
Lawrence Berkeley National Laboratory
Climate & Ecosystems

Title
Biogenic Volatile Organic Compounds in Amazonian Forest Ecosystems

Permalink
https://escholarship.org/uc/item/5nt939ff

ISBN
978-3-662-49900-9

Authors
Jardine, Kolby
Jardine, Angela

Publication Date
2016

DOI
10.1007/978-3-662-49902-3_2

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5nt939ff
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


Ecological Series Chapter 4, Jardine submitted 2 December 2014

4 Biogenic volatile organic compounds in Amazonian forest ecosystems
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Abstract (150 words, for web purposes only)

Plants produce and emit a large array of volatile metabolites termed biogenic volatile organic

compounds (BVOCs) as an integral part of primary and secondary metabolism. Although well

studied for their impacts on atmospheric processes, there is much to learn about their biological

functions. It is now recognized that many cellular processes leave unique volatile fingerprints

behind  that  can  be  studied  through  the  acquisition  of  BVOC  profiles  in  the  headspace

atmospheres of plants across a wide range of spatial  and temporal  scales from leaves, whole

organisms, ecosystems, and regions and from seconds to seasons. In this chapter, in-plant BVOC

production and potential functional roles in the Amazon Basin are discussed. The chapter closes

with some suggested future research on Amazonian BVOCs, specifically - detailed studies on the

identities,  fluxes,  and  environmental  dependencies  of  BVOC  emissions  including  the

characterization of potential bi-directional exchange. 
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4.1 Introduction

Biogenic  volatile  organic  compounds  (BVOCs)  are  produced  directly  within  plants  via

biochemical  pathways  associated  with  primary  and secondary  metabolic  processes.  Although

non-volatile  metabolites  are  typically  bound  within  specific  cellular  organelles  in  lipids  or

aqueous phases, BVOC volatile metabolites can readily partition between these phases and the

intracellular  airspace  (Fall  2003).  Thus,  many  BVOCs  may  freely  exchange  among  cellular

organelles, cells, and tissues, contributing to an integration of whole organism carbon and energy

metabolism.  Moreover,  exchange  of  the  intracellular  airspace  with  the  atmosphere  may help

coordinate the metabolisms of different plants within an ecosystem in response to environmental

and biological factors  (Yan and Wang 2006). In addition, land-atmosphere exchange of VOCs

integrates local and regional atmospheric chemistry with plant metabolism (Jardine et al. 2011a). 

The emerging field of volatile ecosystem metabolomics integrates the volatile component into the

chemical, physical, and biological processes involved in the processing of metabolites within the

land-atmosphere  interface  including  potential  perturbations  of  the  system  by  anthropogenic

activities  (e.g.  VOC emissions from biomass  and fossil  fuel  burning).  The power  of  volatile

metabolomics  comes  from  the  fact  that  many  cellular  processes  leave  unique  chemical

fingerprints (biomarkers) behind in the atmosphere (e.g. BVOCs such as volatile isoprenoids,

organic acids, alcohols, esters, aldehydes, ketones, aromatics, sulfides, nitriles, etc.). Therefore,

volatile metabolomics provides noninvasive techniques to study plant metabolism from a variety

of spatial and temporal scales. The application of these methods in the tropics may improve our

mechanistic understanding of how environmental and biological variables associated with climate

and land use change affects the carbon and energy metabolism of natural and managed forests. 

Tropical ecosystems cycle more carbon than any other biome (~ 1.4 PgC/yr versus 0.5 PgC/yr for

temperate ecosystems, (Sarmiento et al. 2010) and are estimated to account for nearly 80% of the

global BVOC emissions  (Levis et al. 2003). The Amazon Basin is a major tropical source of

BVOCs to the global atmosphere (Greenberg et al. 2004), yet less is known about BVOCs from

its vegetation than other regions of the world (Guenther 2013). This is due to a number of factors,

among which are the extremely high tree species diversity  (ter Steege et al.  2013; Macarthur

1965) and difficulties  in conducting and sustaining remote field studies  with highly sensitive

analytical chemistry instrumentation for even short periods of time. What we do know about

Amazonian BVOCs primarily results from a few important short-term plant enclosure studies,
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above-canopy measurements, and aircraft observations (Kesselmeier et al. 2002; Karl et al. 2007;

Jardine et al. 2011b). 

Historically, BVOCs have been studied with respect to their significant impacts on the chemistry

and physics of the atmosphere, which remains an active area of research (see chapter x, Artaxo).

The focus of this chapter is towards developing a mechanistic understanding of BVOC dynamics

within  plants  and  ecosystems.  First  is  a  brief  overview  of  BVOC  production  within  plants

followed by an introduction to the field of volatile metabolomics. Next, examples of Amazonian

plant and ecosystem functional roles of several BVOCs are discussed. The chapter ends with

suggested  directions  for  Amazonian  BVOC  research  including  detailed  plant  VOC emission

surveys,  the  identification  of  new  BVOCs,  and  the  characterization  of  potential  BVOC

ecosystem-atmosphere bidirectional exchange (i.e. emission and consumption by vegetation).

4.2 BVOC biosynthesis in plants

During  photosynthesis,  plants  assimilate  atmospheric  carbon  dioxide  (CO2)  into  primary

metabolites  which  are  essential  components  required  for  growth  and  development.  Primary

metabolites  can be used as  substrate for  the biosynthesis of  new biomass including proteins,

nucleic acids, carbohydrates and lipids, or can be used as a carbon and energy source during

respiration (Bourgaud et al. 2001; Tegeder and Weber 2008). Secondary metabolites are a diverse

set of compounds which are intricately involved in many physiological and ecological processes

within plants  (Weng et al. 2012). For example, secondary metabolites have been identified as

plant  defenses  against  abiotic  and  biotic  stresses  and  chemical  communication  within  and

between species (Weng et al. 2012; Jardine et al. 2008; Karl et al. 2008; Pophof et al. 2005). Both

primary  and secondary  metabolic  pathways  within  plants  create  intermediates  with  sufficient

vapor pressures to be directly emitted into the atmosphere in the gas phase as BVOCs. 

Plant  metabolic  pathways  involved  in  BVOC biosynthesis  occur  in  and across  a  number  of

cellular organelles including the cytosol, chloroplast, mitochondria, and peroxisome (Figure 4.1).

Some BVOCs  like isoprene are  strictly  light  dependent  with a strong connection to  recently

assimilated carbon  (Jones and Rasmussen 1975). In contrast, instantaneous emissions of other

BVOCs like methanol are much less light  dependent and can be produced at night  (Fall  and

Benson 1996; Harley et al. 2007).
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Key substrates  (i.e.  glyceraldehyde-3-phosphate,  phosphoenol  pyruvate,  pyruvate,  and  acetyl-

CoA) can be produced independently within plant compartments or can be transported across

compartmental boundaries. For example, pyruvate is a central substrate in the biosynthesis of

BVOC classes such as volatile isoprenoids (isoprene, monoterpenes, sesquiterpenes), oxygenated

VOCs  (acetaldehyde,  ethanol,  acetic  acid,  acetone,  volatile  acetate  esters),  and  fatty  acid

oxidation  products  (green  leaf  volatiles,  e.g.  Z-3-hexenol,  Z-3-hexenal).  Pyruvate  is  also  a

product  of  glycolysis  and  photosynthesis,  and  a  key  substrate  in  photorespiration  and

mitochondrial respiration. 

Acetyl  CoA  is  another  central  substrate,  which  integrates  primary  and  secondary  metabolic

processes as well as signaling and regulatory mechanisms. It is used as the primary substrate of

mitochondrial respiration for the biosynthesis of lipids including fatty acids and isoprenoids, and

can be  produced  through a  fermentation  like  process  involving  the  activation  of  acetic  acid

(Jardine et al. 2013a). In addition to many non-volatile organic compounds (e.g. fatty acids, some

amino acids, flavonoids, phenolics) (Oliver et al. 2009), acetyl CoA provides substrate for a large

array of BVOCs  including volatile isoprenoids, oxygenated VOCs, fatty acid oxidation products,

and volatile acetate esters (e.g. methyl acetate, ethyl acetate).

[Figure 4.1-Metabolic pathways]

4.3 Volatile Metabolomics

The emerging field of volatile metabolomics is  the study of the gas phase component of the

chemical, physical, and biological processes involved in the production of metabolites within an

ecosystem, allowing for a molecular understanding of biogeochemical cycles. This field aims to

combine  traditional  biochemical  pathway  studies  involving  destructive  tissue  sampling  and

metabolite extraction and analysis with non-invasive atmospheric analytical chemistry techniques

used for identification and quantification of BVOCs within and above forest canopies to gain new

insights  on  within-plant  carbon  and  energy  allocation  to  primary  and  secondary  metabolic

processes.  For  example,  plant  BVOC  exchange  fluxes  using  enclosures  and  ambient  BVOC

concentrations and fluxes within and above forest canopies can be made in-situ in real-time and

used  as  biomarkers  of  carbon  allocation  processes  such  as  photosynthesis,  photorespiration,

respiration, and fermentation (Jardine et al. 2010b; Loreto et al. 2007; Kesselmeier et al. 1997;
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Bracho-Nunez et al. 2012), cell wall expansion and growth (Harley et al. 2007), acetyl-CoA and

fatty acid biosynthesis and degradation (Fall et al. 1999; Jardine et al. 2012b), and signaling and

defense against abiotic and biotic stresses (Niinemets 2010; Karl et al. 2008; Jardine et al. 2013c).

For example,  Jardine et al. (2010b) used positional  13C labeled pyruvate to trace the metabolic

pathways responsible for the biosynthesis of volatile isoprenoids and oxygenated VOCs in real

time for individual mango leaves (Mangifera indica). While the metabolic pathways leading to

isoprenoid  biosynthesis  are  well  documented,  those  leading  to  the  production  of  oxygenated

VOCs are still uncertain. In their study, leaves fed with the pyruvate-2- 13C solution resulted in

large enrichments (13C/12C) of both  13C-labeled isoprenoids and oxygenated VOCs (up to 266%

for sesquiterpenes and 154% for acetaldehyde for example). However, when mango leaves were

fed with pyruvate-1-13C, 13C-labeling of BVOCs was greatly reduced. Positional pyruvate labeling

was  then  used  to  demonstrate  that  the  C2,3 atoms  of  pyruvate  are  directly  utilized  for  the

biosynthesis  of  volatile  and  non-volatile  metabolites  and  biopolymers.  However,  the  C1 of

pyruvate has a completely different fate and is decarboxylated to CO2, representing a new source

of CO2 not previously considered in studies of plant CO2 sources and sinks (Jardine et al. 2013a).

Thus, BVOCs can be used to track cellular processes that imprint a unique chemical fingerprint

on the atmosphere surrounding individual plants. When applied at the ecosystem level, volatile

metabolomics has the potential to advance mechanistic understanding of BVOC biosynthesis as a

function of changing environmental conditions. 

4.3 BVOCs as biomarkers of lipid peroxidation under oxidative stress

Lipids  serve  numerous  critical  functions  in  plant  biology  including  providing  membrane

structure,  participating  in  the  light  reactions  of  photosynthesis,  antioxidant,  and  signaling

processes. Saturated lipids are extremely resistant to oxidation within plants and the environment,

with plant alkanes with ages greater than one billion years have been detected in lake sediments

(Oro et al. 1965). In contrast, unsaturated lipids including isoprenoids and fatty acids are highly

susceptible  to  oxidization  with  their  pools  rapidly  turned  over  under  oxidizing  conditions.

Moreover, the oxidative power of the lower atmosphere is strongly influenced by the emission of

unsaturated  volatile  lipids  from vegetation,  especially  isoprenoids  and reactive volatile  lipids

which can be emitted at  high rates  from many plants fueling atmospheric  chemistry through

photo-oxidation reactions (Monson 2002a). 
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Reactive oxygen species (ROS) including singlet oxygen (1O2), superoxide anion (O2
-), hydrogen

peroxide  (H2O2),  and the  hydroxyl  radical  (OH) are  continuously generated  in  plants  by the

incomplete reduction of oxygen (O2). While, ROS concentrations within plants are generally kept

low by  ROS quenching  and scavenging  systems,  excessive  ROS accumulation  can  result  in

extensive oxidation of plant lipids (Apel and Hirt 2004; Jardine et al. 2010a). While traditionally

described as the “Oxygen Paradox” where ROS are a toxic byproduct of aerobic metabolism,

ROS-lipid signaling is now recognized as an integral component of plant response to abiotic and

biotic stress as well as regulation of growth, development, and programmed cell death (Suzuki et

al. 2011; Mittler et al. 2011). 

In a changing global climate with increasing air pollution and rapid land use changes, plants are

exposed to a wide variety of biotic (e.g. microbes, insects) and abiotic (e.g. thermal, radiative,

drought) stressors. In plant tissues, these stressors can cause the accumulation of reactive oxygen

species (ROS), which if left unchecked, can overwhelm cellular antioxidant defenses including

enzyme-mediated ROS quenching reactions, internal systems for ROS scavenging, and defense

gene activation (Møller 2001). This can lead to extensive ROS-mediated oxidation of important

components, such as nucleic acids, proteins and lipids leading to cell death (Apel and Hirt 2004).

Therefore,  plants  with  a  diverse  suite  of  antioxidant  defenses  may  better  tolerate  stressful

environmental conditions occurring in response to local and global changes in climate. 

The oxidation of plant fatty acids via non-enzymatic  (Durand et al. 2009; Mene-Saffrane et al.

2009) and  enzymatic  (Andreou  and  Feussner  2009;  Gigot  et  al.  2010;  Heiden  et  al.  2003)

mechanisms  produces  a  broad  range  of  oxidation  product  biomarkers  termed oxylipins.  The

accumulation of  ROS in  plant  tissues  initiates  fatty  acid (e.g.  α-linolenic  acid)  peroxidation,

yielding a large array of ‘oxidative stress’ biomarkers. Lipid peroxidation generates a number of

products,  which have been extensively used as quantitative indicators of oxidative damage in

plants (Gutteridge 1995; Shulaev and Oliver 2006). For example, 4-hydroxy-2-nonenal (HNE), 4-

hydroxy-2-hexenal  (HHE),  and  maliondialdehyde  are  widely  used  as  biomarkers  of  non-

enzymatic  lipid  peroxidation  (Hartley  et  al.  1999;  Halliwell  and  Gutteridge  1999;  Long and

Picklo 2010). However, the extraction from plant tissues, derivatization, and compound specific
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analysis (GC-MS or HPLC) of these reactive carbonyl compounds remains a challenge due to

their  trace  abundances,  high  reactivity,  water  solubility,  and  volatility  (Shibamoto  2006).

Nonetheless, a number of classes of lipid peroxidation products have been identified including

hydrocarbons,  ketones,  furans,  alkanals,  2-alkenals,  2,4-alkadienals,  2-hydroxyalkanals,  4-

hydroxy-2-alkenals, and dicarbonyls (Kawai et al. 2007; Steeghs et al. 2006; Frankel et al. 1989;

Mark et al. 1997; Moseley et al. 2003; Nielsen et al. 1997). 

Given  the  volatile  nature  of  many of  these  biomarkers,  it  is  interesting  to  speculate  on  the

potential of detecting them in atmospheric samples as non-invasive indicators of oxidative stress

at  a  variety  of  temporal  and  spatial  scales.  Numerous  volatile  oxylipins  have  been  recently

observed  as  direct  emissions  from  plants  under  oxidative  stress  generated  by  freeze-thaw

treatment of tropical leaves (Table 1). These include alkanals (e.g. propanal, butanal, pentanal,

hexanal),  2-alkenals  (e.g.  2-propenal,  2-butenal,  2-pentenal,  2-hexenal),  2-alkenes  (e.g.  2-

propene,  2-butene,  2-pentene,  2-hexene),  2,4-alkadienals  (e.g.  2,4-hexadienal),  furans  and

furanones (e.g. tetrahydrofuran, 2-ethyl furan), and dicarbonyls (e.g. malondialdehyde, gyloxal,

methyl glyoxal,  and diacetyl).  In addition,  the enzymatic peroxidation of plant fatty acids by

lipoxygenase enzymes can lead to the formation and emission of characteristic oxidation products

known as green leaf volatiles (GLVs) via the lipoxygenase pathway (Loreto and Schnitzler 2010;

Hatanaka 1993; Fall et al. 1999). In this pathway, the formation of the classic 6 carbon (C6)

GLVs  in  plants  is  initiated  by  the  ubiquitous  type  2  lipoxygenase  enzymes  (13-LOX)  in

chloroplasts which catalyze the oxygenation of α-linolenic acid (the dominant fatty acid in the

aerial  tissues  of  most  plants)  to  form  13-hydroperoxy  linolenic  acid  (HPLA)  (Andreou  and

Feussner 2009). HPLA can be degraded (catalyzed by hydroperoxide lyase) to form the primary

GLV (Z)-3-hexenal which is then reduced and acetylated to form the corresponding alcohol (Z)-

3-hexen-1-ol and acetate ester (Z)-3-hexen-1-yl acetate respectively (D'Auria et al. 2007). 

The  emissions  of  GLVs  from  plants  have  been  documented  during  processes  known  to  be

associated  with  ROS  accumulation  including  programmed  cell  death  during  senescence

(Holopainen et al.  2010) and a wide variety of biotic and abiotic stresses including pathogen

attack (Jansen et al. 2009), high ambient ozone concentrations (Heiden et al. 2003; Beauchamp et

al. 2005), herbivory  (Arimura et al. 2009), desiccation  (De Gouw et al. 2000), high light and

temperature (Loreto et al. 2006), mechanical wounding (Fall et al. 1999), and freeze-thaw events
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(Fall et al. 2001). Thus, both enzymatic and non-enzymatic lipid peroxidation mechanisms lead to

the formation of characteristic fatty acid peroxidation biomarkers that may be detectable as gas-

phase emissions from plant tissue under stress at the ecosystem scale. Although not yet reported

from Amazonian ecosystems, these and other lipid peroxidation biomarkers may be emitted under

environmental extremes associated with changes in land use and climate and are therefore prime

candidates for ecosystem scale volatile metabolomics studies  (Kawai et al. 2007; Steeghs et al.

2006; Frankel et al. 1989; Mark et al. 1997; Moseley et al. 2003; Nielsen et al. 1997). 

[Table 1: volatile oxylipin lipid peroxidaotion biomarkers]

The 5 carbon molecule, isoprene, is estimated to be the most abundant and well-studied BVOC

emitted from terrestrial ecosystems  (Rasmussen and Khalil  1988). Isoprene is a biomarker of

photosynthesis and concentrations are known to positively correlate with light and temperature

(Figure 4.2)  (Monson and Fall 1989). As reviewed by  Vickers et al.  (2009), a rich literature

exists  demonstrating the role  of  isoprene as  a  photosynthesis  protector  from oxidative  stress

caused  by  high  temperature  and  light.  Isoprene  has  also  been  shown  to  quench  ozone  and

hydrogen peroxide (Loreto and Velikova 2001), singlet oxygen (Velikova et al. 2004) and nitric

oxide (Velikova et al. 2005), suggesting an antioxidant role for isoprene. Recently, investigations

using mango leaves and branches (Mangifera indica) as well as ambient air samples from an

enclosed  tropical  mesocosm  and  a  central  Amazon  forest  support  the  role  of  antioxidant

properties of isoprene (Jardine et al. 2012a; Jardine et al. 2013b). Observations of temperature-

stressed leaves from isoprene emitting plants showed production of first  generation oxidation

products of isoprene; methyl vinyl ketone (MVK), methacrolein (MAC), and 3-methyl furan (3-

MF).  The authors suggested that  the emissions of isoprene oxidation products increased with

temperature  stress  due  to  direct  chemical  reactions  with  ROS,  or  in  other  words,  in-plant

oxidation of isoprene (Figure 4.3). 

[Figure 4.2: isoprene molecule + 3-D tracks light, temp]

[Figure 4.3: isoprene oxidation schematic]
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To a  large  extent,  the  oxidative  power  of  the  lower  atmosphere  is  controlled  by  ecosystem

emission of biogenic VOCs, especially those that contain carbon-carbon double bonds, such as

volatile isoprenoids,  which are readily available for oxidation through reaction with hydroxyl

radicals, ozone and nitrate radicals (Monson 2002b). However, current models cannot adequately

describe  atmospheric  oxidant  levels  in  biogenically  dominated  areas  like  the  Amazon Basin

(Lelieveld et  al.  2008).  The discovery of  significant  primary emissions of  isoprene oxidation

products in the central Amazon (Jardine et al. 2012c) may reduce previous estimates of the effect

of VOCs on the oxidizing power of the troposphere, and increase the role of leaves as a source for

at least the first generation products of VOC oxidation to the atmosphere. These findings may

have important implications for characterizing the oxidizing capacity of the atmosphere and its

impacts  on atmospheric  chemistry and climate.  Understanding lipid production and oxidation

dynamics  within  plants  may  be  critical  for  predicting  ecosystem  response  to  the  increasing

temperature and light as a result of a changing climate. Investigating these mechanistic processes

is complex, because of the very broad scale over which lipid production is influenced and over

which  they  react.  For  example  isoprene  starts  at  the  sub-cellular  level  in  chloroplasts  and

ultimately impacts key atmospheric processes, which in turn modify global climate, which in turn

influences  isoprene production in  the biosphere.  Investigation therefore  requires a mixture of

expertise and collaborating disciplines.

4.4 BVOC bidirectional biosphere-atmosphere exchange 
There is a growing consensus that a large number of oxygenated compounds are both emitted and

consumed  by plants  and  that  bidirectional  exchange  occurs  between tropical  forests  and  the

atmosphere  (Jardine et al. 2011c; Karl et al. 2005; Jardine et al. 2008; Ganzeveld et al. 2008;

Andreae et al. 1988). The compensation point is the point at which the ambient air mixing ratio of

a BVOC results in a net zero flux, where consumption and emission are balanced. 

A  recent  study  focused  on  methanol  and  acetone  Ganzeveld  et  al.  (2008),  showed  that  a

commonly  applied  algorithm  to  simulate  global  acetone  and  methanol  biogenic  exchanges

substantially  overestimates  ambient  concentrations  and  emission  strengths  (compared  with

observations).  In  contrast,  the  use  of  a  compensation  point  approach  simulated  ambient

concentrations  and  exchange  dynamics  that  were  much  more  comparable  to  observations.

Another example comes from studies focused on gas phase formic acid (FA) and acetic acid (AA)

(Kesselmeier 2001; Gabriel et al. 1999; Andreae et al. 1988; Talbot et al. 1990) , which are found
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ubiquitously in the atmosphere (Paulot et al. 2011). Jardine et al. (2011c) conducted a study in a

central Amazon ecosystem comparing ratios of FA to AA (FA/AA) providing the first ecosystem

scale evidence for the bidirectional FA and AA exchange between the forest  canopy and the

atmosphere  and  further  estimated  an  ecosystem  compensation  point  for  each  acid.  While

traditionally  viewed  strictly  as  emission  sources  to  the  atmosphere,  these  recent  works

demonstrate that plants can act as both a source and sink for BVOCs, especially those that are

intermediates  in  metabolic  pathways.  Thus,  in  order  to  improve  simulations  of  biosphere-

atmosphere fluxes and atmospheric concentrations of oxygenated VOCs in Earth System Models,

development  of  modeling  approaches  that  embrace  the  bidirectional  exchange  of  BVOCs

warrants further investigation.

4.5 Conclusions

Studies of biogenic volatile organic compounds within the Amazon have been conducted for

nearly 30 years (Rasmussen and Khalil 1988; Andreae et al. 1988), however, we are still at the

forefront  of  our  understanding  of  what  BVOCs  are  emitted  from  vegetation,  the  metabolic

pathways that produce them within plants, their functional roles in terrestrial ecosystems, and

how these roles may change under a changing climate. Some of the basic yet extremely important

questions  to  address  with respect  to  BVOCs in the Amazon are:  (i)  What  are  the identities,

concentrations  and  fluxes  of  BVOC  emissions  from  individual  tree  species  and  whole

ecosystems? (ii) What are the functional biological roles of BVOCs and what roles will they play

under future land use and climate change? and (iii)  What controls the amount of assimilated

carbon allocated to the production and emission of BVOCs in relation to non volatile metabolites

and respiratory processes? 

Addressing  these  questions  requires  intensive  observations  at  both  the  plant  species  and

ecosystem  scales  within  the  Amazon  Basin.  As  highly  sensitive  analytical  chemistry  tools

become available, the identification and quantification of novel BVOCs is also emerging. The

promising  area  of  research,  volatile  metabolomics,  is  beginning  to  provide  noninvasive

methodologies to develop a mechanistic understanding of BVOC metabolism and therefore may

lead to new understanding of the functional roles of BVOCs at the plant and ecosystem scales. In

turn, improvements in Earth System Models can further our ability to predict changes in BVOC

impacts on atmospheric chemistry and climate.
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Figure and Table Captions 

Figure 4.1. A simplified representation of the flow of carbon in the cytosol, chloroplast
and  mitochondria,  which  produce  classes  of  biogenic  volatile  organic  compounds
(BVOCs) in photosynthetic cells during primary and secondary metabolism. 

Figure 4.2. A snapshot of the diurnal patterns of isoprene concentration variations over a

three-day period measured from a tower in a central Amazon forest. The x-axis represents

time, while the y-axis shows measurement heights from 2 meters above the ground to 10

meters  above the canopy.  The color  scale ranges from minimum (blue)  to  maximum

(black) concentrations. The vertical gradients show clear sources within the under canopy

(10 - 17 m) and canopy (30 m) layers corresponding with maximum temperature and

light at midday and minimum concentrations at night. A sudden drop in concentration at

all  heights  occurring during a rain event  which decreased temperatures  and light  and

likely diminished ecosystem photosynthesis is also observable. 

Figure 4.3. A simplified schematic showing the production of isoprene and its oxidation

products methyl vinyl keytone and methacrolein in plants as well as their emission to the

atmosphere.

Table  1:  Example  of  isoprene  (red  text)  and  fatty  acid  (black  text)  peroxidation
biomarkers from plants under oxidative stress. 
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