UC Berkeley
CADML Papers

Title
Displaying readable object-space text in a head tracked, stereoscopic virtual environment

Permalink
https://escholarship.org/uc/item/5nt3v7zml

Authors

Karasuda, Eric
McMains, Sara

Publication Date
2005-07-22

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5nt3v7zm
https://escholarship.org
http://www.cdlib.org/

CADML Technical Report 05-0722, copyright 2005

Displaying readable object-space text in a head
tracked, stereoscopic virtual environment

Eric Karasuda SaraMcMains*
Computer Science Department Mechanical Engineering Department
University of California, Berkeley University of California, Berkeley

Abstract

Object space text, although desirable for its correct occlusion behavior, often appears blurry
or “shimmery” due to rapidly alternating text thickness when used with head tracked binocular
stereo viewing. Text thickness tends to vary because it depends on scan conversion, which in
turn depends on the user’s location in a head tracked environment, and the user almost never
stays perfectly still. This paper describes a simple method of eliminating such blurriness for
object space text that need not have a fixed location in the virtual environment, such as menu
system and annotation text. Our approach positions text relative to the user’s view frustums
(one frustum per eye), adjusting the 3D position of each piece of text as the user moves, so that
the text occupies a constant place in each of the view frustums and projects to the same pixels
regardless of the user’s location.

1 INTRODUCTION

This paper describes a simple method for displaying readable object space text in a virtual reality
environment with head tracked, binocular stereo viewing. We describe the method in the context
of using stereo glasses (either shutter or polarized) in combination with a “fish tank VR” [Arthur
et al. 1993] monitor or projection based environment.

Although image space text (e.g. bitmapped fonts) is appropriate for 2D applications and many
non-stereo 3D applications, object space text is often more convenient for 3D stereo applications,
even when the text does not have a fixed 3D position in the virtual world, such as menu system text
or textual annotations. Object space text frees the programmer from manually calculating visible
surfaces and the parallax appropriate for each piece of text’s depth. Without stereo viewing, we
can simply overwrite the graphics card’s frame buffer with menus and annotations using bitmapped
fonts. With stereo glasses, however, because the user’s eyes have slightly different perspectives on
the virtual world, 3D objects not located in the plane of the screen project to different pixels for
each eye. If we write text directly to the frame buffer in the same spot for each eye, it appears to be
in the plane of the screen and thus appears to cut through virtual objects, avatars, and 3D cursors
currently located in front of the screen plane. We can make the text appear closer to the user by
offsetting where we write the text for the two eyes. However, choosing the proper offset can be
difficult. If the offset is not large enough, the text will still cut into virtual objects that parallax

*{mcmains | ekarasud} @kingkong.me.berkeley.edu

CADML Technical Report 05-0722, copyright 2005

indicates are in front of the text. On the other hand, if the offset is too large, the resulting large
parallax cues the users to cross their eyes even though the image is actually located on a screen
far away, leading to poor readability and eye strain, and potentially double vision. Therefore, for
proper occlusion consistent with stereo viewing, we need to use object space text, typically placed
in a plane parallel to and in front of the plane of the screen.

Unfortunately, object-space text is difficult to read if the viewpoint is not perfectly stationary
because of its blurry or “shimmery” appearance. The problem is that letter thickness — the thick-
ness of the line used to draw text — varies when outline or texture-mapped fonts scan convert to
different pixels in consecutive frames. Although letter thickness only varies by a pixel, it is often
only one or two pixels thickness total to begin with, so a one pixel change is significant. When
letter thickness changes with user movement in a head tracked environment, the resulting text is
blurry because letter thickness may change as frequently as the screen refreshes — 120 times per
second for real time stereoscopic imaging. The effect is particularly disconcerting for users who
think they are standing still but who are actually moving slightly. If different pixels draw the text
when the user moves slightly, users who mistakenly believe they are standing perfectly still tend
to think that it is the text that is moving for no apparent reason; such text movement is particularly
noticeable when text is close to the edge of the screen.

2 POSITIONING TEXT RELATIVE TO THE VIEW FRUS-
TUMS

To prevent letter thickness from changing as the user moves, we “attach” text to the intersection
of the two eyes’ view frustums by making text position a function of the frustum intersection’s
current location and continuously adjusting as the user moves (we are interested in the area visible
to both eyes, and hence the intersection of the two frustums). This makes the text appear to float
at a consistent location in each of the user’s view frustums and effectively fixes the pixels drawing
the text, thus eliminating blurriness.

Assuming the coordinate system of the virtual world is oriented so that the middle of the screen
is the origin, the positive z axis comes directly out of the screen, and the positive x and y axes lie
to the right and above the origin (in the plane of the screen), we specify the position of text in two
parts to place it relative to the view frustum intersection. The first is a proportion p of the distance
Zuser between the user and the screen; the plane z = ziex = P - Zuser CONtains the text. The second is
horizontal and vertical offsets which specify the text’s location in the cross section of the frustum
intersection with z = zie. Specifying text positions in this manner causes the set of pixels drawing
each portion of text to stay the same regardless of the user’s location.

3 PROOF

Assume that the position of each piece of text is specified as described above. Our goal is to show
that, for each eye, the set of pixels which draws the given text stays the same regardless of the
user’s location.

It suffices to show that, regardless of the user’s position, the two eyes’ frustum cross sections
corresponding to z = zieq have equal, constant dimensions and that the overlap of the two cross

CADML Technical Report 05-0722, copyright 2005

sections is constant. If each frustum’s cross section has constant dimensions, a pair of offsets for a
given frustum cross section will always map to the same pixels. If, in addition, the cross sections
have equal area and overlap a constant amount, the cross sections will remain horizontally offset
by a fixed amount and the pixels drawing each portion of text for each eye will remain constant
regardless of the user’s position.

Figure 1 shows that the widths |GD| and |CH| of the two frustum cross sections are equal since

base(AEAB) _ base(AFAB) . .. base(AFCH)
base(/AFAB) _ base(AEAB) base(AEGD)

height (AFAB] — height(AEAB] — height(AEGD) Similarly, the heights of_the two frus_tum c_ross sections
are equal. To show that the intersection of the two cross sections is constant, it suffices to show
that |CD]| is constant since the two cross sections are the same height.

Zuser

m
2=N=({pp ¥ Zuser

Z=Zyger

left eye (E) 3<, ; right eye (F)
- IPD:

Figure 1: Top view looking down at the user and screen. The screen extends from A to B. The
constant p determines the plane z = p - zyser = Ztext iN Which the text is placed. The width of the
intersection of the two view frustums, given by the length of CD, is constant regardless of the user’s
location. Also note that |GD| = |CH| by similar triangles.

To see that |CD| is constant, see Fig. 1 and verify planes z = zyser, Z = %, and z = Ztex
are parallel to the plane of the screen, so triangles ABX, CDX, and FEX are similar. By the

similarity of AABX and AFEX, we have Eggﬁtt((ﬁﬁgi)) = gg((ﬁﬁgi)), or Zusei:*h = B, which gives

: o height (A base(/\ .
h = fg= By the similarity of ABX and CDX, we have hgght((AcA:g;(()) = bg((ﬁég;(()), which gives

ICD| = mm‘z%ﬁugf’(?;g‘lr’n?e’“ =m— p(IPD+m). Thus [CD] is constant.

4 EVALUATION

The above method of attaching text to the view frustum intersection provides a way to display
readable, object space text when pixel space bitmapped fonts are inappropriate or impractical. We
have implemented it using GLF outline fonts [Podobedov accessed 2004] for both annotations

CADML Technical Report 05-0722, copyright 2005

and a menuing system in a head tracked, stereoscopic virtual reality environment. We use Stereo-
graphics liquid crystal shutter glasses and a Fakespace ImmersaDesk with a Phantom haptic arm
mounted on top to control the stylus. For annotations, we have found using p ~ %1 as the proportion
factor, placing text in a plane a quarter of the distance from the user to the screen, works well with
our setup. This puts the annotations close enough to the user to allow easy interaction with the
stylus, but far enough away that they don’t occlude more of the viewing volume than necessary.
For menus, we set p based on the stylus position when the user requests the menu.

The frustum-attached text is far easier to focus on than text placed at fixed positions in the virtual
world. The fact that the text follows the user as the user moves is not at all distracting because the
motion is smooth and predictable, though annotation text that moves away from the object being
annotated does require a method for visually associating the annotations with specific locations,
which might not be necessary otherwise. Typical solutions include using small icons in the virtual
world, possibly color coded [Craig and Zimring 2002; Jung et al. 2002], or lines connecting the
annotation to the feature being annotated [SolidWorks Corp. 2004; Par 2003; Bell et al. 2001];
we describe a method for 3D routing of the lines for maximum clarity in [Karasuda and McMains
2004]. In addition to readability, our method possesses a few other potentially desirable attributes:

e Text never falls outside the view frustum intersection as a result of user movement — typi-
cally a desirable attribute in menu systems and annotations. (Instead we let the user control
removing menus, and remove annotations when the object being annotated is no longer in
view.) In comparison, Figure 2 shows how easily text with a fixed position in the virtual
world falls outside the view frustum intersection when the user moves.

e When the user approaches the screen, text rarely comes close enough to the user to cause
double vision and the associated discomfort, and never ends up behind the user. Text only
gets close enough to the user to cause discomfort if the user is extremely close to the screen
since text is placed at a proportion of the distance between the user and screen. In contrast,
text fixed in the virtual world causes discomfort more readily when the user approaches the
screen.

e Users may want text placed in the periphery of their visual field so as not to obscure more
important objects in the center. For example, textual annotations too large to overlay on the
objects they annotate may be best placed toward the edges of the view frustum intersection
S0 as not to obscure important objects in the center. With our placement scheme, text auto-
matically updates its position as the user moves, remaining at the periphery if that is where
it was originally placed.

ACKNOWLEDGMENTS

This work was supported in part by Ford Motor Company and UC Micro.

References

ARTHUR, K., BOOTH, K., AND WARE, C. 1993. Evaluating 3D task performance for fish tank
virtual worlds. ACM Transactions on Information Systems, 11, 3 (July), 239-65.

CADML Technical Report 05-0722, copyright 2005

monitor monitor

:e ! :e ~>:
a) lefteye © IPD : right eye b) lefteye @ IPD ! right eye

Figure 2: Top view showing the effect of user movement and head tracking on text visibility when
text is at a fixed location in the world and not attached to the view frustums. The horizontal line
represents text at a fixed location in the world. In (a), the text is fully visible, but at the periphery
of the user’s vision. When the user moves to the right, as shown in (b), the text is no longer fully
visible. If the user were to move to the left instead, the text would occlude the centers of the view
frustums, including any object the text might annotate.

BELL, B., FEINER, S., AND HOLLERER, T. 2001. View management for virtual and augmented
reality. In UIST, 101-110.

CRAIG, D. L., AND ZIMRING, C. 2002. Support for collaborative design reasoning in shared
virtual spaces. In Automation in Construction, vol. 11, 249-259.

JUNG, T., GROSS, M., AND DO, E. Y.-L. 2002. Annotating and sketching on 3d web models. In
International Conference on Intelligent User Interfaces (1Ul), 95-102.

KARASUDA, E., AND MCMAINS, S. 2004. Textual annotation in a head tracked, stereoscopic
virtual design environment. In Proceedings of the ASME Design Engineering Technical Confer-
ences, vol. 4, 527-536.

PARAMETRIC TECHNOLOGY CORPORATION. 2003. Pro/ENGINEER Wildfire.
PODOBEDOV, R., accessed 2004. GLF. http://astronomy.swin.edu.au/"pbourke/opengl/glf/.

SOLIDWORKS CORP,, 2004. SolidWorks SDK.

