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aXENDEE, 6540 Lusk Blvd., Suite C225 San Diego, CA 92121 USA
bUC San Diego, 9500 Gilman Dr., San Diego, CA 92037

cBioenergy and Sustainable Technologies, Austria
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Abstract

Recently, researchers have begun to study hybrid approaches to Microgrid techno-economic planning, where a
reduced model optimizes the DER selection and sizing is combined with a full model that optimizes operation
and dispatch. Though providing significant computation time savings, these hybrid models are susceptible to
infeasibilities, when the size of the DER is insufficient to meet the energy balance in the full model during
macrogrid outages. In this work, a novel hybrid optimization framework is introduced, specifically designed
for resilience to macrogrid outages. The framework solves the same optimization problem twice, where the
second solution using full data is informed by the first solution using representative data to size and select
DER. This framework includes a novel constraint on the state of charge for storage devices, which allows
the representation of multiple repeated days of grid outage, despite a single 24-hour profile being optimized
in the representative model. Multiple approaches to the hybrid optimization are compared in terms of their
computation time, optimality, and robustness against infeasibilities. Through a case study on three real Mi-
crogrid designs, we show that allowing optimizing the DER sizing in both stages of the hybrid design, dubbed
minimum investment optimization (MIO), provides the greatest degree of optimality, guarantees robustness,
and provides significant time savings over the benchmark optimization.

Keywords: Microgrid, economic planning, mixed-integer optimization, techno-economic optimization,
DER-CAM, multi-energy systems, outages, islanded, XENDEE

Nomenclature
Indices

d Day-type, D = {Week, Weekend, Peak}

e End-use type, E = {Electric, Thermal, Natural gas}

f Fuel type, C = {Natural Gas, Diesel, Hydrogen}

g Discrete generation technologies (only available in discrete
sizes), G = {Internal Combustion Engine, Combined Heat and
Power, Fuel cell}

h Hour, H = {1,2,...,24}

k Continuous generation technologies (available in any size), K =

{Photovoltaic, Energy Storage, Absorption Chiller}

∗Corresponding author

m Month, M = {1,2,...,12}

p Tariff demand period, P = {Non-coincident, Off-peak, Mid-
peak, Peak}

t Technologies, T = G
⋃

K

Variables

CapContc The capacity of continuous generation technology c purchased

FPm,d,h, f Fuel purchased of type f at time-step m,d,h

Km,d,h,e,t Energy of type e consumed by technology t at time m,d,h

Lm,d,h,e Energy demand of type e at time m,d,h

PurchNumg The number of units of discrete generators g purchased

Pm,d,h,e,t Energy provided by technologies t for end use e at time-step
m,d,h
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Rm,d,ht Climate resource for technology type t at time-step m,d,h

Sm,d,h,e,t Exports by technology t of type e at time m,d,h

Um,d,h,e Utility energy purchased for end use e at time-step m,d,h

Parameters

ANNt Investment annuity rate of technology type t

Am,d,h,e ∈ [0,1], binary availability of external energy providers

CapGeng The capacity of generator g

Cdeme,p Demand charge applied to period p for energy type e

Ctax Carbon tax

EFt Emissions factor of technology t or the utility source

FOMc Annual Fixed O&M cost required for continuous generator c

FOMg Annual Fixed O&M cost required for discrete generator g

FSm, f Fixed service charge for month m and fuel f

Icapg Unit capital cost of discrete technology type g

Ifixc Fixed investment cost required for continuous technology of
type c

IntRate Interest rate on investment

Ivarc Variable investment cost required for continuous technology of
type c

NDm,d Number of days of type d in month m

PXm,d,h Exchange price for electricity at time-step m,d,h

SCm Utility standby charge for month m

Ufixm Fixed utility charge for month m

VOMt Annual variable O&M cost required for technology of type t

Vfuelm,d,h, f Volumetric fuel price at time-step m,d,h for fuel type f

Vutilm,d,h,e Volumetric utility price at time-step m,d,h for energy type e

lifetimet Lifetime of technology type t

1. Introduction

Microgrids, often synonymous with multi-energy
systems, are rapidly becoming a viable commercial
strategy to provide resilience, cost savings, and de-
carbonization [1]. Microgrids are typically grid-tied
systems which provide economic benefit, but are ca-
pable of islanding (disconnecting from the grid) and
still supporting a significant portion of their demand
for the duration of the disconnection, increasing re-
silience. In the extreme, some Microgrids (typi-
cally referred to as remote or off-grid Microgrids)

are never grid-tied and must support the entire sys-
tem demand at each time instance [2].

However, before a Microgrid can be deployed,
significant efforts go into planning to ensure stable
and reliable operation and to quantify the return on
investment [3]. These planning approaches must
consider the expected power and energy demand,
weather resources, regulations, cost of energy, DER
operation and economics, and reinvestment strategy
over the entire lifetime of the project, which can
range from 10-50 years [4]. As the complexity of
the planning model increases, for example by consid-
ering DER placement in the power distribution net-
work [5], the time and cost required for the planning
stage further increases.

Planning algorithms that can reduce the time be-
tween iteration and solution are extremely valuable
[4, 6, 7]. Examples of this include linearizing the
multiyear planning problem [4], clustering the input
data, reducing the resolution of the solution [6], and
reducing the size of the microgrid network [7]. The
solve-time for a planning model is correlated with
the size of the solution space it must examine. There-
fore, an effective way to reduce solve-time is to min-
imize the size of the solution search space [8]. For
a Microgrid planning tool, the solution space is the
cardinal product of the considered DER types, DER
sizes, DER placement locations, and DER dispatch
possibilities at each time-step over the optimization
horizon. Reducing even a few variables from the
solution space can produce exponential savings in
solve-time.

Different classes of planning algorithms attempt
to reduce the run-time in different ways. A common
technique used for Microgrid planning, the brute
force simulator [9, 10], explicitly models each pos-
sible combination of DER over the planning win-
dow. For computational feasibility, typically only a
small subset of DER sizes is considered. Further,
these methods apply rule-based dispatch logic (not
optimized), which makes the set of dispatch strate-
gies for any set of DER extremely limited. Commer-
cial examples of this model include HOMER [9] and
RETSCREEN [10].

Linear optimization techniques (e.g. references
[11–14]), on the other hand, quickly sift through the
linear variables in the solution space to determine the
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optimal solution. Commercial examples include the
XENDEE economic model [3, 15] and NREL RE-
OPT [16]. An advantage of these methods is the abil-
ity to provide an optimized dispatch strategy, that is
unique for variations in DER size and type and supe-
rior to rule-based dispatch strategies.

Instead, for Microgrid planning optimization
techniques, one well-accepted approach in the liter-
ature is the reduction of the input time-series data
[6, 17–21]. Here, the annual time-series input data
sources, typically at hourly (8760 time-steps) or
15 minute (35,040 time-steps) resolution, are com-
pressed into a lower resolution or a set of days that
are representative of the full time-series. These stud-
ies have shown that this approach is capable of pro-
ducing consistent time savings of up to 98% includ-
ing cases which typically took days being solved in
a matter of minutes [21]. For a deeper literature
survey on input reduction techniques, see references
[6, 17, 21].

The time savings from input reduction come
at the cost of two main outcomes compared to
the benchmark full-scale (time-series) optimization
(FSO): i) A reduction in optimality, which manifests
in deviations in sizing and objective function; and ii)
A lack of transparency of how the system behaves
when subjected to the full time-series data (FSO).

Though item i) has been the focus of much re-
search, item ii), the behavior of a system that was
optimized using reduced time-series when subjected
to the full time-series data has not been studied as
extensively. References [6, 18, 19, 22] each solved
two models consecutively in two stages (later de-
fined as a hybrid optimization). In the “design stage”
a simplified model solved the sizing, selection, and
dispatch for representative days. In the “operation
stage” a full-scale model with fixed types and sizes
of DER, optimizes only the DER dispatch. Stadler et
al. [21] showed that this two-stage approach brings
the objective function closer to the FSO compared
to the simplified design stage model alone. Since
the 8760 h DER dispatch is significantly faster than
8760 h DER sizing and dispatch of the FSO, the
two-stage model solve-times are only insignificantly
larger than the solve-times for the design stage alone.

All of these methods were shown to be robust
for grid-connected operation. When a utility connec-

tion acts as a central ’marginal’ energy provider, the
Microgrid demand can be guaranteed to be met for
all time-steps, assuming no limit on import power.
However, when operating in islanded mode, i.e. in
the absence of a marginal energy carrier, the model
must rely on load shedding to meet the energy bal-
ance, even if it is not desirable or costly. 1 Breaking
the energy balance in this way, i.e. violating robust-
ness, renders the solution and the time-savings use-
less.

Gabrielli et al. [22] showed there is a significant
chance that the representative day model will recom-
mend DER sizes which – while satisfying the rep-
resentative (averaged) energy balance – will fail for
at least one time-step in the full model. By study-
ing thousands of scenarios, the authors showed that
by increasing the representative demand profile uni-
formly the robustness can be enhanced, but optimal-
ity (closeness to FSO objective function) is compro-
mised. While increasing the demand improves ro-
bustness at the cost of optimality, it does not guaran-
tee it.

In this paper we introduce a new two-stage de-
sign approach, called minimum investment optimiza-
tion, where the model is allowed to size the DERs in
both stages to guarantee robustness, while maximiz-
ing optimality. This approach successfully designs
Microgrids which operate robustly in islanded con-
ditions. First – as in prior work – the design stage
model estimate DER sizes. These sizes are then fed
into a FSO model as a minimum size requirement,
but the FSO model can invest in additional DERs
to meet the energy balance or improve the objec-
tive function. The first stage significantly restricts
the solution space, and therefore, the solve-time of
the FSO.

Therefore, the contributions of this paper to the
literature of Microgrid energy systems design using
representative models are as follows:

• Introduction of a two-stage linear optimization
method (MIO), which uses both reduced and

1Another case when the energy balance may not be met in
grid-connected operations is when there are power import con-
straints. This case will not be further discussed in the paper, but
is also important in Microgrid applications.
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full time-series to optimize DER sizing to re-
duce run-times over models only considering
the full time-series. All prior representative
or hybrid methods only sized DERs with the
reduced timeseries. Such DER sizing cannot
satisfy the microgrid energy balance during all
timesteps in islanded conditions without load
shedding. The MIO model guarantees robust-
ness in islanded operation.

• The significance of the novel MIO method
is that the guarantee of robustness comes at
barely any increase in computational cost. In
other words the novel MIO method resolves
a long-standing seemingly irreconcilable issue
between model reduction and the quality of the
solution.

• A secondary contribution is a set of novel con-
straints on storage state of charge (SOC) that
allows approximating storage dispatch (such
as discharging) across multiple days in the re-
duced model. These constraints not only im-
prove the optimality of the sizing using repre-
sentative days, but also are beneficial in con-
junction with the MIO method. Since the stor-
age dispatch across multiple (apparent) days
is closer to how storage operates in the full
time series, the resulting representative solu-
tion will be closer to the optimal solution for
the full time series and therefore decrease run
times in the MIO.

The paper is organized as follows. Section 2 in-
troduces the Mixed-Integer Linear Program (MILP)
formulation which the hybrid approach is built on.
Section 3 introduces the concept of robustness and
the different robustness approaches studied in this
paper. Section 4 tests the different approaches for
three Microgrids subject to four single day outages,
as well as a completely isolated off-grid scenario.
The paper is concluded in section 5 and future work
is discussed.

2. Overview of models and hybrid approach

2.1. Hybrid optimization (HO)
Here, a hybrid optimization is any method which

uses a two-stage sizing method. In this paper we in-

troduce three novel hybrid optimization techniques,
including one where both the downsampled repre-
sentative optimization (RO) and the full scale opti-
mization (FSO) sequentially select and size the DER
investment (Fig. 1). In all approaches, the RO output
provides bounds on investment in the FSO model. To
differentiate between the FSO used as a benchmark
for analysis, and the FSO used in the hybrid approach
(which is constrained to a fixed or minimum invest-
ment), we call the latter the “time-series optimiza-
tion” (TSO) in the rest of the work. We label the
hybrid optimization as introduced in literature (with
fixed DER capacities from RO applied to dispatch in
TSO) as the benchmark hybrid optimization (BHO).

Both stages of our HO methods use the same
problem formulation introduced in Section 2.2. RO
and TSO are differentiated through a single input pa-
rameter that informs the optimizer over which set of
days the optimization should occur (section 2.3). The
TSO optimizes over the original 8760 h time-series
profiles. In the RO, each time-series input is reduced
to a set of representative day profiles (called “day-
types”) as introduced in section 2.3.
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Figure 1: Flowchart of the four steps of the hybrid optimization. Step 1: Pre-
pare and run RO which includes reduction of the input time-series data into
representative profiles for normal and outage operation, and the modification
of the number of days ND. Step 2: Update the user defined input data with
the optimized DER investment selected in the RO. Step 3: TSO run with the
full time-series data, and the DER investment as either a fixed value (see BHO,
MDM, WWD methods), or a lower bound (MIO method). Step 4: Record and
report the economics, dispatch, and investment from the TSO model.

2.2. Optimization formulation
The studied optimization problem is the profes-

sional version of the XENDEE platform [3, 4, 15],
4



which is formulated based on the LBNL DER-CAM
model [5, 23, 24]. The XENDEE platform provides
a user-friendly interface to define system parameters,
input data sets, and set model constraints for the op-
timization model described here.

The objective function minimizes the total cost
required to operate the Microgrid, by optimally siz-
ing multiple energy sources considering economic
and physical equations and the operation for each
time-step in the optimization window. The time-
steps are characterized by time-series data over a
full year of data at hourly or finer resolution, such
as weather-dependent resource availability, demand,
and real time utility price. The time-steps of the opti-
mization are represented using indices m,d,h for the
month, day, and hour of the optimization, respec-
tively. The model can either consider a full year (a
FSO), or a set of representative downsampled days
(a RO, see section 2.3). The portion of the objective
function, which focuses on minimizing cost (emis-
sions are not optimized in this paper), is:

min c : ctariff + cfuel + cDER + cCO2 − rsales (1)

subject to

Energy Balance : Lm,d,h,e +
∑
t∈T

(S m,d,h,t,e + Km,d,h,t,e)

=
∑
t∈T

Pm,d,h,t,e + Um,d,h,e

(2)

where

ctariff :
∑
m∈M

Ufixm

+
∑

m∈M,d∈D,h∈H,e∈E

Vutilm,d,h,e · Um,d,h,e · NDm,d

+
∑

p∈P,e∈E

max(Ue,p) · Cdeme,p

+
∑
m∈M

[∑
g∈G

PurchNumg · CapGeng

+
∑
g∈G

CapContc
]
· SCm

(3)

cfuel :
∑

m∈M, f∈F

FSm,f

+
∑

m∈M,d∈D,h∈H, f∈F

FPm,d,h,f · NDm,d · Vfuelm,d,h,f
(4)

cDER :
∑
g∈G

PurchNumg · CapGeng · FOMg

+
∑
k∈K

CapContk · FOMk

+
∑

m∈M,d∈D,h∈H,t∈T

∑
e∈E

Pm,d,h,t,e · NDm,d · VOMt

+
∑

g

PurchNumg · Icapg · ANNg

+
∑

k

[
PurBk · Ifixk

+ CapContk · Ivark

]
· ANNk

(5)

cCO2 :
∑

m∈M,d∈D,h∈H

[ ∑
t∈T,e∈E

Pm,d,h,t,e · EFt

]
· NDm,d · Ctax (6)

rsales :
∑

m∈M,d∈D,h∈H

∑
t∈T

S m,d,h,t,elec · PXm,d,h

(7)

ANNt :
IntRate

1 − 1
(1+IntRate)lifetimet

.
(8)

Purchase limit : Um,d,h,e ≤ Ūm,d,h,e ∗ Am,d,h,e
(9)

Here, the five terms being minimized
(ctari f f , c f uel, cDER, cCO2, rsales) in the objective
function (eq. (1)) are described in terms of decision
variables in eq. (3) - (7). These terms indicate how
the optimizer minimizes costs by balancing the costs
of purchasing electricity (eq. (3)) and fuel (eq. (4))
with purchasing and operating DER technologies
(eq. (5)). An amortization rate (eq. (8)) transforms
the DER upfront purchase cost into an annual
equivalent cost, to allow for the comparison with
operational costs. Equation (9) forces purchases
to zero during outage hours. Finally, the energy
balance is enforced for each time-step (eq. (2)) of
the optimization. The full algorithm is described in
more detail in earlier works, see [4, 5, 25].

2.3. RO versus TSO modeling
The flexibility to handle either a continuous

yearly time-series, or a smaller subset of time-steps
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in the problem formulation introduced in Section 2.2
is due to the use of indices explicitly describing the
month m, day d, and hour h of the optimization win-
dow. For both RO and TSO models we assume a 12
month (m) and 24-hour (h) set of steps, but the set of
days (d) varies depending on the application of the
model as codified by the term NDm,d.

Specifically, the matrix relates the number of
times a certain day (d) will occur in a month (m).
For the FSO, we define d as a set of 31 days (d ∈
{day1, day2, ..., day31}) and NDm,d is a binary matrix
that ensures that only calendar days are optimized:
entries for days d in month m which occur in that
month (i.e. February 1-28) are equal to one, while
days which do not occur (i.e. February 29, June 31,
etc.) have an entry of zero.

Time-steps can also indicate representative day-
types in each month (m ∈ {1, 2, .., 12}), with the
same temporal resolution (one hour in our example).
Specifically, we employ three peak-preserving rep-
resentative days, a typical peak, week, and week-
end day profile as introduced in reference [17]. Dis-
tinct week and weekend profiles are needed to cap-
ture variations in time-of-use energy rates, while the
peak day captures the monthly demand charges. As
in [17], the week and weekend profiles are created
by binning all days into two groups, based on if they
occur on a weekday (Mon-Fri) or a weekend (Sat-
Sun) and taking the average of the load across each
hour in each bin. The peak day is an artificial day,
which is created by searching across all the days in
a month (one bin), and selecting the peak demand at
each hour. This method ensures that demand peaks
are preserved in the down-scaled representative days.
All other time-series inputs, such as ambient temper-
ature, solar irradiance, and wind power potential, are
considered uncorrelated to the load profile. There-
fore, for each of the daytypes (i.e. week, weekend,
peak), the same monthly-averaged 24-hour profile
(of irradiance, wind performance, etc.) is used. This
approach is elaborated and justified in [17, 21].

For the representative data sets, the day-types set
d includes the three day-types introduced above (d ∈
{peak, week, weekend} ). Here, NDm,d is no longer
binary, and is used to scale up the occurrence of a
day-type back to a month of operation, thus ΣdNDm,d

must equal the number of calendar days in a month.

We consider only 1 peak day for each month (thus
NDm,peak = 1), which is assumed to occur on a week-
day. For example, for January 2020, NDm,week = 22
and NDm,weekend = 8. Thus, it is assumed that the be-
havior of a weekday happens 22 times in the month.

2.4. Outage modeling in RO
To allow for power outages, generator mainte-

nance down-time, or demand response events in the
RO, additional day-types can be introduced to the
set d and the NDm,d can be modified. Since model-
ing outages is a central focus of Microgrid research
and this work, we introduce a fourth day-type, the
outage day ( d ∈ {peak, week, weekend, outage} ).
This day is characterized by a period of disconnec-
tion from the utility, where the Microgrid must meet
the demand profile specified, or shed the demand at
a specified cost to satisfy the energy balance of the
optimization. Here the outage can range from 1 hour
to 24 hours on the outage day. If multiple day out-
ages are desired, NDm,outage can be set to a non-binary
value (while adjusting the balance of the total num-
ber of days). For the outage day-type a second pro-
file is introduced for other time-series variables such
as ambient temperature, solar irradiance, and wind
power potential (section 3).

2.5. State of charge constraints
An important constraint is applied to the ’state-

of-charge’ (SOC) of all storage technologies that are
considered in the model including electrical batter-
ies, flow batteries, thermal/cold storage, or hydrogen
tanks. In the case study of section 4, we focus exclu-
sively on Li-ion storage devices, as that is the most
common use case in the XENDEE platform. For the
FSO, the SOC is constrained based on physical lim-
its (min and max), the SOC in the previous time-
steps, and the maximum hourly charge/discharge
rates. The optimization is formulated such that the
SOC at any time-step is equal to the previous time-
step less the energy consumed or discharged:

SOCm,d,h,e = SOCm(−−1), d(−−1), h−−1, e − K̃m,d,h,e,storage,
(10)

where a double dash indicates a circular lag, mean-
ing that the optimization treats the last and first ele-
ments of a set as consecutive elements (i.e. look at

6



hour 24, if currently hour 1). The parentheses in-
dicate that that the circular lag is only considered
if the time-step is the first of the day or the month
e.g. the SOC at hour 1 on January 1 is linked
to the SOC at hour 24 on December 31. K̃ indi-
cates the fractional energy discharged K̃m,d,h,e,storage =

Km,d,h,e,storage/Capacitystorage

For the RO, to ensure consistent storage opera-
tion across each day-type, a circular constraint on the
storage SOC is applied across each day-type, instead
of the full year:

SOCm,d,h,e = SOCm,d,h−−1, e − Km,d,h,e,storage (11)

Note the removal of the connection to other day-
types and months. The SOC at hour 24 is linked
to the SOC at hour 1, creating a circle. This con-
straint ensures that the specified day-type is able to
be repeated consistently as specified by NDm,d (i.e.
22 times in January).

For an outage day, the circular SOC constraint
can be troublesome for storage-only, or solar PV and
storage projects which are heavily space constrained.
Since there is no connection to the utility, it might not
be possible to meet the load and recharge the battery
to meet the SOC constraint in eq. (11). However,
continuous storage discharge during an outage event
without recharging is a common use-case, and is a
likely strategy employed by the FSO (and TSO).

To overcome this limitation, we introduce a new
constraint, which allows the storage to discharge
such that the circular SOC constraint is no longer en-
forced (i.e. SOC at hour 1 is not necessarily within
one charge cycle of hour 24). The following three
constraints represent this formulation:

SOCm,d,1,e ≤ SOC (12)

SOCm,d,h,e = SOCm,d,h−1, e − Km,d,h,e,storage (13)

SOCm,d,24,e ≥ SOC ×
(NDm,outage − 1)

NDm,outage
(14)

Here SOC indicates the upper limit on SOC. Equa-
tion (14) specifically indicates that the storage must
reserve enough energy at hour 24 (i.e. the end of the
day) such that the discharge profile can be repeated
for the number of outage days being planned (i.e.

NDm,outage). As an example, a storage system provid-
ing energy for a 5 day outage would reserve at least
4/5 of its total energy (80%) at the end of the outage
day, such that it could continue to discharge 20% of
its total energy during each of the next four days. To-
gether, these three equations allow the storage to dis-
charge from the beginning of the outage day though
the end, as long as the storage can continue discharg-
ing for the number of outage days (NDm,outage). This
approach is illustrated for a single 24-hour outage in
figure 2.
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Figure 2: A comparison of the three SOC approaches (equations (10)-(14))
when applied in the model to an optimization with a single 24-hour outage

3. Modeling robustness and adequacy indicators

3.1. Adequacy indicators
Following [17–19, 21], the indicators to measure

the performance of the method are optimality and
time savings. Time savings TS is simply defined as
the difference between the wall clock run-time for
the benchmark FSO, and that of the entire HO, nor-
malized to give the fractional savings

TS =
TFSO − THO

TFSO
. (15)

Optimality Opt is defined as the difference be-
tween the objective functions J measuring the annual
cost of the HO and benchmark FSO, and is here also
defined in terms of a fractional difference

Opt = 1 −
JFSO − JHO

JFSO
. (16)

Robustness, defined as the ability for a system to
meet the energy demand at each time-step, is another
important adequacy measure for both grid-connected
and islanded Microgrids. Reference [22] introduced
a robustness metric which captures unmet thermal
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demand on an annual basis in a reduced model. Here,
we introduce a similar metric and expand the defini-
tion to electricity. We do not allow load curtailment,
though XENDEE can optimize curtailment at up to
3 levels of the total demand in each time-step. in-
stead, a new variable is introduced to the energy bal-
ance, MEm,d,h,e, which measures the marginal energy
required to meet the energy balance at any time-step.

Energy Balance∗ : Lm,d,h,e +
∑
t∈T

(S m,d,h,t,e + Km,d,h,t,e)

(17)

=
∑
t∈T

Pm,d,h,t,e + Um,d,h,e + MEm,d,h,e

(18)

To prevent MEm,d,h,e from taking a non-zero value, in
the objective function it is heavily penalized through
multiplication by 106, similar to the concept of a
slack variable. We define the robustness as the sum-
mation of the absolute value of MEm,d,h,e normalized
by the load as

R = 1 −
Σm,d,h,eMEm,d,h,e

Σm,d,h,eLm,d,o,e
∀ m, d, h in outage (19)

Note that DER downtime/failure is ignored in
this analysis, despite the potential for significant im-
pact on the robustness measure. For a discussion on
how XENDEE handles DER contingencies, see ref-
erence [26].

3.2. Approaches to improve robustness
3.2.1. Shortcomings of the existing hybrid optimiza-

tion approach
The basic two-stage BHO approach discussed in

the literature assumes that the sizes selected in the
RO are robust, i.e. produce feasible results by sat-
isfying the energy balance in the TSO. This assump-
tion is challenged, however, under scenarios in which
there is no grid connection to provide the marginal
energy needed to satisfy the energy balance. Dur-
ing outages, the TSO will require all demand in
the outage window to be met through the purchased
DER, considering the available climate resource dur-
ing that window and the energy stored at outage start.
However, the RO optimization cannot guarantee all
TSO demand to be met because of the following rea-
sons:

1. Outages greater than 24 hours cannot be repre-
sented in the RO, since the RO generally does
not represent subsequent days.

2. Since TSO is continuous in time, conditions
on the surrounding days can impact dispatch.
RO outages, on the other hand, are modeled as
isolated events.

3. The climate resource and demand profile on
the RO outage day can differ from TSO.

Table 1 shows an overview of the HO approaches to
improve robustness and they are described in more
detail in turn.

3.2.2. Worst window day (WWD)
One challenge outlined above is the choice of cli-

mate resource and demand profiles during the RO
outage day to accurately size the DER. WWD is de-
signed to select the demand and solar profiles used
in the RO of the hybrid approach, which are the most
difficult from an energy balance perspective. The un-
derlying hypothesis is that if the DERs can meet the
energy demand on this “worst” day, they can do the
same for all other days. However, since the ”worst”
day depends on DER sizing (e.g. if more solar power
is installed, the worst day would be a day with the
worst solar irradiance) its selection is ambiguous and
cannot be known during the first stage of the opti-
mization. Even if no DERs are considered, it is a pri-
ori unclear if the worst day is the day with the largest
demand peak or the day with the largest total energy
consumption.

Since the goal of this paper is to prevent en-
ergy imbalances, WWD uses artificial demand and
climate resource profiles which constitute the worst
possible combination of demand and climate re-
source over each month. These are not profiles from
any particular day within the window, rather they are
representative hourly profiles constructed by finding
the maximum demand and the minimum climate re-
source in each hour. Figure 3 gives an example
of such profiles for demand and solar PV resource.
Note that the same approach is used to construct the
representative peak demand day discussed in section
2.3, but this approach is now extended to the climate
resources.

WWD represents an extreme of the two-stage
BHO approach in the literature, as the artificial pro-
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files represent the absolute worst case that can be
modeled using the given data. This is descriptive, as
it demonstrates the upper limit of the robustness pro-
vided by traditional BHO approaches. WWD may
result in over-sizing if the worst case is much worse
than situations that are actually encountered during
the 8760 hours. The run-time for WWD should be
on par with the BHO in literature, as WWD requires
only a single RO run and only dispatch is optimized
in the TSO.

Figure 3: Construction of the artificial worst day profile: (left) The demand
“peak” profile is created by finding the maximum demand in each hour. (right)
The solar PV resource “min” profile is constructed by finding the minimum
value in each hour.

3.2.3. Marginal demand modification (MDM)
MDM is characterized by a repeated trial-and-

error approach, where the HO (with fixed investment
determined in RO) is used twice, sequentially. The
lack of robustness in the first stage is resolved in the
second stage by increasing the RO outage demand
profile artificially to include additional demand that
was not met during the TSO in stage 1 (Fig. 4).

In the first analysis, the RO is optimized using
a representative profile. The fixed DER investment
from the stage 1 RO is input to the TSO. From the
TSO output a new supplemental hourly demand pro-
file is created as the maximum of the marginal energy
unmet in each hour of a month maxh(MEm,d,h,e) (red
bars in Fig. 4). The supplemental demand profile is
added to the original RO outage demand profile, and
is used in the RO of the second analysis.

Given that the unmet demand is exactly added to
the RO representative demand, the result of the stage
2 optimization is hypothesized to guarantee robust-
ness yet still prevent oversizing and therefore ensure
good optimality. However, the robustness of MDM
may also be compromised by not addressing issues
1 and 2 in the list provided in section 3.2.1. The

run-time should be generally predictable, and take
around twice as long as the WWD analysis.

Original demand ME modified demand

generator solar storage ME demand

Determined in 
stage 1 FSO

Stage 1 RO

Stage 2 RO

Figure 4: Marginal Demand Modification: Missing Energy (ME) in the stage
1 TSO (red in the upper graph) is added to the demand profile (lower graph)
before the second loop of the RO.

3.2.4. Minimum investment optimization (MIO)
MIO differs from WWD and MDM in that the

TSO is allowed to modify the RO sizing, address-
ing all issues in the list provided in the previous sec-
tion. MIO has not been previously discussed in the
literature, to the knowledge of the authors. In MIO,
the optimal investments / sizing determined in the
RO are considered as a lower bound. This approach
guarantees robustness, since the TSO can invest in
additional DER needed to meet the energy balance.
Yet compared to a FSO, the RO solution restricts the
solution space of the TSO, thus reducing run-time.
While the solution space could be further restricted
by applying a sensible upper bound on the possible
investment and/or upper or lower bounds on certain
DERs, we do not consider upper bounds in this pa-
per.

MIO guarantees robustness of the hybrid opti-
mization, but does not guarantee a run-time reduc-
tion. Rather, it is expected that run-time savings
would increase as the accuracy of the RO solution in-
creases, since the greatest reduction in solution space
is gained. MIO is also expected to perform near op-
timality; the only scenario where optimality can be
worse than the FSO is if the DER size in the RO so-
lution is larger than the size in the FSO solution; then
the solution space in the TSO would be too restricted
and the TSO could not downsize the DER to its opti-
mal size.
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Table 1: Comparison of the robustness models.

Model Principal of Operation HO Strategy Data modeled

WWD
Size for worst case scenarios
for load and solar generation RO (sizing) and TSO (dispatch)

Artificial profiles of min. solar
resource and max. demand

MDM
Trial & error: Unmet demand
(ME) in TSO is added to load

(1) RO (sizing) and TSO (dispatch and determine ME)
(2) RO (sizing considering ME) and TSO (dispatch) Rep. days and Act. days

MIO
Minimum DER size bounds
reduce solution search space

RO (sizing) and TSO (sizing & dispatch)
with lower bounds from RO. Rep. days and Act. days

Table 2: Microgrids studied. Tariff abbreviations are as follows: FER - Flat energy rate; TOUER - Time-of-use energy rate; NCDC - Non-coincident demand
charge; PDC - Peak demand charge; MPDC - Mid-peak demand charge. DER abbreviations are as follows: PV - solar photovoltaic arrays; ESS - electrical energy
storage systems; ICE - Internal Combustion Engines.

Name Type Location DER modeled Tariff characteristics
Annual energy

consumption [MWh]
Peak annual

consumption [kW]

MG1 University California PV, ESS, ICE TOUER, NCDC, PDC 825 204
MG2 Public Connecticut PV, ESS, ICE TOUER, NCDC 1,639 374
MG3 Pharma. Puerto Rico PV, ESS FER, NCDC, PDC, MPDC 22,642 3,963

4. Case study

4.1. Microgrids
The HO solutions introduced in the previous sec-

tion are tested with a focus on outage scenarios.
Three real Microgrids are described in table 2 and
were introduced in reference [21]. The set of Micro-
grids are meant to represent multiple demand pro-
files, geographies, and tariff structures. For simplic-
ity and clarity, only electrical loads are considered.
The analysis neglects limitations in the Microgrid
power infrastructure such as line ratings or nodal
voltage violations. The only renewable resource is
assumed to be solar PV, thus only demand and solar
resource profiles are considered.

Table 3: The four outage days selected for each Microgrid as determined by
the benchmark optimization. Outage days 1 and 2 (O1,O2) are the days that
cause the two largest objective functions. Outage 3 (O3) is the median ob-
jective function, while outage 4 (O4) is the lowest objective function. The no
outage objective function value is provided for reference. The presented objec-
tive function is the non-integer solution, and thus provides a lower bound on
the solution.

MG1 MG2 MG3

Outage 1 (O1) Date Feb. 15 Aug. 12 Aug. 16
J [k$] $137.6 $335.8 $6,710.6

Outage 2 (O2) Date Feb. 2 Aug. 3 Sep. 14
J [k$] $137.1 $326.4 $6,708.2

Outage 3 (O3) Date Sep. 19 Jun. 25 Nov. 4
J [k$] $132.6 $316.2 $5,706.4

Outage 4 (O4) Date Jul. 1 Dec. 20 Feb. 25
J [k$] $132.4 $315.9 $4,431.0

No outage J [k$] $132.4 $315.9 $4,431.0

4.2. Outage modeling
A set of 24-hour outages starting at midnight are

modeled to occur on four different days of the year,
which are described in table 3 for each of the three
Microgrids, producing 4 × 3 = 12 total outage sce-
narios. The objective function cost serves as a proxy
of how challenging it is to provide all energy on
the outage day. Objective function cost increases
come from over-sizing DERs past the no-outage op-
timum to meet the required demand. The four out-
age days are the two days with the largest (O1, O2),
the median (O3), and the day with the lowest objec-
tive function cost (O4). Note, as (O4) is the easi-
est outage to meet, for all three microgrids its objec-
tive function is identical to that of the cost optimal
non-outage solution, indicating no additional invest-
ments are required. These choices allow analyzing
the sensitivity of the robustness of each technique to
the severity of outage day.

The outage days objective functions are obtained
from benchmark FSO solutions in which a 24-hour
outage is iteratively assigned to each day of the year,
i.e 365 runs were conducted. To save on run-time,
the relaxed non-integer solution was used, since only
the objective function was needed.

In a separate case study, the Microgrids are as-
sumed to be islanded for the entire year. This case
is the most extreme challenge for robustness. For al-
ways islanded conditions, the selection of outage day
profiles in the RO becomes more obscure, since only
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a single outage profile is used to size DER to meet
the load throughout the entire year. We examine the
impact of the same set of day-types as above (four
outage days in addition to the representative days) to
represent the isolated Microgrid.

In both the single day outage and the off-grid
study, we examine the impact of different RO de-
mand/solar profiles in MIO and MDM. For each out-
age day, we consider: (i) the demand/solar profiles
of that actual day (referred to as “Act. day” in the
figures; E.g. an outage on Feb. 15 will use the solar
and demand profiles from Feb. 15 in the RO); (ii) the
monthly average solar and the day-types ’peak’ load
day of the month (see Section 2.3). In the figures,
“Rep. day” denotes when the representative profiles
are used.

4.3. Results
All three robustness approaches improved on the

standard BHO (Fig. 5). Yet MIO is the only approach
to guarantee 100% robustness for both the single day
outage and the off-grid scenario. The WWD ap-
proach prevents infeasibilities for a single day out-
age, but infeasibilities exist for the off-grid scenario.
For all methods, other than MIO, the off-grid sce-
nario lead to a larger likelihood of infeasibilities. For
both the BHO and MDM approaches, real day pro-
files improve the robustness over averaged profiles.
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Figure 5: Two-axis plot showing (left, bars) the percentage of scenarios (out
of 12) which did not meet the energy balance of the 12 outage scenarios and
(right, dots) the average robustness for the 12 scenarios.

Fig. 6 shows run-times on a remote windows
server with AMD Ryzen 5 3600 Hexa-Core with
64 GB DDr4 Ram and 2x512 GB NVMe SSD.
All methods produce significant run-time savings
over the FSO benchmark for MG1 and MG2, while
only some methods produce run-time savings for

MG3. MG1 and MG2 have significantly longer run-
times due to the consideration of investment in ICEs,
which have a discrete decision variable. Such de-
cision variables are notoriously hard for linear pro-
gramming methods to solve. The MDM approach,
while still providing significant run-time savings for
MG1 and MG2 compared to the benchmark FSO,
produced the longest run-times of all robustness
methods, and actually caused run-time increases over
the benchmark FSO for MG3. The long MDM run-
times are due to the two consecutive HO runs.

Note, even though it optimizes in both the RO
and the TSO stages, MIO has run-times on the order
of the BHO and WWD methods which consider fixed
investment in the TSO stage. The trends by outage
day are inconsistent; for MG3 the run-times are in-
dependent of outage day, while for MG1 and MG2
the worst (O1) and easiest (O4) cause the longest
run-times, respectively. A summary of the optimal-
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Figure 6: Absolute run-time for each method for the three Microgrid and four
outage day scenarios. Off-grid model run-times are similar and follow the same
trend, and thus are not shown. Microgrids are organized in color groups (blue-
MG1, green-MG2, red-MG3) with the colors lightening as the severity of the
outage day lessens (O1-O4). The mean of each method across all 12 scenarios
is given by the red dot. The benchmark FSO for MG1 and MG2 extend beyond
the y-axis limits is above the upper bound for the y-axis.

ity, robustness, and run-time savings is presented in
Fig. 7. The (literature based) BHO methods produce
the worst results of all methods. The MDM meth-
ods produces neither optimal solutions, or significant
run-time savings. The WWD produces significant
time savings, but cannot guarantee optimality or ro-
bustness. Typically the loss in optimality is found
for “easier” outages (O3, O4; see table 3), where the
WWD method oversizes the DER. The MIO method
tends to cluster to the upper right of the plot, indi-
cating a high degree of optimality, robustness, and
time savings. The MIO data points with smaller time
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savings (40%) are attributed to MG3, which solves
very quickly for the benchmark FSO, providing lim-
ited opportunities for additional time savings by re-
stricting the solution search space (see Fig. 6). Sev-

4/6/2020 Bokeh Plot

file:///C:/Exchange Folder Team/Zack Codes/8760 modern/8760_daytype_combo code testing/example.html 1/2

Figure 7: Summary plot showing the optimality, robustness, and run-time sav-
ings for the different methods over all outage scenarios and the offgrid analysis.
The abscissa is run-time savings, while the ordinate quantifies both optimal-
ity (circles) and robustness (diamonds) as normalized values. Approaches that
cluster to the top and right are desirable.

eral observations can be drawn from the DER sizing
and objective function data in table 4. For the small-
est Microgrid MG1, despite significant differences
in DER investment between WWD and the bench-
mark, the objective function error is smallest. For
the grid-connected cases for MG2, WWD over-sizes
ICE, leading to an increased objective function. For
MG3 off-grid, all cases except MIO result in energy
balance violations, while MIO replicates the exact
result of the 140 second benchmark FSO in only 75
seconds.

Regarding the sizing of individual DER types,
the results are inconclusive. WWD tends to favor
more ICE (MG1 and MG2) and less ESS and PV.
This makes sense as the worst solar resource under-
estimates the PV contribution to meeting the load
However, despite the disparate sizing, the objective
function for WWD is within 6% of the other ap-
proaches for MG1 and MG2. The sizing of the other
methods is consistent across the 24-hour outages,
but diverges for the off-grid scenarios for MG2 and
MG3. For those scenarios MIO represents the sizing
that is closest to the benchmark FSO again under-
scoring its superiority.

Table 5 breaks the results for MG3 into the differ-
ent stages of the optimization for the BHO and MIO

models, as well as the benchmark FSO for compar-
ative purposes. For all cases, it is clear the RO is an
extremely fast option compared to the higher resolu-
tion models. However, it is observed that consider-
ing the TSO can improve the objective function and
the DER sizes (i.e. closer to the benchmark). The
runtime difference between RO and the benchmark
is considerable in all cases, typically adding at least
2 minutes (the runtime difference is even more ex-
treme for MG1 and MG2 which are not shown in
this table). In contrast, both BHO and MIO provide
solutions which take less than half the time required
to run the full FSO. However, in all cases MIO pro-
vides a solution which is closer to the benchmark.
Also, consistent with other results, using the actual
daily profiles provides a solution much closer to the
optimal and saves runtimes.

4.4. Discussion
From the results we can draw several conclusions

about the robustness of the approaches. First, the
standard two-stage HO, where DER sizes that are
determined in the RO are fixed in the TSO, results
in significant run-time savings, but violates the en-
ergy balance for off-grid cases, regardless of input
data considered. The WWD scenario, which can be
viewed as an extreme HO case, provided sufficient
robustness for the 24 hour outages, but did not for the
off-grid scenario. Thus, these two-stage methods do
not guarantee robustness for Microgrids which have
to sustain islanded conditions, which motivates the
need for methods which guarantee robustness.

Second, when considering real data, the MDM
performed well for the single day outages, produc-
ing negligible robustness violations (most likely due
to numerical issues). A small increase in ME could
resolve this problem with negligible impact on op-
timality. However, the MDM method performed
poorly for the offgrid scenarios and the single-day
outage considering the representative profiles. This
is due to a lack of correlation of the solar generation
between the RO profile and the TSO time-series. In
addition to adding ME to the demand, the solar pro-
file used in the sizing need to be corrected to be rep-
resentative of periods where the RO and the TSO so-
lar profiles diverge. In general, the robustness results
show that the stochasticity of renewable resource
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Table 4: A subset of the case study data for the O1 24-hour and the off-grid cases for all Microgrids and robustness approaches with the actual day data. The O1
case is representative of the worst case planning model, which is the most typical use case to consider. For each case the objective function J, the selected capacities
of PV, ESS, and ICE, and the marginal energy (ME) are given. Solutions with objective function marked infeas are results that were infeasible and did not meet all
of the demand (see ME).

24-hour outage Off-grid
Name Model J [$k] PV [kW] ESS [kWh] ICE [kW] ME [MWh] J [$k] PV [kW] ESS [kWh] ICE [kW] ME [MWh]

MG1

BHO 140.9 313 540 100 0 141.0 313 540 100 0
MIO 140.9 312 540 100 0 141.0 312 540 100 0
MDM 140.9 312 540 100 0 141.0 312 540 100 0
WWD 139.7 174 0 200 0 140.6 174 0 200 0
Benchmark 139.7 272 541 100 0 139.7 277 541 100 0

MG2

BHO 336.7 715 838 300 0 infeas 715 838 200 2.92
MIO 336.7 715 838 300 0 336.7 715 838 300 0
MDM 336.7 715 838 300 0 336.7 715 838 300 0
WWD 357.0 715 780 400 0 357.0 715 780 400 0
Benchmark 336.7 715 1160 200 0 336.7 715 838 300 0

MG3

BHO infeas 17148 55573 0 0.05 infeas 17148 55573 0 1127.64
MIO 6713.3 17148 55628 0 0 11232.9 42655 77007 0 0
MDM 6713.7 17157 55616 0 0 infeas 18143 122669 0 257.84
WWD 8190.1 17135 87572 0 0 infeas 17135 87572 0 702.21
Benchmark 6710.6 16774 56192 0 0 11232.9 42655 77007 0 0

data combined with load data is very difficult if not
impossible to capture with “ad-hoc” approaches such
as WWD and MDM. While both WWD and MDM
significantly improve the robustness compared to the
BHO in the literature, producing a non-robust or non-
optimal result is not acceptable for runtime savings,
making MIO the only viable approach for a commer-
cial method.

Third, the MIO method is the preferred method
as it guarantees robustness, produces high optimal-
ity, and provides significant run-time savings for all
cases. However, for MIO if the RO input data does
not represent the outage well, the RO might improp-
erly size DER. For example, if the RO profile over-
sizes DER, the objective function of the TSO will be
much higher than the benchmark FSO violating op-
timality. Alternatively, if the RO undersizes DER,
the solution space is not sufficiently restricted, and
run-time savings would suffer (not observed in this
work). To overcome this, it is recommended to care-
fully select the RO input data, such as using the ac-
tual data from the outage window. Further, imposing
upper bounds on all DER, but especially ICE units,
which have the most significant impact on run-time
(consider MG1 and MG2 versus MG3) would reduce
run-times.

Finally, DER selection and size was not a reliable
indicator of optimality. For several cases, disparate
DER configurations (type and size of DERs) pro-
duced nearly identical objective functions and ME.
None of the methods consistently produced identical

DER configurations to the benchmark. The excep-
tion was MIO in the off-grid scenarios, where the RO
method would undersize DERs, and the TSO could
increase DER sizes to match the benchmark FSO.

5. Conclusion

In this work, we introduce a techno-economic hy-
brid optimization framework, specifically designed
to optimize the Microgrid design considering re-
silience to grid outages. All prior representative or
hybrid optimization methods (HO) in the literature
only sized DERs with the reduced timeseries. We
show that such DER sizing is not robust, i.e. the
DERs cannot satisfy the microgrid energy balance
during all timesteps in islanded conditions without
load shedding. The MIO model, on the other hand,
guarantees robustness in islanded operation. The sig-
nificance of the novel MIO method is that the guar-
antee of robustness comes at barely any increase in
computational cost. In other words, the novel MIO
method resolves a long-standing seemingly irrecon-
cilable issue between model reduction and the qual-
ity of the solution.

The MIO employs a two step process, where
it solves the same optimization problem twice, us-
ing different time resolutions. First a representative
model, which uses reduced time-series, optimizes
DER sizes, which are used to inform a full scale
model in the second step. The second step takes ad-
vantage of the reduction in solution space provided
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Table 5: The difference in decision made for each stage of the models, for both the grid-connected outage, and the off-grid system considering averaged and real
profiles for solar and load. The RO model is considered the baseline in the table, and all numbers indicate deviations from that solution made in the TSO. The
comparison is made against the BHO model (the typical approach in literature), which assumes fixed assets size in the RO and only optimizes dispatch in the TSO,
the MIO method (a novelty of this work) which optimizes in both the RO and TSO stage, and the benchmark FSO which is considered to be the target for results in
this paper. The RO is given in absolute values, while the other three models show only the incremental change from the RO optimization. For BHO and MIO, this
shows the incremental changes due to the second stage. The benchmark is not dependent on the RO, however is given in relative terms for purpose of comparison.
Only MG3 is chosen as it is the microgrid in which the FSO has the lowest runtime savings, and the largest variation in DER sizing. Solutions with objective
function marked infeas are results that were infeasible and did not meet all of the demand (see ME).

Rep. Days Act. Days
Outage Model runtime [s] J [$k] PV [kW] ESS [kWh] runtime [s] J [$k] PV [kW] ESS [kWh]

G
ri

d
co

nn
ec

te
d

O1

RO 18.8 5140 11815 28409 19.4 6164 17148 55573
BHO +40.6 infeas +0 +0 +40.9 infeas +0 +0
MIO +63.8 +1570 +4967 +27770 +51.3 +546 +0 +56
benchmark +198.1 +1570 +4958 +27783 +197.4 +546 +0 +56

O3

RO 15.1 5236 12385 31288 15.9 5324 12889 33860
BHO +40.6 infeas +0 +0 +50.4 infeas +0 +0
MIO +72.9 +470 +936 +1330 +55.5 +387 +12 +0
benchmark +109.8 +470 +965 +1298 +114.4 +382 +461 -1274

O4

RO 16.4 4983 10796 23399 16.6 4558 7337 7923
BHO +46.4 +175 +0 +0 +46.3 +23 +0 +0
MIO +49.2 +175 +0 +0 +49.4 +23 +0 +0
benchmark +129.9 -551 -5086 -20371 +129.7 -127 -1628 -4904

O
ff

-g
ri

d

O1

RO 13.5 4803 11815 28409 12.2 8683 17148 55573
BHO +41.8 infeas +0 +0 +37.3 infeas +0 +0
MIO +62.9 +6430 +30852 +48596 +62.3 +2550 +25696 +21259
benchmark +113.0 +6430 +30852 +48596 +115.6 +2550 +25696 +21259

O3

RO 12.0 5215 12385 31288 12.0 5582 12889 33860
BHO +44.1 infeas +0 +0 +43.9 infeas +0 +0
MIO +62.7 +6018 +30270 +45719 +66.0 +5651 +29766 +43147
benchmark +133.9 +6018 +30270 +45719 +143.7 +5651 +29766 +43147

O4

RO 11.3 4083 11803 28411 12.1 1823 7337 7932
BHO +53.2 infeas +0 +0 +53.6 infeas +0 +0
MIO +65.2 +7150 +31860 +53608 +64.2 +9410 +35318 +69075
benchmark +130.4 +7150 +31860 +53608 +130.1 +9410 +35318 +69075
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by the results of the first model, to optimize only
additional DER determined necessary. As part of
the derivation of the model, we introduce a novel
constraint on the state of charge of storage devices,
which allows the representation of multiple day out-
ages in the representative model, even though only a
single representative day is optimized.

In future work we will include uncertainty in the
input model to improve the correlation of the repre-
sentative model with the optimal solution. Further,
short-lived fluctuations that occur due to changes in
demand and climate resource can have a significant
impact on the Microgrid robustness when deployed
in the field, but with hourly time-steps these fluctua-
tions often average out. Therefore, we plan to extend
the hybrid optimization framework to finer temporal
resolutions, such as 15 or 5 minutes. Since the solu-
tion space increases exponentially with the number
of time-steps, the run-time savings through HOs are
potentially even more significant. Finally, we will
analyze the impact of DER failure on the robustness
of the solution.
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[3] M. Stadler, A. Naslé, Planning and implementation of
bankable microgrids, The Electricity Journal (2019).

[4] Z. K. Pecenak, M. Stadler, K. Fahy, Efficient multi-year
economic energy planning in microgrids, Applied Energy
255 (2019) 113771.

[5] S. Mashayekh, M. Stadler, G. Cardoso, M. Heleno, A
mixed integer linear programming approach for optimal
der portfolio, sizing, and placement in multi-energy mi-
crogrids, Applied Energy 187 (2017) 154–168.
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