 

several times without dissociation (supporting manuscript by Blosser et al.). Our results help 

explain the significance of previous observations that two Drosophila ACF molecules can 

bind in the context of DNA and provide a mechanistic explanation for the processive action 

of ISWI complexes3,44,45.

We hypothesize that in contrast to kinesin and dimeric helicases, whose biological functions 

require unidirectional translocation along a largely uniform polymeric substrate, the 

biological functions of chromatin remodeling enzymes like ACF place very different 

demands on motor architecture. The opposing architecture of the two motors in ACF may 

enable ACF to rapidly and processively change the direction of nucleosome movement in 

order to achieve a defined spacing. It will be interesting to investigate whether bidirectional 

movement via dimerization is a general feature of enzymes that space nucleosomes, and 

whether remodeling enzymes with other activities use different strategies.
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Methods Summary

EPR measurements were performed with an EMX EPR spectrometer from Bruker 

Instruments (Billerica, MA). First derivative, X-band spectra were recorded in a high-

sensitivity microwave cavity using 50-s, 100-Gauss wide magnetic field sweeps. EM 

samples were adsorbed to a glow-discharged copper grid coated with carbon film for 30 

seconds followed by conventional negative stain with 0.75% uranyl formate. Images 

were collected using a Tecnai T12 microscope (FEI company, Hillsboro, OR) and 

recorded at a magnification of 52,000X with an UltraScan 4096 × 4096 pixel CCD 

camera (Gatan Inc, USA). Full methods are described in Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ATP state regulates immobilization of the histone H4 tail and proximal interactions. (a) Left 

panels: EPR spectra of MSL labeled 0-601-60 nucleosomes. Right panels: Schematic 

interpretation of EPR spectra, based on data from (a), (c), & (d). Binding of Apo SNF2h to 

the nucleosome decreases the mobility of half the H4 tails. SNF2h binding in the presence of 

ADP•BeFx decreases the mobility of both H4 tails. (b) EPR spectrum of Apo SNF2h bound 

to spin-labeled 60-601-60 nucleosomes reveals that only one of the two H4 tails is 

immobilized. (c) Hydroxyl radical foot-printing of ACF on 0-601-60 nucleosomes. Top 

panel: schematic of mononucleosome structure with 12 bp of flanking DNA on one side, 

with dyad in green, histone H4 in blue, and the region surrounding SHL (-2) and (+2) in red. 

Middle panel: Protection patterns for nucleosomes alone (black line, N) compared to 

nucleosomes bound by Apo-ACF (red line, N+ACF). Bottom panel: nucleosomes alone 
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(black line, N) compared to nucleosomes bound by ACF in the presence of ADP·BeFx (red 

line, N+ACF+ ADP·BeFx). Yellow bars highlight protection in the SHL (-2) and (+2) 

regions. (d) Temperature dependence of probe immobilization in the Apo SNF2h-

nucleosome complex. Slope of the straight line = 2.1×10-4 ± 8×10-4 immobilized 

fraction/°C. Error represents s.e.m.
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Figure 2. 
SNF2h and ACF function as dimers of ATPases. (a) Schematic of nucleosome structure with 

dye attachment sites for (b) and (d). The DNA is end-labeled with Cy3 (blue) on the shorter 

flanking DNA. The octamer is labeled with Cy5 at H2A-120C (yellow). (b) Cy3 

fluorescence intensity of the construct shown in (a) as a function of SNF2h concentration, 

using nucleosomes with 78bp of flanking DNA on one side. A representative replicate curve 

is shown. Data are fit to the general equation for cooperative binding (see Methods). Hill 

Coefficient (n) = 1.8 ±0.17; K1/2 = 353±30nM. (c) Schematic of FRET-based nucleosome 

remodeling assay. Rate constant of remodeling is measured by following the decrease in 

FRET between Cy3 and Cy5 in the presence of ATP. (d) Left panel: Nucleosome 

remodeling rate constant as a function of SNF2h concentration for nucleosomes with 78bp 

of flanking DNA. Right panel: Nucleosome remodeling rate constant as a function of ACF 

concentration for nucleosomes with 20 bp of flanking DNA. Hill Coefficient (n) = 1.8±0.1; 

K’1/2 = 281±32 nM for SNF2h and Hill Coefficient (n) = 1.9±.3; K’1/2 = 26±3 nM for ACF. 

Each panel represents global fits to data obtained from three independent experiments. (e) 

SNF2h binds as a cooperative dimer to the nucleosome in the absence of nucleotide (black 

circles), and in the presence of ADP (blue squares). In the presence of ADP•BeFx, SNF2h 
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binds non-cooperatively (red triangles). These binding measurements were carried out with 

nucleosomes containing 40bp of flanking DNA on one side and a Cy3 label on the short 

DNA end. Binding of SNF2h to these nucleosomes is ~2-fold weaker relative to the 

nucleosomes used in (b)9,46. A representative replicate curve with each nucleotide analogue 

is shown (left panel), and the average K1/2 and Hill Coefficient from three replicates is 

shown (table). Errors represent s.e.m.
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Figure 3. 
Visualization of SNF2h bound to the nucleosome in the presence of ADP•BeFx using EM. 

(a) three different views of the 3-D reconstruction of dimeric SNF2h bound to the 

nucleosome (left panels) and corresponding representative 2-D class averages (right panels). 

The crystal structure of the core mononucleosome was placed manually into the 3D 

reconstruction. Histone H4 is highlighted in red. The isosurface of the 3-D reconstruction at 

high threshold is shown in blue, and low threshold in grey. (b) Left panel: representative 2-D 

class average of negative stain EM images of unbound nucleosomes. Right panel: 
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representative 2-D class average of one SNF2h bound to a nucleosomes. (c) Representative 

2-D class averages of SNF2h alone. Numbers used to calculate a particular class average 

shown in lower left corner.
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Figure 4. 
Simple model for how a dimeric ACF moves nucleosomes. H4 tail is in red and the two 

ATPases in ACF are shown in blue and purple. Only one subunit binds ATP at a time. In the 

ATP state, each ATPase subunit takes turns in binding the flanking DNA. The ATPase that 

binds the longer flanking DNA (purple) hydrolyzes ATP faster and starts translocating DNA 

across the nucleosome. During and post hydrolysis, the second ATPase (blue) also engages 

the nucleosome, preventing loss of the DNA loop-containing intermediate (mimicked by 

ADP•BeFx). In the ADP state, the non-translocating monomer disengages and the 

translocating monomer remains engaged with the nucleosome. ATP state may also regulate 

the extent of any direct contacts between the two ATPase subunits and such contacts may be 

substantially fewer in ADP-BeFx state than in other ATP states.
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