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Abstract

In this perspective, we examine three key aspects of an end-to-end pipeline for realistic 

cellular simulations: reconstruction and segmentation of cellular structures; generation of cellular 

structures; and mesh generation, simulation, and data analysis. We highlight some of the relevant 

prior work in these distinct but overlapping areas, with a particular emphasis on current use of 

machine learning technologies, as well as on future opportunities.
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1. INTRODUCTION

Machine learning (ML) approaches, including both traditional and deep learning methods, 

are revolutionizing biology. Owing to major advances in experimental and computational 

methodologies, the amount of data available for training is rapidly increasing. The timely 

convergence of data availability, computational capability, and new algorithms is a boon for 
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biophysical modeling of subcellular and cellular scale processes such as biochemical signal 

transduction and mechanics [1]. To date, many simulations are performed using idealized 

geometries that allow for the use of commonly used techniques and software [2–6]. This is 

historically due to the lack of high-resolution structural data as well as the theoretical and 

computational challenges for simulations in realistic cellular shapes, due to the complexity 

of generating high-quality, high-resolution meshes for simulation, and the need to develop 

specialized fast numerical solvers that can be used with very large unstructured mesh 

representations of the physical domain.

As biophysical methods have improved, the complexity of our mathematical and 

computational models is steadily increasing [7–9]. A major frontier for physics-based 

study of cellular processes will be to simulate biological processes in realistic cell shapes 

derived from various structural determination modalities [10, 11]. For biological problems 

ranging from cognition to cancer, it has long been understood that cell shapes are often 

correlated with mechanism [12–16]. Despite such clear correlations, there remain gaps in 

our understanding of how cellular ultrastructure contributes to cellular processes and the 

feedback between cellular structure and function. Challenges such as the diffraction limit 

of light and difficulties in manipulation of intracellular ultrastructure constrain the potential 

scope of what can be achieved experiments. Much like the partnership between biophysics 

and molecular dynamics simulations have enabled the modeling of invisible protein motions 

to shed insights on experimental observations, simulations of cellular processes can also 

aid in the validation and generation of hypothesis currently inaccessible by experimental 

methods. Recently, we and others have shown that, for example, cell shape and localization 

of proteins can impact cell signaling [4, 5, 12, 17, 18].

The major bottleneck for the widespread use of cell scale simulations with realistic 

geometries is not the availability of structural data. Indeed, there exist many three-

dimensional imaging modalities such as confocal microscopy, multiphoton microscopy, 

super-resolution fluorescence and electron tomography [19, 20]. For example, automation 

of modalities such as Serial Block-Face Scanning Electron Microscopy is already enabling 

the production of data at rapid rates. The bottleneck lies in the fact that much of the data 

generated from these imaging modalities need to be manually curated before it can be 

used for physics-based simulations. This current status quo of manually processing and 

curating these datasets for simulations is a major obstacle to our progress. In order to 

bridge the gap between abundance of cellular ultrastructure data generated by 3D electron 

microscopy (EM) techniques and simulations in these realistic geometries, innovations in 

machine learning (ML) methods will be necessary to reduce the time it takes to go from 

structural datasets to initial models. There are already many similar efforts at the organ/

tissue and connectomics length scales [21–23]. In this work, we summarize the main steps 

necessary to construct simulations with realistic cellular geometries (Figure 1) and highlight 

where innovation in ML efforts are needed and will have significant impacts. We further 

discuss some of the challenges and limitations in the existing methods, setting the stage for 

new innovations for ML in physics-based cellular simulations.
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2. SOURCES OF ERROR IN IMAGING MODALITIES

Images generated by the various microscopy modalities must undergo pre-processing to 

correct for errors such as uneven illumination or background noise [25, 26]. The choice of 

suitable algorithms for error correction depends on multiple factors, some of which are listed 

here—the length scale of the experiment being conducted, scalability and reproducibility 

of the experiment, optical resolution of the microscope, sensitivity of the detector, 

specificity of the staining procedure, imaging mode (2D, 3D, 3D time-series), imaging 

modality (fluorescence, EM, ET etc.,) and other imaging artifacts like electronic noise, lens 

astigmatism, mechanical tilting/vibration, sample temperature, and discontinuous staining 

[25–28]. These sources of error are an important consideration for model implementation 

further downstream [6].

Electron tomography (ET) remains one of the most popular methods of cell imaging for 

modeling purposes [29–31], as it retains the highest resolution of all the 3D cell imaging 

techniques [26] by reconstructing a 3D object from a series of 2D images collected at 

different tilt angles [32]. However, images from ET also have a low signal to noise 

ratio (SNR) and have anisotropic resolution (for example, 1 nm resolution in x, y and 

10 nm resolution in z) [25]. This is partly because biological samples can withstand 

only a limited dose of electron beam radiation (SNR is proportional to the square root 

of the electron beam current) before the specimen is damaged [33]. Other sources of 

error such as misalignment of projections and missing wedges from an incomplete tilt 

angular range can significantly affect the quality of the reconstruction. To work with data 

such as these, image processing steps are required for high resolution 3D reconstruction 

[25, 34]. Commonly used software packages for image processing such as IMOD [35] 

and TomoJ [36] use reconstruction algorithms such as Weighted Backprojection (WBP) 

and Simultaneous Iterative Reconstruction Technique (SIRT). While these have been very 

effective at reconstruction, sources of error can still accumulate, leading to further manual 

adjustment [37].

3. APPLICATIONS OF ML FOR THE SEGMENTATION AND 

RECONSTRUCTION OF CELLULAR STRUCTURES

Given a noisy 3D reconstruction, how can we segment cellular structures of interest? 

One approach is to employ manual segmentation tools applied to 3D tomograms such 

as XVOXTRACE [32, 38], and more generally, manual contouring, interpolation, and 

contour stacking (Figure 1). The advantage of such methods is that the human eye performs 

exceptionally well at detecting objects in an image [27, 39]. Consequently, semi-manual and 

manual segmentation are widely adopted, favoring accuracy over efficiency. However, such 

methods can be extremely tedious and not always reproducible. Alternatively, numerous 

semi-automatic segmentation algorithms such as interpolation, watershed, thresholding, 

and clustering are available as plugins in software packages like IMOD [35] and ImageJ 

[40] (Figure 1, classical). However, the accuracy of open platform algorithms is debatable 

[41] because of two main reasons—(i) Even with a “perfect” ET reconstruction (no tilt 

misalignment, no missing wedge, no noise), the application of filtering algorithms like 
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Gaussian blur or non-linear anisotropic diffusion (NAD) [42] can cause artifacts that lead to 

misclassifications, rendering the image unsuitable for downstream quantitative simulations 

and analysis. (ii) Segmentation workflows are often designed for a specific structure and/or 

imaging modality, limiting their generalizability and applicability.

Annual cell segmentation challenges are evidence of the demand for automatic segmentation 

[43, 44], with many of its past winners responding with ML-based programs [45, 46]. 

Training labels for ML techniques requires a relatively small percentage (as small as 

10%) of manually segmented labels, allowing for very large data sets to be processed 

significantly faster than previously implemented semi-automatic segmentation methods. The 

most successful teams utilized ML techniques such as random forest classifiers, support 

vector machines, or a combination of these to get segmentations comparable or often even 

better than their human counterparts [43–46] (Figure 1, machine learning). These techniques 

function by imputing several image features such as noise reduction, and texture and edge 

detection filters [47]. These filters are then used to train a classification algorithm in an 

interactive manner, achieving better classification accuracy at the cost of increased training 

time compared to the direct application of a filter. However, because the algorithm is 

interactive, it still requires manual input and both the training time and accuracy can depend 

on the user.

More recently, deep learning-based ML algorithms (Figure 1, deep learning), and more 

specifically, convolutional neural networks (CNNs) have surged in popularity due to the 

success of AlexNet in the ImageNet classification challenge [48]. CNNs are complex 

learnable non-linear functions that do not require the imputation of data-specific features. 

Indeed, CNNs learn the feature mapping directly from the image. The U-Net convolutional 

neural network architecture [46] further generalized deep learning, winning the ISBI 

neuronal structure segmentation challenge in 2015 with a quicker speed and with fewer 

training images. It functions by using the feature mapping imputed by a CNN to map the 

classification vector back into a segmented image. Such is the achievement of the U-Net 

that its variants are now the state-of-the-art in tasks like calling genetic variation from 

gene-sequencing data [49], brain tumor detection [50] and segmentation of medical image 

datasets [51]. However, such deep learning based methods have their own challenges. They 

require both quality and quantity of annotated training data, significant amount of training 

time, graphics processing unit computing, and can generalize poorly to a different dataset.

Both the difficulty and cost of generating annotated training data increases exponentially 

when dealing with Volumetric (3D) images compared with 2D, which are the desired 

inputs for biophysical simulations. Since the U-Net is a 2D architecture [46], it cannot be 

applied directly to 3D images without modifications. To this end, 3D U-net used sparsely 

annotated 2D slices to generate volumetric segmentations of brain tumors [52]. Similarly, 

VoxRestNet [53] introduced residual learning using ResNet [54], a deep residual network 

capable of training hundreds to thousands of layers without a performance drop, to a 

voxelwise representation of 3D magnetic resonance (MR) images of the brain, paving the 

way for scalable 3D segmentation.
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Excitingly, such algorithms are being made openly accessible and easy-to-use. For example, 

iLastik [45, 55] and Trainable Weka Segmentation [47] are both available as plugins in 

software packages like ImageJ. These tools provide an interactive platform for segmentation, 

employing supervised classification techniques like random forests as well as unsupervised 

clustering such as K-means [47]. Similarly, deep learning tools such as DeepCell [56] and 

U-Net [46, 57] are also available in various bioimage software packages. Other stand-alone 

tools like the Allen Cell Structure Segmenter provide a lookup table of 20 segmentation 

workflows that feed into an iterative deep learning model [58]. Cloud compute based 

segmentation plugins like CDeep3M [59] leverage Amazon Web Services (AWS) images 

to provide an efficient and compute-scalable tool for both 2D and 3D biomedical images.

Generating well-organized and annotated training data continues to be the major challenge 

for most ML segmentation methods. Crowdsourced annotation tools like Amazon’s 

Mechanical Turk can be useful in this context, but are still limited by the difficulty 

of training naive users on tracing specific structural images. Alternatively, many ML 

algorithms leverage transfer learning approaches using pre-trained networks such as VGG-

net [60–62], AlexNet [48], and GoogleNet [63]. In fact, popular semantic segmentation 

and clustering networks like Fully Convolutional Networks (FCN) [64] and DECAF [65] 

are themselves implemented using transfer learning approaches. Such transfer learning 

can also be used to generalize models trained on biological data to a different cell type 

or experimental condition, significantly reducing the time for training and accompanying 

computing resources required. More recently, label-free approaches employing a U-net 

variant have been applied to predict cellular structure from unlabeled brightfield images [66, 

67]. These methods can serve as a platform for building low cost, scalable, and efficient 

segmentation of 3D cellular structure.

4. APPLICATIONS OF ML FOR THE GENERATION OF SYNTHETIC 

CELLULAR STRUCTURES

There are two main aspects involved in the development of comprehensive biophysical 

models—(1) what is the process being modeled? and (2) what is the geometry in which 

this process is being modeled? Answers to the first question are based on experimental 

observations and specific biology. Answering the latter is significantly more challenging 

because of the difficulties in—(i) obtaining accurate segmentations, (ii) discovering new 

structure from experiments, and (iii) simultaneously visualizing multiple structures. The use 

of synthetically generated geometries, which can probe different arrangements of organelles 

within cells could be relevant for generating biologically relevant hypotheses.

A subset of ML models, called generative models, deal with the task of generating new 

synthetic but realistic images that match the training set distribution. For our purposes, 

such methods are relevant in the context of generating (i) noise-free images, (ii) images 

representative of a different cell type, structure, or time-point, and (iii) unlikely images that 

represent the most unique shapes of the structure being imaged. For example, by capturing 

the unlikely and likely shapes in our dataset, we could generate sequences of synthetic 
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images that transition from one shape to the next. These synthetic images can be used in 

biophysical simulations to generate biologically relevant hypotheses.

In recent years, there has been rapid progress in applying deep generative models to natural 

images, text, and even medical images. Popular classes of deep generative models like 

Variational Autoencoders [68], Generative Adversarial Networks [69], and Autoregressive 

models such as PixelRNN [70] and PixelCNN [71] have achieved state of the art 

performance on popular image datasets such as MNIST [72], CIFAR [73] and ImageNet 

[74]. Each class of models has numerous modified implementations. For example, GANs 

alone include models like deep convolutional GAN (DCGAN) [75], conditional GAN 

(cGAN) [76], StackGAN [77], InfoGAN [78], and Wasserstein GAN [79] to name a few. 

Each model has its own distinct set of advantages and disadvantages. GANs can produce 

photo-realistic images at the cost of tricky training and no dimensionality reduction. VAEs 

allow for both generation and inference, but their naive implementation results in less 

photo-realistic generative examples. Autoregressive models obtain the best log-likelihoods at 

the cost of poor dimensionality reduction. Importantly, all of these models are unsupervised, 

implying that they are not limited by manual annotation that is otherwise a common 

challenge to supervised learning approaches.

In cell biology, much of the work in building generative models of cellular structures has 

been associated with the open source CellOrganizer [80–86], which uses a Gaussian Mixture 

Model given reference frames like the cell and nuclear shape in order to predict organelle 

shape distribution. These models also have the option to be parametric (parameters such as 

number of objects), which reduces the complexity of the learning task, the training time and 

GPU computing resources required, while also allowing for exploration and analysis of the 

parameters and their effect on the spatial organization of cells. Aside from CellOrganizer, 

other recent efforts have begun to leverage deep generative models in cell biology. We now 

have models that can predict structure localization given cell and nuclear shape [87], extract 

functional relationships between fluorescently tagged proteins structures in cell images [88], 

learn cell features from cell morphological profiling experiments [89], and interpret gene 

expression levels from single-cell RNA sequencing data [90, 91].

The challenge going forward will be how best to use generative modeling given the data 

in hand. This will depend on the question we want to ask of the data. For example, if we 

are modeling processes associated with cell and nuclear shape, spherical harmonics based 

generative models might be more appropriate than deep learning based methods [92]. If we 

are interested in inpainting a missing wedge from a tomogram using a generative model, 

then GANs might be more appropriate [93]. Generated images can also be used as a source 

of training data for segmentation and classification tasks [94]. Taken together, these choices 

will help develop efficient end-to-end pipelines for segmentation and shape generation, 

and provide a platform for running biophysical simulations. Already, CellOrganizer can 

export spatial instances to cell simulation engines such as MCell [95] and VirtualCell 

[96], allowing us to simulate chemical reactions in different spatial compartments. Similar 

pipelines for deep generative models will need to be implemented in order to fully realize 

their downstream interpretations.
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5. APPLICATIONS OF ML FOR MESHING, SIMULATION, AND DATA 

ANALYSIS

ML is commonly applied to mesh segmentation and classification; examples include 

PointNet [97] (segments and classifies a point cloud), and MeshCNN [98] (segments 

and classifies edges in a mesh). However, although the term machine learning was not 

traditionally used to describe meshing techniques, in fact algorithms for mesh generation 

(cf. [99]), mesh improvement (such as mesh smoothing [100]), and mesh refinement [101–

104] all fundamentally involve local (cf. [105]) and/or global (cf. [106]) optimization of 

an objective function (see Figure 2). Mesh point locations, and/or edge/face connectivity 

decisions are viewed as parameters that are determined (or learned) as part of an iterative 

algorithm that extremizes a local or global objective function (usually involving constraints 

as well) in an effort to generate, improve, or refine a given mesh. In addition, adaptive 
numerical methods for simulation of physical systems involving the solution of ordinary 

(ODE) and partial (PDE) differential equations are again an early example of the application 

of ML techniques in computational science, long before the terminology was widely used. 

A classic reference from the 1970’s in the context of adaptive finite element methods is 

Babuška and Rheinboldt [108, 109]; all modern approaches to adaptive numerical methods 

for ODE and PDE systems continue to follow the same general framework outlined in 

that work: (i) Solve the ODE/PDE on the current mesh; (ii) Estimate the error using a 
posteriori indicators; (iii) Refine the mesh using provably non-degenerate local refinement 

with closure; (iv) Go back to step (i) and repeat the iteration until a target quality measure 

is obtained (a standard approach is to approximately minimize a global error function, 

through the use of local error estimates). These types of adaptive algorithms are effectively 

machine learning the best possible choice (highest accuracy with least cost) of mesh and 

corresponding numerical discretization for the target ODE/PDE system. Recent work in the 

area is now moving toward a more explicit and sophisticated use of modern ML techniques 

(cf. [110, 111]).

Given a high quality and high resolution mesh representation of a structural geometry (see 

Figure 2), we can begin to probe structure-function relationships through mathematical 

modeling [11, 112]. However, a single realistic geometry is not enough since it only 

captures a snapshot in time of the cellular geometry. Furthermore, structural variability 

is a hallmark of cell biology [14, 24]. Dimensionality reduction techniques like principal 

component analaysis (PCA) or Variational Autoencoders (VAEs) can help determine both 

the average and extreme representations of a distribution of shapes, providing a starting 

point for running simulations. Generative models (discussed in section 4) can then be used 

to populate a single cell with multiple learned distributions—for example, generate cell 

shapes from EM images overlaid with protein structure shapes learned from fluorescence 

images [10, 80, 87].

To facilitate population studies, it is important that structural datasets be made publicly 

available, as they commonly are in neuroscience [23, 24, 113]. This is following in the 

footsteps of - omics datasets such as genomics, proteomics and transcriptomics [114], which 

have traditionally been made public in large scale projects like the Cancer Genome Atlas 
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[115], the Human Microbiome Project [116] and the ENCODE project consortium [117]. 

ML can then be used to identify structure-phenotype associations, in much the same way as 

genotype-phenotype relationships are predicted from -omics studies [118, 119].

Importantly, by running simulations on distributions of realistic shapes, we can generate 

experimentally testable hypotheses. This is much harder in -omics datasets, where 

mechanistic insight is usually obtained via constraint based modeling [119]. Further, we can 

also explore the implications of assuming an idealistic geometry—a common assumption 

in hypothesis-driven modeling. For example, idealized geometries have been the starting 

point of many signaling models that explore spatio-temporal dynamics using deterministic 

reaction-diffusion formulations [4, 5, 17, 18, 120–123] or using Brownian dynamics or other 

formulations [95, 124–133]. An excellent example of insights gained using these idealized 

geometries is in exploring how changing the diffusion distances can affect the dynamics 

of signaling molecules such as Ca2+ [123]. Other physical systems that are commonly 

modeled and simulated include structural mechanics [2, 7], fluid mechanics [112, 134] and 

thermodynamics [135].

A major bottleneck in setting up accurate computational simulations of biophysical systems, 

idealistic or otherwise, revolve around the choice of constitutive equations, estimation of 

the free parameters such as reaction rate constants, diffusion coefficients, and material 

properties, and computational algorithms for solving the resulting governing equations 

numerically on these domains. While there is a large history of mathematical modeling 

in biology to set the stage for constitutive equations, estimation of free parameters remains 

a major challenge. Another major challenge for physically realistic models of signaling 

is knowing the location of the various molecules involved. Realistic geometries pose the 

additional challenge of requiring us to first understand the distribution of shapes, followed 

by analyzing simulation results across that distribution. Similar to how ML can be used 

in adaptive numerical methods to output a good mesh, ML can also be used for adaptive 

nonlinear data fitting to determine biophysical parameters with uncertainity estimates [136, 

137]. Incorporating domain knowledge such as stress-strain relationships [138] or statistical 

molecular dynamic states [139] into ML algorithms can also improve interpretability while 

closing the loop between ML frameworks and biophysical modeling.

6. PERSPECTIVES AND FUTURE DIRECTIONS

In this perspective, we have discussed three key aspects of a pipeline for realistic cellular 

simulations: (i) Reconstruction and segmentation of cellular structure; (ii) Generation of 

cellular structure; and (iii) Mesh generation, refinement and simulation. While these were 

discussed separately, neural networks like Pixel2Mesh demonstrate the feasibility of end-to-

end pipelines from a single black box [140]. Of course, black boxes are not interpretable, 

and recent ML frameworks using Visible Neural Networks [141] demonstrate the potential 

of incorporating extensive prior knowledge to create a fully interpretable neural network 

capable of highlighting functional changes to every neuron/subsystem upon perturbing 

the input. Other ML frameworks like SAUCIE use regularizations to enforce mechanistic 

intepretability in the hidden layers of an autoencoder neural network [142]. We anticipate 
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that future endeavors will implement a fully interpretable and end-to-end pipeline for 

biophysical simulations.
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FIGURE 1 |. 
An illustration of the complex pipeline needed to go from imaging data to a segmented 

mesh, with various opportunities for emerging techniques in machine learning shown 

throughout the pipeline. (Top row) EM images obtained from Wu et al. [24] of dendritic 

spines from mouse brain tissue. (Middle row) Manual tracing or contouring, interpolation, 

and stacking of contours is extremely time consuming, prone to error, and relies of human 

judgement. (Bottom row) On the other hand, development of training labels and different 

learning techniques can reduce both time and error, bridging the gap between biological 

data and simulations. Classical algorithms like Otsu’s thresholding and watershed are 
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widely used and convenient but prone to error. Traditional machine learning algorithms 

like Random Forest and Naive Bayes are less prone to error and easy to use but require 

manual painting/interaction. Deep learning algorithms are highly effective and require no 

manual interaction but are limited by large training sets and compute resources. The list of 

techniques described is representative only, and not exhaustive.
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FIGURE 2 |. 
An illustration of complexity, size, quality, and local resolution of meshes typically needed 

for realistic simulation of biophysical systems. Meshes are generated using GAMer 2 [11, 

107]. (A) Example surface mesh of a dendritic spine with geometry informed by electron 

micrographs from Wu et al. [24]. The plasma membrane is shown in purple with the post 

synaptic density rendered in dark purple. The spine apparatus, a specialized form of the 

endoplasmic reticulum is shown in yellow. (B) A zoomed in view of the spine apparatus. 

Note that the mesh density is much higher in order to represent the fine structural details. 

(C) Binned histogram distributions of mesh angles for both the plasma membrane and spine 

apparatus. The colored smooth lines are the result of a kernel density estimate. Dotted red 

lines correspond to the minimum and maximum angle values in each mesh. Both meshes are 

high quality with few high aspect ratio triangles (i.e., those deviating most from equilateral).
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