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Abstract 

Optimal Intercity Transportation Services  

with Heterogeneous Demand and Variable Fuel Price 
 

by 

Megan Smirti Ryerson 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

University of California, Berkeley 

Professor Mark Hansen, Chair 

In this thesis we examine how fuel price variation affects the optimal mix of services in 

intercity transportation. Towards this end, we make two main contributions. The first is 

the development of an analytic total logistics cost model of intercity transportation, which 

is sensitive to fuel price and incorporates multiple classes of vehicles serving passengers 

with differentiated values of time. The second is an empirical investigation of the cost 

relationship between fuel price and operating cost for intercity transportation vehicles. 

The analytic total logistics cost models are combined with the empirical models to gain 

insights into the impact of fuel price on optimal service mixes in representative corridors. 

 

We consider a scheduled intercity transportation corridor on which different classes of 

intercity transportation vehicles serve passengers with differentiated values of time. In 

determining optimal service mix, we consider a central planner choosing the vehicles and 

service frequencies that provide the minimum total logistics cost for an intercity 

transportation corridor. The total logistics cost is the sum of the two main intercity 

transportation cost components: vehicle operator cost and passenger cost. In considering 

operating and passenger costs together, we balance cost efficiency and level of service of 

alternative vehicles with different cost structures and service attributes.  

 

In developing the total logistics cost model, we seek both analytic insights and numerical 

examples. To keep the model analytically tractable while at the same time incorporating 

multiple objectives, including fuel cost, operating cost, schedule delay, and line-haul 

time, we incorporate the continuum approximation method from logistics. In employing 

the continuum approximation, discrete variables are considered continuous, leading to 

analytic functions from which we can evaluate qualitatively the relationships among fuel 

price, service level, and comparative vehicle cost. An investigation of the analytic model 

suggests that, while a fuel price increase would increase costs for any corridor, the rate of 

cost increase for a corridor served by a mix of vehicle technologies diminishes more 

rapidly with fuel price. We also find that an increase in fuel price causes vehicles to 

become more differentiated with respect to the value of time of the passengers they serve. 

In other words, under high fuel prices the total logistics cost can be minimized by 

effectively segregating passengers on different types of vehicles according to their values 

of time. 
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We complement the analytic findings with an empirical investigation of the cost 

relationship between fuel price and operating cost for different classes of intercity 

transportation vehicles. We perform this analysis for a subset of intercity transportation 

vehicles for which data is readily available: jet and turboprop aircraft. In developing a 

translog operating cost model for jet aircraft, we estimate a flexible functional form that 

provides a detailed representation of the empirical relationship between fuel cost and 

operating cost, allowing for substitution, scale, aircraft age, and other effects – including 

interactions – to be captured. The function reveals that as fuel price increases, airlines 

will take steps to use fuel more efficiently by leveraging other inputs; however, the 

potential for this supplier input substitution for fuel is rather modest. This finding 

reinforces the formulation of the analytic total logistics cost model, in which the only 

actions available to a central planner to reduce costs are changing technologies and 

service frequencies. It also proves that empirical models with simpler functional forms 

are able to accurately predict operating costs, despite the lack of variable interactions. 

Using linear empirical operating cost models, we estimate operating cost and total 

logistics costs for intercity transportation corridors served by single vehicle fleets of three 

different aircraft classes. We find that a specific turboprop aircraft model, with a 

relatively low fuel consumption rate, provides intercity transportation service with the 

minimum operating cost compared with a jet with smaller seating capacity over all fuel 

prices considered and medium-capacity jets for some fuel prices. However, this is no 

longer the case when total logistics cost is considered, due to the lower quality of 

passenger service turboprops provide. At a given intercity transportation corridor 

distance, the fuel price for which the total logistics cost per passenger is equal across 

turboprops and low-capacity jets is in the fuel price range experienced from 2004 and 

expected through 2020. For this fuel price range, the total logistics cost per passenger for 

the medium-capacity jet is generally lower than the turboprop and always lower the low-

capacity jet. This suggests that a mix of services between intercity transportation vehicles 

could minimize cost for this range of fuel price.  

 

To investigate the possibility of mixing services to reduce costs further, we combine the 

analytic total logistics cost model with the empirical models. In addition to a jet and 

turboprop aircraft model, we build a high speed rail cost model and consider high speed 

rail as an additional intercity transportation technology. We find the minimum cost 

vehicle combination to be sensitive to fuel price in a small transition zone within which 

the cost ordering of vehicle combinations changes significantly, whereas outside this 

zone the orderings are stable. As the transition area is in the range of fuel prices 

forecasted between the years 2010-2035, the results indicate fuel price changes between 

2010 and 2035 may dramatically alter the most cost-effective ways to provide intercity 

passenger transport. We find that high speed rail is a part of a mixed vehicle service that 

can reduce total logistics cost, suggesting that an integrated air and rail strategy could be 

an effective tool to manage costs and fuel consumption for an intercity transportation 

system.  
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Introduction 
 

1.1 Problem Statement  

The challenges of climate change policy related to aviation – a global pollutant and a 

mode with local, regional, and international components – have motivated considerable 

research. On both the macro and micro scale, research agendas in aviation and climate 

change are driven by the domains of sponsoring organizations. Policy relevant research 

serves a clear purpose in supporting the decision making of organizations and therefore 

focuses on actions within their purview. This can lead to suboptimal solutions; a 

component is optimized rather than the system, and the solution is at most second best. In 

this research, we take a systems-level point of view in investigating the effects of climate 

change policy on aviation.  

 

Greenhouse gas emissions (GHG), the gases that cause climate change, pose new 

challenges in the context of aviation and the broader intercity transportation system. The 

impacts of greenhouse gas emissions are spatially and temporally distributed rather than 

concentrated. As global rather than local pollutants that are not experienced at the point 

of emission (compared with noise), the pressure to reduce their emission is diminished 

and the locus of responsibility for doing so is unclear. The spatial distribution of GHG 

emissions is matched by the spatial distribution of aviation, a mode with local (airports), 

regional, national, and international components. Aviation organizations are grappling 

with unclear roles to regulate and reduce the emission of a pollutant with impacts outside 

their jurisdiction along with the need to remain competitive.  

 

While greenhouse gases are global pollutants, policy organizations are local in nature. 

Policies to curtail aviation-related GHG emissions are being considered at many levels, 

from local airport authorities to the International Civil Aviation Organization (ICAO). 

Existing research in intercity transportation reflects these policy-making institutions and 

their roles. As the European Commission is planning on the inclusion of aviation in their 

GHG emissions trading scheme (EU-ETS), researchers have investigated the 

macroeconomic and microeconomic impacts. Anger (2010) finds the macroeconomic 

impact to be small using the Energy–Environment–Economy Model. Microeconomic 

research finds the increase in airline costs is not significant enough to reduce demand, 

and that the cost increase can be passed along to customers without a change in 

operations (Albers et al., 2009; Scheelhaase and Grimme, 2007). Research on the actions 

of airport operators to reduce GHG emissions is similarly focused on actions that fall 

within the purview of airport operators, such as those described by Kim et al. (2009). 

However, as asserted by Reimer and Putnam (2007), in the absence of relaxing 
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constraints on the airport operator, their ability to reduce GHG emissions is minimal. 

Research into how the regulatory agency overseeing US aviation, the Federal Aviation 

Administration (FAA), could change descent profiles through Continuous Descent 

Approaches (CDA) to reduce GHG emissions has also yielded incremental but 

measurable results (Clarke et al., 2004). Finally, in an effort to inform transportation 

policy at a systems level, Chester (2008) performs an intermodal comparison of GHG 

pollutants from specific intercity transportation vehicles; Chester and Horvath (2010) 

build on this foundation with a parametric analysis over load factor.  

 

This body of research reflects the scope of existing policymaking institutions. In the US, 

the airlines set operations, routes, and vehicle technology; the airports provide and 

manage infrastructure; and the FAA provides guidance and policy related to airline and 

airport operations. Aircraft operators play a large role in choosing and altering 

operational frequency and vehicle types while considering passenger demands and 

preferences, airport restrictions, and competition. Research has implicitly limited itself in 

considering competition, a constraint supported by research and practice. At congested 

airports, airlines will lose their slots, or allowances to perform a take-off and landing 

operation at an airport, if they are underutilized. Furthermore, Wei and Hansen (2005) 

found that airlines could positively influence their market share by increasing vehicle 

frequency instead of vehicle size. While examples of research investigating the potential 

of larger vehicle sizes and decreased operations to reduce delays at a congested airport 

exist (for example, Coogan et al., 2009), research tends to reflect the airline concern of 

competition. Contrasted with the role of the aircraft operators, the FAA and airport 

operators have essentially no direct control of vehicle operation activity, including 

whether an airline serves a particular airport, the frequency or time of day of service, or 

the aircraft type or size used to provide service. Airports have a long-standing right to set 

minimum landing fees to reduce airfield delay during periods of congestion, a right 

amended in 2008 by the FAA to give airports expanded ability to influence operations 

(Federal Aviation Administration, 2008). While airports are constrained to use landing 

fees to limit congestion, not environmental impacts, Ryerson and Hansen (2009) found 

that lifting this constraint would give airports the ability to influence aircraft size, 

technology, and fuel consumption.   

 

In developing a methodology to capture the system optimal organization of intercity 

transportation under a climate change policy, we consider a central planner minimizing 

the total logistics cost, the sum of the two main intercity transportation cost components: 

vehicle (aircraft) operators and passengers. We define the goal of the central planner as 

finding the optimal (least cost) service mix – which vehicles and at what operational level 

– of an intercity transportation corridor. In summing and comparing costs for single and 

mixed vehicle scheduled services, this methodology determines the vehicle size, 

technology mix, and frequency to serve an intercity transportation corridor. The total 

logistics cost will include both vehicle operating costs and costs incurred by the 

passenger to capture the cost-reducing potential of alternative vehicles with different cost 

structures and service attributes.  
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In determining optimal service mix, a central planner could deploy new intercity modes – 

such as high speed rail – as well as new and redesigned aircraft at different operational 

levels. These vehicles have differentiated service qualities and inputs needed to produce 

passenger output. It could therefore be advantageous to serve an intercity corridor with a 

single vehicle technology, or alternately, a mix of vehicle technologies appealing to 

passenger subpopulations. This is particularly the case for short- and medium-haul 

intercity transportation, where diverse passenger travel purposes lead to highly 

differentiated passenger values of time. To capture the impact of aviation climate change 

policy, we formulate the models to be sensitive to fuel price. Fuel prices may change 

significantly in the future because of market conditions or environmental policies, as fuel 

consumption is directly correlated with the production of carbon dioxide (CO2), the most 

abundant GHG.   

 

In modeling the actions of a central planner in response to aviation climate policy, we 

develop both empirical models and analytic models. Empirical vehicle operating cost 

models provide direct insights into the relationship between operating cost and fuel price 

and guide development of the analytic models. To determine the vehicle technology 

combination that provides service at the lowest cost in response to an environmental 

policy, we develop analytic total logistics cost models of an intercity transportation 

corridor serving multiple passenger groups. This cost model captures input substitution 

within the production process of a vehicle combination. It also captures the effects of 

induced technological change, which is the movement to a more environmentally benign 

production process brought about by an environmental policy. The results of analytic 

models are combined with those of empirical models to determine the vehicle technology 

combination and level of key inputs that minimize cost for a corridor. In this research, we 

define passengers by their demand for travel and their value of time. We begin the 

analytic models with discrete passenger groups building to the consideration of passenger 

value of time to follow a continuous distribution. In formulating the model this way, with 

passengers following a continuous distribution and with fuel price as a parameter, we 

keep the definition of passengers and climate policy as general as possible.  

 

In considering an intercity transportation corridor from a total logistics cost approach, we 

draw from the logistics literature. Smilowitz and Daganzo (2007) and Daganzo and 

Newell (1993) consider a central planner organizing freight services by minimizing the 

operating cost and the cost of holding packages as inventory. A similar approach is 

illustrated in urban transportation, such as the work of Meyer and Miller (1984) and 

Keeler et al. (1975). The total logistics cost approach is employed to a more limited 

extent in aviation. Viton (1986) minimizes a total logistics cost model of an aviation 

corridor by assigning discrete aircraft models to different corridors. Hansen (1991) uses a 

total logistics cost model to compare the cost of two aviation corridors served by different 

aircraft technology, serving varied origin-destination pairs in the same city pair. In the 

total logistics cost model developed in this research, we address the skepticism shared by 

Viton (1986) and Keeler et al. (1975) in using one value of time to represent all 

passengers due to multiple time classifications (travel time, schedule delay) and varying 

values of passenger time (high-valued business travelers, low-valued leisure travelers). In 

a logistics setting, Smilowitz et al. (2003) consider two vehicle technologies serving two 
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packages with specific values of time, and find that an integrated network compared with 

separate distribution yields cost savings. Finally, in this research, we keep fuel price a 

parameter and evaluate how optimal solution changes parametrically with this key 

variable, a practice demonstrated by Oster and McKey (1984) in their evaluation of 

aircraft operating cost over stage length. 

 

In developing a system optimal model of a central planner solution parametrically over 

fuel price, we capture fundamental factors shaping the optimal mix of services on an 

intercity corridor –  such environmental concern (1.2), traffic density, vehicle technology, 

and passenger preferences (1.3) – in a model that is analytically tractable.  

 

1.2 Environmental Concern  

1.2.1 Greenhouse Gas Emissions  

It is well known that the operation of transport vehicles is a major component of 

anthropogenic climate change – the warming of the Earth‘s temperatures due to human 

activities. The production, delivery, and combustion of transportation fuels increase 

levels of greenhouse gases in the atmosphere (Environmental Protection Agency, 2007). 

The transportation sector is responsible for 13 percent of global GHG emissions and 28 

percent of United States domestic GHG emissions, making it the fifth and second largest 

contributor respectively (Pew Center on Global Climate Change, 2004). Recent estimates 

of global shares put aviation at two to three percent based on recent work accomplished 

by IPCC (Williams, 2007). Of the principal anthropogenic greenhouse gases (Carbon 

Dioxide (CO2); Methane (CH4); Nitrous Oxide (N2O); and Fluorinated Gases), CO2 is 

directly produced through the burning of fossil fuels (Environmental Protection Agency, 

2010). In addition to the anthropogenic greenhouse gases there are other mechanisms 

through which aircraft operations affect climate, such as contrail formation (Waitz et al., 

2004; Kim et al., 2007).  

 

Regulating and reducing the impacts of greenhouse gas emissions is more challenging 

than doing so with other pollutants, as GHGs are spatially and temporally distributed 

rather than concentrated. Unlike noise emissions from an aircraft overflight, GHG 

emission impacts are long term rather than immediate. Unlike criteria pollutants, GHG 

emissions are felt worldwide through the warming of the earth, rather than localized. 

Greenhouse gas emissions also have varying warming potential in the atmosphere that 

can vary depending on the spatial distribution of the emission. These challenges 

motivated a common metric in GHG policy: the emission of the most abundant 

greenhouse gas – Carbon Dioxide (CO2) that is directly correlated with the burning of 

fossil fuels (Environmental Protection Agency, 2010). State, federal, and international 

initiatives are looking to regulate the amount of CO2 released into the atmosphere by a 

variety of sectors through a variety of policy levers. A constraint on CO2 emissions is a 

resource constraint imposed on the production process and it is well known that such 

constraints can be represented through shadow prices on the associated resources; fuel 

price increases will most likely follow (Plaut, 1998). To this end, we consider CO2 

emissions policy as a change in fuel price. Such a perspective keeps the discussion 

general, a benefit because the mechanism through which CO2 will be regulated is not 

http://www.epa.gov/methane/sources.html
http://www.epa.gov/nitrousoxide/sources.html
http://www.epa.gov/highgwp/sources.html
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known in the United States. Moreover, uncertainty about the future of fuel costs makes 

the study of fuel price changes an additional compelling topic.  

 

1.2.2 Fuel  

Fuel and labor are the largest components of operating cost an airline faces. From 2000-

2009, about 50% of airline operating expenses are comprised of fuel and labor. However, 

throughout this period, the relative shares of fuel and labor saw a large shift as fuel prices 

rose and labor costs remained relatively constant shown in Figure 1.1, highlighting the 

volatility of fuel prices (Air Transport Association, 2010).  

 

 
Figure 1.1 Labor and fuel as a percent of operating cost, 2003-2009. 
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Because of the fuel cost volatility and the large role fuel plays in total operating costs, 

airlines engage in fuel hedging contracts to secure a certain price for fuel. There are a 

variety of hedging instruments (described by Carter et al., 2004) through which airlines 

can secure a fuel rate over a period. The practice of hedging can shield an airline from the 

volatility of oil prices and in turn stabilize airline costs (Morrell and Swan, 2006). 

Hedging, however, carries its own uncertainty and limitations. Hedging involves 

contracting for fuel, and requires airlines to pay in advance to secure a fuel price – an 

impossibility for many US carriers struggling with cash flow. Furthermore, it is possible 

that an airline can incorrectly predict the trend in oil prices. For an illustration, consider 

Figure 1.2. The bold line shows the price that the U.S. passenger airlines paid for fuel in a 

given quarter, while the dotted line represents the refiner price. Before the large fuel price 

spike in 2008 airlines were generally paying less than the price at the refiner, however, 

after the spike airlines were paying more, mostly due to fuel contracts. 

 

 
Figure 1.2 U.S. jet fuel price (dollars per gallon). 

Also evident in Figure 1.2 is the fluctuation in the price of aviation jet fuel. Aviation fuel 

price increased more than threefold from 2004 to 2008 and then quickly fell back to pre-

2004 levels. While airlines and manufacturers strive to continually improve their product 

through innovative technology and procedures, such actions resulted in modest efficiency 

growth compared with the peaks of fuel fluctuations (Air Transport Association, 2010).  

 

1.3 Short Haul Intercity Transportation System Trends 

There are trends that make short to medium-haul intercity transportation a fitting sector 

for which to develop environmental policy impact models. These is rapid growth 

throughout the system, modal diversity, and passengers with differentiated values of time.  

 

1.3.1 Growth Trends  

Air transport demand – passenger demand for service and airline demand for operations – 

has grown rapidly in recent decades. Despite a traffic decline precipitated by the 

recession in the second half of the first decade of the 21
st
 century, FAA projections show 

traffic levels recovering by 2012 followed by a 30 percent growth by 2025 (Ball et al., 
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2010). The FAA has plans to meet some of the demand increase through the development 

of additional runways; however, by their own estimates, this increase in infrastructure 

will not be sufficient to meet all the demand at many congested airports (Federal Aviation 

Administration, 2007). This growth will be somewhat accommodated by a new 

technology and operational infrastructure termed the Next Generation Air Transportation 

System (NextGen); similar plans exist for the European airspace system (Smirti and 

Hansen, 2007; Eurocontrol, 2007). Both are large-scale modernization initiatives with 

similar goals: to transform the current air transportation system for their respective 

regions to meet the growing demand for air transportation.  Initiatives beyond NextGen 

exist yet tend to be more politically contentious. Coogan et al. (2009) discuss demand 

management initiatives, actions to reduce operations but maintain passenger and freight 

throughput with larger aircraft, such as congestion pricing and operational caps.  

 

1.3.2 New and Redesigned Aircraft Types  

New air transportation vehicles currently in research, development, and deployment 

stages offer extensive options for the transformation of intercity transportation. These 

new vehicles are segmented by their propulsion systems: aircraft with jet engines and 

aircraft with turboprop engines. These two vehicle classes present new opportunities to 

deploy vehicles to offer customizable service and meet environmental and operating cost 

objectives.  

 

Aircraft with jet engines are prominent in number in the intercity transportation system 

and varied in the capacity offered. A trend for jet aircraft is the expanding range of 

vehicle capacity, such that in 2010, there are aircraft of all sizes between the range of 30 

seats and 500 seats. Figure 1.3 shows a cumulative distribution function of single aircraft 

seat capacities owned or leased by US carriers in 2006 as reported to the US Department 

of Transportation. As can be seen, there is a large range in seat capacity (37 - 412) and 

available models span this range almost continuously. Furthermore, Figure 1.3 only 

includes aircraft operated by US carriers on domestic routes, and does not include notable 

aircraft such as the Airbus 340 which has between 261 and 380 seats depending on 

variant (Airbus, 2010). Boeing is currently developing two variants of the 787 aircraft 

series: the 787-8 Dreamliner will have a capacity of 210 - 250 seats and the 787-9 will 

have a capacity of 250 – 290 seats (Boeing Company, 2010). This will further reduce the 

one gap between aircraft sizes 276-360 shown in Figure 1.3.  
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Figure 1.3 Cumulative distribution function of aircraft model seat capacities owned/leased 

by US carriers, 2006. 

There is also an expanding of the seat capacity boundaries for aircraft jet engines. 

Vehicles with very limited capacity include subsonic business jets and very light jets 

(VLJs) used in commercial service. Both vehicles types have jet engines that enable high 

cruise speeds and also have long ranges of over 1000 miles. Their small size (three to 

eight seats for VLJs and eight to 19 seats for business jets) and relatively light weight 

make them suitable for landing at both public and private use airports (Espinoza et al., 

2008; Bonnefoy and Hansman, 2007). These features allow for a customizable, 

potentially on-demand service, such as what was offered by DayJet (Espinoza et al., 

2008). On the large end of the spectrum, Airbus delivered the first high capacity Airbus 

380, which seats 525 in a three-class configuration but could potentially seat over 800 

passengers in a one-class configuration (Airbus, 2007).  

 

The second class of aircraft are updated turboprops offering low operating cost and a 

lower tier of passenger service.  Prior to recent redesign efforts, turboprop aircraft were 

relatively loud, uncomfortable aircraft with a limited operational range. Because of this, 

turboprops fell out of favor with the introduction of regional jets (Johnston, 1995; 

Mozdzanowska and Hansman, 2004). Considering passenger preferences, abandoning the 

turboprop was not unwise: passenger disutility of turboprop travel, estimated by Adler et 

al. (2005), is estimated to be a non-trivial fraction of airfare. However, recent 

improvements to passenger level of service and operating range, coupled with the fuel 

price increases of 2008 have caused a surge of interest in new turboprop models. Two 

domestic carriers have adopted turboprops in their regional markets and international low 

cost carriers have emerged offering an all-turboprop fleet (for example, Canada‘s Porter 

Airlines). Many cite the ability of redesigned turboprops, with higher levels of passenger 

service than their predecessors, to balance operating cost and passenger service. As noted 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400

C
u

m
u

la
ti

v
e 

P
er

ce
n

t 
o
f 

A
ir

cr
a
ft

 

M
o
d

el
s

Average Seats per Aircraft



9 

 

by Aviation international News: ―Nothing re-ignites interest in new turboprops faster 

than a good old-fashioned ‗fuel crisis‘‖ (Huber, 2008).  

 

Comparative aircraft costs depend on fuel price. This is particularly the case for aircraft 

serving short haul markets (under-1000 miles). Short haul markets may be competitively 

served by three main aircraft types: turboprops, noted for their low fuel consumption; 

regional jets, 30-90 seat jets noted for their passer service qualities; and narrow body jets, 

105-150 seat jets noted for their balance of operating costs and passenger service ability. 

Figure 1.4 shows the change in United States airline ownership and leasing levels 

(summed to represent vehicle presence in the market) of these three different aircraft 

types gathered from US Department of Transportation data overlaid on the jet fuel 

purchase price from 1996-2009. Recent years have witnessed a shift away from 

turboprops toward regional jets, while the narrow body aircraft share remained stable. 

While regional jets are less fuel efficient on a per seat-basis, turboprops offer a lower 

level of passenger service in the form of comfort, speed, and perceived safety.  As seen in 

Figure 1.4, regional jets continue to be owned or leased in greater numbers even as fuel 

prices increase. One possible explanation is that despite high operating costs, the regional 

jet enables high frequencies and a high level of service that is valued by passengers.  

Another is that airlines expected the surge to be temporary. It may be that, since 

turboprops are more fuel efficient, increasing fuel prices could make this advantage 

outweigh the importance of passenger preference for a higher level of service and reverse 

the trend of regional jet adoption. 

 

 
Figure 1.4 Aircraft trends for short haul travel and U.S. jet fuel price paid by airlines 

(dollars per gallon). 

1.3.3 High Speed Rail  

The development of a high speed rail (HSR) network in the United States presents a new 

opportunity to transform intercity transportation. In February 2009, the American 

Recovery and Reinvestment Act allocated $8 billion for intercity rail projects. As 

reported by the Federal Rail Administration (2010), there are ten designated high-speed 
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Administration, 2010). California HSR is one such corridor that also has a state-wide 

mandate to develop HSR. On November 4, 2008, California voters approved Proposition 

1A which authorized funding and made into law that ―a clean, efficient high-speed train 

service linking Southern California, the Sacramento San Joaquin Valley, and the San 

Francisco Bay Area‖ will be built (California High Speed Rail Authority, 2009). The 

comparatively lower operational GHG emission travel mode of the HSR has potential to 

reduce GHG emissions and fuel consumption from the entire intercity travel system; 

however, the comparative emissions are highly dependent on vehicle load factor 

(Chester, 2008; Chester and Horvath, 2010).  

 

 
Figure 1.5 Designated High Speed Rail corridors in the United States. 

The definition of high speed rail varies across systems. The European Directive on 

Interoperability defines HSR as a train that achieves a maximum speed of 250km/h (155 

mph); this provides an imprecise picture of HSR, however, as some trains achieve higher 

average speeds while others achieve higher maximum speeds (Steer Davis Gleeve, 2006). 

In the United States, the California HSR system is designed to travel at a 220 mph 

maximum speed and 170 mph average speed, covering San Francisco to Los Angeles in 

2:40 time (California High Speed Rail Authority, 2009). Whatever the precise definition, 

there is a clear relationship between travel time and market share. As shown in Figure 1.6 

(from Steer Davis Gleeve, 2006), the travel time on a HSR system is a strong determinant 

of rail market share when compared with air transport. For intercity transport travel times 

below 3-4 hours, the market share for rail is consistently higher than 50%. This highlights 

the strong potential for intermodal competition in short- to medium-haul intercity 

transportation corridors.  
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Figure 1.6 Rail market share (compared with air) against rail travel time for select European 

intercity transportation corridors. 

1.3.4 Mode Split   

Coogan et al. (2009) report on the intercity mode shares for the two mega-coastal 

corridors of the US: the California corridor and the Northeast corridor. Mode shares are 

challenging to estimate because of the diversity of organizations that capture this 

information. We can see that California, a region with robust short distance rail service 

but lacking high-quality long distance rail service, has an intercity mode share dominated 

by auto for short distance and auto and air for the medium-haul distances (Figure 1.7, 

with distances in miles by driving). In Figure 1.8 we see the rail and air mode shares on 

the North East Corridor, but only as a percentage of the total air and rail market share 

(auto excluded). We see rail playing a much larger role in the mode share, as the intercity 

rail travel times are very competitive with air transportation. We see the same trend in 

both corridors, which is that longer distances equal higher mode share for air.  

 

In this research, we will consider high speed rail as the only alternative to air 

transportation. While auto plays a large role in intercity transportation, a recent HSR 

study provide a compelling argument for this scope definition. The Office of the 

Inspector General (OIG) investigated two improvement scenarios to the rail service travel 

times in the North East Corridor (Federal Railroad Administration, 2008). The first 

scenario was three-hour travel time between Boston and New York and 2.5 hour travel 

time between New York and Washington; the second scenario cut travel times by 0.5 

hours on both segments. The study found that the loss in air ridership would be 10.6 and 

20.3 percent under scenario one and two respectively, while the loss in auto ridership 

would be 0.3 and 0.6 percent. The negligible loss in auto ridership is explained by the 

service similarities between air and HSR compared with the flexibility an auto mode 

provides. OIG explains that those who choose auto do so for a reason – long airport/HSR 
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station access or egress times, or multiple destinations dispersed around a region – such 

that these passengers would be very unlikely to switch modes.    

 

 
Figure 1.7 Mode share and distance for certain California corridor city pair markets.  

 
Figure 1.8 Mode share and distance for certain Northeast corridor city pair markets.  
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flying time, schedule delay, and on-time performance assuming all non-fixed parameters 

are normally distributed. Another study pointing to the existence of passenger 

heterogeneity is Berry et al. (1996). By assuming that the preferences for prices and flight 

characteristics are correlated, they estimate different sets of coefficients for each group 

using a random utility model. They find an existence of two groups of passengers, one 

exhibiting more price elasticity.  

 

These two studies represent two snapshots in time approximately 10 years apart. 

Considering data of actual air tickets purchased 10 years apart, we can show that while 

passenger value of time differentiation is present in both years, this differentiation has 

grown with time. It is very clear that the value of time is become more dispersed, as in 

there is growing income disparity, when one considers the change in airfares over time. 

Using the Airline Origin and Destination Survey (DB1B) from the Bureau of 

Transportation Statistics, a 10% sample of airline tickets purchased domestically, we can 

evaluate the change in airfares in a span of 15 years. We consider the cumulative percent 

of passengers who paid a given fare per mile for all segments between 350 and 500 miles 

in two years: 1993 (in 2008 dollars) and 2008 (both in the second quarter, shown in 

Figure 1.9). The distribution of passenger fares has a steeper slope in 1993, representing a 

more limited distribution of fares compared with 2008. In 1993, 50% of passengers pay 

less than $350-$500, a fare much lower than the 50% of passengers paying less than 

$420-$600 in 2008. While there is a longer tail in 1993, such that that a small percent of 

passengers paid a fares not seen in 2008, the bulk of passengers paid a limited range of 

fares compared with 2008.  

 

 
Figure 1.9 Distribution of total system passenger one-way fares per mile. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

C
u

m
u

la
ti

v
e
 P

e
rc

e
n

t 
o
f 

P
a
s
s
e
n

g
e
rs

 

Fare per Mile ($)

2008Q2

1993Q2 (2008 dollars)



14 

 

1.4 Central Planner Response to a Fuel Price Increase  

In considering the actions available to a central planner in responding to a fuel price, we 

define two categories of responses. The first is input substitution within the production 

process of a vehicle combination. The second is induced technological change, which is 

the movement to a lower cost production process brought about by an environmental 

policy.  

 

In the context of intercity transportation, we define production processes by the vehicle 

technologies that convert inputs to outputs. We will consider production processes to be a 

single vehicle technology or a mix of vehicle technologies. The production process is 

represented by a total logistics cost function such that the inputs considered are supplier 

vehicle inputs (such as fuel, labor, and capital) and user inputs (such as travel time and 

schedule delay). Some possible production processes, represented by vehicle 

technologies, inputs and output are shown in Figure 1.10. Each vehicle combination in 

Figure 1.10 turns the inputs into the output through a technically efficient production 

process. These vehicle combinations, in the context of the intercity transportation system, 

are jets alone (J), turboprops alone (T), high speed rail alone (H), and a jet and turboprop 

mix (H and T), a high-speed rail and jet mix (H and J), and a turboprop and high-speed 

rail (T and H) mix.  

 
Figure 1.10 Inputs and output of single and mixed vehicle production processes. 

For each vehicle combination in Figure 1.10, at a given level of factor prices (the prices 

associated with the inputs), there is a vehicle combination with the lowest total logistics 

cost. There are many technically efficient seat capacities associated with each possible 

vehicle combination. However, for each vehicle combination there is only one seat 

capacity (or set of seat capacities in the mixed case) that is both technically efficient and 

minimizes cost for a given level of factor prices. If a factor price were to increase, two 

possible actions are possible. The first is that, for each production process box in Figure 

1.10, there will be a substitution of inputs and a move to another technically efficient seat 

capacity; this is input substitution. The second is that the production process that converts 

inputs to the output at the lowest cost changes; this represents induced technological 

change.  
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Figure 1.11 Illustration of input substitution and induced technological change.  

Input substitution and induced technological change are illustrated in Figure 1.11, which 

depicts two isoquants each representing the total logistics cost to produce output O with 

either vehicle combination i or j. The production process depicted is a two input 

production process: one passenger input (P) and one supplier input (S). At a baseline 

factor price for all inputs, point X1 represents the optimal point of production for vehicle 

combination i; point X2 represents the optimal point of production for vehicle 

combination 2. Let C(X1) and C(X2) represent the total logistics cost at the point of 

optimal production for vehicle combination i and j respectively. At a baseline (supplier) 

factor price of   
    C(X2) < C(X1); vehicle combination j has a lower cost to produce the 

same output as vehicle combination i. This is illustrated in Figure 1.11, as point X2 is on 

a lower budget line than point X1. If there is an increase in the factor price of fuel (a 

supplier input) represented by   
 , a new budget line and point of tangency exists for each 

vehicle combination. The shift from the optimal costs at   
  to the optimal costs at   

  – 

C(X2) to C(X4) and C(X1) to C(X3) – represents input substitution. Furthermore, at   
 , 

C(X3) < C(X4), such that optimal point of production for vehicle combination i is on a 

lower budget line than vehicle combination j. This change in vehicle combination with 

the lowest total logistics cost represents induced technological change.  

 

In the following chapters we will explore the potential of the two categories of reduction 

strategies – induced technological change and input substitution – to manage costs due to 

a fuel price increase. In chapter 2 and 3, we investigate the potential of supplier-to-

supplier input substitution (such that the production process is characterized by supplier 

inputs only), passenger-to-supplier input substitution (the production process is 
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characterized by supplier and passenger inputs), and induced technological change. Upon 

the finding that passenger-to-supplier input substitution and induced technological 

change have the greatest potential, chapter 4 develops a mathematical representation of 

intercity transportation that captures passenger-to-supplier input substitution and induced 

technological change. Chapter 5 presents a case study of an intercity transportation 

corridor by matching empirical models with the analytic models.  
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2.

 

The Potential of Turboprops for Reducing 

Aviation Fuel Consumption 
 

In light of the wide range of future fuel price scenarios, we seek to understand how fuel 

price affects the comparative advantage of alternative air transport technologies and 

vehicles. While recent years have witnessed a shift away from turboprops toward 

regional jets, it may be that, since turboprops are more fuel efficient, increasing fuel 

prices could reverse this trend. The objective of this chapter is to compare representative 

aircraft for their operating costs and passenger costs over a range of fuel prices. The 

range of fuel prices reflects uncertainties about future market conditions as well as 

environmental policy choices. 

 

In this chapter we compare the operating and passenger cost of turboprops, noted for their 

low fuel consumption, with two widely deployed aircraft, a regional jet and a narrow 

body jet. Operating costs include fuel, crew, maintenance, and airport costs. Passenger 

costs include travel time costs (flying time differences and schedule penalties) and the 

perceived disutility of flying on turboprops (relative to jets). By combining passenger and 

operating costs in a single function, this study takes a total logistics cost approach. This 

allows vehicles with different cost structures and service attributes to be compared. 

Homogenous fleets of each vehicle category are compared for operating and passenger 

costs over a range of fuel prices and route distances and the minimum cost fleet mix is 

determined. This study will perform these comparisons over wide ranges of distances and 

fuel prices to identify the combinations of values of these parameters at which the 

different aircraft models can serve segments with the lowest cost. 

 

Several previous studies model and compare operating costs for airlines. These studies 

employ models to look for aircraft with the lowest operating costs as a function of 

segment characteristics such as stage length and market density. Douglas and Miller 

(1974) develop comparative aircraft cost models that divide operating costs which vary 

per user into fixed and variable costs. Using cost models developed in this manner, with 

fixed components and components that vary with distance and traffic, aircraft costs are 

compared. When discussing an efficient airline market, Douglas and Miller (1974) 

qualitatively discuss fleet assignment based on passenger preferences but stop short of 

developing an integrated passenger and operating cost model. In a similar study, Oster 

and McKey (1984), compare the operating costs of different commuter aircraft and 

perform a parametric analysis of operating cost versus stage length. 
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The importance of considering a total logistics cost function with passenger and operating 

cost rather than individual cost components is demonstrated in two studies by Wei and 

Hansen (2003; 2005). Wei and Hansen (2003) develop a translog cost model for jet 

aircraft operating cost. It is found that airlines could decrease operating costs by up-

gauging from the sizes they typically employed during the study period. Such findings 

are balanced with the conclusions of a second study by Wei and Hansen (2005). Using a 

nested logit model, the study finds that an airline‘s market share experiences greater 

increases from increasing vehicle frequency rather than aircraft size. These findings point 

to the importance of balancing airline operating cost and passenger preference costs when 

choosing fleet mix and determining flight schedules. 

 

2.1 Model Formulation 

Let the total logistics cost per passenger to serve a segment with aircraft type i be  

Li (f,    , d, q,  ) where f is fuel price,    is a vector of other input prices, d is segment 

distance, q is passenger flow per day, and   is load factor—the fraction of aircraft seats 

occupied by passengers. While    is clearly an essential argument of the logistics cost 

function, our interest here is the variation of cost with f assuming other factor prices are 

fixed at present-day levels. Values for some of these prices—for example passenger 

travel time—are explicitly assumed in our formulation. Other factor prices—particularly 

those related to aircraft operating cost—are implicitly contained in industry cost data 

used to implement the model.  

 

We decompose Li into an aircraft operating cost component Ci and a passenger 

component Pi. The carrier component is further divided into a fuel component Fi, a pilot 

component Ri, a cabin crew component Si, a maintenance component Mi, and an airport 

landing fee component Ai. The passenger cost is decomposed into a flight time 

component Ti and a schedule delay component Di. Thus we have:  

 
         (2.1)   

 
                  (2.2)   

 
            (2.3)   

We assume that fuel required for a given aircraft type to fly a particular segment is 

independent of fuel price, that is that possibilities for factor substitution involving fuel are 

negligible. We also assume that fuel required for the segment can be approximated by a 

constant term corresponding to the fuel used for take-off and landing, and a linear 

distance term corresponding to cruise. Thus we have: 

 
                 𝑠   (2.4)   

where 𝑠  is seat capacity of aircraft type  , making   𝑠  the total passengers per flight. 

Estimation of the parameters    and    as well as the validity of the linear approximation 

are discussed below. 
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Pilot costs, cabin crew costs, and maintenance costs are all assumed to be proportional to 

block hours required to fly the segment,      , which, like fuel burn, is assumed to be 

approximated by a constant term (  ) and linear distance-varying term (  ): 

 
             (2.5)   

The proportionality constants for pilot and maintenance costs (   and   ) are obtained 

from airline data reported to the US Department of Transportation, which specify costs 

per block hour by airline and aircraft type in each of these categories. For cabin crew, we 

assume a constant block-hour cost per crew member ( ), which we multiply by the 

minimum number of cabin crew required for the aircraft type,   . Thus we have: 

                            𝑠   (2.6)   

 
                           𝑠   (2.7)   

 
                               𝑠   (2.8)   

The final component of carrier cost considered in this analysis is airport landing fees, 

which are proportional to maximum aircraft take-off weight, 𝑤 , yielding: 

 
      𝑤     𝑠   (2.9)   

where    is the landing fee per unit weight. 

 

Passenger travel time costs are proportional to total passenger flying time for the 

segment. We ignore access, processing, and boarding time, which we assume are 

independent of aircraft type. Total passenger time cost is then given by: 

 
                           (2.10)   

where    is the cost to passengers of flight travel time. 

 

As will be discussed below, passengers exhibit preferences for particular aircraft types, in 

particular for jet service as compared to turboprop service. Thus the passenger cost 

function includes a monetization of this preference,   . 

 

Finally, we introduce schedule delay cost, which captures the value of more frequent 

service that results from serving a given passenger flow with smaller aircraft. Schedule 

delay is defined as the time difference between when a passenger would like to fly and 

when a flight is available. The average schedule delay in a market depends on the 

distribution of passengers‘ desired flight times and the times when flights are scheduled. 

Empirical relationships, based on representative distributions of desired flight times and 

flight schedules, have been developed based on flight frequency. Thus: 

 
               ) (2.11)   
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where    is the cost of schedule delay,    ) is the schedule delay function, and    is the 

frequency with which aircraft type   would serve the market.    is calculated by finding 

the number of flights, each carrying passengers   𝑠 , required to serve the given flow: 

 
        𝑠    (2.12)   

 

2.2 Aircraft Operating Cost Model 

To determine how short haul fleet mixes might be configured in response to changing 

fuel costs, we consider three aircraft categories: turboprop, regional jet, and narrow body 

aircraft. Specific aircraft are chosen to represent the three categories on the basis of their 

large presence in the market and the availability of data. Details of these aircraft are 

shown below in Table 2.1 (ATR (2008), Boeing Company (2008), and Embraer (2008)).  

Table 2.1 Details of representative aircraft. 

Aircraft 

Category 

Aircraft 

Model 
Manufacturer Seats 

Maximum 

Takeoff 

Weight  

(lb) 

Runway 

Length 

Requirement 

Narrow 

Body Jet 

B737-400 The Boeing 

Company 

137 149,710 2,012 m 

Regional Jet ERJ 145 Embraer 44 44,070 1,951 m 

Turboprop ATR 72-

200 

EADS & 

Alenia 

Aeronautica 

72 50,265 1,408 m 

 

2.2.1 Carrier Component Costs 

Fuel consumption for the three aircraft over fixed distances is reported by European 

Environmental Agency (EEA) (2006).2  
Using this data, individual relationships between 

fuel consumption and distance are developed for each aircraft model. These are the 

estimates for   and   in (2.4). The estimates indicate that the turboprop has substantially 

lower fuel burn than either jet, including a fixed component per flight that is over 50% 

less and a variable component that is over 60% less. 

 

For the jet aircraft, data to develop a relationship between flying time and distance is 

collected from the US Department of Transportation Form 41, summarized by aircraft 

                                                 
2
  The EEA (2006) has data for a variety of jet and turboprop aircraft models. This data includes the fuel 

consumed, the travel time, and other metrics over a variety of travel distances lengths. To calculate fuel 

burn, Project Interactive Analysis and Optimization (PIANO), a parametric aircraft design model, was 

used. This model uses aircraft characteristics, such as number of engines and fuel type, to estimate fuel 

consumption for a distance by using standard values for thrust at different stages of flight and assuming a 

standard Landing Take-Off Cycle. Their methodology calculates fuel consumption from the entire gate-to-

gate operation for a flight of a defined distance. 
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model. For each aircraft model there are carrier-specific reports on average miles per 

flight, total block hours operated in a day, and the number of departures that aircraft 

completes in a day.3 From these variables, block time in hours for an individual flight is 

extracted. The block times for the turboprop are reported by the EEA for a range of 

distances; these observations are used in lieu of Form 41 due to low observation count. A 

relationship in the form of (2.4) is estimated for each aircraft model individually, with 

block time as the dependent variable and average distance from Form 41 as the 

independent variable. When this equation is used for flying time,   represents the time 

lost during taxi, take-off, climb out, landing and descent, while   is time that varies with 

distance. While the turboprop has considerably lower lost time then the jets, the distance-

varying time is over twice as large compared with the jets. 

 

Flight crew costs per block hour, denoted   in (2.6), are available from Form 41. Form 41 

reports these statistics for all carriers operating an aircraft type. To achieve a single value 

for crew costs, the carrier average for each aircraft model is used.4 Cabin crew, while not 

typically included in cost analyses, are included in this study because the aircraft 

necessitate different number of cabin crew, denoted   in (2.8). While one cabin crew 

could be sufficient for the regional jet, a minimum of two is necessary on the other 

aircraft (and two per aircraft type are assumed). Cabin crew costs ( ), are fixed at 

$20/block hour. The total crew costs are the largest for the narrow body, with the costs 

for the regional jet and the turboprop being roughly half of the narrow body crew costs.  

 

Maintenance costs per block hour (  in (2.7)) are also available from Form 41. The 

average direct maintenance plus maintenance burden costs per block hour for all airlines 

operating an aircraft model are used as the maintenance costs. Direct maintenance is 

labor and materials. Maintenance burden costs are overhead, such as maintenance 

administration, planning, and supervising (Bureau of Transportation Statistics, 2008). 

Maintenance per block hour is the largest for the narrow body and the smallest for the 

regional jet, with the value for the turboprop being roughly equal to the average of the 

two jet costs.  

 

Landing fees are fees levied by an airport on an arriving aircraft to capture value of 

providing service in the terminal airspace. Landing fees incorporate a charge for using the 

airfield. The most common landing fee is levied in proportion to aircraft weight (Odoni 

and de Neufville, 2003). The determination of landing fees varies airport to airport; in 

this study, fees are based on maximum takeoff-weight and are charged the existing 

landing fee at San Francisco International Airport ($3.01/1000 lbs) for illustrative 

purposes (San Francisco International Airport, 2007). This is the value of    in (2.9). The 

                                                 
3  

Block hours are the number of hours to complete a gate-to-gate operation. As block time does not include 

aircraft processing time at the gate (or turn time), block times are a measure of flight time that are relatively 

not specific to an airline.  
4 
A shortcoming to using the carrier average is that it is sensitive to different carrier operating procedures. If 

network and low-cost airlines operate the same aircraft, the average will be skewed downward than if all 

network airlines operate the aircraft in question. In the data used, there is only one low-cost carrier present, 

and that is for the ERJ 145 regional jet; it is then possible that the regional jet carrier average for crew costs 

is skewed downward. 



22 

 

airport-related costs therefore are linearly related to the weight of the aircraft, with the 

narrow body being the heaviest and the regional jet being the lightest.  

 

By combining the operating cost components including fuel, operating cost equations are 

derived for all aircraft models. Operating cost equations are presented as per operation 

and per passenger. Evaluating operating cost per passenger allows for a cost direct 

comparison for operating one seat on each aircraft. Aircraft seat capacity is shown in 

Table 2.1, and a load factor of 75.6% is assumed for each aircraft (Bureau of 

Transportation Statistics, 2007). Fuel price and distance are left as variables to facilitate a 

parametric analysis of the two variables in the following section. The equations for 

operating cost per passenger are shown in the latter part of Table 2.2. The values in Table 

2.2 are categorized by their coefficient: fuel price ( ), distance multiplied by fuel price 

(   ), distance ( ), and a fixed value per flight. 

Table 2.2 Operating cost equations, total and per passenger. 

 Coefficient Value 

Aircraft 

Category 

Fuel Price 

    

 Distance   Fuel 

Price       

Distance 

    
Fixed 

Per Operation 

Narrow Body 2.7*10
2
 2.1 2.6 1.3*10

3
 

Regional Jet 1.9*10
2
 1.9 1.2 5.9*10

2
 

Turboprop 4.5*10
1
 6.5*10

-1
 3.8 3.7*10

2
 

Per Passenger 

Narrow Body 2.5 2.0*10
-2

 2.5*10
-2

 1.2*10
1
 

Regional Jet 5.6 5.7*10
-2

 3.6*10
-2

 1.8*10
1
 

Turboprop 8.1*10
-1

 1.2*10
-2

 7.0*10
-2

 6.6 

 

When the values in Table 2.2 are considered on a per operation basis, the turboprop 

exhibits a lower fixed cost and a lower cost that varies with fuel consumption than the jet 

aircraft. However, the cost that varies with distance alone is higher for the turboprop, due 

to greater variable travel time. The two jet aircraft have similar costs, yet their constants 

are greatly different due to the difference in airport-related costs and fixed travel time. 

When costs are considered on a per passenger basis the regional jet has consistently 

higher values than the narrow body. The lower seat capacity of the regional jet means 

costs are spread among fewer passengers. The costs that vary with distance alone are still 

highest for the turboprop, and therefore, while all other costs are lower, distance appears 

to be the factor which will constrain the turboprop from offering the lower costs. We now 

explore how these differences translate into the minimum cost homogenous vehicle fleet 

based on operating cost.  

 

2.2.2 Parametric Operating Cost Comparison 

We use the operating cost functions in Table 2.2 to compare the costs of the three aircraft 

models over a range of distances and fuel prices. Difference in operating cost per 
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passenger for two pairs of aircraft, the regional jet and the turboprop and the narrow body 

and the turboprop, are compared using contour curves representing a percent difference 

in operating cost. The calculations of percent difference in operating cost are done for 

varying distance and fuel price. Such a procedure allows for simple identification of the 

combinations of fuel price and distance for which a given aircraft has a cost advantage. In 

each chart, the middle dashed line represents the two aircraft being compared having an 

equal operating cost per passenger. The region under the middle dashed line represents 

the fuel price-stage length region where a turboprop has a lower cost per passenger; the 

region above the middle dashed line represents the fuel price-stage length region where 

the jet aircraft being compared has a lower cost per passenger. The percentage labels are 

based on the jet aircraft in comparison to the turboprop: 20% means the jet has a 20% 

higher operating cost than the turboprop, while -20% means the jet has a 20% lower 

operating cost than the turboprop.  

 

A fuel price and distance combination (for distances under-1000 miles) for which the 

regional jet has a lower or equal operating cost per passenger compared with the 

turboprop does not exist because the regional jet has a higher operating cost per 

passenger than the turboprop for all fuel prices and stage lengths. Therefore, Figure 2.1 

shows a contour plot for the regional jet and turboprop comparison with two curves, one 

for where the regional jet has a 50% higher operating cost per passenger than the 

turboprop, and the other for 30% higher. This is atypical because the regional jet 

consistently has a higher operating cost per passenger due to the higher per passenger fuel 

consumption and fixed block time for the regional jet.  

 

The figure also shows a contour plot for the narrow body and turboprop comparison. In 

this case, there are fuel price and distance combinations for which the two aircraft models 

have an equal operating cost. This equal operating cost curve exists in the sub-1000 mile 

distance region for fuel prices up to $4.00/gallon. The curves above and below the zero 

percent difference curve represent the narrow body holding a 20% higher and lower 

operating cost compared with the turboprop, respectively. The narrow body has a 20% 

higher operating cost per passenger than the turboprop for all stage lengths up to 1000 

miles when the fuel price equals levels seen in the summer of 2008, $4.30/gallon. At a 

price of $2.00/gallon, the situation is significantly different, with the narrow body jet 

having a lower cost per passenger than the turboprop for stage lengths greater than 300 

miles. As anticipated, the turboprop is very cost competitive over short distances because 

of the lower fixed and larger variable costs with distance.  
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Figure 2.1 Percent difference operating cost per passenger contour curve for regional jet and 

turboprop comparison and narrow body and turboprop comparison.  

There are additional factors beyond operating cost to be considered when comparing 

aircraft economics. 

 

2.3 Passenger Cost Model 

We now consider the passenger cost component of the total logistics function,  , 

described in section 2.1. The cost of flying time for each aircraft type is the flying time 

function multiplied by a passenger value of time,    in (2.10), to produce a cost per time-

passenger. The willingness to pay not to travel on a turboprop,  , incorporates the 

perceived negatives of flying on a turboprop, including increased passenger noise and 

potential safety concerns. Estimates for the passenger disutility of traveling on a 

turboprop and the cost of travel time can be found in Adler et al. (2005). The authors also 

find that business travelers are 43% of the population with the remaining 57% non-

business. The value of flying time and disutility for turboprop travel were estimated 

separately for both groups using a mixed logit model. The weighted average of these 

values finds values of $47.75/hour-passenger for travel time and $29.17/operation-

passenger for the disutility of turboprop service. 

 

The disutility of turboprop travel and the value of passenger flying time costs are 

included in the operating cost equations to produce a combined total logistics cost of 

aircraft operation. The operating and passenger cost per operation and per passenger 

equations are defined in Table 2.3. 
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The turboprop continues to exhibit the lowest costs that vary with fuel price (and distance 

multiplied by fuel price) on a cost per passenger basis. However, the turboprop disutility 

which is a fixed cost per operation, and flying time which varies with distance make the 

turboprop less advantageous in comparison to the operating cost results presented in 

Table 2.2. Turboprops have a slower flying time and an added disutility per passenger per 

operation which is reflected in the relative increase in costs compared with Table 2.2. The 

inclusion of passenger costs will further limit the range for which the turboprop offers the 

lowest cost.  

Table 2.3 Operating and passenger cost equations, total and per passenger. 

 Coefficient Value 

Aircraft 

Category 

Fuel Price 

     

Distance   Fuel 

Price       

Distance 

     
Fixed 

Per Operation 

Narrow Body 2.7*10
2
 2.1 1.3*10

1
 4.6*10

3
 

Regional Jet 1.9*10
2
 1.9 4.2 1.8*10

3
 

Turboprop 4.5*10
1
 6.5*10

-1
 1.7*10

1
 2.8*10

3
 

Per Passenger 

Narrow Body 2.5 2.0*10
-2

 1.2*10
-1

 4.4*10
1
 

Regional Jet 5.6 5.7*10
-2

 1.3*10
-1

 5.3*10
1
 

Turboprop 8.1*10
-1

 1.2*10
-2

 3.0*10
-1

 5.1*10
1
 

 

2.3.1 Parametric Operating and Passenger Cost Analysis 

Similarly to the contour plots in Figure 2.1, Figure 2.2 displays percent different contours 

for total logistics cost for the two aircraft comparison pairs. When passenger costs are 

introduced, a zero percent difference contour emerges between the regional jet and 

turboprop in the fuel price – distance space between $1.50/gallon and 100 miles and 

$3.50/gallon and 1000 miles. At $3.00/gallon, the regional jet has a lower cost for stage 

lengths greater than 400 miles, an increase of $0.50/gallon leads regional jets have a 

higher total cost per passenger for all stage lengths up 1000 miles. In short, fuel price 

peaks similar to the 2007-2008 run-up in fuel prices completely alter the competitive 

balance between regional jets and turboprops in the under-1000 mile market. 

 

The lower section of Figure 2.2 presents a similar analysis for narrow body jet and 

turboprops. Narrow body jets have a lower total cost per passenger than the turboprop for 

all distances and fuel prices up to $4.00/gallon. The zero percent difference contour curve 

does not extend to stage lengths over 400 miles, even at fuel prices as high as 

$15.00/gallon. It is clear from the operating and total cost fleet comparisons that the 

comparative advantage of narrow body jets over turboprops is strongly dependent on the 

monetization of passenger costs. Considering this total logistics cost, narrow body jets 

have a lower cost per passenger compared to turboprops under a wide range of fuel prices 

and distances. When only operating costs are considered, narrow body jets have a higher 
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operating cost per passenger when compared with turboprops for fuel costs above 

$4.00/gallon.  

 

 
Figure 2.2 Percent difference in total cost per passenger contour curve for regional jet and 

turboprop and narrow body and turboprop comparison.  

2.3.2 Value of Frequency  

The inclusion of frequency highlights the difference in operating aircraft with a wide 

range of seat capacities. The range of seating capacities means that a fixed number of 

passengers can be served by a different number of flights depending on the fleet 

selection. As passengers place value on the difference between desired arrival time and 

actual arrival time, the frequency of service is included into passenger costs. The value of 

the difference between a passenger‘s desired arrival time and actual arrival time, termed 

schedule delay, is estimated by Adler et al. (2005). Passenger value of frequency is 

captured through passenger willingness to pay for flights of varying flight times around 

the desired time and is denoted    in (2.11). Delays in either direction (early or late) were 

considered to be equally onerous.  

 

To capture the impact of providing more frequent service a relationship between 

frequency and schedule delay must be identified. Abrahams (1983) reviews a relationship 

developed by Eriksen (1978) for schedule delay based on flight frequency. The equation 

was estimated to account for schedule peaking and does not assume that flights are 

uniformly distributed in time. Equation (2.13) shows the schedule delay function for a 

given route, termed    ) in (2.12), in hours developed by (Eriksen, 1978). The equation 

for flight frequency (2.12) is determined by    the passenger flow per day between a 

given origin and destination per day, the seat capacity of aircraft type   (𝑠 ), and the load 
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factor ( ). The schedule delay determined from these variables is multiplied by the 

weighted average of schedule penalties for both business and non-business travelers (   , 

which is $15.77/hour (Adler et al., 2005). As the result (2.13) of does not depend on 

distance or fuel price, the new cost equations only differ from those previously defined 

by a constant. The constant term varies with market density; five representative market 

densities are chosen for analysis purposes. 

                (2.13)   

The zero percent difference contour curves between aircraft pairs after the introduction of 

schedule delay are shown for a range of market densities in Figure 2.3. The area under 

each curve represents the fuel price – distance space where the turboprop has the lower 

cost per passenger.  

 

When the turboprop is compared with the regional jet, increasing market density 

increases the fuel price – distance space where the turboprop offers a lower cost per 

passenger. Because the regional jet has a smaller seat capacity, its use necessitates more 

frequent service than the turboprop. At lower market densities, the schedule delay 

incurred by the regional jet is lower compared with the turboprop due to this more 

frequent service. As market density increases, the discrepancy in schedule delay is 

decreased, and the difference is overtaken by the higher operating cost of the regional jet. 

The highest fuel price in the upper half of Figure 2.3 is $3.50, which indicates that even 

after the introduction of schedule delay, the regional jet still offers a higher cost per 

passenger for a range of fuel prices, including those seen in the summer of 2008.  

 

The narrow body jet and the turboprop (lower half of Figure 2.3) exhibit a reverse 

relationship regarding market densities and cost per passenger than the regional jet and 

turboprop. Because the narrow body has almost twice the seats of a turboprop, it serves 

the same market density with less frequent service, increasing the schedule delayed 

incurred from using this aircraft. As market density increases, the cost impact of schedule 

delay decreases, and the fuel price – distance space where a turboprop offers a lower cost 

per passenger shrinks and tends toward higher fuel prices. Most of the market density 

curves begin at fuel prices of $4.60 to $7.60/gallon. At the highest fuel price shown, 

$14.80/gallon, the curves terminate at stage lengths between 400 and 600 miles. For a 

wide range of fuel prices and stage lengths, the narrow body exhibits a lower cost per seat 

despite higher schedule delays. 
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Figure 2.3 Zero percent difference total cost including schedule delay per passenger contour 

curve for regional jet and turboprop, and narrow body and turboprop comparison.  

The inclusion of schedule delay has finalized the fuel price – distance space where the 

turboprop has a lower cost per passenger.  

 

2.4 Market Penetration Analysis 

Here we put the minimum cost aircraft type analysis in the context of actual operations 

and passengers moved. We use data from the T100 Database collected by the Department 

of Transportation Bureau of Transportation Statistics. Each record corresponds to a 

service segment s, defined by an airport pair p(s), airline a(s), and aircraft type i(s), and 

specifies the number of monthly passengers flown z(s) for April 2008.5 Thus each s 

corresponds to a (d(s), z(s)) pair, where d(s) is the distance between airport pair p(s). For 

                                                 
5 
Only segments under 1000 miles were collected to stay consistent with the study scope. Any 

segments flown less than 30 times in that month, or flights solely for freight were eliminated, as 

were those flown less than 40 miles. The aircraft type notation i(s) may encompass more than the 

three types introduced in Section 3, whereas the aircraft type i is restricted to the three study 

types.  
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each (d(s), z(s)) pair, the Li (f,   , d, q,  ) is calculated  i (turboprop, regional jet, narrow 

body   i) for a range of fuel prices f. Let MPR(s, f) be an indicator function equal to 1 if 

the turboprop (PR) is the aircraft type for which Li (f,   , d, q,  ) = min Li (f,   , d, q,  )  i 

and equal to zero otherwise. For each f the fraction of passengers carried per day who 

would be served at the minimum cost on a turboprop at a given fuel price, 

   𝑠       𝑠       𝑠  , is calculated. In addition to this aircraft comparison across 

all three aircraft types, the same method is used to compare the turboprop with each jet 

aircraft type individually.  

 

Figure 2.4 shows    𝑠       𝑠       𝑠       , the fraction of passengers on a 

representative day for each fuel price where the turboprop has a lower operating plus 

passenger cost (total cost hereafter) per passenger compared with the regional jet or the 

narrow body. Compared with the regional jet, at fuel prices under $2.00/gallon, the share 

of passengers transported where the turboprop has the lower total cost per passenger does 

not pass 5%. However, this share increases rapidly as fuel prices surpass $2.00/gallon; at 

a fuel price of $4.00/gallon almost 90% of passengers flown per day could be carried 

with a lower total cost per passenger on a turboprop compared with the regional jet. 

When considering the comparison between the turboprop and narrow body, at fuel prices 

under $2.00/gallon, the fraction of passengers which could be carried on a turboprop with 

less total cost per passenger than the narrow body is 20%. As fuel prices increase, the 

fraction increases slowly, ultimately reaching 80% at $15.00/gallon.  

 
Figure 2.4 Potential fraction of passengers served by a turboprop with the lowest total cost 

per passenger compared with a regional jet and a narrow body.  

Beyond the aircraft pair comparisons shown in Figure 2.4, a comparison between the 

three aircraft (Figure 2.5) gives an overall picture of the fraction of passengers that can be 

served on a turboprop at the minimum total cost per passenger. This fraction begins at 

one percent for a fuel price of $2.00/gallon, increases to 10% at a fuel price of 

$4.00/gallon, and reaches 80% at $15.00/gallon. As the slope between $3.00/gallon and 

$5.50/gallon is the steepest slope in Figure 2.5, a carbon tax instituted on fuel prices in 

this will range yield the largest percent increase in the fraction of passengers that can be 

served on a turboprop at the minimum total cost per passenger. For example, for fuel 
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prices of $4.00/gallon plus a $1.00/gallon carbon tax, the percent of passengers carried 

for the least cost on a turboprop would jump from 10% to 20%.  

 
Figure 2.5 Potential fraction of passengers served on a turboprop for the lowest comparative 

total cost per passenger.  

2.5 Conclusions  

This analysis shows that the determination of minimum cost aircraft operations over 

distances of 1000 miles or less is highly sensitive to fuel prices and passenger costs. The 

results of this study show that the popularity of regional jets is due to their relatively low 

passenger costs when compared with turboprops, and the popularity of narrow body jets 

is due to their ability to balance operating and passenger costs when fuel prices are below 

those commonly seen during the study period. We have seen that in 2007 turboprops 

made up less than 5% of the sum of turboprops, regional jets, and narrow body jets, down 

from 20% in 1996. Our results show that increasing fuel prices could reverse the trend of 

regional jets replacing turboprops in short haul markets. While aircraft adoption and 

deployment decisions are made for a variety of reasons, this study shows that high fuel 

costs can overshadow the importance of passenger costs. The inclusion of other costs 

based on fuel consumption, such as environmental costs, would tip the advantage to the 

turboprop. Such a finding allows for the consideration of additional taxes, such as carbon 

taxes, to encourage airline fleet selection to consider environmental and fuel preservation. 
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3.

 

The Impact of Fuel Price on Jet Aircraft 

Operating Costs  
 

In this chapter, we perform statistical cost estimation to investigate the relationship 

between aircraft operating cost and fuel price. Toward this end, we develop empirical jet 

aircraft operating cost models using published airline data. The most complicated of these 

models, the translog, provides the most complete representation of the empirical 

relationship between fuel cost and operating cost, allowing for substitution, scale, aircraft 

age, and other effects – including interactions – to be captured. The simpler models 

(Leontief and linear models) are more transparent, require fewer inputs, and allow the 

contribution of a single factor, such as fuel price, to operating cost to be more easily 

isolated. The development of multiple models and comparison of their predictions allows 

us to investigate the importance of the effects the translog uniquely captures, and thus to 

assess the tradeoffs between using a complicated but flexible cost model and a simpler 

but highly restrictive one in the subsequent research. 

 

The models developed in this chapter follow a large body of literature in empirical 

aircraft cost modeling, well described by Wei and Hansen (2003), that includes Caves et 

al., (1984), Hansen et al. (2001), and more recently Chau et al. (2005). Wei and Hansen 

(2003) develop a translog econometric operating cost model for jet aircraft allowing for 

variable aircraft size at the airline-aircraft level. The authors find that, keeping all inputs 

constant, there exists a unique aircraft size that minimizes operating cost. This finding 

supports the concept that schedule delay is not the only driver of aircraft size, but rather 

there are cost efficiencies in operating smaller aircraft. The authors also find that if pilot 

salaries are considered endogenous, the aircraft size that minimizes operating cost is 

significantly smaller than if pilot salaries are exogenous. In this chapter, we seek to both 

update and improve upon the model of Wei and Hansen (2003) and to consider in more 

detail the effect of fuel price. In improving the model, we use econometric methods that 

account for correlation across airlines, aircraft, and time. We also estimate on a larger and 

more up-to-date data set, which includes a broader range of aircraft types and explanatory 

variables. Our dataset includes aircraft sizes from regional to heavy jets. We also 

consider additional explanatory variables, such as aircraft age.  

 

The translog functional form allows for detailed analysis on the interactions between the 

drivers of operating cost. It can also be used to model the impact of fuel price on the 

aircraft size that minimizes operating cost; however, the detailed nature of the translog 

model (hereafter, TM) makes it challenging to minimize a more complete function of 

costs, such as a total logistics cost function. As in subsequent chapters we will be looking 
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to minimize a total logistics cost function, we develop operating cost models with more 

simple functional forms than the translog model and compare the results. The first model 

with a simple functional form considers aircraft to be Leontief technologies. These 

functions are developed in the previous chapter to study aircraft comparative costs under 

fuel price uncertainty. Hereafter we will refer to such a model as a Leontief Model, or 

LM for short. The second is a linear operating cost model based on the same dataset as 

the translog operating cost model.   

 

Leontief technology cost models assume that inputs of a cost model, such as labor, fuel, 

and materials, must be used in fixed proportions regardless of their prices. Because the 

inputs are assumed to be in fixed proportions, these models are specific to an aircraft 

type. This produces a set of models rather than a single, generalized model. However, as 

there is currently a wide range of aircraft types, of varying size, on the market, it is 

appropriate to consider aircraft size as a continuous variable.6 In an attempt to generalize 

aircraft cost models that are not specific to an aircraft type but retain the simplicity of 

Leontief models, Swan and Adler (2006) develop two jet aircraft operating cost models 

using Boeing and Airbus aircraft data. One is for single aisle aircraft while the other is for 

double aisle aircraft. Limiting the data source to these two airframe manufacturers 

implicitly limits the aircraft types considered to mid-size and large aircraft. Furthermore, 

as the model is based on aircraft size and distance traveled, it is not able to capture cost 

changes due to economic forces such as fuel price changes. In this study a third operating 

cost model is developed, a simple econometric model with a linear functional form, to 

represent operating cost relationships in a more simple way while allowing aircraft size to 

vary continuously. The comparison of the Leontief model and the linear model to the 

translog operating cost model sheds light on the importance of capturing the factor 

substitution of inputs and other effects in predicting operating costs.  

 

The remainder of this chapter is organized as follows: The following section reviews the 

data collected for the development of the translog model and the modeling approach. 

Regularity conditions of the estimated TM are explored, and coefficient estimates are 

presented and interpreted based on the objective of the study. In the following section, 

predictions from the translog model and LM are compared. Finally, we present estimation 

results for linear model that allows for variable vehicle size while retaining the simple 

form of an LM, and compare the linear model with the translog.  

 

3.1 Translog Operating Cost Model  

The operating cost per operation (O) function has the form:   

 O = f( ,     ,    ) (3.1) M 

where   is a vector of input prices including fuel price;   is a vector of airline-aircraft 

outputs–specifically average seat capacity and segment length;   is the value capturing 

the time in year-quarter;   is the vector of airline designations; and   is the vector of 

aircraft age variables. Along with the fuel price, the vector   includes measures for pilot 

                                                 
5 This was not always the case. Viton (1986) expresses an interest in modeling costs with aircraft size as a continuous variable yet 

cites the limited aircraft sizes available during the study period as reason to perform an aircraft specific analysis.   
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cost and materials cost. The vector   includes the seat capacity per operation and average 

stage length per operation. While   and   are essential arguments of the operating cost 

function, this study will focus on the variation of operating cost with fuel price (fuel) and 

seats per operation (seat). The vector   includes variables to measure the age of the 

aircraft, the length of time an airline has been operating a certain aircraft model, and the 

number of hours operated in a quarter per airline per aircraft. The value q is one of a set 

of ordinal values signifying year-quarter values. We denote airlines by   and aircraft by 

n, such that each observation has a unique combination of  , n, and q. We capture airline 

fixed effects with  , where c = 1 if the observation is for airline i, 0 otherwise.  

 

The model specification used is a translog model to estimate the operating cost per 

departure (Ocnq). The translog model is widely used in cost modeling (for example, Wei 

and Hansen, 2003; Caves et al., 1984; Hansen et al., 2001); as a second order Taylor 

series expansion, it is able to approximate many different model specifications.  

                
 

          
 

 
          

 

 

        
 

 
  

 

 
       

   
    

 

 
      

 

 
 

 
     

   
      

 

 
      

 

          
 

    
    

 

      
   

      
 

 
      

 

            
 

    
    

 

      
   

      
 

 
    

 
      

(3.2)   

Where  

i,j index elements in p, z,  , or c 

                                      are coefficients to be estimated  

 

3.2 Data for Operating Cost Model 

To estimate the operating cost model in (3.2), data from the US Department of 

Transportation (DOT) Form 41 are collected. Form 41 provides quarterly cost data and 

operating statistics per airline and per aircraft type. The dataset includes a large set of 

explanatory variables and a date range from 1996-2006 inclusive. Data for 26 airlines (c) 

(network, regional, and low cost) that operated jet aircraft during the study period were 

collected (Appendix A1.1). Across the airlines there were 23 unique jet aircraft types (n) 

operated (Appendix A1.1) in this period. The panel data used in this model has airline-

aircraft designators in vector   over a set of year-quarters ( ). Because the set of   values 

represented in the data vary across q, the panel is unbalanced. The total number of 

observations is 1657 covering 66 unique aircraft-airline combinations. The dependent and 
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independent variables are presented in Table 3.1, and procedures for calculating these 

variables are discussed below. 

Table 3.1 Variables of the operating cost model. 

Vector 
Variable  

Label 
Variable 

Name 

Variable 

Units 

Variable description (specific to 

aircraft-airline pair, year-quarter ) 

 
O 

Operating 

cost 
$/Departure Direct operating cost per departure 

  

seat Seats  
Seats/ 

Departure 

Average aircraft seat capacity per 

departure  

asl 
Average 

stage length  

Miles/ 

Departure 

Average stage length traveled per 

departure  

   

pilot 
Pilot unit 

price 

$/            

Block Hour 

Ratio of pilot and copilot salaries to 

the amount of block hours  

fuel Fuel price  $/Gallon 
Ratio of the amount spent on fuel to 

the amount consumed 

ppi 
Materials 

price 
Unitless 

Producer price index, proxy for 

materials price 

  

util Utilization  
Hours/ 

Quarter 

Number of hours an aircraft is 

operated in a quarter 

aage 
Airline-

Aircraft age 
Years 

Number of years an airline operates a 

particular aircraft model 

tage 
Technology 

age 
Years 

Time elapsed since the first year of 

entry in service across domestic 

airlines for a specific aircraft type 

 

The input prices and the independent variable, operating cost per operation (    ), are 

collected from US DOT Data in Form 41 Schedule P-5.2. Ownership costs related to 

depreciation and rentals were eliminated from this total to capture direct operational costs 

only. The data collected to develop input prices includes expenditures on aircraft fuels 

and pilots and copilots salaries. Aircraft operating statistics are collected from Form 41 

Schedule P05B.7 These statistics, collected for scheduled and non-scheduled service, 

include gallons of fuel used; available seat miles; revenue aircraft miles; departures 

performed; and block hours, or the sum of actual hours an aircraft spends from gate to 

gate. From these prices and statistics, the unit price of fuel and pilots, the average stage 

length, and seat capacity are derived.8 

 

                                                 
7 
It is important to note that aircraft fuels is the actual cost of the fuel, without fuel taxes, any additional 

costs for the act of fueling the aircraft, or other charges. It is not the total cost related to fuel consumption, 

but rather the actual cost of fuel. The fuel tax exclusion has little impact as the tax on commercial aviation 

fuel was constant and minimal through at the study period at $0.044/gallon. 
8 
Many airlines operate identical aircraft types with different seat capacities determined by their business 

models. For example, a network carrier looking to lure business passengers may operate an aircraft with 

fewer seats and more differentiated service classes, while a low cost carrier may use a one-class 

configuration. To exclude any cost impacts to operating different configurations of the same aircraft, each 

aircraft type is assigned the weighted average seat capacity for that aircraft type. 
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Data on aircraft age and utilization are collected from Form 41, Schedule B-43, which 

includes the total number of each aircraft model in service per airline per year, and the 

year in which the airline began to operate that aircraft model. The utilization (util) 

variable is derived from these statistics, as well as the number of years an airline operates 

a particular aircraft model (aage). Collected from the aircraft manufacturers is the first 

year of entry in service across domestic airlines for a specific aircraft type; these data are 

used to calculate the technology age (tage) of the aircraft, or the time elapsed between the 

earliest entry year in domestic service of an aircraft type and 2006. 

 

To capture the materials price, the Producer Price Index is collected from the Bureau of 

Labor Statistics; a similar method is employed in the work of Caves et al. (1984) as well 

as Hansen et al. (2001) to develop airline cost functions. Instead of converting costs and 

prices for each year of data into constant dollars, this study follows Hansen et al. (2001) 

and uses the Producer Price Index as both a proxy for materials cost and a gauge of 

changes in inflation. Furthermore, as the third factor price in the set with labor and fuel, it 

acts as a ―catch-all‖ term such that all non-fuel and non-pilot and copilot costs are 

captured by the producer price. The PPI is entered into the model to capture the cost of 

maintenance materials, but as a ―catch-all,‖ it also captures maintenance labor costs, 

which does not have a direct relationship with materials price.  

 

Table 3.2 includes the summary statistics for each independent variable, including the 

mean, median, standard deviation, and maximum and minimum values. 

Table 3.2 Summary statistics of variables in the operating cost model. 

  Mean 

Standard 

Deviation Median Minimum Maximum 

Seats  155.79 59.81 148.15 49.02 359.75 

Average stage length  1055.37 467.30 1057.59 125.11 2686.33 

Pilot price 419.56 165.04 414.87 11.02 1169.35 

Fuel price  1.07 0.53 0.84 0.35 2.56 

Utilization  803.06 227.63 835.30 13.87 1395.13 

Materials price 1.56 0.18 1.61 1.19 1.83 

Airline-Aircraft age 7.13 4.54 6.21 1.00 23.09 

Technology age 15.60 6.14 17.00 2.00 24.00 
 

3.3 Operating Cost Model Estimation  

Following the model definition and the data description, the translog operating cost 

model is estimated in this section. The data are demeaned such that the dependent 

variable and the independent variables are estimated about the mean values in the dataset. 

The process of demeaning ensures the resulting first order coefficients estimates are equal 

to the elasticities. At the sample mean, the elasticity of the operating cost respect to factor 

price i is   , the first order coefficient of factor price i. Therefore, the process of 

demeaning the data enables straightforward interpretations of the results: the effect at the 

sample mean of each independent variable is the parameter estimate.  
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To properly estimate the model in equation (3.1), we must take into account that the data 

form an unbalanced panel. The data is a panel of airline-aircraft pairs, and it is possible 

that different airline-aircraft pairs have different error variances. To test for the presence 

of heteroskedasticity, we test the null hypothesis of homoskedasticity against the 

alternative hypothesis that the residual variances depend on two key independent 

variables: fuel price, seat capacity, or both variables. The Breusch-Pagan, Cook-Weisberg 

test for heteroskedasticity finds p-values for both variables to be zero, which leads to a 

rejection of the null hypothesis and necessitates correction for heteroskedasticity. 

Furthermore, we expect to see autocorrelation; because the data is in a time series, we 

expect the error terms of a particular airline-aircraft pair to be correlated over time.  

Using the Wooldridge test for autocorrelation, we reject the null hypothesis that it is not 

present and therefore must include a correction in the model for autocorrelation. To 

estimate the model, we use ordinary least squares with panel-corrected standard error 

estimates and assuming first-order autocorrelation within panels.   

 

We estimate the full model, termed model 1, on the full set of variables (3.1). We also 

estimate model 2, in which coefficients that do not have statistical significance at least at 

the 10% level in model 1 are eliminated. Estimation results for both models are shown in 

Appendix A1.2. The coefficient estimates generally have the expected signs and most are 

significant at the five or one percent level. Prior to discussing estimation results, we first 

assess the conformance of the estimated model to regularity conditions. 

 

3.3.1 Regularity Conditions 

According to Diewert and Wales (1987), a translog cost function should satisfy certain 

regularity conditions. These regularity conditions ensure that a cost function is consistent 

with cost minimization. The five necessary regularity conditions are reviewed in Chua 

(2005); like Diewert and Wales (1987), we will focus on two conditions here. The first is 

that the cost function is linearly homogeneous; if all input prices,      , are scaled by the 

same proportion, the cost function will be similarly scaled by the same proportion. The 

second condition is that the cost function is concave in the input prices   , such that the 

matrix of second derivatives is negative semidefinite. This is expected because as an 

input price increases, a cost-minimizing production process would substitute away from 

that input.  

 

Before exploring linear homogeneity and concavity in input prices, we consider their 

relevance in our setting. The conditions are necessary if the decision-making unit, in our 

case an airline-aircraft pair, is a cost-minimizing unit. In much the cost literature 

reviewed in this chapter (for example, Caves et al. (1984) and Hansen et al. (2001)), the 

decision-making unit is at the airline level. It is clear that at the airline level that cost 

minimization is a valid assumption, as an airline is at the firm level. However, it is less 

clear that an airline-aircraft pair is a cost-minimizing unit. To consider this, we explore a 

possible scenario where an increase in cost for a particular airline-aircraft pair could lead 

to a decrease in costs for an airline. It is possible that a coupling of processes for different 

aircraft types could result in such a phenomenon. For example, standardization of a 

particular maintenance process across aircraft models could increase costs for one aircraft 
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model but decreases costs for all others, thus leading to a violation of the cost-minimizing 

assumption at the aircraft type level. In this instance, one particular aircraft model could 

experience an increase in the use of an input with an increase in factor price.  

 

Because we are not certain if the assumption of cost-minimization must hold for our 

airline-aircraft level model, we do not impose regularity condition constraints. The 

practice of constraining an airline-level operating cost model to exhibit linear 

homogeneity is widespread in the empirical literature, for example, Caves et al. (1984), 

Hansen et al. (2001) and the recent work of Zou and Hansen (2010). Empirical studies 

that constrain an airline operating cost model to exhibit concavity in input prices are 

limited, and include the work of Chua et al., (2005). Instead of imposing constraints on 

either condition, we investigate how well our unconstrained airline-aircraft operating cost 

model conforms to these conditions.  

 

Linear Homogeneity  

Diewert and Wales (1987) discuss that a model exhibits linear homogeneity if the 

conditions in equation (3.3) and equation (3.4) hold. Equations (3.3) and (3.4) ensure that 

a proportionate increase in all factor prices produces a similar increase in operating cost; 

for example, a 10% increase in all factor price leads to a 10% increase in operating costs. 

Equation (3.3) states that the first order coefficients for the factor prices sum to one. 

Together with the condition in (3.4) that the second order coefficients involving factor 

price must add to zero, scaling factor prices by k will lead to a proportional increase in 

operating costs. 

   
 

   (3.3)   

    
 

     
 

     
 

     
 

          (3.4)   

Table 3.3 shows the results of calculating equation (3.3) and equation (3.4) for model 1 

and model 2 for the second order coefficients that include     
 . This is calculated for 

constant j and     𝑢    𝑎𝑡   𝑎 𝑠  𝑎    .   

 

The equation (3.3) holds approximately for both models. We see that the condition from 

equation (3.4) nearly holds for             and most combinations of      , but does 

not hold for the second order coefficient on fuel price. The interpretation is, at the sample 

means, a factor price increase of k will lead to a proportional increase in operating cost. 

However, at values other than the sample mean, the function will not strictly exhibit 

linear homogeneity, such that a factor price increase of k may lead operating costs to 

increase by more or less than k. The behavior of operating cost with respect to a factor 

price increase is therefore data dependent and cannot be stated generally for the cost 

function.  

  



38 

 

Table 3.3 Linear homogeneity regularity conditions calculation. 

Term Coefficient Sum   Model 1 Model 2 

        1.006 1.121 

       
   

    
 

 
      

 
        

Fuel  -0.541 -0.279 

Materials 0.161 -0.316 

Pilot -0.050 -0.054 

     
   

      
 

 
      

 
        

Fuel  0.032 0.127 

Materials 0.304 0 

Pilot -0.118 -0.097 

           
 

    
    

 
        

Fuel  -0.013 -0.016 

Materials 0.046 0.044 

Pilot 0.018 0.012 

 

Concavity  
The cost function must be concave in prices, such that, as an input price increases, less of 

that input is employed. It is known that concavity in prices holds if and only if the 

Hessian matrix of the cost function is negative semidefinite. This is clearly a data-

dependent property, as the second order derivative depends on the data. As described by 

Diewert and Wales (1987), the Hessian (H) matrix of second derivatives is equal to:   

    𝑠  𝑠𝑠  (3.5)   

A is the matrix of factor price coefficients:     

         

         

         

 . s is the share vector, 

𝑠   𝑠 𝑠 𝑠   . Each component of the share vector, 𝑠 , is 𝑠  
    

 
, where    is the 

factor price of i, 𝑥  is the quantity of that factor used (per departure), and   is the 

operating cost per departure, all for a cnq combination. The values of 𝑥  for fuel and labor 

are captured directly from each observation; the value of 𝑥  for materials is captured as 

the operating cost minus the fuel and pilot labor costs, as it is a ―catch-all‖ for materials 

price and labor. The matrix 𝑠  is a diagonal matrix with the shares on the diagonal. We 

have three input prices, fuel (f), materials price (m), and pilot cost (l, for labor), such that 

         . The resulting Hessian matrix (H) is: 

   

    𝑠  𝑠 
     𝑠 𝑠     𝑠 𝑠 

    𝑠 𝑠     𝑠  𝑠 
     𝑠 𝑠 

    𝑠 𝑠     𝑠 𝑠     𝑠  𝑠 
 

  (3.6)   

 

As we have two models, we have two values for A, A1 for model 1 and A2 for model 2.  
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As H is data dependent, we have a value or H for each of the 1657 observations. For each 

observation, we calculate the share vector and determine if the H matrix is negative 

semidefinite. For model 1, we find there are no observations with a negative semidefinite 

Hessian matrix; for model 2, this result improved to 37.4% of observations with a 

negative semidefinite Hessian matrix. While the results yield low percentages, they are 

consistent with the literature. In developing an empirical cost model to explore the cost 

implications of airline alliances, Chua et al. (2005) find concavity with respect to input 

prices in 39.3% of their observations. Caves et al. (1984) find that 50% of the 

observations yield a negative semidefinite Hessian matrix. While Caves et al. (1984) find 

that the observations that do not conform generally fall in extreme data ranges, we do not 

find that in our study.  

 

Chua et al. (2005) discuss that the majority of transportation literature in which an 

empirical operating cost model is developed do not constrain the Hessian to be negative 

semi-definite; in a departure from the literature, the authors develop a separate set of 

estimates with a concavity constraint. The authors find that the 39.3% of observations 

that exhibit concavity in input prices increases to 83.1% with the constraint. This puts in 

perspective the 37.4% found in this study and the 39.3% found using the unconstrained 

model in Chua et al. (2005). 

 

In light of the failure of both models developed in this study to exhibit concavity in input 

prices, we focus on the individual input prices. We investigate if the second derivative of 

each input price is negative for all data points, such that, as the input price increases, the 

quantity of that input used is decreased. We do this by calculating the functions on the 

diagonal of the Hessian matrix, which are the second derivatives of operating cost with 

respect to each factor price i,     𝑠  𝑠 
 . The percent of data points for which 

    𝑠  𝑠 
    is reported in Table 3.4.  

Table 3.4 Negative second derivatives (%) with respect to factor prices. 

Factor Price Model 1 Model 2 

Fuel  96.3% 99.5% 

Materials 0% 100% 

Pilot 99.5% 99.5% 

 

We see that the key variable in this study, fuel price, along with pilot price, has 

consistently high percentages of negative second derivatives across models. The results 

suggest that aircraft operations exhibit the expected behavior of substituting away from 

inputs whose prices increase; in practice, this substitution is limited to clear operational 

needs and requirements. We notice that materials price exhibits starkly different results 

from model 1 to model 2. The second order coefficient on materials price is statistically 

insignificant in model 1, and as such, it is eliminated from model 2. Therefore the 

relevant entry in the Hessian matrix for model 2 is simply 𝑠 
  𝑠 ; as 𝑠   ,  

𝑠 
  𝑠   . The inconsistent behavior and the statistical insignificance may be related 

to PPI acting as a ―catch-all‖ variable, and therefore does not have a direct relationship 

with maintenance labor costs. It is possible that materials price in the form of PPI should 
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be further decomposed to more accurately capture the difference between maintenance 

materials and maintenance labor. 

 

In summary, we find in this section that our models do not strictly adhere to the regularity 

conditions set forth by Diewert and Wales (1987). However, we also discuss potential 

reasons why regularity conditions based on an assumption of cost-minimizing behavior 

do not fully apply to the model. Moreover, we confirm that operating cost is concave in 

the key variable of fuel price. In light of this we conclude that the estimated model is 

credible and therefore proceed to interpreting the estimation results. 

 

3.3.2 Interpretation of TM Results  

Table 3.5 contains select estimation results for model 1 (estimation results for both model 

1 and model 2 can be found in Appendix A1.2). As neither model was found to fully 

conform to regularity conditions, we choose to analyze model 1 because it contains the 

complete set of explanatory variables. The evaluation of the relationship between aircraft 

size and fuel price begins with the first order coefficient on aircraft size. The coefficient 

implies operating cost economies of aircraft size; a ten percent increase in aircraft size 

would increase operating cost by 4.4 percent. The first order coefficient of fuel price, 

0.408, implies that at the sample mean, a ten percent increase in fuel price would increase 

operating cost by 4.08%. As we found that model 1 exhibits linear homogeneity at the 

sample mean, we conclude that the share of operating cost attributed to fuel costs is 

40.80%. Beyond our two key variables of seat and fuel, we find the expected magnitudes 

and signs for the coefficients of asl, pil, util, and ppi. While previous studies have 

excluded the age variables, the model estimates show that the inclusion of these variables 

is warranted by their significant effect. The first order terms on technology age and 

airline-aircraft age are positive and statistically significant, and imply that, all else being 

equal, costs are greater for an aircraft developed in an earlier year.   

 

The higher order coefficients provide insight into how the independent variables interact, 

and how inputs are substituted due to factor price increases. The second order coefficient 

of the seat variable is positive and implies that aircraft economies of scale attenuate for 

aircraft sizes larger than the average size. The second order coefficient estimate on fuel 

price, 0.155, implies that the 4.08% increase in operating cost due to a 10% increase in 

fuel price would increase with fuel price greater than the sample mean. The interaction 

term between fuel price and aircraft size, 0.123, tells us that as fuel prices increase, 

economies of scale due to aircraft size diminish slightly. In sum, high fuel prices reduce 

cost economies of aircraft size. With regard to aircraft age, the negative interaction term 

between airline-aircraft age and fuel price is unexpected, but may result from learning 

curve effects. As an airline gains experience with an aircraft, it learns the optimal fuel 

loads, flying speeds, and altitudes. Such benefits are found by Southwest Airlines and 

their one aircraft type fleet (Gittell, 2002). The interaction between aircraft size and 

average aircraft age shows that smaller aircraft show the signs of age more quickly. 
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Table 3.5 Select operating cost model empirical results. 

Variables 

First Order 

Term 

Second Order 

Term 

Variable 

Interactions 

First Order 

Term 

Seats 
0.400*** 

(0.083)  

0.206*** 

(0.062) 

Seats – Average  

stage length 

-0.162*** 

(0.079) 

Average stage 

length 

0.803*** 

(0.054) 

0.126*** 

(0.033) 
Seats – Fuel price 

0.123*** 

(0.048) 

Pilot price 
0.296*** 

(0.038) 

0.038*** 

(0.012) 

Average stage  

length – Fuel price 

9.88*10
-5

  

(0.030) 

Fuel price 
0.408*** 

(0.037) 

0.155*** 

(0.034) 

Airline-aircraft  

age – Fuel price 

-0.014*** 

(0.005) 

Utilization 
-0.124*** 

(0. 036) 

-0.011 

(0.007) 

Airline-aircraft  

age  – Seats 

-0.021** 

(0.010) 

Materials 

price 

0.302 

(0.210) 

0.717 

(0.632) 

 

 

Airline-

aircraft age   

0.037*** 

(0.007) 

1.08*10
-3

*** 

 (4.4*10
-4

) 

Technology 

age 
0.004** 

(0.002) 

1.28*10
-3

*** 

(3.49*10
-4

) 
Where 

***Variables are significant at the 1% level  

**Variables are significant at the 5% level  

*Variables are significant at the 10% level  

 

3.3.3 Translog Operating Cost Prediction  

In this section, we evaluate the impact of fuel price on the aircraft size that minimizes 

operating cost per seat-mile. This analysis enables an understanding of how a fuel price 

increase might influence jet aircraft size from a purely operating cost perspective.  

 

We estimate operating cost per seat-mile for selected stage lengths over a range of 

aircraft sizes and fuel prices using the TM model 1 coefficient estimation results. We 

develop operating cost predictions using Delta Airlines as the base airline, and use the 

Delta Airlines average values for all variables except fuel price, stage length and seat 

capacity. The results presented are parametric over seats, fuel price and stage length; 

combinations of these three variables will be specified inputs. This will enable an 

interpretation of how the aircraft size that minimizes operating cost per seat-mile changes 

with the key input price of fuel.  

 

Figure 3.1 presents the operating cost per seat-mile over seats for three representative fuel 

prices. The fuel price values range from a minimum value ($0.50/gallon) and a maximum 

value ($5.00/gallon), double the maximum value experienced in the dataset.9 
For constant 

distance flown, as fuel price increases, the aircraft size that minimizes operating cost per 

seat mile decreases. This reflects the positive interaction term between seats and fuel 

price. We also observe that for each stage length – fuel price combination, there is a 

                                                 
9 Note that the minimum and maximum fuel price range in the data is $0.35-2.56/gallon; predictions out of 

this range may be less reliable.  
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unique aircraft seat capacity that minimizes operating cost per seat mile. This is 

represented by the large black data point on each curve in Figure 3.1, and presented in the 

table in the lower right hand panel. The aircraft seat capacities that minimize cost are 

much larger, in most cases, than aircraft technology that exists today. While we confirm 

the finding of Wei and Hansen (2003) that there exists a unique aircraft size that 

minimizes operating cost per seat-mile, we depart from their finding that the technology 

size is in a range of existing aircraft technologies. Therefore, in the context of existing 

technologies, aircraft size should be maximized to minimize operating cost per seat-mile.  

 

ASL 500 ASL 1500 

  
ASL 3000  

 

 

 Average Stage Length 

500 1500 3000 

F
u

el
 P
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ce

 

$0.50 650 1017 1200 

$2.50 425 662 865 

$5.00 350 542 708 

Figure 3.1 Seat capacity corresponding to the minimum operating cost per seat mile for a 

range of fuel prices and distances.  

A possible explanation for the large aircraft seat capacities that minimize operating cost 

is that airlines consider pilot costs to be endogenous, as suggested by Wei and Hansen 

(2003). To determine the impact of endogenously considering labor costs on cost-

minimizing seat capacity, we construct a relationship between the unit price of labor and 

aircraft seat capacity. The following is the resulting equation estimated using the dataset 

on which the translog model was estimated, with both coefficients significant at the one 

percent level. To be consistent in the estimation method, we estimate using ordinary least 

squares and panel specific standard errors and assumed autocorrelation within panels. As 

we are predicting operating costs for the year 2006, we deflate all data points to be in 

constant 2006 dollars. The estimation results are in A2.2.  
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    𝑡              𝑠 𝑎𝑡       

 
 (3.7)   

Where  

𝑠 𝑎𝑡    is the seat capacity of aircraft n operated by airline c in year-quarter q 

       are coefficients to be estimated 

 

For comparison purposes, the results in Figure 3.1 assume a labor price of about a 250 

seat aircraft, representative of a large model such as a Boeing 757 or a Boeing 767. Using 

equation (3.7) we calculate labor price for seat capacities between one and 1200 and 

predict operating cost from this augmented dataset. We see in Figure 3.2 that when labor 

price is endogenous to the model, the seat capacity that minimizes operating cost is 

reduced. However, aircraft technologies are still larger than exist in the system today for 

stage lengths greater than about 1500 miles. For stage lengths less than 1500 miles, the 

aircraft sizes that minimize operating cost per seat-mile exist in the system today, 

however, they are not typically flown for missions less than 1500 miles.  

 

ASL 500 ASL 1500 

  
ASL 3000  

 

 

 

 Average Stage Length 
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$0.50 445 716 972 

$2.50 347 578 805 

$5.00 303 514 724 

Figure 3.2 Seat capacity corresponding to the minimum operating cost per seat mile for a 

range of fuel prices and distances, labor price considered endogenous.  

0

0.1

0.2

0.3

0 200 400 600 800 1000 1200

O
p

e
r
a

ti
n

g
 C

o
st

 p
e
r
 S

e
a

t-
M

il
e

Seats per Departure

$0.50/gallon
$2.50/gallon
$5.00/gallon

0

0.1

0.2

0.3

0 200 400 600 800 1000 1200

O
p

er
a

ti
n

g
 C

o
st

 p
er

 S
ea

t-
M

il
e

Seats per Departure

0

0.1

0.2

0.3

0 200 400 600 800 1000 1200

O
p

er
a

ti
n

g
 C

o
st

 p
er

 S
ea

t-
M

il
e

Seats per Departure



44 

 

The use of the translog function enables investigation of the consequence of variable 

interactions. We find there is a unique aircraft size that minimizes operating cost per seat-

mile, and that fuel price plays a large role in determining this aircraft size. We also find 

that fuel price increases could lead to a reduction in aircraft size, if cost minimization is 

the goal. However, it is possible that relationships between our key variables of interest –

seat capacity and the unit price of fuel – can be captured by simpler functional form for 

operating cost. In the following section, we examine two such functional forms: the 

Leontief Technology operating cost model and the linear operating cost model.   

 

3.4 Leontief and Translog Operating Cost Model Comparison  

This section will investigate the difference in predicted values between the Leontief 

technology model (LM) developed in chapter 2 and translog model (TM). The LM was 

developed in the previous chapter using average values from the same data set used in the 

current study but a later year (2007). In chapter 2, three specific aircraft models are 

chosen for cost calculation, two of which are jet aircraft: an ERJ 145 regional jet and a 

Boeing 737-400 narrow body. The key cost categories – fuel, labor, and maintenance –

are summed based on statistical relationships between fuel burn and distance traveled and 

travel time and distance traveled.10 The values, presented in chapter 2, are reported in 

Table 3.6 in units of $/operation. Using the same methodology, the cost coefficients for a 

mid-sized aircraft (182 seats), the narrow body Boeing 757-200, are determined.   

Table 3.6 Leontief Technology model operating cost coefficients.  

 Coefficient Value 

Aircraft 

Category 

Fuel Price 

(f) 

Distance   Fuel 

Price       

Distance 

(d) 
Fixed 

B757-200 5.1*10
2
 2.0 2.5 9.4*10

2
 

B737-400 2.7*10
2
 2.1 2.6 8.8*10

2
 

ERJ 145 1.9*10
2
 1.9 1.2 4.8*10

2
 

 

We perform the comparison of LM and TM results by estimating operating cost per 

departure with both models and plotting the results. The inputs needed for estimation 

with the LM are simply fuel price and distance traveled. We choose three sample fuel 

prices and 13 stage lengths between 100 and 3000 miles. For the translog model, beyond 

fuel price and stage length we need all inputs shown in Table 3.1. To identify values for 

these inputs, we calculate average values specific to each aircraft type (ERJ 145, Boeing 

737-400 and Boeing 757-200) using the original dataset on which the translog model was 

estimated (deflated to 2006 values). For the value of seats, the seat capacities for the 

aircraft in the LM are equal to the aircraft averages; this value is used. Finally, we need to 

identify a base airline for which we estimate operating costs with the TM. We choose 

three representative airlines for the estimation: SkyWest (OO), Continental (CO), and 

USAir (US). We chose these airlines based on the coefficient estimates of the airline 

fixed effects (Appendix 1.2). SkyWest represents the 1
st
 quartile, Continental the median, 

                                                 
10 It should be noted that the model in the previous chapter also includes airport charges as part of the 

operating costs; these are eliminated for this analysis because they are not part of the direct operating costs. 
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and USAir the 3
rd

 quartile of the fixed effect coefficient estimates. For comparison, the 

operating cost per departure estimates from the LM and TM are plotted against each other 

along with a 45-degree equality line for the three aircraft types.   
 

We begin our discussion of Figure 3.3 by considering the effect of fuel price. While for 

most aircraft sizes at most fuel prices the predictions are relatively linear along a 45-

degree equality line, we do see trends in over-prediction and under-prediction that 

highlight the difference between Leontief technology models and translog models. At 

relatively low fuel prices, the LM predictions are significantly less than the TM 

predictions. At relatively high fuel prices, this relationship shifts such that the LM 

predictions are either higher than the TM predictions (for the regional jet and the Boeing 

737), or relatively higher compared with lower fuel prices. These effects reflect the 

technology assumptions behind the TM and LM. The LM considers aircraft to be a 

Leontief technology, in which all inputs must be used in fixed proportions. The TM 

model allows substitution between inputs when factor prices change. The LM was 

developed at a time when the operators of a 737-400 were paying an average of 

$2.01/gallon; the operators of a 757-200 were paying an average of $1.99/gallon. It 

therefore follows that when the TM and LM are applied at fuel prices close to this 

$2.00/gallon average, the TM predictions and the LM predictions will be very similar. 

For fuel prices above this average, the LM estimates should be relatively higher than the 

TM estimates. This is because the TM allows for input substitution: as fuel prices 

increase, airlines will take steps to use fuel more efficiently by leveraging other inputs, a 

phenomenon that the LM cannot capture. 
 

Regional Jet (ERJ 145) 
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Boeing 737-400 

 
 

Boeing 757-200 

 
Figure 3.3 Predicted operating cost per departure, Leontief Technology vs. translog 

operating cost model.   
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Similarly, one might expect that the TM would predict lower costs a low fuel prices, in 

this case a result of substituting cheap fuel for other inputs. Figure 3.3 does not bear this 

out however. Indeed, when low fuel prices are assumed the LM predictions are highest 

relative to the TM predictions. These results reinforce our previous conclusion that 

classical economic assumptions are not strictly applicable to operating costs for 

individual aircraft types. 

 

Moreover, these patterns aside, Figure 3.3 shows a relatively linear relationship along the 

45-degree equality line between the LM and TM for the two larger jet aircraft. This 

implies that, while there is a small under- and over-prediction trend, the potential for 

supplier input substitution for fuel is rather modest. Thus, while we are able to glean 

insights into variable interactions from the translog model, it is not essential to capture 

these interactions in order to accurately predict operating costs.  

 

This section finds that the Leontief technology operating cost model is able to accurately 

predict operating costs, despite sacrificing the estimation of variable interactions. In the 

final section, we explore a linear operating cost model, also transparent and takes few 

inputs like the LM, yet can capture variations in seat capacity and fuel price in a single 

model.   

 

3.5 Linear Operating Cost Model  

In developing the translog operating cost model, we were able to glean insights into the 

contribution of individual variables along with variable interactions. However, we found 

by comparing the LM and TM that operating costs can be accurately captured by models 

with less complexity. As there are instances when a less complicated, simple 

representation of operating costs is necessary, we explore a representation of operating 

cost that retains the simplicity of the LM but includes seat capacity as a variable.  

 

Estimating a linear model of operating costs proved to be a challenge. One possible 

reason for this challenge is the relationship between fuel efficiency (measured by seat-

miles per gallon of fuel) and seat capacity, shown in Figure 3.4. The fuel efficiency of an 

aircraft peaks around an aircraft size of 200 seats, which is generally the separation 

between narrow body and wide body aircraft. The TM is able to capture this through the 

positive interaction term between fuel and seat capacity, yet the linear model is unable to 

capture the parabolic relationship between fuel efficiency and seat capacity. As the focus 

of this research is on short haul transportation, we will restrict the dataset on which the 

linear model is estimated to include aircraft with seat capacities below 200 seats. 

 

Even with the restriction on seat capacity, estimating an operating cost model still 

presents a challenge. We therefore experiment with a model that treats operating cost 

without fuel – mainly fuel and maintenance – and operating cost due to fuel separately. 

We develop two models, one to capture the operating cost without fuel      
   and one to 

capture fuel consumption        for jet aircraft with seat capacities below 200 seats. The 
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Figure 3.4 Seat-miles per gallon of fuel vs. seats.  

final operating cost per departure function        is the sum of these two functions, 

where fuel is the unit price of fuel. 

      𝑢            
  (3.8)   

We develop an econometric operating cost model (3.9) and an econometric fuel 

consumption model (3.10), with the key variables of seats per departure (seat), average 

stage length traveled (asl), and airline fixed effects ( ). We do not include labor explicitly 

in the operating cost component but rather let it be endogenous to aircraft size. Similar to 

the estimation of (3.7) we deflate the cost values to be in constant 2006 dollars. We 

estimate this model on a dataset from the same source as the original dataset for the 

translog model, but with a slightly different date range: 2003-2009 inclusive. To estimate 

the TM on the full list of variables, the date range was limited to no later than 2006 

because of data availability; as the models in (3.9) and (3.10) includes three variables, we 

are able to use a more recent dataset. As the dataset is still an unbalanced panel, we 

estimate using ordinary least squares and panel specific standard errors and assumed 

autocorrelation within panels as we did with the translog model.  

    
       

 
  𝑠 𝑎𝑡     𝑎𝑠      𝑠 𝑎𝑡   𝑎𝑠     

      
(3.9)   

        𝑠 𝑎𝑡     𝑠      𝑠 𝑎𝑡   𝑎𝑠           (3.10)   

Where  

𝑠 𝑎𝑡    is the seat capacity of aircraft n operated by airline c in year-quarter q 

𝑎𝑠     is the average distance traveled by aircraft n operated by airline c in year-quarter q 

𝑠 𝑎𝑡   𝑎𝑠     is the interaction term between seats per operation and distance per 

operation 

           are coefficients to be estimated in (3.9) 

          are coefficients to be estimated in (3.10) 
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In estimating (3.9) and (3.10) (estimation results shown in Appendix A1.4 and A1.5, 

respectively), we find in both cases some key coefficients are statistically insignificant. 

Beginning with     
 , we find that   is marginally significant, with a t-statistic of -1.71. 

For     , the coefficient estimate of   is negative and insignificant. However, instead of 

dropping the variable of distance in both functions, we instead preserve the first order 

terms in both equation (3.9) and (3.10). This is for two reasons. The first is to preserve 

consistency with the analytic total logistics cost model to be presented in chapter 4. The 

second is to preserve the scale economies of aircraft size found with the translog model. 

We therefore define the preferred model as including only the main terms and not the 

interaction term or the constant. We find the coefficient estimates are significant and of 

the expected signs. The linear operating cost model is then the function in (3.8) with the 

parameter estimates of the preferred model.  

 

To evaluate the estimation performance of the linear model, we compare the estimates of 

the linear model and the TM. We predict values using both models at three fuel prices: 

$0.50/gallon, $2.50/gallon, $5.00/gallon; for 13 distances between 100 and 3000 miles; 

and with Delta Airlines as the base airline. For the additional variables in the TM, we use 

those consistent with the year 2006 and the Delta Airlines average. In general, when both 

models are estimated for relatively high fuel prices (above $2.50/gallon), the estimates 

from the linear model exceed those from the TM. This is further demonstrates that the 

TM captures input substitution in the case of fuel. The percent difference in estimates is 

smallest in the 100-200 seat range, with the TM predictions between 25% lower to 10% 

greater than the linear model predictions; this trend was also observed in the relationship 

between the LM and TM. For seat capacities close to the sample mean in the translog 

model, the TM and linear model estimates are fairly close. We demonstrate that a linear 

model restricted to a range of data is able to estimate operating costs within 0-25% of the 

estimates from the translog model.  

 

3.6 Conclusions 

In this chapter we develop three empirical operating cost models for jet aircraft based on 

a similar data set. In developing the translog model, we establish a detailed portrait of the 

relationship between aircraft operating cost and the variables that influence cost. We find 

relationships between seat capacity, fuel price, and other key variables not documented in 

previous literature. However, we find that the simpler functional forms of the LM and the 

linear model yield predictions of operating costs that are similar to the predictions of the 

TM. Through the comparison of the LM, which assumes the mix of inputs required to 

operate a given air vehicle is insensitive to factor price, and the translog operating cost 

model, we establish the limited role of supplier input substitution in managing fuel-

related cost. The linear model is developed such that the coefficients are parameters in an 

analytically tractable total logistics cost function in the next chapter. Here we establish 

that the simple linear formulation is able to predict operating costs that are similar to the 

predictions of the translog operating cost model. The LM and linear models have many 

strengths, including transparency, few inputs, and ease of prediction. While translog, 

Leontief technology, and linear models all play an important role in aviation cost 

modeling, this study suggests that use of the linear model is unavoidable for tractability. 



50 

 

 

4.

 

System Optimal Mathematical Models of 

Intercity Transportation  
 

In this chapter, we develop a parametric optimization model for intercity passenger 

transport in a given corridor, in which the parameter of central interest is effective fuel 

price. Toward this end, we consider a central planner minimizing the total logistics cost, 

including those to vehicle operators, passengers, and the environment. The goal of the 

central planner is to find the optimal (least cost) service mix, defined by the vehicles to 

operate and the headway at which to operate. We must therefore develop a total logistics 

cost function for an intercity transportation corridor. Vehicle types, headways, sizes, and 

passenger assignment to vehicles are chosen to minimize total logistics cost. Uniquely, 

the model allows for the use of mixed fleets—i.e. a slow inexpensive vehicle and a fast 

expensive one—and travelers with different values of time.  

 

Logistics scheduling literature considers how a central planner should schedule freight 

vehicle deployments to minimize costs. Smilowitz and Daganzo (2007) consider an 

integrated package delivery network and determine optimal service frequency using a 

total logistics cost function that considers all related operating costs. Daganzo and Newell 

(1993) develop an operating cost function to study delivery strategies as they relate 

handling costs. Neuman and Smilowitz (2002) consider the benefit of coordinating 

drayage movements in the Chicago Intermodal Freight Interchange. A planner‘s 

perspective is taken in all these studies. Instead of considering the incentives and 

motivations of the multiple operators and customers involved, least-cost routes, 

frequencies, and homogenous vehicle assignments are determined as if there were a 

central operator able to coordinate deployments. Neuman and Smilowitz (2002) find that 

considerable cost savings could be gained from central planner coordination of drayage 

movements due improved vehicle utilization. Hansen (1991) uses a total logistics cost 

function in an aviation context that includes social and private costs to compare two 

vehicle types in order to serve passengers with homogenous values of time. The costs 

considered in the total logistics cost function are passenger costs (airport access time, 

travel time, and schedule delay) and aircraft operating and ownership cost. 

 

While the previously mentioned studies assumed all customers have the same value of 

time, Viton (1986) and Keeler et al. (1975) note their skepticism with using one value of 

time to represent all passengers and situations due to multiple time classifications (travel 

time, schedule delay) and varying values of passenger time (high-valued business 

travelers, low-valued leisure travelers). Using a combination of revealed and stated 
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preference surveys of air transportation users, Adler et al. (2005) find the existence of 

significant variation in passenger value of time as well as differences between the value 

of schedule delay and on-time performance. Their study uses a mixed logit model and 

assumes all non-fixed parameters are normally distributed. Another study pointing to the 

existence of passenger heterogeneity is Berry et al. (1996). By assuming that preferences 

for prices and flight characteristics are correlated, they estimate two sets of coefficients 

for two passenger groups using a random utility model.  

 

Related research in logistics include exploratory, high level routing studies that consider 

both heterogeneous vehicles and passenger value of time. The delivery of packages with 

heterogeneous time values over a transport network has been studied by Smilowitz et al. 

(2003). In the study, the authors investigate the potential of serving two classes of 

packages – high value express and lower value deferred packages – on an integrated 

network instead of separating their distribution. The research compares two vehicles for 

service, aircraft for high value-of-time packages and truck ground transportation, and 

finds that cost savings can be achieved by using underutilized space on aircraft to serve 

the deferred packages. 

 

In this study, we will consider vehicle and input substitution in the same function. Total 

logistics cost functions that consider multiple vehicle types are well-explored in the 

literature, as are ones that address input substitution; however we lack an integrated 

analytic model that captures both effects fully in one function in the context of intercity 

passenger transportation. To this end, we develop mathematical models that capture 

airline costs and passenger costs in a total logistics cost function and assigns passengers 

to the most appropriate vehicle based on their value of time and preferred time of 

departure. The models allow for mixed-vehicle as well as single-vehicle services.  

Section 4.1 presents the assumptions and structure of the total logistics cost function 

methodology. In section 4.2, we construct total logistics cost functions for single and 

mixed vehicle combinations considering passenger groups defined by demand and value 

of time.  We describe the model assumptions and setup, and achieve an analytic solution 

for operational frequency and vehicle size. In sections 4.3 and 4.4 we consider passenger 

time to have a distribution, thus generalizing the representation of heterogeneous 

passengers.   

 

4.1 Total Logistics Cost Function Assumptions and Structure 

In this research we consider passengers who desire to travel on an intercity corridor.   

Service on this corridor is represented on an infinite timeline with vehicles scheduled to 

serve a single origin-destination pair. There is no limit on the number of vehicles 

available and therefore on the schedule frequency. We model three scenarios with 

varying assumptions regarding passenger characteristics and assignment:  

 

1. Passengers fall into discrete groups, each of which is characterized by a demand 

rate and value of time; passengers must be served in the headway in which they 

desire to depart. 
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2. Passenger value of time follows a continuous distribution; passengers must be 

assigned to a vehicle bounding the headway in which they desire to depart. 

3. Passenger value of time follows a continuous distribution; passengers are assigned 

to the most appropriate vehicle, which in some cases may not bound the headway 

in which they desire to depart. 

 

We consider fleets consisting of one or two vehicle types (or technologies). In the case of 

a single vehicle fleet, we define the vehicle type to be   where       = {jet, turboprop, 

highspeed rail}. If the fleet contains two vehicle types, we define the vehicle pairs to be   

where     = {{turboprop and jet}, {high speed rail and jet}, {turboprop and high speed 

rail}}. c is thus a set containing two vehicles, which are in turn elements of set I. We 

therefore have       or     and use the index   to generally refer to a vehicle technology 

whether it is part of a single- or two-vehicle fleet.    

 

Each vehicle operation on technology   – whether       or     – generates a cost to the 

service provider and a cost to the passengers on-board. There are two costs incurred by 

the supplier to operate vehicle type  : a fixed component (    which does not depend on 

the passenger load and a variable component (  ) which represents the marginal cost of 

carrying an additional passenger on a vehicle operation. Both    and    are functions of 

fuel price f, distance d, and other supplier factors. If i is the index representing the vehicle 

technology used for the operation in question, and assuming full vehicle occupancy, then 

the cost associated with an operation on a per passenger basis: 
  

  
   , where 𝑠  is the 

number of seats per departure on vehicle type  . 
 

Each passenger incurs two costs associated with traveling on the intercity transportation 

system. The first is the time spent in-vehicle, which is the travel time for a given distance 

on vehicle type   (  ). The second is schedule delay, the expected value of for a 

passenger of type   on vehicle type   is denoted 𝑤   . This is the expected difference 

between when a passenger of type   desires to depart and the actual departure time of 

vehicle  . The time costs are monetized through multiplication by the passenger value of 

time λn.  

 

We will explore the scenarios in the following sections. In all scenarios we assume that 

passenger demand is exogenous, because our focus is on the supply side rather than the 

demand side of the system. 

 

4.2 Total Logistics Cost Models for Passenger Scenario One 

Under scenario 1 we segment passengers into groups. The index for passenger groups is 

n, and passenger groups are defined by a value of time λn and an exogenous demand,   . 

The sum of all passenger groups is the total demand,        . Furthermore in 

scenario 1 each passenger group has a desired departure time that is uniformly distributed 

and passengers must be served in the headway in which they desire to depart. Said 

another way, the rate in which passengers would hypothetically ―arrive‖ for a vehicle 

departure is a constant value (  ). This is the wished for arrival rate as discussed in 

Daganzo and Garcia (2000). Vehicle operation schedules are based on these passenger 
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assumptions. The Continuum Approximation method described by Daganzo (1999) 

illustrates that with a stationary wished for arrival curve and the passenger assumptions 

made here, vehicles are scheduled uniformly to minimize schedule delay. In other words, 

vehicles are scheduled over time at a constant headway, such that a single frequency (the 

inverse of headway) of vehicle departures over time holds.  

 

In this section we develop a total logistics cost function for a corridor served by a single 

vehicle technology and a mixed vehicle technology. We begin by defining notation for 

parameters and decision variables.  
 

Parameters:  

   Vehicle fixed cost, function of fuel price (f) and distance (d),             

   Vehicle variable cost, function of fuel price (f) and distance (d),             

   In-vehicle travel time, function of distance (d),     
           

   Total flow of passengers,          
      

   Flow of passengers in group n,          
      

λn Passenger value of time for group n,                  

𝑤    Expected schedule delay for a passenger of type n on vehicle type i,      

τn Critical departure time,      

     Time interval for departure,      

     Generalized cost (time) differential,      

      Probability a passenger is of type n 

      Probability a passenger is on vehicle type i 

         
Conditional probability that a passenger on vehicle type i is of passenger 

type n 

         
Conditional probability that a passenger is assigned vehicle type i given they 

are of type n 

𝑠  Seats per operation on vehicle type i,      
           

 

Decision Variable:  

The decision variable is vehicle frequency, F, for the two possible vehicle combinations:  

   Vehicle frequency (single technology combination),           
      

   Vehicle frequency (mixed technology combination),           
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In both the single and mixed vehicle cases, the passenger cost is dependent on the vehicle 

type on which a passenger is traveling. Quantities must be developed to capture this 

vehicle assignment: the proportion of passengers on each vehicle type  , and the 

proportion of passengers of each type n on each vehicle type  . We then define two 

events: event   , which is the event that a passenger is assigned to vehicle type  ; and 

    the event that a passenger is of type n.       defines the proportion of passengers on 

vehicle type  .          is the conditional probability that a passenger on vehicle type   is 

of passenger type n.  

 

The three quantities related to passenger allocation,                 and 𝑤   , can 

expressed in terms of parameters                . We begin by considering how 

passengers are assigned to vehicles in both the single and mixed vehicle case. In the 

problem formulation, user optimal vehicle assignment and system optimal vehicle 

assignment are identical if we assume that passengers pay variable vehicle operating cost 

as well as time costs.. When assigning passengers to a vehicle, the central planner seeks 

to minimize the sum of the generalized cost of each passenger. The generalized cost is a 

function of travel time, vehicle variable cost, expected schedule delay, and passenger 

value of time. Vehicle variable cost,     is included so passengers internalize the marginal 

cost their vehicle choice imposes on the system. If passengers internalize the marginal 

cost they impose on the system in choosing which vehicle departure to take, the solution 

is system and user optimal.  

 

Passengers are defined by two indices: their passenger group (demand and value of time) 

n and the vehicle type on which they are assigned i. We will consider the passenger 

generalized cost, which is the cost incurred by a single passenger in units of time. We 

now construct an expression for the generalized cost. Consider Figure 4.1 and Figure 1.1, 

which depict an interval of time between two scheduled departures—i.e a headway. 

Figure 4.1 shows the single vehicle case for a vehicle technology    . Figure 1.1 

displays the mixed vehicle case, in which the two vehicles form the set        . In both 

cases the expected total time (generalized, to include money costs) faced by a passenger 

desiring to depart during this headway (of time length 
 

  
 or 

 

  
) is the sum of the travel 

time,   , the variable cost divided by value of time, 
  

  
  and the expected schedule delay, 

𝑤   . (We assume here, without loss of generality, that the passenger pays the variable 

cost and chooses which vehicle to take in order to minimize her generalized cost. 

However, as explained above, we obtain the same results if the supplier — or anyone else 

— pays these costs and passengers are assigned to vehicles by the central planner.) To 

find the point in time when passengers are indifferent between two vehicles we find the 

critical departure time τn, or the instant in time in which the generalized cost for both 

vehicles are equal. We assume that passengers are indifferent to departures scheduled 𝑡 

units before or 𝑡 units after the preferred time. Therefore, to find τn we draw lines of slope 

1 representing the schedule delay cost for either vehicle and find their point of 

intersection. The x-coordinate of the intersection is the critical departure time τn. The y-

coordinate is the generalized cost at τn, which is also the maximum cost a passenger of 

type n would face in utilizing the system.  
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We can now define the time interval for departure on vehicle i by passenger of type n 

(    ), which is the time interval between the departure time of vehicle i and τn. If a 

passenger of type n desires to depart in the region      she will be assigned to vehicle 

type i. Because passengers of type n have desired departure times that are uniform over 

time (and therefore over     ), the expected wait time for passengers of type n is 
    

 
. It 

follows that      is one-half the headway when vehicles are of a single type (Figure 4.1); 

however, when the vehicles are different technologies (Figure 4.2), this region may be 

either larger or smaller than one-half the headway due to vehicle and passenger attributes. 

We term the difference between      and 
 

   
 as the generalized cost differential,     .      

is the additional time region beyond one-half the headway in which a passenger of type n 

will be assigned to a vehicle of type i;      is zero in the single vehicle case, and 

expressed in terms of the performance parameters vehicle type j and type k for the mixed 

vehicle case. This is shown in (4.1); the equation for 𝑤    follows in (4.2) (in which an 

unsubscripted F is used to represent both Fc and Fi).  

 

 
     

               

   
            (4.1)   

 

𝑤    
    

 
 

 

 
 

 

  
       (4.2)   

Figure 4.1 shows the generalized cost vs. time for the single vehicle case. Figure 4.2 

shows this for the mixed vehicle case.  

 

 
Figure 4.1 Generalized cost (time) and related quantities for the single vehicle case, 

passenger scenario 1. 
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Related Time Areas for Passenger n  

on Vehicle Technology   
Related Time Areas for Passenger n on 

Vehicle Technology   

  
Figure 4.2 Generalized cost (time) and related quantities for the mixed vehicle case, 

passenger scenario 1. 

We can now define values for       and           By the total probability theorem, the 

unconditional probability of a passenger being on vehicle type  ,        is the sum of the 

conditional probability that a passenger is assigned vehicle type   given they are of type 

n,           multiplied by the probability they are a passenger of type n,      . 

         is the ratio of the passenger vehicle assignment region for passengers of type n 

on vehicle   and the headway. This is the passenger assignment region divided by the 

vehicle headway:                 It directly follows from the above definitions that 

      
  

  
.   

 
                    

 

  
         

  
 (4.3)   

From Bayes‘ theorem, the conditional probability that a passenger is of type n given they 

are on vehicle type  ,         , is the ratio of passengers of type n assigned to vehicle 

type   to the total passengers assigned to vehicle type  .  
 

         
      

        
 (4.4)   

Recall that the supplier cost associated with each operation is      𝑠 , where 𝑠  is the 

number of seats per departure on vehicle type  . Assuming a load factor of one, the seats 

per operation is equal to the number of passengers on each vehicle 

 𝑠          (4.5)   
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Having determined these relationships, we can now specify the total logistics cost per 

passenger for the single and the mixed vehicle case.  

 

4.2.1 Single Vehicle Fleets 

For single vehicle fleets, we define the objective function as the total logistics cost of an 

intercity transportation corridor served by a vehicle   where      . The difference in cost 

between the two vehicles whose departures bound the headway is zero, as they are 

identical. Also, when considering single vehicle fleets, vehicle headways are simply the 

inverse of frequency. It follows that the expected passenger wait time is independent of 

passenger group n and simply one-quarter of the inverse of frequency (4.6).  

 𝑤    
 

   
 (4.6)   

The objective function is to minimize the total logistics cost per passenger. It will be 

convenient to superscript the decision variable and the total logistics cost (TLC) at 

optimal frequency with the passenger scenario and the letter b to designate base case: 

  
         

   .  

 

The TLC is defined by the following:  

 

   
    

  
     

  
      

 

 
 

   

         
 

   
     

  

 

 
 

 

 
  

     

  
    

 

  
         

 

   
    

 
 

(4.7)   

In this function, two costs are related to the decision variable   
   . The fixed supplier 

cost is positively related to the decision variable (more vehicle operations, higher fixed 

cost), while the passenger cost is negatively related to   
    (increased vehicle operations 

reduces schedule delay). Daganzo (1999) discusses this cost tradeoff in the logistics 

literature, where the decision variable is the shipment size (termed the Economic Order 

Quantity (EOQ)). The formulation of (4.7) defines the decision variable as the frequency 

of ―shipments‖ or vehicle operations.  

 

As the total logistics cost function is non-linear and convex, we can determine the 

optimal value of frequency:  

 

  
    

  
      

   
 

 
 

 (4.8)   

 

Which is a true minimum as 
    

    
    

  
      

    
    

   .  

 

The frequency that minimizes TLC is inversely proportional to fixed vehicle cost and 

positively related to passenger flow and value of time, capturing the EOQ tradeoff costs.  
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We can now develop a function for the vehicle-specific TLC per passenger at optimal 

frequency. 

 

  
    

    
          

 
          

  
 (4.9)   

The quantity           
 

  and the value of optimal frequency (4.8) represent the 

primary competing forces in intercity transportation: economies of scale and passenger 

preference for customized service. As fixed costs increase, then, all else equal, frequency 

decreases, because of the greater cost penalty for operating more flights. Conversely, as 

passenger value of time and/or demand increases, then, all else equal, frequency of 

operations increase as passengers – either individually or collectively – derive more value 

from frequent service.  

 

4.2.2 Mixed Vehicle Fleets    

The objective function is now for the total logistics cost of an intercity transportation 

corridor served by vehicles in set  . The decision variable is the frequency of the mixed 

vehicle fleet per unit time which, following the deployment assumption above, is equally 

divided across the two available vehicle types (identified by j and k hereafter). For each 

vehicle pair, the following inequalities are assumed to hold:            .  

 

The notation for the decision variable is   
   , where 1 is the passenger scenario and 𝑎 

corresponds to the case number 𝑎                 . The following case will be 

designated the base case (b) for passenger scenario 1 and the key quantities will be 

designated   
    for the decision variable and   

    for the objective function.  

 

We begin building the objective function assuming that a non-zero fraction of each 

passenger group is assigned to each of the two vehicle types. This means that no 

passenger group can have a time interval for departure that exceeds a full headway, 

which leads to the following condition in order for the objective function to be valid:  

 
 

 

     
    

          (4.10)   

Cases 𝑎              for which this assumption is violated are discussed in the 

following section.  

 

The supplier cost per passenger of the mixed vehicle fleet is  
    

   

   
           . The 

passenger cost is a function of the fraction of passengers of each type n on each vehicle 

type i,              , and the passenger cost incurred by passengers of each group on 

that aircraft type,       𝑤     . Thus, the passenger cost expression is  
                         𝑤    . By summing the passenger and supplier cost 

expressions, we achieve the objective function, the total logistics cost per unit time for 

the mixed technology case:  
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 𝑤      

   
    

   

      

 
  

             

  
   

    
 

      

        
    

 

   
    

    

 
    

(4.11)   

 

We now find the value of   
    that minimizes   . The optimum frequency is thus: 

 

  
    

  
      

                  
 

  
 

 
 

 (4.12)   

 

Which is a true minimum as 
    

   

    
    

  
      

      
    

   .  

 

The frequency that minimizes TLC is related to the sum of the fixed vehicle cost, 

passenger value of time, and the flow of passengers, reflecting the EOQ tradeoff. In this 

way, the optimal frequency is similar in the single and mixed vehicle cases. However, in 

the mixed case we also have a function of the assignment areas in the form of the 

generalized cost (time) differential    . If    
     such that the vehicle have the same 

travel time and variable cost, and    is constant   , then   
    

   
    

. If    
    and 

   is constant     as the difference in generalized cost increases, the interpretation is that 

schedule delay is more onerous than travel time for passenger group  . Passengers in 

group   are less willing to wait for a particular vehicle, and therefore, the overall 

frequency increases.  

 

Using   
    

 we achieve a function for the minimum total logistics cost of a mixed 

vehicle fleet. The total logistics cost function at optimality shown in (4.13), again with a 

component capturing the trade between fixed cost and passenger value of time:  

  
    

 
                          

 
                  

 
  

 
 

 

   
 

(4.13)   

 

Two components of this function that are directly related to two components of the single 

vehicle total logistics cost function: 
          

   
 
    

 
. Simply replacing       in the 
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single vehicle total logistics cost function with the weighted average of each value yields 

these two components, showing the similarity of the two functions. However, the 

function incorporates the generalized cost differential. As the generalized cost differential 

increases, the contribution of passenger flow and value of time decreases, as passengers 

are, if     
     experiencing reduced schedule delay. 

 

The optimal solution is (4.13) when conditions outlined in (4.10) are met; we term this 

the base case. However, there are five ways that these conditions can be violated. These 

groups are presented in two categories due to their similarities. Upon determining that the 

conditions in (4.10) are violated with the optimal value of frequency in (4.12), the 

appropriate case is determined using the optimal value of frequency   
    

  Recall the 

case designation 𝑎, where 𝑎 corresponds to the case number 𝑎                 . 
Case 𝑎=b designates the ―base case‖ when the conditions in (4.10) are met. 

 

Group 1: All passengers on one vehicle type  

Case 1-1    
    

 
 

     
      : All passengers assigned to vehicle type   

Case 1-2    
    

  
 

     
     

 

     
     : All passengers assigned to vehicle type   

 

Group 2: Some passengers are divided between vehicles 

Assuming two vehicle types         and two passenger types         

Case 1-3    
    

  
 

     
       

    
  

 

     
 : All passengers of type   are assigned to 

vehicle type   

Case 1-4    
    

  
 

     
       

    
  

 

     
 : All passengers of type   are assigned to 

vehicle type   

Case 1-5    
    

  
 

     
        

 

     
     : All passengers of type   are assigned 

to vehicle type  , and all passengers of type   are assigned to vehicle type   
 

A new function is developed for each case and a new optimal frequency determined, 

which is considered in the following sections.   

 

Case 1-1 and 1-2 

In case 1-1 and 1-2 there are no passengers divided between vehicle types, and all 

passengers are simply assigned to one vehicle type. These bounds represent the limitation 

of the assumption that passengers must be served in the headway in which they desire to 

depart. In the mixed vehicle case, when    occurs earlier than the departure time of 

vehicle type   for all passenger groups n, the physical interpretation is that all passengers 

are willing to wait longer than a full headway for Vehicle   (case 1-1). Hence,   
    

 
 

     
      . Case 1-2 is when    is later than the departure time of Vehicle   for all 

passenger groups n, and passengers are willing to wait longer than a full headway for 
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Vehicle  . The mathematical representation of case 1-2 is   
    

  
 

     
      

 

     
 

     . These two cases are illustrated in Figure 4.3.  

 

Mixed Vehicle Total Logistics Cost 

Function: Bounds Violated, Case 1-1 

Mixed Vehicle Total Logistics Cost 

Function: Bounds Violated, Case 1-2 

  
Figure 4.3 Generalized cost (time) and related quantities under the violated passenger 

assignment assumption, Case 1-1 and 1-2. 

We can define a new total logistics cost function based on each of these two cases. In 

fact, except for a change of index, the function for both cases is the same. Define index i 

so that for case 1-1 i=j and for case 1-2 i=k. The decision variable at optimality for case 

1-1 is   
    

, for case 1-2   
    

  The supplier cost is based on the fixed cost of both 

vehicles and the variable cost of the vehicle to which all passengers are assigned. Since 

all passengers are assigned to one vehicle, the expected value of schedule delay is one-

half the headway, and the travel time is that of the vehicle to which all passengers are 

assigned.  

  
    

        
   

   
    

      

  
    

 

   
     𝑎        (4.14)   

 

Similarly to (4.12), the frequency that minimizes (4.14) is:  

 

  
    

  
      

      
 

 
 

 𝑎        (4.15)   

 

Which is a true minimum as 
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We expect the optimal frequency to resemble the optimal frequency from the single 

vehicle cost, as the schedule delay is equal in both cases. We find the TLC at optimal 

frequency to be a simple function of the variable cost and travel time on vehicle i and the 

sum of the fixed costs.   

  
    

 
                

 
          

  
     𝑎        

(4.16)   

Case 1-1 and 1-2 are virtually the single vehicle case, as all passengers are assigned to 

one vehicle. The difference is in the sum of the fixed costs, which is reflected in the total 

logistics cost at optimal frequency. In further similarity to the single vehicle case, as 

passengers are directly assigned to vehicles, the solution is valid over the entire range. 

Therefore, cases 1.1 and 1.2 are terminal cases.   

 

We note that for cases 1-1 and 1-2 the mixed fleet is never optimal, since the costs could 

be further reduced by not operating the class of vehicles that are empty. We present this 

―degenerate case‖ mainly for completeness.   

 

Case 1-3 1-4, and 1-5 

In cases 1-3; 1-4; and 1-5; we restrict our attention to cases with two passenger groups, 

one with a low value of time (indexed  ) and the other with a high value of time (indexed 

 ), so      . In case 1-3 and 1-4, one group of passengers         will divide between 

vehicle types while the other will not. In case 1-5, there are no passengers of type   
assigned to vehicle type  , and no passengers of type   assigned to vehicle type  .  

 

Case 1-3 

In case 1-3 a passenger of type h experiences Zj,h, the assignment area for a vehicle of 

type j, which is longer than a full headway, such that   
    

  
 

     
 . Passengers of type l 

are divided between the two vehicle types such that   
    

  
 

     
 . Case 1-3 is illustrated 

by Figure 4.4. Case 1-4 is very similar, with passengers of type h divided between 

vehicles (  
    

  
 

     
 ) and passengers of type l experiencing an assignment area for 

vehicle type k, Zk,l, such that   
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Mixed Vehicle Total Logistics Cost Function: Bounds Violated, Case 1-3 

  
Figure 4.4 Generalized cost (time) and related quantities under the violated passenger 

assignment assumption, Case 1-3.  

In case 1-3 there are no passengers of type   on vehicle type  . We need a new 

expression for      , the proportion of passengers on vehicle type  . All passengers of 

type   are on vehicle type   and all passengers of type   who desire to depart in the 

assignment period      are on vehicle type  . Passengers of type   who desire to depart in 

assignment period      are on vehicle  . Hence: 

      
      

          

  
 

 

      
   

          

  
 

(4.17)   

We also define the conditional probability that a passenger is assigned to vehicle type   
given they are of type  :.  

                        

 

          
  

         

  
 

(4.18)  
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We write the final total logistics cost function:  

  
      

    
   

   
                       𝑤     

   
 

 
    

  
    

 

   
     

(4.19)   

And the optimal frequency:  

 

  
    

  
     

    

 

         
         

 

 
 

 (4.20)   

Which is a true minimum as 
    

   

    
    

  
     

    
 

   
    

 
  

  .  

 

We find the total logistics cost at optimal frequency by substituting for   
    

:  

  
     

 

   
       

 
                   

                   
   

     
       

 
 
  

(4.21)  

 

We have the same components as the single vehicle case, yet the costs related to 

passengers of type   are weighted more heavily. These passengers do not divide between 

vehicle types, and their expected schedule delay is greater than for passengers of type  .  
 

The bounds on this function are related to (4.10), such that  
 

     
    

    
  . If this holds, 

then case 1-3 is the optimal mixed vehicle case. It is possible that, upon solving for 

optimal frequency   
    

, that  
 

     
    

    
   . If this occurs, passengers of type l are no 

longer divided between vehicle types. Therefore, all passengers of type   are on vehicle 

type  , and all passengers of type l are on vehicle type   or  . Using the new value for 

optimal frequency   
    

, we determine which case, 1-1 or 1-5, to which the value of 

  
    

 belongs.  

 

In case 1-1 no passengers are assigned to vehicle type k. This is the case to be executed if  

  
    

 
 

     
  .   
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In case 1-5, no passengers of type   are assigned to vehicle type  , and no                            

passengers of type   are assigned to vehicle type  . This is the case to be executed if 

  
    

  
 

     
      

 

     
  .   

 

As these two alterative cases are terminal cases, solving for case 1-1 or 1-5 would be the 

final step.   

 

Case 1-4 

In case 1-4, there are no passengers of type   on vehicle type  , as   
    

  
 

     
 , and  

passengers of type   are split between vehicle types as   
    

 
 

     
. We need a new 

expression the quantities for      . All passengers of type   in one headway are on 

vehicle type  . All passengers of type   who desire to depart in the assignment period 

     are on vehicle type  . Passengers of type   who desire to depart in assignment period 

     are on vehicle of type  . Hence:  

 

      
   

          

  
 

 

      
      

          

  
 

(4.22)  

We also need the conditional probability that a passenger is assigned to vehicle type i 

given they are of type  :  

 
         

  
         

  
 

 

                       

(4.23)  

 

We can write the final total logistics cost function:  

  
      

    
   

   
                       𝑤     

   

 
    

  
    

 

   
   

  

(4.24)  

And the optimal frequency:  

 

  
    

  
     

    

 
        

        

 

 
 

 (4.25)  

 

Which is a true minimum as 
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We find the total logistics cost at optimal frequency:  

  
     

 

   
       

 
                   

                   
   

     
       

 
 
  

(4.26)  

 

Again we have the same components as the single vehicle case, yet the costs related to 

passengers of type   are weighted more heavily. These passengers do not divide between 

vehicle types, and their expected schedule delay is greater than for passengers of type  .  

 

Similar to case 1-3 it is possible that, upon solving for optimal frequency   
    

, that 

 
 

     
    

    
   . If this occurs, passengers of type h are no longer divided between 

vehicle types. All passengers of type   are on vehicle type  , and all passengers of type h 

are on one vehicle type. Using   
    

, we determine which case, 1-2 or 1-5, for which the 

value of   
    

 conforms.  

 

In case 1-2 no passengers are assigned to vehicle type j. This is the case if   
    

 

 
 

     
     

 

     
  . 

 

In case 1-5, no passengers of type   are assigned to vehicle type  , and no                            

passengers of type   are assigned to vehicle type  . This case occurs if   
    

 
 

     
 

  . 
 

As these two alterative cases are terminal cases, solving for case 1-2 or 1-5 would be the 

final step.   

 

Case 1-5 

In case 1-5, there are no passengers of type   assigned to the fast, expensive, vehicle type 

 , and no passengers of type   assigned to the slow, inexpensive, vehicle type  . 

Therefore, the optimal frequency   
    

  
 

     
         . In this case, illustrated by 

Figure 4.5, a passenger of type h has a Zj,h that is longer than a full headway, and likewise 

for Zk,l. for passengers of type l.  
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Mixed Vehicle Total Logistics Cost Function: Bounds Violated, Case 1-5 

  
Figure 4.5 Generalized cost (time) and related quantities under the violated passenger 

assignment assumption, Case 1-5.   

The total logistics cost function for case 1-5 reflects the fact that both passenger groups 

are assigned to dedicated vehicles. Therefore, the expected value of schedule delay is 

one-half the headway, and the travel time for a group is simply that of the vehicle to 

which it is assigned. 

  
    

        
   

   
 

  

  
          

 

   
     

 
  

  
          

 

   
      

(4.27)   

The frequency that minimizes   
    is identical to   

    
 and   

    
:  

 

  
    

  
      

      
 

 
 

 (4.28)   

Which is a true minimum as 
    

   

    
    

  
      

    
    

 
  

  .  

 

The frequency is identical to   
    

 and   
    

 because in these three cases the schedule 

delay is equal for all groups, as is the fixed cost. We find the TLC at optimal frequency to 

be a simple function of the variable cost and travel time on each vehicle i incurred 

separately by each passenger group and the sum of the fixed costs. This is again very 

similar to cases 1-1 and 1-2 except that here only passengers of type   incur costs related 

to vehicle type   while passengers of type   incur costs related to vehicle type  .  
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          (4.29)   

Passenger groups are assigned to dedicated vehicles in this case, so the concept of 

assignment region does not apply. Therefore, case 1-5 is a terminal case.  

 

Now that the single vehicle case, the mixed vehicle base case, and the five alternative 

mixed vehicle cases are solved, we present the solution algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.6 Passenger scenario 1 solution algorithm. 

Upon solving for   
    

   (single vehicle case), and   
    

 through the solution algorithm, 

we find the minimum total logistics cost combination (either single or mixed) by 

enumeration. In solving this function we are looking for the technology mix of both 

technology size and type that minimizes cost across all potential mixes.   

 

3. Solve   
    

 and   
    

for 

vehicles j and k 

1. Solve the unconstrained mixed vehicle 

case for   
    

 and   
    

 

2. Check   
    

 is within defined bounds  

2a. Use   
    

 to determine 

valid case (1-1 through 1-5) 

2b. Solve for   
    

 and 

   
    

 of this case 

If   
    

 is within 

defined bounds 

If case 1-3 or 1-4 

2d. Check   
    

 is 

within defined bounds  

If   
    

 is outside defined bounds 

If   
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within defined 

bounds 

If case 1-1,  
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If case 1-3, 1-4, or 1-5 occurs, it may be beneficial from a cost perspective to integrate 

the single and mixed vehicle cases such that all headways are not bound by vehicles of 

the same technology. This will be explored in passenger scenario 3, section 4.4.  

 

4.3  Total Logistics Cost Models for Passenger Scenario Two 

In passenger scenario 2 rather than having discrete passenger groups, we assume that 

passengers have a value of time that follows a continuous distribution. We consider that 

at each point t, a passenger will be assigned one of the two vehicle departures that bound 

the headway in which they desire to depart. They will be assigned based on their value of 

time, such that at each point t there is a breakeven value of time   𝑡 . We define notation 

for parameters and decision variables:  

 

Parameters:  

   Vehicle fixed cost,             

   Vehicle variable cost,             

   In-vehicle travel time,                

   Total flow of passengers,                

𝑡  Time 

  𝑡  Indifference value of passenger time,                  

      Minimum and maximum values for the distribution of value of time 

    𝑡   Probability a passenger has a value of time below   𝑡  

 

Decision Variable:  

The decision variable is vehicle frequency, F, for the two possible vehicle combinations:  

    Vehicle frequency (single technology combination),                 

   Vehicle frequency (mixed technology combination),                 

 

4.3.1 Single Vehicle Fleet  

Consider one headway with a time of the first vehicle departure at 0 and the second 

vehicle departure at 
 

  
, as shown in Figure 4.7. Both vehicles have the same non-schedule 

delay component,    
  

 
 for a passenger with value of time  . Therefore, passengers 

who fall in  𝑡    𝑡  
 

   
 will be assigned to the vehicle that departs at time 0; 

passengers with 𝑡 
 

   
 𝑡  

 

  
  will be assigned to the vehicle that departs at 

 

  
.  
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Figure 4.7 Generalized cost (time) and related quantities for the single vehicle case, 

passenger scenario 2. 

The supplier cost per passenger has the same form as in (4.7). Using the superscript with 

the passenger scenario 2 and the base case designator, the number of passengers on each 

vehicle is 
 

  
   . The supplier cost per passenger is the sum of the fixed and the variable 

cost per passenger.  

   
     

 
    (4.30)   

If value of time and desired departure time are independently and uniformly distributed, 

then the expected value of   is a function of the upper (  ) and lower (  ) bounds. 

Because we are considering passenger cost on a per passenger basis, we consider the cost 

incurred by a passenger, 
     

 
    𝑡 , over each time slice t weighted by the 

probability a passenger arrives at time t,   
   .  

 

   
    

     

 
     𝑡 

 

  
   

 

 𝑡 (4.31)   

The objective function is the sum of (4.30) and (4.31).  

 
  

    
  

     

 
     

     

 
  

 

   
        (4.32)   

The total logistics cost function is non-linear and convex, and again we can determine the 

optimal value of frequency by minimizing   
    over the decision variable   

   .  
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 (4.33)  

Which is a true minimum as 
    

   

    
    

  
  

    
    

   .  

 

The frequency that minimizes TLC under passenger scenario 2 is strongly reminiscent of 

the frequency that minimizes TLC under passenger scenario 1 (4.8). The optimum 

frequency depends on fixed vehicle cost, passenger flow, and the bounds on passenger 

value of time, again reflecting the EOQ tradeoff costs. We can now develop a function 

for the vehicle-specific TLC per passenger at optimal frequency, that is related to (4.9).  

 

  
    

  
         

 
 

 
 

    
         

 
 (4.34)  

 

As in (4.9), we see that the quantity           represents the trade between economies 

of scale and passenger preference for customized service.   

 

4.3.2 Mixed Vehicle Fleet  

In the mixed vehicle case, a passenger who desires to depart at time 𝑡    𝑡  
 

  
  will be 

assigned to either a vehicle of type k or j. We assume value of time and desired departure 

time are independently and uniformly distributed and consider a value of time unique to 

each departure time t for which passengers who arrive at t are indifferent to both vehicle 

types. This is termed the indifference value of time,   𝑡 . The generalized cost of a 

passenger desiring to depart at time t is the sum of the vehicle travel time,   , the 

variable cost divided by the indifference value of time, 
  

    
  and the schedule delay. The 

schedule delay is for a passenger who desires to depart at t would be 𝑡 for vehicle type k 

or  
 

  
 𝑡 for vehicle type j (Figure 4.8). We find the indifference value of time (as a 

function of t) by setting the generalized cost incurred by a passenger on either vehicle to 

be equal:  

 

   
  

  𝑡 
 𝑡     

  

  𝑡 
 

 

  
    

 𝑡 (4.35)  

 
  𝑡  

     

        𝑡  
 

  
    

 
(4.36)  
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Figure 4.8 Generalized cost (time) and related quantities for the mixed vehicle case for 

passenger scenario 2. 

A headway with a departure at 𝑡    of vehicle type k and a departure at 𝑡  
 

  
 of vehicle 

type j is identical to a headway with the opposite vehicle departure profile. Therefore, we 

consider the headway shown in Figure 4.8 to be representative for the entire corridor.  

 

Because passenger value of time follows a distribution, the probability that a passenger 

has a value of time below the critical value is the cumulative distribution function at   𝑡 , 

    𝑡  . The remaining       𝑡   is the fraction of passengers with a time value 

greater than the indifference value of time.  

 

As we consider passenger value of time to follow a uniform distribution, the following 

hold: 

 

        𝑡   
  𝑡    

 
 

 

        𝑡   
  𝑡    

 
 

     𝑡     (4.37)  

     𝑡   
  𝑡    

     
      𝑡     (4.38)  

In considering   𝑡  over the range      𝑡     we are ensuring that       𝑡     

(we will explore cases when   𝑡  violates these bounds in the following section). The left 

pane of Figure 4.9 shows the range of the CDF,     𝑡  ,  for which      𝑡    ; the 

right pane of Figure 4.9 shows the graph of   𝑡  vs. t, over the range      𝑡    .  
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Figure 4.9 CDF and indifference value of time, mixed vehicle case. 

As the case presented below is for when   𝑡          we will term this the base case 

and use the notation   
    and   

    for the decision variable and the objective function, 

respectively.   

 

The variable supplier cost and the passenger cost both involve the cumulative distribution 

function, and represent a weighted average passenger and variable supplier cost. It will be 

convenient to refer to the sum of the passenger cost and variable supplier cost as      

where a represents the case designation. We integrate the sum over t over the interval 

   
 

  
     and multiply the sum by   

    to consider the weighted average number of 

passengers that arrive in each time interval t.  

       
           𝑡           

       𝑡
   

    
  

 

            𝑡   

     𝑡       𝑡             𝑡    

(4.39)  

     
         

       
 

  
       

         
       

      

   
          

 
  

          
 

        
   

     
          

    
          

   

(4.40)  

 

The total logistics cost function is the sum of the fixed cost, 
  

         

  
  and     :  
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(4.41)  

Let us assume that the lower bound of the value of time distribution is zero (    ) and 

the resulting total logistics cost is:  

     
  

         

  
    

  

 
 

 

  
        

 
  

          
 

   
   

     
          

    
          

   

(4.42)  

Upon setting     , we see that      depends mostly on variables related to vehicle 

type j, with the exception of the fixed cost and the log component. Equation (4.40) in this 

form does not have an analytic solution. As there is a single component adding to the 

complication, 
  

          
 

   
   

     
          

    
          

  , we will explore the contribution of this 

component. We define upper and lower bounds of the following quantities:        , 

       ,   
   

, and   . We estimate the bounds for         and         by 

analyzing the dataset described in the previous chapter.11 The bounds for    are drawn 

from the literature. The bounds for   
   

 are determined by estimation of the single 

vehicle case using already established bounds.  

 

We define two functions: the full model (4.42) and the truncated model (4.43), which is 

the full model without the log term.   

 

 
  

     
  

         

  
    

  

 
 

 

   
        (4.43)  

Values for each quantity, evenly spaced across the defined interval are chosen; for all 

value combinations we calculate   
    and   

     and find an average percent difference   

(-4.10%), maximum percent difference (-13.19%), and 90
th

 percentile percent difference 

(-7.02%). These values are relatively small, especially considering the overall purpose of 

the model is to develop qualitative insights than precise values. To gain insights from an 

analytic form, we use the truncated model. We find the frequency that minimizes total 

logistics cost by minimizing the total logistics cost function over the decision variable 

  
     .  

                                                 
11 Aircraft operating statistics and costs collected by the Department of Transportation from 2003-2008, on 

a per airline, per aircraft type, per year-quarter basis.    
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 (4.44)  

 

Which is a true minimum as 
    

    

    
     

  
  

    
     

   .  

 

We see that the frequency that minimizes   
     is of a very similar form to   

    
 and 

   
    

, the mixed vehicle case for passenger scenario 1 when all passenger groups are 

assigned to one vehicle type.  

 

The total logistics cost function at optimal frequency is a function of the variable cost and 

the travel time on vehicle j, the sum of the fixed cost, and the upper bound of the value of 

time distribution. The fixed cost captures the cost of both vehicle types, while the 

variable cost and the travel time are only dependent on vehicle type j. When 

approximating the passenger scenario 2 base case with   
     , we are implicitly assuming 

all passengers are assigned to vehicle type j without violating the boundary conditions. 

The values    and    factor into the function in the full form of   
   , but also in the 

bounds for which   
      is valid.  

 

  
       

        

  
 

 
 

    
    

 
 (4.45)  

As we set     , the optimal solution in (4.45) is valid when     𝑡    . However, 

the conditions can be violated when   𝑡    (note   𝑡  can never be equal to zero due to 

construction) or   𝑡     . Upon determining that the conditions are violated, the 

appropriate case is determined using the indifference value of time. There are five ways 

that these conditions can be violated, that yield two mathematically unique solutions. 

Therefore, the cases are presented in two groups, case 2-1 and case 2-2; each group has 

sub-cases and one unique mathematical solution. For all cases, we consider t on the 

interval    
 

  
  and passengers with a value of time   on the interval       .  

 

Case 2-1: All passengers are assigned to vehicle type k 

Case 2-1(a)   𝑡     𝑡 

Case 2-1(b)   𝑡      𝑡 

Case 2-1(c) Combination of case 2-1(a) and case 2-1(b) 

 

Case 2-2: Some passengers are divided between vehicle types 

Case 2-3(a)   𝑡     Combination of case 2-1(b) and the base case 

Case 2-3(b)   𝑡   : Combination of case 2-1(a), 2-1(b), and the base case  

A new function is developed for each case.  
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Case 2-1 

If    𝑡     𝑡 or   𝑡      𝑡, there are no passengers divided between vehicle types, 

and all passengers are simply assigned to one vehicle type. In case 2-1(a),   𝑡     𝑡, 

such that for all wished-for departure times t, the indifference value of time is negative. 

This means that, when schedule delay is taken into account, vehicle j takes longer than 

the less expensive vehicle k. Since we assume that no passengers would be willing to 

spend more for a longer trip, all passengers will choose vehicle k in this case. Case 2-1(b) 

is when   𝑡      𝑡, such that passengers have an indifference value of time that is 

greater than the upper bound. This means no passenger is willing to pay the extra cost 

required to take the fast, more expensive vehicle. Thus they are all assigned to vehicle 

type k. In case 2-1(c), some values of t make it such that   𝑡   , while for other values 

  𝑡    . Despite the discontinuity, case 2-1(c) identical to (a) and (b) such that all 

passengers are assigned to vehicle type k. These three cases are illustrated in Figure 4.10, 

which shows the range of     𝑡   each case captures and the graph of   𝑡     𝑡    
 

In both cases, as no passengers are divided between vehicle types, the expected value of 

time is 
  

 
. The total logistics cost function is then a very simple function of the supplier 

and passenger cost:  

 

  
    

  
         

  
    

  

 
 

 

   
   

     (4.46)   

This function is identical to the unbounded case truncated model, except k is the vehicle 

incurring costs of    and  . This follows directly from our understanding of   
     , as we 

are implicitly assuming all passengers are assigned to one vehicle type. Because this 

function is identical to   
    , then   

    
   

     . It is therefore not possible for 

passengers to further reduce costs by dividing between vehicles. As such, case 2-1 is a 

terminal case, such that if, upon solving for the base case, it is determined that   𝑡  is 

outside       , then case 2-1 is the final case to be solved.  
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Case 2-1(a) 

  
Case 2-1(b) 

  
Case 2-1(c) 

  
 

Case 2-2 

For case 2-2, two different scenarios yield mathematically the same result. The cases are 

identical, as passengers are assigned to vehicle type k until a time for which   𝑡    ; 

after this point in time passenger are divided between vehicles.  
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In case 2-2(a), passengers arrive at certain times t for which      𝑡 , with the 

indifference value of time that is equal to or greater than the upper bound, such that they 

are assigned to vehicle type k. Passengers arriving at t such that     𝑡     will 

divided between vehicles.  

 

In case 2-2(b),     𝑡     for some t such that passengers are divided between 

vehicles; while   𝑡     for some t and   𝑡    for some t such that passengers are all 

assigned to vehicle k. At the discontinuity (shown in the lower panel of Figure 4.10) all 

passengers continue to be assigned to vehicle type k as   𝑡  approaches   , as   𝑡    .  

The region of the CDF for which these sub-cases fall, and the graph of   𝑡  𝑣𝑠 𝑡 are 

shown in Figure 4.10. 

Case 2-2(a) 

 
 

Case 2-2(b) 

  
Figure 4.10 CDF and indifference value of time, Case 2-2. 

We have two ―regimes‖ in case 2-2 separated by a time 𝑡   ,   𝑡    
 

  
. This is the 

time for which   𝑡     and the instant for which      𝑡    : 

 
𝑡    

     

   
 

 

   
   

 
     

 
 (4.47)   
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All passengers who arrive on the interval   𝑡  𝑡    are assigned to vehicle type k, 

while passengers who arrive on the interval 𝑡    𝑡  
 

  
    are divided between 

vehicles. Following the notation established in the base case, the sum of the variable cost 

component of the supplier cost and the passenger cost of the total logistics cost functions 

for these two regimes is termed       The sum of      and the fixed cost 
  

         

  
 is 

the total logistics cost:  

 
  

    
  

         

  
   

   𝑡     

    
   

  

 
 𝑡     

    

 

 𝑡

    
           𝑡      

 

  
   

    

  
 

  
   

 𝑡             𝑡   

     𝑡     

  𝑡             𝑡     𝑡 

(4.48)   

The full function and the truncated function are presented in Appendix A2.1. Again, we 

have two functions, the full model (4.48) and the truncated model without the log term, as 

we had in the base case. For all possible combinations of        ,        ,   
   , 

and   , we calculate   
    and   

    , and find an overall average percent difference                

(-3.92%), maximum percent difference (-6.83%), and 90th percentile percent difference 

(-5.28%). As was found in the base case, these values are relatively small. For the 

truncated model, we find the frequency that minimizes total logistics cost by minimizing 

the total logistics cost function   
     over the decision variable   

    .  

  

  
           

 
       

   

 
 

  
      

 

 
                     

                            

 
 
 

 

(4.49)  

Upon determining   
      it is possible that another case could become valid. However, it 

will not be possible for the base case to become valid if   
        

     . Holding all other 

components of   𝑡  constant, if 
 

  
 increases, the denominator of   𝑡  will decrease and 

  𝑡  will increase. Therefore, if   
        

     , the only possible case alternative to case 
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2-2 is 2-1(b) where   𝑡      𝑡, such that all passengers are assigned to vehicle type k. 

We investigate numerically and find that   
      is strictly smaller than   

      for all 

plausible ranges of   ,   ,    and      , which implies that the only possible case 

alternative is 2-1(b). The resulting value for   
     is determined with   

     . While an 

analytic solution for   
      can be determined, it is a complicated function from which it 

is difficult to gain insights and not presented.  

 

Upon determining the value of   
     , we re-calculate the value of   𝑡 . If we find that 

the initial conditions for case 2-2(a) or 2-2(b) hold, then case 2-2 is the optimal solution. 

However, it is possible that, upon solving for   
     , that the recalculation of   𝑡  finds 

that the initial conditions for case 2-2(a) or 2-2(b) are violated. Because   
        

      , 
the only possible case is that   𝑡      𝑡, case 2-1(b) such that all passengers are 

assigned to vehicle type k. As case 2-1(b) is a terminal case, solving for either case 2-1(b) 

or determining that 2-2 is the appropriate case would be the final step.   

 

Now that the single vehicle case, the mixed vehicle base case, and the three valid 

alternative mixed vehicle cases are solved, we present the solution algorithm:  
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Figure 4.11 Passenger scenario 2 solution algorithm. 

Upon solving for the single vehicle case,   
    

  , and   
    

 through the solution 

algorithm, we find the minimum total logistics cost combination (either single or mixed) 

by enumeration. In solving this function we are looking for the technology mix of both 

technology size and type, that minimizes cost across all potential mixes.   

 

4.4 Total Logistics Cost Models for Passenger Scenario Three 

In this section, we relax the assumption that passengers must be assigned to a vehicle 

bounding the headway in which they desire to depart. It therefore is no longer the case 

that headways must be constant and that vehicles be scheduled in an alternating sequence 

of vehicle types. To keep the discussion general, we will again consider two vehicle 

types: k and  ; the index i will represent either vehicle. We present a list of parameters 

and decision variables below.  

  

3. Solve   
    

 and   
    

for 

vehicles j and k  

1. Solve the unconstrained mixed 

vehicle case for   
    

 and   
    

 

2. Check   𝑡  is within defined bounds  

2a. Use   𝑡  to determine 

valid case (a = 1, 2) 

2b. Solve for   
    

 and 

   
    

of this case 

If   𝑡  is within 

defined bounds 

for case 2-b 

If case 2-2 

2d. Check   𝑡  is within 

defined bounds  

If   𝑡 is outside defined bounds for case 2-b 

If   𝑡 is within 

defined bounds 

If case 2-1 

If   𝑡  is 

outside defined 

bounds 
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Parameters:  

   Vehicle fixed cost,             

   Vehicle variable cost,             

   In-vehicle travel time,                

  Total flow of passengers,                

𝑡 Time 

  𝑡  Indifference value of passenger time,                  

      Minimum and maximum values in the distribution of value of time  

    𝑡   Probability a passenger has a value of time below   𝑡  

 

Decision Variables:  

    The length of a headway when bound only by vehicles of type  ,                

    
The length of a headway when bound by vehicles of type   and of type   

              ;         

 

Recall       and      , such that j is the faster, more expensive vehicle and k is the 

slower, less expensive vehicle. We limit our scope to the consideration of vehicle type k 

scheduled between two vehicles of type  . Additional changes could be made to broaden 

the scope to include a scenario with a vehicle of type k scheduled between more than two 

vehicles of type j. With minor changes, the case of vehicle type j schedule between two 

vehicles of type k could also be solved. In this model there are two types of headways: 

those bounded by a vehicle of type j only (   ), and those bound by the mixed vehicle 

types of k and j (   ). Again, we consider an infinite timeline of an intercity corridor with 

vehicles scheduled to serve a single origin destination pair with unconstrained vehicle 

availability. Shown in Figure 4.12, one cycle is equal to     
   

 
. All passengers who 

desire to depart in one cycle will be assigned to one vehicle scheduled in that cycle, as a 

passenger could never minimize their cost by crossing cycles. Therefore a single cycle 

can be evaluated alone and can be generalized to the entire corridor. Figure 4.13 shows 

the time region detail for one cycle.   
 

 
Figure 4.12 Headway and cycle representation in passenger scenario 3. 

Cycle

time

kj j j j jk

CycleCycle

   +        +        +        +        +        +     

Vehicle type

Headway type
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Figure 4.13 Generalized cost (time), time regions, and related quantities for passenger 

scenario 3. 

We again consider fleets consisting of two vehicle types. There are four passengers 

categories    , defined by the headway in which they desire to depart and the vehicle 

type to which they are assigned. These are depicted below. The first entry specifies the 

headway and the second the assigned vehicle.  

 

Passenger 

Group 

Headway Vehicle 

Type 

1 Hjj j 

2 Hkj j 

3 Hkj k 

4 Hjj k 

 

Continuing from the previous section, we consider the value of time to have a uniform 

distribution and employ the concept of indifference value of time. Under the assumptions 

of passenger scenario 3 there are two ranges for this indifference value of time: one for 

𝑡          and one for 𝑡       
   

 
 . For passengers of type 2 and 3 that desire to depart 

in    , the indifference value of time is the same as determined in the previous section, 

  𝑡  
     

            
. For passengers type 4 and 1 that desire to depart in    , we must 

derive the value. We do this by considering a headway interval   𝑡  
   

 
  and setting 

the generalized costs of passenger type 4 to that of the generalized cost of passenger type 

1.  
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  𝑡 
 𝑡         

  

  𝑡 
 𝑡        𝑡  

   

 
 (4.50)   

 

  𝑡  
     

          
                  𝑡  

   

 
 (4.51)  

Note that the indifference value of time does not depend on the desired departure time 𝑡. 

Both passenger types would incur a time cost of t, while only passenger group 4 would 

incur the additional cost of    .   

 

The indifference value of time   𝑡  is:  

 

 

  𝑡   

     

       𝑡     
                   𝑡      

(4.52)   
      

          
                       𝑡  

   

 
 

In the following sections we will build the passenger cost and variable supplier cost 

functions for the two groups of passengers that arrive in the same headway: 2 and 3, and 

1 and 4. The fixed operating cost is discussed in the next section. It will be again be 

convenient to superscript the decision variables and the total logistics cost with the case 

designation 3-a, and refer to the sum of the passenger cost and variable supplier cost as 

         . We begin with the base case for passenger scenario 3 and present additional 

cases in the following section.  

 

Passenger cost function, type 2 and 3 

Passengers of type 2 and 3 arrive in a headway of type     bound by vehicles of type k 

and j. Passengers of type 2 are assigned to vehicle of type j and passengers of type 3 are 

assigned to vehicle of type  . Passengers served in a headway of type     desire to depart 

at a time 𝑡         . These passengers and their related costs are identical to those 

explored previously in section 4.3.2. A passenger of type 2 who desires to depart at time 𝑡 

will incur a schedule delay cost of     𝑡 and a travel time cost of   , while a passenger 

of type 3 who desires to depart at a time 𝑡 would incur a schedule delay cost of 𝑡 and a 

travel time of   . The passenger and variable cost derived in (4.48) are shown again 

below in (4.53) and (4.54):  

           
 

   
           𝑡      

   
   

 

     
    𝑡             𝑡   

     𝑡       𝑡             𝑡     𝑡 

(4.53)   
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(4.54)   

Following the discussion in the previous section regarding bounds, (4.54) holds when 

    𝑡    . Violation of this bound is discussed in the previous section. 

 

Passenger cost function, type 1 and 4 

Passengers of type 1 and 4 arrive in a headway of type     bound by two vehicles of type 

j. By definition passengers of type 1 are assigned to vehicle of type j and passengers of 

type 4 are assigned to vehicle of type  . If we consider the first vehicle in this headway to 

depart at time 0 (rather than    ), passengers who desire to depart in a headway of type 

    can do so over the time interval 𝑡     
   

 
 . A passenger of type 1 who arrives at time 

𝑡 will incur a schedule delay cost of 𝑡 and a travel time cost of   ; a passenger of type 4 

would incur a schedule delay cost of     𝑡 and a travel time of   .  

  

Expressions for the expected passenger value of time and the cumulative percent of 

passengers with value of time   𝑡  in (4.37) and (4.38) hold. The passenger cost and the 

variable operating cost for a passenger that desires to depart over time interval 𝑡     
   

 
  

is therefore: 

 

           
 

   
           𝑡      

   
   

 

 

  𝑡             𝑡   

     𝑡     

     
    𝑡             𝑡     𝑡 

(4.55)   

We multiply this equation by 
 

  
 to calculate the weighted average considering the 

number of passengers that arrive in each time slice 𝑡   𝑡  
   

 
. We solve the integral 

and achieve:  

 

             
  

 
 
   

   

 
     

        

       
          

 (4.56)   

With substitution of function (4.52), we see that this function is:  

 

             
  

 
 
   

   

 
     

  𝑡 

  
 
     

 
  (4.57)   
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The first two terms of the function capture the passenger cost for a passenger of type 1 

assigned to vehicle type j. The third term captures the difference in variable costs and the 

percent of passengers who are assigned to vehicle type k. This term will be negative by 

definition, such that the overall contribution of the variable cost will be less than   , 

reflecting that some passengers incur    for which      .  

 

Equation (4.56) considers that the indifference value of time   𝑡  falls on the interval 

      . As   𝑡  is independent of t over the interval 𝑡       
   

 
 , there are only two 

ways   𝑡  can fall outside the interval       :   𝑡    or   𝑡    ; these two 

scenarios yield mathematically identically results. For convenience, we will continuing 

the numbering scheme from the previous section, and call this case 2-3. 

 

In case 2-3,   𝑡          𝑡    such that all passengers are assigned to a vehicle of 

type k. The expected schedule delay is the sum of the expected schedule delay endured in 

the headway in which they desire to depart (
   

 
), and the full headway of    . The 

function is: 

 

             
  

 
    

   

 
      (4.58)   

 

Total logistics cost function  

In defining the total logistics cost function for the base case, we must consider the fixed 

cost. For every cycle, there are       
   

 
  passengers that desire to depart. The 

operating cost per passenger is then:   

 
      

           
 (4.59)   

The total logistics cost function can be presented in a generic form. If we consider the 

passenger and variable cost components           and          , then:  

 

  
    

      

           
  

   

        
           

  
 

 
 

   

        
           

(4.60)   

where  
   

        
  is the proportion passengers that incur a cost of           and 

 

 
 

   

        
  is the proportion passengers that incur a passenger cost of             

 

For the base case 3-b, the total logistics cost function is:  
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(4.61)   

Equation (4.61) is the objective function to be minimized over     and    . An analytic 

expression for the optimum does not exist in either full or truncated form.   

 

Equation (4.61) is the objective function when      𝑡      𝑡. Upon determining this 

condition is violated for any value of t, the appropriate case can be determined using the 

indifference value of time. The total logistics cost function for passenger scenario 3 

includes costs incurred over two headway types:     and    . If the condition on   𝑡  is 

violated over 𝑡         , the alternative cases are 𝑎       , as presented in passenger 

scenario 2. If this condition is violated over 𝑡       
   

 
 , the alternative cases is 𝑎   . 

The new cases are 3-1 and 3-2:  

 

Case 3-1: Combination of case 2-1 (𝑡         ) and case 2-3 (𝑡       
   

 
 ), all 

passengers are assigned to vehicle type k 

 

Case 3-2: Combination of case 2-2 (𝑡         ), where some passengers are assigned to 

k and others divided, and the base case 3-b (𝑡       
   

 
 ), with all passengers 

divided 

 

A new total logistics cost function is developed for each case. As analytic solutions for 

optimal frequency cannot be determined, each function is described conceptually. 

 

Case 3-1 

If    𝑡     𝑡 or   𝑡      𝑡, all passengers are assigned to a vehicle of type k. Either 

range holds over 𝑡         ; because for 𝑡     ,   𝑡  takes on a constant value as the 

function for   𝑡  is independent of t over this region, the range also holds for 𝑡     . 

The graph of the indifference value of time over t for the two possible ranges of   𝑡  

which yield case 3-1 are illustrated in Figure 4.14.   
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  𝑡     𝑡    𝑡      𝑡  

  
Figure 4.14 Indifference value of time, Case 3-1. 

The expected value of time is again 
  

 
. The total logistics cost function is then a function 

of the supplier and passenger cost in both cases:  

  
     

   

        
            

 

 
 

   

        
          

 
      

           
 

(4.62)  

  
     

   

        
     

  

 
    

    

 
     

  
 

 
 

   

        
     

  

 
    

   

 
  

 
      

           
 

(4.63)  

 

The concept of assignment region is not relevant in these cases, as passengers are directly 

assigned to either vehicle type. Therefore, there is no possibility that, up on solving case 

3-1 or 3-2 that passengers could minimize cost by being assigned in a different way. 

Therefore, case 3-1 is a terminal case.   

 

Case 3-2 

In case 3-2, all passengers desiring to depart in a headway of type     are divided 

between vehicles such that   𝑡         (the base case, 3-b). Some passengers desiring 

to depart in a headway of type     are assigned to a vehicle of type k and the remaining 

are divided (case 2-2). The graphs of the indifference value of time over t for case 3-2 is 

illustrated in Figure 4.15.  
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    𝑡   𝑡      𝑡           𝑡  

  

Figure 4.15 Indifference value of time, Case 3-2. 

The total logistics cost function for case 3-2 is therefore:  

  
     

   

        
            

 

 
 

   

        
          

 
      

           
 

(4.64)  

Where:  

           
𝑡   

   
     

  

    

 𝑡     
    

 

 𝑡

  
 

   
        𝑡     

   

    

      𝑡             𝑡   

     𝑡      𝑡             𝑡     𝑡 

(4.65)  

and 𝑡    
     

   
 

   

 
 

     

 
.  

 

From the discussion related to case 2-2, it is possible that upon solving for the optimal 

frequency that   
    

   
    

. If this is the result, case 3-1 should be solved for as the 

solution; and as it is a terminal case, should be the final solution.  

 

Now that the single vehicle case, the mixed vehicle base case, and the alternative mixed 

vehicle cases are solved, we present the solution algorithm.  
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Figure 4.16 Passenger scenario 3 solution algorithm. 

Upon solving for   
    

   
    

 and   
    

   through the solution algorithm, we find the 

minimum total logistics cost combination (either single or mixed) by enumeration. In 

solving this function we are looking for the technology mix of both technology size and 

type, that minimizes cost across all potential mixes.   

 

In developing the model for passenger scenario 3 in this way, we capture a central 

planner organizing vehicle departures of different types jointly. It is possible to approach 

the concept of unequal headways from a different perspective. Consider uncoordinated 

vehicle departures of two vehicle types, j and k, and the two decision variables: the 

frequency of vehicle type j, Fj and the frequency of vehicle type k, Fk. Using the ratio of 

the decision variables, we can determine the headway lengths and the passenger 

assignment in each headway type. Such a model approaches capturing unequal headways 

in a more general way, yet is less consistent with the system optimal perspective of a 

central planner organizing vehicle departures of all types.   

1. Solve the unconstrained mixed 

vehicle case for    
    

    
    

 and   
    

 

2. Check   𝑡  is within defined bounds 

2a. Use   𝑡  to determine 

valid case (3-1 or 3-2) 

2b. Solve for    
    

    
    

 

and   
    

of this case 

3. Solve the solution algorithm in 

Figure 4.11 for the single and 

mixed vehicle case 

If   𝑡  is within 

defined bounds 

for case 3-b 

If case 3-2  

2d. Check   𝑡  is within 

defined bounds  

If   𝑡  is outside defined bounds for case 3-b 

If   𝑡  is within 

defined bounds 

If case 3-1 

If   𝑡  is outside 

defined bounds 
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4.5 Conclusions 

In this chapter, we develop analytic models characterizing the intercity transportation 

system to conceptually evaluate the relationship between optimum service characteristics 

and fuel price. The models represent the total logistics cost of an intercity transportation 

system in that they include both vehicle operating costs and costs incurred by the 

passenger. In summing operating and passenger costs, we exploit the cost-reducing 

potential of alternative vehicles with different cost structures and service attributes. The 

models are developed for both single and mixed vehicle services and determine the 

vehicle size, technology mix, and frequency to serve a corridor at minimum total logistics 

cost.  

 

In chapter 3 we established that supplier-to-supplier input substitution is minimal, such 

that operating costs can be modeled with a simple mathematic function. Defining 

vehicles generically and characterizing them simply with a fixed cost, a variable cost per 

seat, and a passenger cost in the form of travel time, enables the consideration of many 

intercity transportation vehicles. Furthermore, we consider aircraft vehicle size to be 

endogenous and continuous. This is the benefit of employing continuum approximation 

models and capturing all pertinent costs – those incurred from operating vehicles and 

traveling in them – in one function. While we found in chapter 3 that the interaction term 

between fuel price and aircraft size was positive, the resulting aircraft size that minimized 

operating cost per seat-mile was larger than technically feasible. Therefore, representing 

operating cost as the sum of a fixed cost and a cost that varies with seats, hence implying 

infinite aircraft size to minimize operating cost per seat-mile, is appropriate given current 

aircraft technology bounds.  

 

The total logistics cost models are formulated to be sensitive to fuel price, which may 

change significantly in the future as a result of market conditions or environmental 

policies. We find that increasing fuel price impacts vehicle frequency due to two 

components of the intercity transportation system. The first is the fixed cost – as fuel 

price increases, fixed vehicle operation cost increases, and frequency decreases. The 

second is from the vehicle variable cost per seat. As fuel price increases, the absolute 

difference between vehicle variable costs increases in a mixed vehicle service, and the 

vehicles are more differentiated. In this research we find that as vehicles become more 

differentiated, the optimal vehicle frequency increases. This is because passengers are 

increasingly unwilling to wait for a particular vehicle as the vehicles are more 

differentiated. A change in fuel price therefore forces frequency to decrease, with the rate 

of decrease diminishing with fuel price.  

 

In analyzing an intercity passenger transportation corridor, we allow for passengers with 

heterogeneous values of time. Passenger scenario 1 considers discrete passenger groups, 

each defined by a demand rate and a value of time. Passenger scenario 2 and 3 allow 

value of time to follow a continuous (uniform) distribution. Considering a distributed 

value of time captures a more realistic picture of passenger preferences. Finally, by not 

pre-defining the value of time we consider a wide range of future scenarios. It is well 

known that a single passenger experiences a value of time that varies over time and 
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situation. Furthermore, the value of time for a population will also change over time due 

to socioeconomic forces. Therefore, considering value of time a variable enables both 

parametric analysis for short and long run value of time variations.  

 

For the three passenger scenarios, we present a solution algorithm for the mixed vehicle 

total logistics cost function. As no passenger scenario has a single total logistics cost 

function that describes all mixed vehicle cases, the solution algorithm is based around a 

key value that determines the valid case. For passenger scenario 1, this is the optimal 

value of frequency. As the base case for passenger scenario 1 requires that all passengers 

be served in the headway in which they desire to depart, there is a well defined range in 

which the optimal frequency may fall. If it falls outside this range, we present five 

alternative solutions, or cases. For passenger scenarios 2 and 3, we simply find the range 

of the indifference value of time to determine the valid case. The range to which the 

indifference value of time is compared is the upper and lower bound of the value of time 

distribution; the case which is valid follows from if and how these bounds are broken. In 

presenting multiple cases for the mixed vehicle function for each passenger scenario, we 

preserve the transparency of the total logistics cost models, such that we are able to gain 

insights between fuel costs and optimal service despite the host of cases possible for each 

passenger scenario.  

 

The solution algorithms also provide us with a path to total logistics cost minimization. 

We find the minimum total logistics cost combination (either single or mixed) by 

enumeration. We first identify the vehicles under consideration and a set of input 

parameters for each vehicle. For passenger scenarios 1 and 2, we solve for the minimum 

total logistics cost in the single vehicle case for all vehicles in consideration; for 

passenger scenario 3, we solve the single vehicle case defined in passenger scenario 2. 

For passenger scenarios 1 and 2, we then solve for the mixed vehicle total logistics cost 

for all possible vehicle mixes. For passenger scenario 3, we would also solve for the 

vehicle arrangement with two vehicles of type j for each vehicle of type k. For each 

passenger scenario, we would then compare the total logistics costs of all possible vehicle 

combinations and identify the minimum total logistics cost vehicle combination.   

  



93 

 

 

5.

 

Numerical Case Study  
 

In this chapter we seek to illustrate the analytic model of intercity transportation to gain 

insights into the impact of fuel price on optimal service mix in representative corridors. 

Using the total logistics cost function for passenger scenario 1 (discrete passenger 

groups), we explore an intercity passenger transportation corridor served by jet aircraft 

technology, turboprop aircraft technology, or High Speed Rail (HSR) technology. 

Through numerical examples, we explore how the minimum cost vehicle technology 

changes with fuel price. We also explore comparative relationships across vehicle 

combinations with numerical examples, including the difference in total logistics cost 

across vehicle combinations.  

 

In chapter 3, we develop a linear operating cost model for jet aircraft; the estimated 

coefficients become parameters in the total logistics cost function. In this chapter, we 

begin by estimating a similar function on a related dataset for turboprop aircraft; 

additionally for both jet and turboprop aircraft we estimate travel time functions. As HSR 

does not exist in the United States yet, we rely on projected cost and operating statistics 

from the California High Speed Rail Business plan, published in December 2009. 

Because the figures in the business plan are projected, we validate the projections with 

cost and operating statistics reported by existing HSR systems across the world, 

summarized and presented in a report by de Rus et al. (2009).  

 

In identifying additional parameters such as demand and value of time, we collect 

operating statistics and published values from the literature and publically available 

sources. While we keep the discussion general rather than pick a specific intercity 

corridor to analyze, we base the constants on the California Corridor, specifically from 

San Francisco to Los Angeles. We choose this corridor as the distance between airports 

and between HSR stations (377 and 418 miles respectively) is similar; the passenger 

demand is mostly generated at the ends of the corridor as it is defined; and there is an 

existing high level of passenger traffic service that, by 2020, may be served by air or rail.   

 

5.1 Additional Model Development  

In this section we develop the necessary operating cost and travel time models, and 

identify additional necessary parameters to serve as inputs to the analytic total logistics 

cost model. The jet operating cost model is presented in chapter 3. In this section we 

develop and present the turboprop and HSR operating cost model. Next, we develop 

travel time relationships with distance for the three vehicle types. Finally, we establish 
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parameter values for the other key quantities based on the literature and operating 

statistics of the California Corridor.  

 

5.1.1 Turboprop Operating Cost  

In this section, we develop a linear turboprop operating cost model. We estimate this 

model using data from the same US Department of Transportation (DOT) Form 41 

database used in chapter 3. We collect 494 observations from 9 airlines and 7 aircraft 

types on a per airline    , per aircraft type (n), and per year-quarter (q) basis for the date 

range 2003-2009. We again have the key variables of seats per departure (seat), average 

stage length traveled (asl), and airline fixed effects ( ). To be consistent with the jet 

aircraft linear operating cost model, we develop a separate fuel consumption model (3.10) 

and an operating cost model without fuel costs (3.9). We add these two models together 

(with the fuel model multiplied by a fuel price) to achieve operating cost, shown in (3.8). 

Like the linear operating cost model for jet aircraft, we deflate the cost values to be in 

constant 2006 dollars. The dataset is an unbalanced panel and the same estimation 

technique, ordinary least squares and panel specific standard errors and assumed 

autocorrelation within panels, is used. The following equations show the linear jet aircraft 

technology operating cost model (5.1) and the turboprop technology operating cost model 

(5.2) (full estimation results are in Appendix A3.1 and A3.2).  

          

  𝑢        𝑠 𝑎𝑡        𝑎𝑠      

       𝑠 𝑎𝑡        𝑎𝑠      

(5.1)   

               

  𝑢        𝑠 𝑎𝑡        𝑎𝑠      

       𝑠 𝑎𝑡        𝑎𝑠      

(5.2)   

We see the turboprop operating costs are less sensitive to fuel price, an expected result 

based on conclusions from chapter 2. Turboprops burn less fuel per seat and per mile 

compared with jet aircraft. For the non-fuel operating cost, we see that the turboprop has 

a slightly higher cost related to seats and a significantly lower cost related to distance.  

 

5.1.2 Jet and Turboprop Ownership Cost  

In this section, we consider the cost of aircraft ownership, data for which is published in 

the US DOT Form 41, Schedule P-5.2. We collect data on aircraft depreciation and 

rentals for turboprops and jets separately for each airline    , aircraft type (n), and year-

quarter (q). To be consistent with the linear operating cost models, the data spans the 

years 2003-2009 inclusive and we deflate the cost values to be in constant 2006 dollars. 

We estimate separate vehicle ownership costs models following the equation in (5.3) for 

turboprop and jet aircraft, using ordinary least squares and panel specific standard errors 

and assumed autocorrelation within panels.  
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  𝑠 𝑎𝑡          (5.3)   

Where  

𝑠 𝑎𝑡    is the seat capacity  

   𝑎     are coefficients to be estimated  

 

The results are presented in Appendix A3.3 and A3.4. The constant terms were 

insignificant in both the jet and the turboprop operating cost models, so that the preferred 

model for ownership cost is simply a function of seat capacity and the airline fixed 

effects. Comparing the preferred model for turboprops and jets, we see that the value 

of    reflects the lower ownership costs of turboprops.  

 

5.1.3 High Speed Rail Cost  

Defining a HSR cost model presents a unique set of challenges compared with the aircraft 

cost model development. There are currently no HSR systems in the United States from 

which to collect cost and operating statistics. While there are many HSR systems across 

the world, publicly available data is limited and not available in a consistent format. For 

example, many HSR operators present their operating statistics in annual reports, yet 

these statistics may be aggregated with conventional rail operations. De Rus et al. (2009), 

in a comprehensive study of HSR system costs and HSR modeling techniques, notes the 

challenge of comparing (and therefore modeling) costs across HSR systems. Because 

HSR projects are built over various topographical landscapes, different technical 

solutions and levels of investment are needed. Therefore, instead of employing a 

statistical model to capture HSR costs, we will build an engineering model for HSR 

operating cost in which we sum the key drivers of cost.  

 

The data source chosen for the development of such a model is the California High Speed 

Rail Authority 2009 Business Plan Report to the Legislature. As discussed in chapter 1, 

the CA HSR system is one of the designated corridors to receive federal funding; it is 

also is under a state-wide mandate for the development of the system. Furthermore, as we 

are interested in short-haul travel, the 520 mile distance of the Phase 1 development from 

San Francisco to Anaheim and the 490 distance from San Francisco to Los Angeles is a 

good fit for the scope of the numerical example (the individual segments are presented in 

Table 5.1).  

 

Phase 1 development is expected to be complete in 2020, the year when operations begin. 

The CA HSR Business Plan reports projected operating statistics starting in 2020 from 

which we can estimate the number of operations a trainset makes in one year. The CA 

HSR Business Plan reports the number of train operations per day and the number of 

trainsets required to make this number of train operations per day (Table 5.2). It is also 

noted that trains can be made of one or two trainsets. Assuming that half of all train 

operations include a single trainset, we estimate the average operations per trainset-day to 

be 4.03, which we scale to 1470.4 operations per year.  
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Table 5.1 California High Speed Rail segments. 

Segment Start Segment End Distance (miles) 

San Francisco Bay Area San Jose 50 

San Jose Merced 120 

Merced Fresno 60 

Fresno Bakersfield 115 

Bakersfield Palmdale 85 

Palmdale Los Angeles Basin 60 

Los Angeles Basin Anaheim 30 

 

Table 5.2 Trainset operating statistics for CA HSR, 2020-2035. 

Year 

Train operations 

per day 

(Reported) 

Trainset 

operations per 

day (Estimated) 

Trainsets 

required 

(Reported) 

Operations per 

trainset-day 

(Estimated) 

2020 121 181.5 45 4.03 

2021 174 261.0 65 4.02 

2022 219 328.5 82 4.01 

2023 245 367.5 91 4.04 

2024 247 370.5 92 4.03 

2025 249 373.5 93 4.02 

2026 251 376.5 93 4.05 

2027 253 379.5 94 4.04 

2028 255 382.5 95 4.03 

2029 257 385.5 96 4.02 

2030 259 388.5 96 4.05 

2031 261 391.5 97 4.04 

2032 263 394.5 98 4.03 

2033 265 397.5 99 4.02 

2034 268 402.0 100 4.02 

2035 270 405.0 100 4.05 

 

In the following sections, we develop separate HSR cost models for ownership and 

operating costs such that the cost definitions are consistent with the aircraft cost models; 

in the final section of the chapter, we will consider the infrastructure development cost of 

HSR. One challenge related to these cost and operational estimates are that they are 

projected, not experienced. To this end, we put the cost projections into context by 

reviewing costs experienced for HSR systems across the world presented in de Rus et al. 

(2009). All values presented in this HSR section are in 2006 dollars.  
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5.1.3.1 Ownership Cost  

The CA HSR Business Plan reports that the cost of one HSR trainset, with an expected 

500 seats, is $32.17 million, or $64,340/seat. De Rus et al. (2009) reports three categories 

of HSR vehicle acquisition costs: a low cost scenario of $33,700/seat; a medium cost 

scenario of $56,167/seat; and a high cost scenario of $73,017/seat. The CA HSR Business 

Plan estimates are between the medium and high scenarios. 

 

To achieve a value of vehicle ownership cost per operation, we estimate the value of 

vehicle ownership for an increment of time and then scale this cost by the number of 

operations. We will do this by using the capital recovery formula presented by de 

Neufville (1990) shown in (5.4). This function converts the total purchase price into a 

present value of yearly payments (R) by capturing amortization of the present value of the 

trainset cost (P = $32.17 million) over N = 40 years at an interest rate of r = 3.5%. The 

interest rate is the published rate in the CA HSR Business Plan, and de Rus et al. (2009) 

reports that the expected useable life of a HSR train is 40 years. We achieve a value of 

$1.51 million in vehicle ownership costs per year. We divide this total over the 1470.4 

trainset operations per year (Table 5.2), and achieve a fixed vehicle cost per operation of 

$1026.93. 

  

  
          

          
 (5.4) M 

The fixed cost is for a single trainset with 500 seats. However, more than 500 passengers 

may be assigned to a HSR vehicle per operation. Therefore, we consider a variable cost 

related to a vehicle cost as well. As each trainset has 500 seats, we calculate a per seat 

cost of $2.06. This will be added to the variable cost, further explored in the following 

section.  

 

5.1.3.2 Operating Cost  

Direct and indirect operating costs are estimated and reported in the CA HSR Business 

Plan for the first 15 years of planned operation, 2020-2035 (Table 5.3). To be consistent 

with the operating costs considered for aircraft, we consider direct operating costs only: 

labor, power/energy, and direct maintenance of trainsets. The operating costs are reported 

for the year 2035 (presented in 2006 dollars).  

 

From the data in Table 5.2 we estimate there are 147,825 trainset operations per year in 

2035; with 500 seats per trainset, there are 73.9 million seat operations in the year 2035. 

The CA HSR business plan also reports in 2035, 43.1 million trainset-miles will be 

covered. Using the direct operating cost (DOC) figures in Table 5.3 along with the 

operating statistics, we estimate a DOC per seat-mile of $0.0386. We compare this DOC 

figure to the results presented in de Rus et al. (2009) for operating costs and direct 

maintenance costs of HSR systems in Europe (Table 5.4).   
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Table 5.3 Operating cost categories for High Speed Rail. 

 

Category 

Cost 

($ millions) 

Direct Operating 

Costs (DOC) 

Train Driving and Staffing 108.96 

Power/Energy with Green surcharge 344.47 

Maintenance of Trainsets and Vehicles 377.28 

Total DOC 830.71 

Indirect Operating 

Costs (IOC) 

MOW Materials and Contracts 68.64 

Maintenance of Way (MOW) Labor 41.61 

Program Contingency  54.69 

Station Services and Security  61.56 

Sales, Marketing and Reservations  68.85 

Control Center Operations  4.40 

General/Admin Support  17.91 

Total IOC 317.66 

 

We see that the value estimated from the CA HSR plan is less than those presented across 

the world. An explanation could be the significantly lower expected cost of energy. 

Comparing industrial energy prices by end-use sector from the United States and Europe, 

we find that in some instances the energy prices in Europe are almost double those 

experienced in the United States (European Union, 2010; Energy Information Agency, 

2010). A related issue that could be responsible for the operating cost discrepancy is the 

leverage a HSR operator has over the energy supplier; this is cited as a source of energy 

cost discrepancy across European HSR systems (de Rus et al., 2009). A final explanation 

could be labor and staffing rates. The CA HSR expects to use higher levels of automation 

seen in the systems listed below (California High Speed Rail Authority, 2008).  

Table 5.4 Operating cost for European High Speed Rail systems. 

Country Type of Train Seats 

Operating Cost per 

Seat-Mile ($) 

France 

TGV Reseau 377 0.182 

TGV Duplex 510 0.150 

Thalys 377 0.288 

Germany 

ICE-1 627 0.241 

ICE-2 368 0.336 

ICE-3 415 0.202 

ICE 3 Polyc. 404 0.238 

ICE-T 357 0.244 

Italy 
ETR 500 590 0.323 

ETR 480 480 0.318 

Spain AVE 329 0.310 
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Including variable vehicle operating cost, the final variable cost coefficient is  

                𝑠 𝑎𝑡    𝑠𝑡𝑎   . 

 

5.1.4 Travel Time  

We estimate travel time functions, with travel time as a function of distance, for the three 

vehicle types. For the aircraft, we use the operating statistics from the DOT Form 41 

dataset. For turboprop and jet aircraft, the travel time function is as follows:  

𝑡𝑡       𝑎𝑠          (5.5)   

Where tt is the travel time and asl is the average stage length traveled by an airline-

aircraft pair in a year-quarter. Again, the dataset is an unbalanced panel, and we estimate 

using ordinary least squares and panel specific standard errors and assumed 

autocorrelation within panels. The results are shown in Appendix 4.  

 

For the travel time function for HSR, the data is simply for one system, for one year, and 

for one vehicle type. We collect 44 observations of travel time (tt) and distance (which 

we will refer to as stage length, sl, as it is not an average) from the California High Speed 

Rail Authority (2010). The function is a simpler representation of travel time, and we use 

ordinary least squares for the estimation.  

𝑡𝑡      𝑠    (5.6)   

We find that the jet aircraft has the highest fixed travel time and the lowest variable travel 

time, while the HSR vehicle has the lowest fixed travel time and the highest variable 

travel time. Jet aircraft operations involve gate push-back, taxi, take-off; then they reach a 

cruising altitude at which they travel at very high speeds. While the HSR operation 

involves less of this fixed travel time, the speeds achieved by the system are significantly 

slower than jet travel. The turboprop aircraft experiences fixed and variable travel times  

between those of the jet and HSR. As an aircraft, it has a fixed travel time involving 

push-back, taxi and take-off, but compared with the jet achieves a lower cruising altitude. 

When it reaches that altitude, it travels slower than the jet aircraft, yet still faster than the 

HSR.  

 

It should be noted that all travel times estimated are vehicle travel times and not 

passenger travel times. Passenger travel times on a corridor could be defined more 

broadly, to include port (airport or HSR station) access time and a port processing 

(security) time. The inclusion of such additional times would likely affect the numerical 

examples to be presented below, yet the direction of influence is unclear. Related to a 

processing time, the CA HSR Business Plan notes that HSR travelers are not expected to 

face security screening, consistent with the current North East Corridor rail system; the 

processing time of air will therefore certainly be longer. Related to port access time, the 

HSR systems will have stations with high accessibility, located in the downtown areas 

with business and some residential density. However, the aircraft modes benefit from 

more dispersed origin and destination airports, which match the land patterns in the 

United States closely (Clever, 2006). The incorporation of additional travel time for 
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terminal access and egress is discussed in the following chapter and left as a direction for 

future research.  

 

5.1.5 Additional Inputs  

The additional inputs required for our model include the travel distance, passenger flows, 

the distribution of passengers across value-of-time groups, and the value of time for each 

group.  

 

Both Berry et al. (1996) and Adler et al. (2005) distinguish two passenger groups, 

business and leisure, using discrete choice models with data collected from  aviation 

passengers. Adler et al. (2005) estimates that passengers are 43 percent business and 57 

percent leisure. In the same study, it was found that the dollar values of in-flight time and 

schedule delay for the two groups are statistically different. The value of in-flight time is 

$69.70/hour for business passengers and $31.20/hour for leisure passengers while the 

value of schedule delay is $30.30/hour for business passengers and $4.80/hour for leisure 

passengers. Beyond the estimation, the use of different values of time for travel time and 

schedule delay is also represented in the literature. In a recent report by Ball et al. (2010), 

in-flight delay and schedule delay are valued at different rates, with the in-flight value of 

time being a weighted average across business and leisure travelers, $37.6/hour in 2007 

dollars, and the schedule delay being the weighted average of schedule delay from the 

Adler et al. (2005) study.  

 

The analytic total logistics cost function as currently written does not allow for different 

values of travel time and schedule delay. In the function, we consider that the value of the 

time spent in schedule delay to be equal to the value of travel time. In the following 

numerical example, we will consider the business passenger value of time to be 

$69.70/hour and that of leisure passengers to be $31.20/hour.  

 

To determine passenger flow, we collect data from the US DOT Form 41 Schedule T100 

database. T100 contains data on passenger traffic in the US at the segment level, from 

which we determine the number of aviation passengers traveling from San Francisco 

International Airport (SFO) and Los Angeles International Airport (LAX). The corridor 

flow one year, October 2007-September 2008, equates to 387 passengers per hour in each 

direction (when we consider there are 365 days in one year and 16 typical hours of 

vehicle operations per day).  

 

In considering the California Corridor from San Francisco to Los Angles, we use the 

Form 41 reported 377 miles between SFO and LAX. While the HSR distance is longer 

(SFO-Los Angeles is 418 miles, while San Francisco to Los Angeles is 490 miles), for 

illustration purposes will set the constant distance to be 377 miles.  

 

While we will consider the total logistics cost variation over fuel price, also it will 

become convenient to explore the sensitivity of the results to parameters beyond fuel 

price. Therefore, we will need to choose a value of fuel price to hold constant. Using 

Form 41 data, we estimate that across all jet and turboprop observations, the average fuel 

price paid in 2008 (converted to 2006 dollars) is $3.21/gallon.  
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Table 5.5 presents a summary of the additional inputs presented in this section.  

Table 5.5 Literature summary on traveler inputs.  

Parameter 
Parameter 

Value 
Description References 

Business traveler 

value of time (λh) 

$69.70/hour 

 

$30.30/hour 

In-flight time 

 

Schedule delay 

Adler et al. (2005) 

Leisure traveler value 

of time (λl) 

$31.20/hour 

 

$4.80/hour 

In-flight time 

 

Schedule delay 

Adler et al. (2005) 

Average traveler 

value of time (  ) 

$37.6/hour 

 

$15.77/hour 

In-flight time 

 

Schedule delay 

Ball et al. (2010) 

Percent  

Business travelers  

(% Qh) 

 

Leisure Travelers  

(% Ql) 

 

43 

 

57 

 

Adler et al. (2005) 

Total passenger 

demand per hour (Qt) 
387  

US DOT Distance traveled 

(miles) 
377  

Fuel price ($/gallon) $3.21/gallon  

 

Values in bold are used in the numerical examples.  

 

5.2 Numerical Examples 

5.2.1 Sensitivity of Total Logistics Cost to Fuel Price   

When we plot the total logistics cost (TLC) per passenger against fuel price for all six 

vehicle combinations (Figure 5.1), we first see that the curves cross between $4.00/gallon 

and $6.25/gallon. This ―transition region‖ is contained, such that for fuel prices below 

$4.00/gallon there is a consistent cost ordering while for fuel prices above $6.25/gallon 

there is a different, but also consistent, cost ordering. Thus the minimum cost vehicle 

combination is only impacted by fuel price in a small transition area; and the fuel prices 

that bound the transition area are fuel prices we expect to experience in the next 25 years. 

In 2010, the Energy Information Administration (EIA) (2010) reports that jet fuel prices 

are $2.06. In 2020, the predicted fuel price is $3.58; this prediction rises to $6.00/gallon 

in 2035 (all EIA predictions are reported in 2006 dollars). This transition area is therefore 

particularly important to analyze for the California Corridor. In this transition area, the 

minimum cost designation changes from jets alone to turboprops alone to turboprops and 

HSR.  
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HSR TLC is not impacted by fuel price (as we assumed the HSR energy price is 

independent of fuel price) while the TLC for a corridor served by jets alone or turboprops 

alone increases almost linearly with fuel price. For the mixed vehicle cases with HSR as 

one of the vehicles, the rate of increase with fuel price decreases with fuel price. This is 

because, as fuel price increases, more and more passengers are assigned to the HSR, a 

vehicle unaffected by increasing fuel price.  

 
Figure 5.1 Total logistics cost vs. fuel price.   

We next evaluate how the vehicle frequency that minimizes total logistics cost changes 

over fuel price for each vehicle combination (Figure 5.2). As we expect, each plot of 

frequency vs. fuel price is monotonically decreasing. The curves decrease more slowly as 

fuel price increases because total logistics cost is concave in frequency. The minimum 

TLC cost technology does not necessarily have the highest frequency, as passengers also 

value travel time in addition to schedule delay.  

 

The results show that it is possible to increase the vehicle frequency that serves a corridor 

by switching modes, for example, from jet to HSR. The possibility of increasing 

frequency at the expense of increasing travel depends on the relationship between the unit 

costs of travel time and schedule delay, which, as discussed above, are assumed equal in 

this analysis. It is possible that with onboard amenities (such as wireless internet) and 

with uninterrupted ―laptop open‖ time, the value of schedule delay may become more 

heavily weighted compared with the value of in-vehicle time (Neels and Barczi, 2010).  
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Figure 5.2 Frequency vs. fuel price.  

5.2.2 Sensitivity of Total Logistics Cost to Distance   

To consider the sensitivity of these results to distance, we vary distance while holding 

fuel price and the other parameters constant (Figure 5.3). We find that, for the current set 

of parameters, there is a distance transition point between 300 and 375 miles. For 

corridors of distances below 300 miles, there is a clear order from highest to lowest cost 

vehicle combinations; a different but equally well-defined order exists for corridors of 

distances great than 375 miles. As the fuel price increases, the transition point occurs at a 

longer stage length. Longer stage lengths favor the faster jet technology, but higher fuel 

prices favor the HSR technology that is insensitive to fuel price. As fuel price increases, 

the transition from HSR to jet (along with the mixed technologies) therefore occurs at a 

longer stage length. Therefore, we find that for a given fuel price, there is a well-defined 

transition point, before and after which the order of minimum cost combinations are not 

impacted by distance.  
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Figure 5.3 Total logistics cost vs. distance.  

5.2.3 Sensitivity of Total Logistics Cost to Passenger Demand and Value of Time 

To consider the sensitivity of these results to passenger demand, we vary the total 

demand while keeping the 43/57 percent ratio of business/leisure passengers constant. 

We find for the set of parameters in Table 5.5, for passenger demands about 325 

passengers/hour and greater, there is an order of minimum-cost vehicle combinations that 

does not change. However for passenger demands lower than 325/hour, there is 

significant switching of minimum-cost designations across vehicle combinations. 

Therefore, we find that for more extreme demands (for example, higher demands than the 

California Corridor) jet aircraft alone minimize costs at the given level of parameters. 

This seems to conflict with the widespread belief that HSR becomes more competitive as 

corridor density increases. However, at the level of inputs explained by Table 5.5, the 

turboprop has a lower fixed cost and therefore, for low levels of passenger demands, has 

the minimum cost. At higher demand levels, the HSR certainly has higher frequencies 

compared with the jet, but the jet is able to achieve minimum cost due to the other cost 

incurred by the passengers, the travel time.  
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Figure 5.4 Total logistics cost vs. total passenger flow.  

In Figure 5.5, we find when we vary the ratio of business/leisure passengers that the 

order of minimum-cost vehicle combinations is fairly stable, except at very low 

percentages of business passengers.  

 
Figure 5.5 Total logistics cost vs. percent of business passengers.   
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When we fix the ratio of business to leisure value of time to 
  

  
      and vary the 

business (and leisure) passenger value of time, we find a specific transition point. Figure 

5.6 shows how the TLC varies with business passenger value of time. Again, we find a 

very specific transition point at   = $30-58/hour, which is close to the estimates 

presented in the literature (Table 5.5).  

 
Figure 5.6 Total logistics cost vs. business passenger value of time.   

5.3 High Speed Rail Infrastructure Costs  

An additional consideration related to HSR is the cost to construct the system. 

Infrastructure is presented as a consideration for HSR as HSR systems in the United 

States are either in the planning or early stages of development. While the air 

transportation system certainly incurred an infrastructure-related cost at one time and 

continues to incur costs a related to maintenance and possible expansion, the HSR system 

must be developed and then additionally maintained.  
 

The infrastructure costs of the CA HSR system are presented in the CA HSR Business 

Plan. Costs are presented in four broad categories. The first category is installing the 

necessary communication and electrification systems. The second is testing and 

commissioning of the system. The third is program implementation, which includes pre-

construction activities including environmental reviews, preliminary engineering, and 

pre-construction activities. The fourth considered is all other infrastructure costs, which 

are reported as specific to the corridors shown in Table 5.1. These include final design; 
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right-of-way; environmental mitigation; rail and utility relocation; earthworks items; 

structures, tunnels, and walls; grade separations; building items; and track items. All 

costs are presented in the CA HSR Business Plan as year of expenditure costs over all or 

a subset of the years 2009 and 2020 inclusive. We convert these values into the 2006 

present value of the total cost for each category using the following function:  

 

   
 

      
 

 (5.7) M 

where R is the value of a future payout in one year, N is the number of years over which 

the expenditure is incurred, i is the interest rate (set to 3.5% as reported in the CA HSR 

Business Plan), and P is the present value of all the infrastructure related expenditures. 

While the costs are not all incurred over the full 12 years, we can consider that the 

infrastructure charges can be allocated in this way because operations do not begin until 

2020. To convert the present value of the total infrastructure related cost, we use the 

capital recovery equation (5.4). For the capital recovery equation we define N, the 

number of years for which the payments can be amortized, to be 47. De Rus et al. (2009), 

in discussing a methodology for which to develop HSR cost functions, discusses that the 

operating life should be considered to be 35 years in addition to the construction time 

(which is 12 years noted in the CA HSR Business Plan). The totals presented in Table 5.6 

(in 2006 dollars) represent the infrastructure costs for the entire corridor of length 520 

miles.  

Table 5.6 Infrastructure and related costs for CA HSR.  

Category 
Present Value 

($ millions) 

Present Value per 

Mile ($ millions) 

Present Value per 

Year ($ millions) 

Infrastructure 28051.20 53.95 1224.97 

Systems and 

Electrification 
3712.70 7.14 162.13 

Testing and 

Commissioning 
87.75 0.17 3.83 

Program 

Implementation 
3048.92 5.86 133.14 

Total 30560.48 67.12 1524.080 
 

For comparison we again consider the work of de Rus et al. (2009), which reports 

infrastructure and systems and electrification costs per mile (in 2006 million $/mile) for a 

variety of systems (Table 5.7). We see that the CA HSR estimate is on the higher end, 

similar to lines under construction in Italy and the Netherlands. De Rus et al. (2009) state 

that the differences in infrastructure and related costs vary widely with topography and 

geography, as well as the number and density of urban areas the system serves. There are 

many geography and density related challenges to building the CA HSR that could 

explain the cost discrepancy.  
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Table 5.7 Global infrastructure costs for HSR projects. 

Country 
Lines in Service Lines Under Construction 

Lower Upper Lower Upper 

Austria 

 

20.78 44.48 

Belgium 18.09 16.85 

France  5.28 21.12 11.23 25.84 

Germany 16.85 32.35 23.59 37.07 

Italy 28.65 15.73 73.92 

Japan 22.47 34.71 28.08 44.93 

Korea 38.42 

 Netherlands 

 

49.09 

Spain 8.76 22.47 10.00 19.66 

 

In the consideration of infrastructure related costs, we evaluate if the HSR system savings 

are larger than the infrastructure costs on a per seat basis. Considering the number of 

trainset operations per year from Table 5.2 we find that the infrastructure cost per 

trainset-operation is $9,028/operation or $18.06/seat. We plot the total logistics cost per 

passenger against fuel price for two distances, 100 miles and 377 miles, shown in Figure 

5.7, and evaluate if the savings from HSR is greater than $18.06/seat. The figures include 

a black dotted line representing the sum of the HSR total logistics cost per passenger with 

an added $18.06/seat to represent the infrastructure cost per seat. For a short distance of 

100 miles, compared with a single vehicle fleet of jets alone, the HSR system savings are 

larger than the infrastructure costs for all fuel prices. When compared with a system of 

turboprop aircraft alone, the HSR system savings are larger than the infrastructure costs 

for jet fuel prices greater than $3.25/gallon. For a distance of 377 miles, when compared 

with a system jet aircraft alone, the HSR system savings are larger than the infrastructure 

costs for jet fuel prices greater than $8.25/gallon, a fuel price not anticipated to be 

experienced through the timeframe 2035 (Energy Information Administration, 2010).  

5.4 Conclusions  

The numerical example presented in this section shows that the minimum cost vehicle 

combination is sensitive to key parameters. For several parameters, including fuel price, 

there is a small transition zone within which the cost ordering changes significantly, and 

outside of which the orderings are stable. In the case of fuel price, we find this transition 

area to be in the $4.00/gallon to $6.25/gallon range, which is the range of fuel prices 

expected by the EIA between the years 2010-2035. We obtain similar results for several 

other parameters, but not all of them. This allows for more detailed, targeted studies of 

corridors with these models. The numerical example provides insight into HSR and 

aircraft operations over the California Corridor. We find that for shorter distances the 

HSR system has a lower cost than the aircraft modes over a wide range of fuel prices; this 

cost advantage erodes with distance. This points to the possibility of focusing on the role 

of rail in providing shorter distance service, for example, between San Diego and Los 

Angeles, a-167 mile corridor.  
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Distance = 100 miles 

 
 

Distance = 377 miles 

 
Figure 5.7 Total logistics cost vs. fuel price with infrastructure cost curve.   
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6.

 

Conclusions  
 

 

6.1 Contributions 

This research presents a methodology to determine the vehicle size, technology mix, and 

frequency to serve an intercity transportation corridor at minimum total logistics cost. 

Total logistics cost include both vehicle operating costs and costs incurred by the 

passenger. These costs are summed and compared for single and mixed vehicle scheduled 

services. The total logistics cost function captures the cost-reducing potential of 

alternative vehicles with different cost structures and service attributes. The models are 

formulated to be sensitive to fuel price, which may change significantly in the future as a 

result of market conditions or environmental policies.  

 

In this research we develop two categories of models: empirical models and analytic 

models. Empirical vehicle operating cost models provide direct insights into the 

relationship between operating cost and fuel price and guide development of the analytic 

models. The analytic models provide a characterization of the intercity transportation 

system through which we can conceptually evaluate the relationship between optimum 

service characteristics and fuel price, among other factors.  

 

The empirical models examine the roles of input substitution and induced technological 

change in managing fuel-related costs. Using Leontief cost models, which assume that 

the mix of inputs required to operate a given air vehicle is insensitive to factor prices, we 

find the minimum cost vehicle mix is highly sensitive to fuel price over the range of fuel 

prices experienced through 2010. We evaluate supplier-to-supplier input substitution by 

developing and comparing predictions from a Leontief model and a translog cost model 

estimated from the same data, at fixed values of seat capacity over a variety of distances 

and fuel prices. By building the two models and comparing their predictions, we illustrate 

a method to determine the prediction potential of a Leontief technology model and assess 

the importance of input substitution at the vehicle level. Also, in developing the translog 

model, we establish a comprehensive picture of the variables that influence operating 

cost. We find relationships between seat capacity, fuel price, and other key variables that 

have yet to be documented in the literature.  

 

The empirical operating and passenger cost models together form a total logistics cost 

function through which the minimum cost vehicle technology and operational frequency 

can be determined. However, the scenarios for which empirical model predictions can be 

used are limited. The data used to generate such models reflect current vehicle 

technology, such as materials, propulsion systems, and the type of fuel. These models 

cannot, therefore, predict the impact of changes in such technologies. With the analytic 
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models, in contrast, we draw relationships between variables based on our underlying 

understanding of the nature of transport system production. To support the development 

of analytic models, we use the empirical models to identify induced technological change 

and input substitution as the qualitative changes in response to a fuel price increase or 

environmental policy. 

 

In this thesis, we demonstrate the capability of analytic total logistics cost models to 

explore the impact of fuel price on the intercity transportation system. The analytic 

models consider aircraft vehicle size to be endogenous and continuous. By defining 

vehicles generically and characterizing them simply – by a fixed cost, a variable cost per 

seat, and a passenger cost in the form of travel time – this study enables the consideration 

of a multiplicity of intercity transportation vehicles. This is the benefit of employing 

continuum approximation models and capturing all pertinent costs incurred from 

operating and traveling in vehicles in one function.  

 

Finally, in analyzing an intercity transportation corridor, this research allows for 

passengers with heterogeneous values of time. We begin by considering discrete 

passenger groups, each defined by a demand rate and a value of time. We then allow 

value of time to follow a continuous (uniform) distribution, such that the necessary 

parameters are a minimum and a maximum value of time. Considering a distributed value 

of time captures a more realistic picture of passenger preferences. By not pre-defining the 

value of time, we consider it a variable for parametric analysis. As values of time change 

with socioeconomic changes, this further generalizes the models presented.  

 

In this research, we take a systems-level view to investigate the effects of climate change 

policy on aviation and develop a methodology to capture the system optimal response. 

This system optimal view presents the best achievable, or lowest total logistics cost, 

organization of intercity transportation. However, as we originally relaxed the constraint 

of existing institutions, we will want to compare this unconstrained model to a 

competitive model that captures the actions of existing intercity transportation 

institutions, such as the carriers. Comparing the system optimal and competitive models 

will shed light on the gap between ideal and realized. Furthermore, by quantifying the 

difference in fuel consumption and cost between the two models, we capture the 

monetary and GHG emissions cost of existing institutional constraints. It is recommended 

that these two models be components in a broader framework to support the formation 

and analysis of climate policy. 

 

A proposed framework for intercity transportation system environmental impact 

assessment includes environmental impact models and environmental policy impact 

models. Environmental impact models characterize the level of emissions and resulting 

ecological and welfare impact from a given transportation system, while environmental 

policy impact models estimate what the system would look like – what and how vehicles 

will be operated over what network – after an environmental policy is instituted. The 

environmental impact models, generally computer-based models that take intercity 

transportation system characteristics as inputs, create a baseline picture of system 

pollutants and their effects. These inputs may inform the environmental policy scenarios 
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which become the inputs for the environmental policy impact models. This is a group of 

models that capture how an environmental policy scenario impacts system characteristics, 

such as vehicles in the system, operational levels and network structures. The output of 

the environmental policy impact models becomes an input for a second run of the 

environmental impact models to calculate a level of pollutants after an environmental 

policy. This framework, depicted in Figure 6.1, shows the relationship between 

environmental impact models and environmental policy impact models and that 

environmental considerations can be incorporated as both model inputs (as a policy) and 

outputs (as resulting pollutant profiles).  

 
Figure 6.1 Intercity transportation environmental impact assessment framework. 

Environmental impact models represent computer-based environmental models that 

simulate system inputs and capture the profiles of pollutants. These models are well 

developed and it can be expected that future models will continue the decades long trend 

toward increased modeling capability using more accessible, powerful and less expensive 

computer resources. However, while substantial efforts to improve the fidelity, usability, 

and level of integration of environmental impact models are underway, the need for 

environmental policy impact models has received less attention. This group of models 

can capture the long and short term impact of an environmental policy along with the 

system optimal and competitive responses. The outputs of these models then become 

inputs in the environmental impact models, such that the policy impact models show the 

operational profile of the system and the impact models estimate the environmental 

impact of such an operational profile.  

 

In the proposed future work, we focus on the environmental policy impact models 

component, and suggest model refinements and developments.  

 

6.2 Future Work   

The research presented in this thesis can be built upon in many directions. The model can 

be refined, such that additional modes or details are captured; it can be expanded upon, 

such that additional system components are added; and additional models can be built for 

comparative purposes.  

 

•Operational levels
•Vehicle technology 
profile

•Vehicle technologies
•Route options

Environmental policy 
impact models

Environmental 
impact models

•Pollutant profiles

•Environmental policy 
scenarios
•Vehicle technologies
•Route options
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The modes considered could include other intercity modes, such as bus, auto, and 

conventional rail. While the addition of multi-passenger modes could be done with little 

change to the existing models, the addition of personal auto transportation would require 

additional variables. These variables would be necessary to capture an individual 

passengers potential to not be assigned to the multi-passenger modes and rather be 

assigned to personal transportation. Additional refinements come in the addition of 

stochastic delay attributed to a mode related to weather, mechanical failures, and 

congestion in the total logistics cost function. A passenger would internalize these costs 

along with a central planner, as they generate excess time in the system along with excess 

operating cost.  

 

The total logistics cost model developed in this dissertation could be extended to an 

intercity transportation network. The extension could come in the form of considering the 

local access and egress system as part of the intercity corridor or in considering a line-

haul network, with the former illustrated here. The corridor could be extended into three 

phases of transport: access, line-haul, and egress. In the model developed in this thesis, 

the cost faced by the passenger is the time spent in the system, in terms of schedule delay 

and travel time in vehicle. As trips do not begin or end at the terminal (the airport or the 

high speed rail terminal), passengers internalize an expanded definition time in the 

system: time spent in access and egress from the terminal. Furthermore, a central planner 

may internalize the operating cost of different access modes. Considering true-origin and 

true-destination enables an expanded definition of intercity vehicles. A mode with no 

access time, egress time, or schedule delay, such as auto, will be able to differentiate 

itself from a mode with access time. A mode with a port in the center of a highly dense 

city may find it has a lower relative cost when access cost is considered.  

 

An additional model to develop is one that captures the competitive relationship between 

intercity transportation carriers. The ―ideal,‖ or system optimal, arrangement could be 

compared with a competitive cost-based model that evaluates how operations will change 

when the intercity modes compete over a corridor. A competitive model of intercity 

travel using a game theoretic framework could include players such a high speed rail or 

other surface intercity transportation operator, a single airline with a mixed technology 

fleet, or multiple airlines with single vehicle technology fleets. In the competitive models, 

demand must be elastic such that passengers switch between players, or modes, or choose 

auto or a no-travel option. Two categories of models, one that assumes the players set 

their schedules and vehicle technology independently (simultaneous), and one that 

assumes a dominant player (leader-follower game) could be developed; it is natural that 

in the context of intercity transportation the dominant player be an airline with jet aircraft 

especially for medium-haul distances. As system optimal models are used for policy 

planning and represent the best possible achievable outcome, they are a baseline against 

which the models of actual outcomes, the competitive models, can be compared.  
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Appendix 1: Jet Aircraft Operating Cost 

Model Estimates  
 

A1.1  Aircraft Models and Airlines in Operating Cost Analysis 

 

Year of 

Intro. 

Aircraft Model Seats 

1992 

Canadair RJ-

200/ER/-440 49 

2001 Canadair RJ-700 68 

2002 Embraer EMB-170 72 

1982 BAE-146-200 88 

1988 BAE-146-300 91 

2004 Embraer EMB-190 100 

1997 Boeing B-7
7-200 111 

1990 Boeing B-737-500 113 

2003 Airbus A318 114 

1996 Airbus A319 123 

1998 

Boeing B-737-

700/700LR 128 

1988 Boeing B-737-400 143 

1988 

Airbus A320-

100/200 148 

1998 Boeing B-737-800 150 

2001 Boeing 737-900 169 

1996 Airbus A321 170 

1982 

Boeing B-767-

200/ER 178 

1983 Boeing B-757-200 184 

1998 Boeing B-757-300 222 

1986 

Boeing B-767-

300/ER 231 

1995 

Boeing 777-

200/20LR/233LR 282 

1997 Boeing B-767-400 286 

1989 Boeing B-747-400 360 
 

 

Airlines 

Air Wisconsin 

AirTran 

Alaska 

Aloha 

America West 

American 

ATA 

Atlantic Southeast 

Comair 

Continental 

Delta 

Frontier 

Hawaiian 

Horizon 

Independence Air 

JetBlue 

Midwest 

National 

Northwest 

Pinnacle 

Skywest 

Southwest 

Spirit 

Trans World 

United 

USAir 
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A1.2  Jet Aircraft Translog Operating Cost Model Results 

 
Model 1 Model 2 

Variable  

Parameter 

Estimate 

Standard 

Error 

Parameter 

Estimate 

Standard 

Error 

t -0.002*** 0.001 -0.002*** 0.001 

First Order Terms 

Seats 0.400*** 0.083 0.447*** 0.029 

Average stage length 0.803*** 0.054 0.737*** 0.019 

Labor price 0.296*** 0.038 0.329*** 0.013 

Fuel price 0.408*** 0.037 0.417*** 0.014 

Utilization -0.124*** 0.036 -0.090*** 0.014 

Materials price 0.302 0.210 0.375*** 0.084 

Average age 0.037*** 0.007 0.033*** 0.005 

Technology age 0.004** 0.002 0.003** 0.002 

Second Order Terms 

Seats 0.206*** 0.062 0.200*** 0.050 

Average stage length 0.126*** 0.033 0.145*** 0.030 

Labor price 0.038*** 0.012 0.043*** 0.010 

Fuel price 0.155*** 0.034 0.134*** 0.028 

Utilization -0.011 0.007 -0.009* 0.005 

Materials price 0.717 0.632 

 Average age -0.001*** 4.44*10
-4

 0.200 0.050 

Technology age -1.28*10
-4

 0.0003 

 Interaction Terms 

Seats – Average stage length -0.162** 0.079 -0.146*** 0.065 

Seats – Labor price -0.123*** 0.044 -0.125*** 0.032 

Seats – Utilization 0.015 0.033 

 

Seats – Materials price 0.123 0.273 

Seats – Fuel price 0.123*** 0.048 0.127*** 0.028 

Seats - Average age -0.021** 0.010 -0.016*** 0.005 

Seats – Technology age 0.003 0.007 

 

Fuel price – Average stage 

length 

9.88*10
-5

  0.030 

Fuel price – Labor price -0.114*** 0.037 -0.097*** 0.025 

Fuel price – Average Age -0.014*** 0.005 -0.016*** 0.004 

Fuel price – Materials price -0.582*** 0.245 -0.316** 0.143 

Fuel price – Utilization -0.008 0.026 

 

Fuel price – Technology age 0.001 0.003 

Average stage length – Labor 

price 0.012 0.027 

Average stage length – 

Utilization -0.040** 0.020 -0.042*** 0.014 

Average stage length – 0.085 0.171 
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Model 1 Model 2 

Variable  

Parameter 

Estimate 

Standard 

Error 

Parameter 

Estimate 

Standard 

Error 

Materials price 

Average stage length – 

Average Age -0.001 0.005 

Average stage length – 

Technology age  -0.006 0.004 

Labor price – Utilization -0.007 0.021 

Labor price – Materials price 0.026 0.152 

Labor price – Average Age 0.015*** 0.005 0.012*** 0.003 

Labor price – Technology 

age 0.003 0.003 

 

Technology age – Utilization 0.002 0.003 

Technology age – Materials 

price 0.010 0.019 

Technology age – Average 

age -0.001* 0.001 -0.001** 0.000 

Materials price – Average 

Age  

0.043* 0.025   

0.044*** 0.018 

Materials price – Utilization 0.096 0.101 

 

Utilization – Average age  -0.003     .005 

Airline Effects 

American -0.002 0.020 0.004 0.020 

Alaska -0.125*** 0.020 -0.126*** 0.020 

JetBlue 0.035 0.035 0.035 0.031 

Continental -0.014 0.021 -0.014 0.020 

Independence  -0.045 0.059 -0.065 0.058 

AirTran 0.035 0.029 0.033 0.029 

Frontier 0.088** 0.041 0.088** 0.041 

Hawaiian -0.089 0.127 -0.139 0.110 

America West -0.017 0.023 -0.023 0.022 

Spirit -0.002 0.047 -0.005 0.046 

Northwest -0.029 0.020 -0.030 0.020 

United 0.110*** 0.017 0.106*** 0.017 

USAir 0.027 0.021 0.021 0.022 

Southwest -0.306*** 0.027 -0.309*** -0.027 

Midwest -0.032 0.032 -0.033 0.032 

Air Wisconsin 0.189*** 0.057 0.162*** 0.053 

Comair 0.008 0.044 -0.008 0.041 

SkyWest -0.070 0.051 -0.090* 0.048 

Horizon -0.031 0.075 -0.049 0.072 

Trans World -0.095* 0.053 -0.095* 0.049 
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Model 1 Model 2 

Variable  

Parameter 

Estimate 

Standard 

Error 

Parameter 

Estimate 

Standard 

Error 

ATA 0.070** 0.034 0.071** 0.034 

Atlantic Southeast -0.005 0.046 -0.019 0.044 

Pan Am Clipper Connection -0.083 0.062 -0.103** 0.052 

***Variables are significant at the 1% level  

**Variables are significant at the 5% level   

*Variables are significant at the 10% level  
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A1.3  Jet Aircraft Pilot Cost per Block Hour Model Results 

Variable  

Parameter 

Estimate Standard Error 

Constant  314.438*** 39.920 

Seats 0.828*** 0.176 

Airline Effects 

American -25.110 25.299 

Alaska -20.503 28.213 

JetBlue -180.870*** 31.739 

Continental -49.119** 24.533 

Independence  -188.609*** 37.497 

AirTran -164.132*** 30.843 

Frontier -132.280*** 30.638 

Hawaiian 8.420 61.310 

America West -173.594*** 24.456 

Spirit -221.711*** 48.908 

Northwest -70.711*** 24.013 

United -41.738 26.556 

USAir -82.430** 35.450 

Southwest -108.392*** 26.724 

Midwest -86.371*** 36.884 

Air Wisconsin -215.511*** 33.358 

Comair -185.863*** 33.426 

SkyWest -176.738*** 34.009 

Horizon -147.673*** 39.278 

Trans World -204.455*** 40.344 

ATA -153.566*** 53.292 

Atlantic Southeast -189.164*** 41.761 

Pan Am Clipper Connection -244.283*** 32.920 

***Variables are significant at the 1% level  

**Variables are significant at the 5% level   

*Variables are significant at the 10% level  
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A1.4  Jet Aircraft Fuel Consumption Linear Model  

 
Full Model  Preferred Model  

Variable  

Parameter 

Estimate 

Standard 

Error 

Parameter 

Estimate 

Standard 

Error 

Constant  497.638** 224.433 

 Average stage length -0.388 0.237 2.392*** 0.175 

Seats -4.021** 1.984 3.488*** 0.970 

Average stage length –  

Seats 0.0175*** 0.00191 

  Airline Effects 

Air Wisconsin  88.345 95.192 -490.506*** 49.100 

AirTran 126.303** 62.524 -727.460*** 91.610 

America West 122.482** 56.713 -611.329*** 118.635 

American 558.048** 268.120 92.937 334.827 

American Eagle  42.622 107.023 -675.819*** -57.589 

Alaska -250.841*** 61.314 -1033.857*** 121.057 

Aloha -55.811 149.729 -1562.045*** 249.149 

Atlantic Southeast 423.453 104.047 -174.969 124.797 

JetBlue -35.199 81.920 -848.261*** 145.828 

Comair 124.432 102.512 -861.667*** -574.414 

Continental 291.747** 130.065 -470.137*** 155.185 

Express Jet 81.152 115.5483 -700.754*** 72.030 

Frontier -34.323 69.112 -927.286*** 110.398 

Hawaiian 187.373*** 68.88476 -315.227*** 100.775 

Mesa 29.107 102.048 -750.054*** 77.500 

Northwest -378.042** 164.086 -825.624*** -407.044 

SkyWest -59.377 129.569 -1076.967*** 141.734 

Southwest 121.120*** 51.124 -774.777*** -486.948 

Spirit -378.042** 164.086 -970.158*** 166.591 

Trans States -2.061 110.386 -649.159*** 74.051 

United  260.616*** 77.146 -488.175*** 133.609 

USAir  145.843** 65.886 -487.559*** 103.647 

***Variables are significant at the 1% level  

**Variables are significant at the 5% level   

*Variables are significant at the 10% level  
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A1.5  Jet Aircraft Operating Cost (without Fuel) Linear Model  

 
Full Model  Preferred Model  

Variable  

Parameter 

Estimate 

Standard 

Error 

Parameter 

Estimate 

Standard 

Error 

Constant  2927.21*** 723.6904 

 Average stage length -1.848*** 0.796 3.022*** 0.357 

Seats -9.203* 5.390 11.146*** 2.628 

Average stage length –  

Seats 0.030*** 0.005 

 Airline Effects 

Air Wisconsin  -446.699 604.698 141.159 429.931 

AirTran -245.594 297.746 -587.831*** 230.240 

America West 506.852 458.520 121.076 423.029 

American 4627.376*** 1202.379 4525.655*** 1261.702 

American Eagle  -1407.432*** 414.309 -987.274*** 107.471 

Alaska -468.584 367.820 -898.286*** 347.322 

Aloha 3103.488*** 1006.948 1497.725 1050.043 

Atlantic Southeast -243.910 348.087 -244.009 238.408 

JetBlue -609.477 408.240 -1000.499** 442.607 

Comair -778.532* 404.847 -649.411*** 187.607 

Continental 721.357*** 308.258 304.969 275.767 

Express Jet -806.462* 433.808 -463.443*** 131.434 

Frontier -566.650 371.387 -1086.396*** 323.638 

Hawaiian -218.149 330.912 70.612 292.730 

Mesa -290.692 425.052 -52.242 314.233 

Northwest 126.960 359.862 -217.446 346.508 

SkyWest -744.739* 430.347 -898.368*** 223.527 

Southwest -912.741*** 294.320 -1152.409*** 246.138 

Spirit -175.452 523.030 -422.205 530.884 

Trans States -1000.567*** 424.393 -456.385*** 109.281 

United  64.194 384.052 -317.343 337.320 

USAir  1593.440*** 650.395 1429.206*** 595.325 

***Variables are significant at the 1% level  

**Variables are significant at the 5% level   

*Variables are significant at the 10% level  
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Appendix 2: Total Logistics Cost Model, 

Case 2-2 
 

 

A2.1  Full Total Logistics Cost Function, Case 2-2  

 

  
   

 
        

   

   
 

    
   

 
 

 

  
   

 
     

  
       

 
      

                           
                      

    
     

 
      

                           
                       

    
     

 
       

 
  

   

   
   

         
   

       
           

  

 

 

A2.1  Truncated Total Logistics Cost Function, Case 2-2  
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Appendix 3: Linear Operating Cost 

Model Results 
 

 

A3.1  Turboprop Aircraft Fuel Consumption Linear Model  

 
Full Model  Preferred Model  

Variable  

Parameter 

Estimate 

Standard 

Error 

Parameter 

Estimate 

Standard 

Error 

Constant  85.799* 46.468 

 Average stage length 0.076 0.201 0.495*** 0.026 

Seats 0.049 0.954 2.030*** 0.112 

Average stage length –  

Seats 0.010** 0.004 

  Airline Effects 

American Eagle  3.936 5.515 8.231** 4.066 

SkyWest  -17.152*** 6.978 -12.202*** 3.154 

Mesaba  -9.853** 4.670 -8.314*** 3.183 

ExpressJet  15.155*** 6.193 18.402*** 5.855 

Trans States  4.184 4.071 6.937** 3.497 

Horizon  -5.541 7.111 -1.638 4.150 

Mesa  2.481 8.377 -1.285 9.275 

Air Wisconsin 4.320 4.447 2.307 4.523 

Executive  -22.688* 13.305 -37.882*** 10.142 

***Variables are significant at the 1% level  

**Variables are significant at the 5% level   

*Variables are significant at the 10% level  
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A3.2  Turboprop Aircraft Operating Cost (without Fuel) Linear Model  

 
Full Model  Preferred Model  

Variable  

Parameter 

Estimate 

Standard 

Error 

Parameter 

Estimate 

Standard 

Error 

Constant  -57.971 703.828 

 Average stage length 1.820 3.085 0.317 0.792 

Seats 21.032* 12.157 13.807*** 3.237 

Average stage length –  

Seats -0.052 0.056 

 Airline Effects 

American Eagle  115.015 148.158 197.847 140.509 

SkyWest  -133.427 135.675 15.338 80.909 

Mesaba  12.184 104.755 146.718 100.250 

ExpressJet  -99.556 104.793 -24.064 110.598 

Trans States  299.596* 181.281 388.846*** 164.932 

Horizon  0.169 143.073 143.562* 84.490 

Mesa  11.342 261.496 135.219 277.789 

Air Wisconsin 432.041*** 172.019 571.315*** 189.281 

Executive  -199.379 251.152 36.562 192.452 

***Variables are significant at the 1% level  

**Variables are significant at the 5% level   

*Variables are significant at the 10% level  
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A3.3  Jet Aircraft Ownership Linear Model  

 
Full Model  Preferred Model  

Variable  

Parameter 

Estimate 

Standard 

Error 

Parameter 

Estimate 

Standard 

Error 

Constant  929.227 749.464 

 Seats 6.627*** 1.767 10.675***   1.990 

Airline Effects 

Air Wisconsin  -820.899 657.698 -148.654 140.264 

AirTran -662.324 576.432 -224.038 245.522 

America West -91.468 556.152 243.152 312.189 

American -692.662 543.391 -452.212 382.900 

American Eagle  -945.615 674.277 -221.108 101.784 

Alaska -532.760 544.226 -196.468 297.515 

Aloha 1934.179** 877.941 2338.229 742.130 

Atlantic Southeast -887.830 579.415 -443.828 248.454 

JetBlue -340.663 584.889 70.272 307.717 

Comair -712.101 659.335 -32.215 132.071 

Continental 46.384 549.637 371.439 326.912 

Express Jet -684.819 687.377 64.563 114.790 

Frontier -492.157 576.523 -73.631 270.369 

Hawaiian -1131.029* 578.753 -685.388 240.440 

Mesa -334.695 667.085 343.143* 192.052 

Northwest -689.539 541.733 -378.398 315.643 

SkyWest -428.038 684.211 248.813 219.491 

Southwest -1181.760** 572.253 -753.621 247.601 

Spirit -15.036 640.095 254.543 501.295 

Trans States -678.567 675.641 48.163 104.821 

United  -924.575* 548.385 -578.680 292.511 

USAir  -23.517 602.395 302.223 386.246 

***Variables are significant at the 1% level  

**Variables are significant at the 5% level   

*Variables are significant at the 10% level  
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A3.4  Turboprop Aircraft Ownership Linear Model  

 
Full Model  Preferred Model  

Variable  

Parameter 

Estimate 

Standard 

Error 

Parameter 

Estimate 

Standard 

Error 

Constant  -21.190 63.213 

 Seats 7.353*** 1.235 7.070*** 0.594 

Airline Effects 

American Eagle  145.569*** 41.481 137.770*** 39.436 

SkyWest  135.540*** 37.078 122.934*** 23.745 

Mesaba  63.849* 35.911 52.287** 26.875 

ExpressJet  91.060*** 39.366 83.169** 37.633 

Trans States  131.923*** 43.224 124.070*** 34.507 

Horizon  7.489 31.067 -3.151 24.251 

Mesa  9.649 103.882 -1.742 102.211 

Air Wisconsin 199.885* 118.259 187.855 115.550 

Executive  70.858 84.738 66.571 87.746 

***Variables are significant at the 1% level  

**Variables are significant at the 5% level   

*Variables are significant at the 10% level  
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Appendix 4: Travel Time Model Results 
 

A4.1  Jet Aircraft  

Variable  

Parameter 

Estimate 

Standard 

Error 

Constant  0.628*** 0.0175 

Distance .00205*** 2.5*10
-5

 

 

A4.2  Turboprop Aircraft  

Variable  

Parameter 

Estimate 

Standard 

Error 

Constant  0.350*** 0.0162 

Distance 3.97*10
-3

***   9.06*10
-5

  

 

A4.3  High Speed Rail  

Variable  

Parameter 

Estimate 

Standard 

Error 

Constant  0.125** 0.0434 

Distance 5.57*10
-3

*** 1.33*10
-4

 

 

 

 

 




