
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Biologically-interpretable machine learning for microbial genomics

Permalink
https://escholarship.org/uc/item/5ns5d2mx

Author
Kavvas, Erol

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ns5d2mx
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Biologically-interpretable machine learning for microbial genomics

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Bioengineering

by

Erol Sincar Kavvas

Committee in charge:

Professor Bernhard Ø. Palsson, Chair
Professor Yoav Freund
Professor Christian Metallo
Professor Victor Nizet
Professor Shankar Subramaniam

2020



Copyright

Erol Sincar Kavvas, 2020

All rights reserved.



The dissertation of Erol Sincar Kavvas is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically:

Chair

University of California San Diego

2020

iii



DEDICATION

To my parents, Jale and Mustafa

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Causation in Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Machine learning models for identifying predictive features . . . . . . . 2
1.3 Constraint-based models address dual causation . . . . . . . . . . . . . 3
1.4 Towards mechanistic machine learning . . . . . . . . . . . . . . . . . . 4
1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Machine learning of M. tuberculosis pan-genome identifies genetic signatures
of antibiotic resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Characterizing the M. tuberculosis pan-genome . . . . . . . . . 9
2.2.2 Assessing allele frequencies in the pan-genome identifies key

resistance-conferring genes . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Machine learning identifies known resistance genes and novel

candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Machine learning uncovers genetic interactions contributing to

AMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Structural analysis of implicated AMR genes suggest a mecha-

nistic driver of selection . . . . . . . . . . . . . . . . . . . . . . 16
2.2.6 Geographic stratification of resistant and susceptible alleles pro-

vide insight into country-specific adaptations . . . . . . . . . . 20
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 3 An updated genome-scale model of M. tuberculosis H37Rv metabolism . . 32
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



3.2.1 Workflow for updating, unifying, and standardizing previous re-
constructions of M. tuberculosis . . . . . . . . . . . . . . . . . 35

3.2.2 Functional assessment of iEK1011 . . . . . . . . . . . . . . . . 38
3.2.3 iEK1011 qualitatively recapitulates flux states indicative of

physiologically relevant media conditions . . . . . . . . . . . . . 41
3.2.4 iEK1011 as a computational knowledge base for interrogating

features of antibiotic resistance . . . . . . . . . . . . . . . . . . 44
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 4 A biochemically-interpretable machine learning classifier for microbial GWAS 58
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Assessing genes implicated in AMR mechanisms motivates the
use of a genome-scale metabolic model for data analysis . . . . 61

4.2.2 A metabolic model-based framework for classifying microbial
genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.3 Validation of Metabolic Allele Classifiers . . . . . . . . . . . . . 66
4.2.4 MACs reveal known and new antibiotic resistance determinants 67
4.2.5 Pyrazinamide resistance . . . . . . . . . . . . . . . . . . . . . . 68
4.2.6 Para-aminosalicylic resistance . . . . . . . . . . . . . . . . . . . 70
4.2.7 Isoniazid resistance . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.8 Conventional pathway analyses do not recapitulate network-

level AMR mechanisms . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 5 Laboratory evolution of multiple E. coli strains reveals unifying principles of
adaptation but diversity in driving genotypes . . . . . . . . . . . . . . . . . 84
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Consistent genetics in evolution of multiple E. coli strains . . . 86
5.2.2 Characteristics of physiological and metabolic adaptations . . . 87
5.2.3 Characteristics of transcriptome adaptation in E. coli . . . . . 90
5.2.4 Linear growth-dependent transcriptome adaptations conserved

in E. coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.5 Regulatory trade-offs governing E. coli adaptation . . . . . . . 94
5.2.6 Statistical tests leveraging ALE design reveal key mutational

effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vi



Appendix A Machine learning of M. tuberculosis pan-genome identifies genetic signatures
of antibiotic resistance - Supplementary Information . . . . . . . . . . . . . 103
A.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1.1 M. tuberculosis strain dataset . . . . . . . . . . . . . . . . . . . 103
A.1.2 M. tuberculosis pan-genome construction and QA/QC . . . . . 104
A.1.3 Pan-genome core and unique cutoff determination . . . . . . . 105
A.1.4 Phylogenetic Tree and categorization of lineages . . . . . . . . 105
A.1.5 Identification of key resistance-conferring genes with mutual in-

formation, chi-squared, and ANOVA . . . . . . . . . . . . . . . 106
A.1.6 Allele feature selection through ensemble Support Vector Machine107
A.1.7 Determination of potential epistatic genes from SVM ensemble

correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.1.8 Calculation of log odds ratio visualized in allele co-occurrence

tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.1.9 Missing alleles in allele co-occurrence tables counts . . . . . . . 110
A.1.10 Structural protein analysis of identified AMR genes . . . . . . 111

A.2 Supplementary Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.2.1 Characteristics of 1,595 Strain M. tuberculosis dataset . . . . . 112
A.2.2 Characterizing the M. tuberculosis pan-genome . . . . . . . . . 112
A.2.3 Pan-genome COG Categories . . . . . . . . . . . . . . . . . . . 113
A.2.4 Virulence factors are highly conserved in the core genome . . . 114
A.2.5 Motivation for using mutual information and observation of

shared AMR signals across multiple antibiotics . . . . . . . . . 115
A.2.6 Motivation of ensemble support vector machine and limitations 116
A.2.7 Detailed perspective of the presented platform-derived results. 118
A.2.8 Limitations of our view of genetic variation . . . . . . . . . . . 118
A.2.9 Machine learning enables increased identification of known AMR

genes over GWAS. . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2.10 Adaptations in toxins are associated with XDR in M. tubercu-

losis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2.11 Epistatic and protein-structure-guided generation of experimen-

tal hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.2.12 Geographic contextualization suggests modulation of antibiotic

treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.3 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Appendix B An updated genome-scale metabolic model of M. tuberculosis - Supplemen-
tary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.1.1 Choosing a base reconstruction . . . . . . . . . . . . . . . . . . 136
B.1.2 Updating the reconstruction . . . . . . . . . . . . . . . . . . . . 138
B.1.3 Description of GAM and NGAM parameters . . . . . . . . . . 139
B.1.4 Flux Variability Analysis and Sampling of in vitro and in vivo

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.1.5 Comparison of FVA across different drug objective simulations 140

vii



B.1.6 Gene Essentiality predictions . . . . . . . . . . . . . . . . . . . 141
B.1.7 Approximation of literature-derived evolutionary forces of

antibiotic-resistance evolution . . . . . . . . . . . . . . . . . . . 142
B.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Appendix C A biochemically-interpretable machine learning classifier for microbial GWAS
- Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.1.1 Characteristics of utilized datasets. . . . . . . . . . . . . . . . . 146
C.1.2 Curation and functional assessment of TB AMR genes . . . . . 147
C.1.3 Modification of base genome-scale model . . . . . . . . . . . . . 147
C.1.4 Generation of allele-constraint map ensemble through random-

ized sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
C.1.5 Statistical tests for allelic AMR and flux stratification . . . . . 148

C.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Appendix D Laboratory evolution of multiple E. coli strains reveals unifying principles of
adaptation but diversity in driving genotypes - Supplementary Information 152
D.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

D.1.1 Adaptive laboratory evolution and DNA sequencing . . . . . . 152
D.1.2 RNA-sequencing and processing . . . . . . . . . . . . . . . . . 153
D.1.3 Fluxomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
D.1.4 Mann-Whitney U tests for identifying convergent and divergent

phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
D.1.5 Differential expression analysis of RNA-seq . . . . . . . . . . . 157
D.1.6 iModulon analysis of RNA-seq data . . . . . . . . . . . . . . . 158
D.1.7 Differential expression analysis of RNA-seq . . . . . . . . . . . 159
D.1.8 Data transformation to jump-specific perspective . . . . . . . . 159
D.1.9 Trade-off analysis through PCA and ANCOVA . . . . . . . . . 160

D.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

viii



LIST OF FIGURES

Figure 2.1: Identification of key resistance-conferring genes using mutual information . . 11
Figure 2.2: Allele co-occurrence tables of correlated AMR genes. . . . . . . . . . . . . . . 14
Figure 2.3: 3D and annotated protein structure mutation maps for identified AMR genes. 18

Figure 3.1: Workflow of reconstruction process and model comparison . . . . . . . . . . 37
Figure 3.2: Model comparison of gene essentiality predictions. . . . . . . . . . . . . . . . 39
Figure 3.3: Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 3.4: Escher map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 3.5: Heatmap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.1: A metabolic systems approach for genetic associations. . . . . . . . . . . . . 63
Figure 4.2: Validation of Metabolic Allele Classifiers. . . . . . . . . . . . . . . . . . . . . 66
Figure 4.3: Characterization of pyrazinamide MACs. . . . . . . . . . . . . . . . . . . . . 69
Figure 4.4: Characterization of para-aminosalicylic acid MACs. . . . . . . . . . . . . . . 71
Figure 4.5: Characterization of isoniazid MACs. . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.1: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 5.2: Adaptation in physiology and metabolism. . . . . . . . . . . . . . . . . . . . 89
Figure 5.3: Characterization of gene expression adaptations. . . . . . . . . . . . . . . . . 91
Figure 5.4: Conserved growth-dependent transcriptome. . . . . . . . . . . . . . . . . . . 93
Figure 5.5: Regulatory trade-offs governing E. coli adaptations. . . . . . . . . . . . . . . 95
Figure 5.6: Mutation correlates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure A.1: Characteristics of 1595 strain dataset . . . . . . . . . . . . . . . . . . . . . . 122
Figure A.2: M. tuberculosis pan-genome characteristics. . . . . . . . . . . . . . . . . . . 123
Figure A.3: Pan-genome quality check, characteristics, and allele-centric vie. . . . . . . . 124
Figure A.4: Illustration of multi-layered analysis workflow. . . . . . . . . . . . . . . . . . 125
Figure A.5: Ensemble ROC curves for SGD-SVM predictions. . . . . . . . . . . . . . . . 126
Figure A.6: Pairwise correlation of ethambutol genetic features across ensemble of SGD-

SVM simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure A.7: Case-controls for relating MoA with uniprot annotated protein structural fea-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

ix



LIST OF TABLES

Table 2.1: Known AMR genes uncovered by machine learning. . . . . . . . . . . . . . . . 12
Table 2.2: Newly proposed AMR genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Table 3.1: Summary of existing genome-scale models of M. tuberculosis . . . . . . . . . . 36
Table 3.2: Table of antibiotics and the associated genes. . . . . . . . . . . . . . . . . . . 44
Table 3.3: List of objective functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table B.1: Newly proposed AMR genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

x



ACKNOWLEDGEMENTS

This work could not have been done without the help and support from countless people.

First and foremost, I would like to thank my advisor Bernhard Ø. Palsson for all his guidance

and inspiration throughout my graduate studies. I could not imagine a better advisor than Dr.

Palsson for fostering the immense curiosity I had for biology when I first started the graduate

program. His passion for systems biology was infectious and a constant source of inspiration.

I’m thankful for the numerous books he lent me and for never failing to respond to my emails,

even as ridiculous as some of them were. I was always amazed by Dr. Palsson’s ability to balance

the free-thinking mindset of a child (this is a compliment) and the get-things-done attitude of a

successful CEO. Whatever I pursue in life, I’ll be sure to channel as much Dr. Palsson energy as

possible.

I have been fortunate to have had many inspiring mentors at the SBRG. First, I would

like to thank Jonathan Monk for being a major source of support in my first couple years and

for teaching me the basics of research and paper writing. I’m also thankful to Laurence Yang

and David Heckmann for similar research lessons and for the insightful feedback that shaped my

FBA-GWAS study. I’d like to thank Aarash Bordbar for the valuable internship opportunity

at Sinopia Biosciences. I’d also like to thank Adam Feist for guiding me in my final years of

researching E. coli evolution.

I am grateful for everyone at SBRG. There are so many colleagues and friends to thank

here, but I would especially like to thank Anand, Colton, Saugat, Yara, CJ, Patrick, Bin, Muyao,

James, Jared, David, Julia, Sonal, and Jacob for daily chats and relaxing outdoor lunches. I’d

also like to thank my batchmates Yara, Xin, and Eddie who joined SBRG at the same time as

me. I’d also like to thank Marc Abrams for helping me with countless tasks and for being a

xi



generally tight dude.

I would like to thank the friends I made these past five years in grad school. In particular,

I’d like to thank Michael Ostertag, Vish Ramesh, Ashish Manohar, and Ritvik Vasan for being

tight AF and for providing terrible life advice. I’d like to thank my friends Nate Chapin, Chris

Camona, Swiss Greg, Kyle, Co, Lennart and the Chemistry 2015 PhD group for all the fun.

I would also like to thank my funding sources that have supported this work. These

include the National Institute of Allergy and Infectious Disease (AI124316) and the Novo Nordisk

Foundation (NNF10CC1016517).

Chapter 2 is a reprint of material published in: ES Kavvas, E Catoui, N Mih, JT

Yurkovich, Y Seif, N Dillon, D Heckmann, A Anand, L Yang, C Nizet, JM Monk and BO Pals-

son. 2018. “Machine learning and structural analysis of Mycobacterium tuberculosis pangenome

identifies genetic signatures of antibiotic resistance“ Nature Communications 9 (4306). The

dissertation author is the primary author.

Chapter 3 is a reprint of the material published in: ES Kavvas,Y Seif, JT Yurkovich, C

Norsigian, S Poudel, WW Greenwald, S Ghatak, BO. Palsson and JM Monk. 2018. “Updated

and standardized genome-scale reconstruction of Mycobacterium tuberculosis H37Rv, iEK1011,

simulates flux states indicative of physiological conditions“ BMC Systems Biology 12 (25). The

dissertation author is the primary author.

Chapter 4 is a reprint of the material in: ES Kavvas, L Yang, JM Monk, D Heck-

mann, BO Palsson. 2020. “A biochemically-interpretable machine learning classifier for microbial

GWAS“ Nature Communications 11 (2580). The dissertation author is the primary author.

Chapter 5 is a reprint of the material: ES. Kavvas, MR. Antoniewicz, C. Long, Y.

Ding, JM. Monk, BO. Palsson, A. Feist. (2020). Laboratory evolution of multiple E. coli

xii



strains reveals unifying principles of adaptation but diversity in driving genotypes. bioRxiv

DOI:10.1101/2020.05.19.104992. The dissertation author is the primary author.

xiii



VITA

2015 Bachelor of Science in Civil and Environmental Engineering, University of
California Davis

2020 Doctor of Philosophy in Bioengineering, University of California San Diego

PUBLICATIONS

Bin Du, Daniel C. Zielinski, Erol S. Kavvas, Andreas Drager, Justin Tan, Zhen Zhang, Kayla
E. Ruggiero, Garri A. Arzumanyan and Bernhard O. Palsson. 2016. Evaluation of rate law
approximations in bottom-up kinetic models of metabolism. BMC Systems Biology 10:40.

ES Kavvas,Y Seif, JT Yurkovich, C Norsigian, S Poudel, WW Greenwald, S Ghatak, BO. Pals-
son and JM Monk. 2018. “Updated and standardized genome-scale reconstruction of Mycobac-
terium tuberculosis H37Rv, iEK1011, simulates flux states indicative of physiological conditions“
BMC Systems Biology 12 (25).

Yara Seif, Erol Kavvas, Jean-Christophe Lachance, James T Yurkovich, Sean-Paul Nuccio,
Xin Fang, Edward Catoiu, Manuela Raffatellu, Bernhard O Palsson, Jonathan M Monk. 2018.
“Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific
metabolic traits“ Nature Communications 9:3771.

ES Kavvas, E Catoui, N Mih, JT Yurkovich, Y Seif, N Dillon, D Heckmann, A Anand, L
Yang, C Nizet, JM Monk and BO Palsson. 2018. “Machine learning and structural analysis
of Mycobacterium tuberculosis pangenome identifies genetic signatures of antibiotic resistance“
Nature Communications 9 (4306).

Charles J Norsigian, Erol Kavvas, Yara Seif, Bernhard O Palsson, Jonathan M Monk. 2018.
“iCN718, an updated and improved genome-scale metabolic network reconstruction of Acineto-
bacter baumannii AYE“ Frontiers in genetics 9, 121.

Kumari S Choudhary, Nathan Mih, Jonathan Monk, Erol Kavvas, James T Yurkovich, George
Sakoulas, Bernhard O Palsson. 2018. “The Staphylococcus aureus two-component system AgrAC
displays four distinct genomic arrangements that delineate genomic virulence factor signatures“
Frontiers in microbiology 9, 1082.

Nathan Mih, Elizabeth Brunk, Ke Chen, Edward Catoiu, Anand Sastry, Erol Kavvas, Jonathan
M Monk, Zhen Zhang, Bernhard O Palsson. 2018. “ssbio: a Python framework for structural
systems biology“ Bioinformatics 34 (12), 2155-2157.

Xin Fang, Jonathan M Monk, Nathan Mih, Bin Du, Anand V Sastry, Erol Kavvas, Yara Seif,
Larry Smarr, Bernhard O Palsson. 2018. “Escherichia coli B2 strains prevalent in inflammatory
bowel disease patients have distinct metabolic capabilities that enable colonization of intestinal
mucosa“ BMC systems biology 12 (1), 66.

Y Seif, JM Monk, H Machado, E Kavvas, BO Palsson. 2019. “Systems Biology and Pangenome
of Salmonella O-Antigens“ mBio 10 (4), e01247-19.

xiv



Jason C Hyun, Erol S Kavvas, Jonathan M Monk, Bernhard O Palsson. 2020. “Machine
learning with random subspace ensembles identifies antimicrobial resistance determinants from
pan-genomes of three pathogens“ PLoS computational biology 16 (3), e1007608.

ES Kavvas, L Yang, JM Monk, D Heckmann, BO Palsson. 2020. “A biochemically-interpretable
machine learning classifier for microbial GWAS“ Nature Communications 11 (2580).

ES. Kavvas, MR. Antoniewicz, C. Long, Y. Ding, JM. Monk, BO. Palsson, A. Feist. (2020).
Laboratory evolution of multiple E. coli strains reveals unifying principles of adaptation but
diversity in driving genotypes. bioRxiv DOI:10.1101/2020.05.19.104992.

xv



ABSTRACT OF THE DISSERTATION

Biologically-interpretable machine learning for microbial genomics

by

Erol Sincar Kavvas

Doctor of Philosophy in Bioengineering

University of California San Diego, 2020

Professor Bernhard Ø. Palsson, Chair

Advancements in high-throughput biotechnology have enabled the unprecedented detail-

ing of microbial diversity. Researchers now have the opportunity to understand evolution as a

function of the genomic, transcriptomic, metabolic, and physiological variables underlying differ-

ential fitness. A comprehensive understanding of microbial evolution will help eradicate infectious

disease, engineer robust synthetic circuits, and tackle environmental issues facing our planet.

While the information revolution in biology has enabled researchers to simultaneously measure

various biomolecules at low costs, a major bottleneck remains in translating these datasets to

actionable knowledge. In this proposal, we aim to address the challenge of biological data anal-
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ysis through development of computational methods that leverage both the predictive power of

machine learning (ML) and the biological interpretability of mechanistic genome-scale models.

First, classical ML is applied to thousands of drug-tested Mycobacterium tuberculosis genome

sequences to recover 33 known genetic determinants of antimicrobial resistance (AMR) and 24

novel candidates. Second, a biochemically-interpretable ML model is developed and applied to the

same genomics dataset to reveal metabolic mechanisms of AMR. Third, independent component

analysis is applied to a multi-omics dataset of E. coli laboratory evolution to reveal multi-scale

adaptation principles governing causal mutations. In conclusion, this dissertation broadened our

understanding of microbial evolution through development and application of interpretable ML

models.
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Chapter 1

Introduction

Underlying microbial diversity are stories of evolutionary adaptation. From antimicro-

bial resistance (AMR) acquisition to increased acid tolerance, microbes are able adapt to a

seemingly endless range of environmental scenarios through alteration of their genetic program

by the process of evolution. All stories of adaptation are therefore written in the DNA sequences

of microbial genomes. With technological advancements enabling cheap and accessible genome

sequencing, there are now public databases filled with thousands of microbial genomes [1], pro-

viding researchers the unprecedented opportunity to read the evolutionary history of microbes.

For the deadly pathogen Mycobacterium tuberculosis (TB), the thousands of publicly available

drug-tested genomes sequences may be utilized towards understanding the causes of AMR that

may consequently lead to better treatment regimens and assist novel drug development. However,

despite the availability of genome sequences, it remains challenging to deduce the evolutionary

causes underlying genetic diversity, highlighting the need for novel mathematical methods that

can predicatively link genetic variants to meaningful evolutionary causes.
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1.1 Causation in Biology

“Cause and effect in biology is a farcry from that in physics”

— Ernst Mayr

Unlike physics, biology is subject to both proximal and distal causation [2] [3]. Proximal

causation describes physical phenomena and can be formulated with basic principles such as

thermodynamics and mass conservation. Distal causation on the other hand is unique to biology

and describes the process of evolution, in which natural selection favors those individuals in a

genetically diverse population that have more fit functions than other members of the population.

In terms of modeling, distal causation necessitates the specification of a fitness function that can

distinguish the survivability of each individual in a diverse population. The challenge is that such

a fitness function can not be specified a priori using physical principles but is instead determined

by natural selection. For example, while the proximal cause of how microbes produce antibiotics

can be explained using biophysical principles such as biochemistry and mass conservation, the

distal cause of why microbial antibiotic production exists in the first place has no physical basis

but is instead due to being able to kill other microbes in the population. Therefore, we move

away from pure physical models and instead focus our modeling efforts in two categories: (1)

statistics and machine learning models, and (2) constraint-based genome-scale models. The first

category is based on identifying key correlations in the data while the second category is based

on identifying key mechanisms.

1.2 Machine learning models for identifying predictive features

In the 1920s, the mathematician Ronald Fisher advanced the field of statistics as a means

to identify underlying causes in biological data sets. Without having to account for any biologi-
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cal mechanisms, these statistical models provided levels of significance for associations between

biological measurements, enabling researchers to better dissect the underlying causes of observed

traits. For these reasons, statistical models have been the basis for the majority of scientific

discoveries. In the field of genome-wide association studies (GWAS), statistical models are used

to filter millions of genetic variants for those most likely to cause an observed trait such as disease

[4].

Although statistics remains as the dominant methodology for analyzing biological data

sets, another mechanism-agnostic modeling approach known as machine learning (ML) has be-

come immensely popular in recent years. In contrast to statistical models, which are designed

to draw inferences about the relationship between variables, ML models are designed to find

generalizable predictive patterns [5]. By adding features like L1-regularization to the ML opti-

mization problem, the ML model learns to make accurate predictions using as few input features

as possible, thereby filtering the data for key features. Application to microbial GWAS data

sets has shown that ML-derived predictive features correspond to known genetic determinants of

antibiotic resistance [6–11]. For transcriptomics data, patterns derived from the ML method of

independent component analysis have been shown reflect known regulons and enable quantitative

modeling of the transcriptional regulatory network (TRN) [12].

1.3 Constraint-based models address dual causation

The primary limitation of current ML models is their inability to infer biological mecha-

nisms. Fundamentally, current ML models, such as the Support Vector Machine (SVM), contain

no information about the function of genes or how they interact in a biomolecular system to create

phenotypes. Over the past couple of decades, the computational analysis of biochemical networks
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in microorganisms has been advanced through the use of genome-scale models (GEMs) [3] [13].

By computing metabolic flux states consistent with imposed biological constraints, GEMs have

been shown to predict a range of cellular functions, making them a valuable tool for analyzing

multi-omics datasets [14]. Significantly, GEMs represent proximal causes as constraints (e.g.,

reaction stoichiometry) and distal causes through the objective function (e.g., maximize biomass

biosynthetic flux), thereby addressing the unique duality of biological causation.

1.4 Towards mechanistic machine learning

Although GEMs are transparent genotype-phenotype models, they are largely outper-

formed by machine learning models in direct comparisons of prediction accuracy. Approaches

have thus been developed that integrate meaningful GEM computations with predictive “black-

box” machine learning to enable “white-box” interpretations of data [15]. These approaches

have worked well for endogenous metabolomics data by using the GEM to directly transform the

measurements to meaningful inputs for “black box” machine learning. Approaches that integrate

the interpretability of genome-scale models with the predictability of machine learning models

may therefore realize the promise of big data biology.
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Chapter 2

Machine learning of M. tuberculosis

pan-genome identifies genetic

signatures of antibiotic resistance

Mycobacterium tuberculosis is a serious human pathogen threat exhibiting complex evolu-

tion of antimicrobial resistance (AMR). Accordingly, the many publicly available datasets describ-

ing its AMR characteristics demand disparate data-type analyses. Here, we develop a reference

strain-agnostic computational platform that uses machine learning approaches, complemented by

both genetic interaction analysis and 3D structural mutation-mapping, to identify signatures of

AMR evolution to 13 antibiotics. This platform is applied to 1595 sequenced strains to yield four

key results. First, a pan-genome analysis shows that M. tuberculosis is highly conserved with

sequenced variation concentrated in PE/PPE/PGRS genes. Second, the platform corroborates

33 genes known to confer resistance and identifies 24 new genetic signatures of AMR. Third,
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97 epistatic interactions across 10 resistance classes are revealed. Fourth, detailed structural

analysis of these genes yields mechanistic bases for their selection. The platform can be used to

study other human pathogens.

2.1 Background

Advancements in genome sequencing technologies have made available thousands of drug-

tested M. tuberculosis genomes in public databases. With available sequences expected to surpass

60,000 during the next five years [1], there is impetus for new quantitative approaches that

excel at analyzing massive datasets. Methods that explicitly account for structure amongst

features—such as those found in the field of machine learning—will be essential for addressing

this M. tuberculosis data deluge [2].

To date, most approaches compare M. tuberculosis genome sequences against the H37Rv

reference strain in order to identify single nucleotide polymorphisms (SNPs). Following SNP iden-

tification, most studies then focus on the subset of previously identified resistance-determining

SNPs that have been previously determined to be key resistance-determining mutations, specifi-

cally those within a handful of genes encoding proteins targeted by drugs [3]. While such studies

have proven to be powerful for diagnostics [4] and elucidating mutational steps to AMR [3], they

do not account for potential genome-wide mutations reflecting positive AMR selection, such as

those found to be related to cell wall permeability, efflux pumps, and compensatory mechanisms

[5].

Specific genome-wide functional analyses in M. tuberculosis have shown that ald loss-of-

function [6], ubiA gain-of-function [7], and thyA loss-of-function [8] mutations occur in off-target

reactions and confer resistance through modulation of metabolite pools. These results exemplify
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the complex interplay underlying AMR phenotypes that extends beyond the few genes currently

utilized in diagnostic studies. In addition to limitations of a narrow genetic view, the identification

of other types of resistance-conferring mutations, such as deletions [9, 10], suggest that SNPs

are no longer comprehensive in describing the mutational landscape of M. tuberculosis AMR

evolution.

Here, we apply a reference-agnostic machine learning approach complemented by both

genetic interaction and protein structural analysis to deduce the variability in genetic content

and AMR of 1,595 M. tuberculosis strains. The complete analysis recapitulates known AMR

mechanisms and infers specific selection pressures through directed hypotheses.

2.2 Results

2.2.1 Characterizing the M. tuberculosis pan-genome

Our first goal was to characterize and understand the gene content of sequenced M. tuber-

culosis strains. We selected a representative set of 1,595 M. tuberculosis strains for which AMR

testing data was available from the PATRIC database [11]. These strains come from a wide range

of studies [3, 12–27]. Strains were selected for their genetic, geographic, and AMR phenotypic

diversity (Supplementary Fig. 1). The geographic diversity of these strains reflects areas heavily

burdened by M. tuberculosis (Supplementary Fig. 1a). We constructed a phylogenetic tree for

the 1,595 strains using a robust set of lineage-defining SNPs [28] (Supplementary Fig. 1b and

Methods). Finally, strains were selected in order to provide a distribution across commonly used

M. tuberculosis treatment regimens (Methods). Of these 1,595 strains, 1,282 strains had AMR

testing data for isoniazid, rifampicin, streptomycin, and ethambutol (Supplementary Fig. 1c)
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and 946 (59%) were resistant to both isoniazid and rifampicin. Following the selection of strains,

we determined the pan-genome (i.e., the union of all genes across the strains) represented by

these data and analyzed the distribution of various genomic features (i.e., core genes, virulence

factors, etc.). The pan-genome analysis described a general theme of high conservation (see

Supplementary Note for further discussion of M. tuberculosis pan-genome).

2.2.2 Assessing allele frequencies in the pan-genome identifies key resistance-

conferring genes

Although the M. tuberculosis pan-genome clusters provide an informative view of the

global genetic repertoire within a species, they lack the resolution necessary to discriminate be-

tween most AMR phenotypes. To elucidate fine-grained genetic variation indicative of AMR evo-

lution, we separated each pan-genome cluster into groups of exact amino acid sequence variants,

or alleles (Supplementary Fig. 3g). In contrast to alignment-based perspectives, the allele-based

pan-genome does not reduce non-H37Rv variants to a collection of SNPs, but instead represents

variants in their functional protein coding form. This approach accounts for all protein-coding

alleles in the M. tuberculosis pan-genome, thereby representing the extensive strain-to-strain vari-

ation observed in bacterial genomes without biasing the variations relative to a single reference

genome.

We used mutual information [29] as an association metric to identify resistance-

determining genes with this newly constructed variant pan-genome and the accompanying AMR

dataset (Methods). Importantly, this approach identified primary resistance-conferring genes

previously reported in the literature (Figure 2.1). In addition to mutual information, we calcu-

lated associations using a chi-squared test and an ANOVA F-test, both of which identified similar
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Figure 2.1: Identification of key resistance-conferring genes using mutual. The pairwise mutual
information (vertical axis) between the pan-genome alleles and antibiotic resistance was calcu-
lated across all possible pairs. The listed genes correspond to the pan-genome alleles that hold
the most information about the listed drug’s AMR phenotype.

sets of key AMR genes (P < 0.005; Bonferroni correction) (Supplementary Data File 1). These

results suggest that allele frequencies based on exact sequence (i.e., without a metric for genetic

distance) are capable of identifying AMR genes, which has previously been shown with k-mer

based approaches [30–32].

2.2.3 Machine learning identifies known resistance genes and novel candidates

Although simple and effective, pairwise association tests (i.e., mutual information, chi-

squared, and ANOVA F-test) do not simultaneously account for multiple alleles because the

pairwise calculations consider variants independently of one another. Thus, we tailored a sup-

port vector machine (SVM)—a method that inherently accounts for structure amongst the fea-

tures—to uncover AMR-conferring genes (Methods). Using the allele presence-absence across

strains as the features, the SVM identified an additional seven known AMR gene-antibiotic rela-
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Table 2.1: Known AMR genes uncovered by machine learning. The eight antibiotics shown each
have an AUC greater than 0.80 (Supplementary Fig. 5). *Not found in top 40 ranked alleles
determined by mutual information, chi-squared, and ANOVA F-test.

Antibiotics Known AMR genes

isoniazid katG [33], inhA* [34] , fabG1 [35]

rifampicin rpoB [36], rpoC* [37] Rv3239c [38]

ethambutol embB [39], embC [39], ubiA* [40], embR* [41]

pyrazinamide pncA [42]

streptomycin rpsL [43], gidB [44]

ofloxacin gyrA [45]

4-aminosalicylic acid folC* [8], thyA* [46]

ethionamide ethA [47], inhA* [34]

Known AMR genes associated

with other antibiotics

dprE1 [48], ald [6], alr [49], murA [50], pks2

[51], pks12 [52], ppsA [53], ppsD [53], drrB

[54], drrC [54], moeW [48], Rv0687 [55], mshD

[56], gyrB [45], Rv1877 [57], Rv0194 [58]

tions absent from the top 40 ranked alleles determined by pairwise associations, including those

associated with complex resistance (Table 2.1). In particular, ubiA, a resistance gene recently

found to confer high level resistance to ethambutol [40], appeared as a strong signal across the

ensemble of SVM simulations—despite not being accounted for in contemporary M. tuberculosis

diagnostics (Supplementary Data File 2).

The SVM method revealed an abundance of AMR-implicated genes involved in metabolic

pathways (119/317, 37.5%) (Supplementary Data File 2). In fact, the majority of the known

AMR-determinants are metabolic enzymes (24/33, 73%). We found over 20 genes related to cell

wall processes (26/317, 8.2%), which is consistent with previous findings of convergent AMR

evolution in M. tuberculosis [5]. Furthermore, many high-signal AMR genes, such as pbpA and

mmpS3, have recently been identified as determinants of intrinsic M. tuberculosis AMR [59]. The

full list of identified genes for each drug is provided (Supplementary Data File 2).
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2.2.4 Machine learning uncovers genetic interactions contributing to AMR

Beyond identifying AMR genes, four key attributes of our ensemble SVM learning ap-

proach enable analysis of genetic interactions underlying variable AMR phenotypes (Methods

and Supplementary Fig. 4): (1) the weighting of a particular allele in a specific SVM hyperplane

scales with its contribution to a particular AMR phenotype, (2) the sign of the weighting (positive

or negative) corresponds to the contribution of that allele to the AMR phenotype (i.e., positive

weights correspond to resistance while the negative weights correspond to susceptibility), (3) the

magnitude and sign of an allele weighting is dependent upon the magnitudes and signs of other

alleles within the same hyperplane, and (4) the use of bootstrapping (i.e., randomized subsam-

pling of the population with replacement), and stochastic gradient descent ensures variability in

the weights, signs, and set of alleles for each SVM hyperplane. Motivated by attributes 3 and 4,

we hypothesized that two genes may interact if the weights, signs, and appearance of their alleles

are significantly correlated across the ensemble of SVM hyperplanes (Methods). Therefore, to

identify genetic interactions contributing to AMR in M. tuberculosis strains, we constructed a

correlation matrix of allele weights across the ensemble of randomized SVM hyperplanes (Sup-

plementary Data File 3) and filtered for the top 60 highest gene-gene correlations for eight AMR

classifications. The resulting set of gene-gene pairs were interrogated through logistic regression

modeling, selecting those gene pairs with statistically significant allele-allele interactions (P¡0.05;

Benjamini-Hochberg correction) (Methods and Supplementary Fig. 4). This approach uncovered

74 potential genetic interactions (Supplementary Table 3).

We can use the evolution of ethambutol resistance as a case study to examine the output

of our approach. Epistasis analysis of ethambutol AMR genes implicated interactions between

embB, ubiA and embR; all genes known to contribute to ethambutol resistance [40] [60]. Although
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Figure 2.2: Co-occurrence of epistatic genes identified in (a) ethambutol and (b) isoniazid. For
the rows on the bottom and on the far right, “#R” refers to the total number of strains that have
the allele and are resistant to the specific drug. Total refers to the total number of strains that
have that allele that were tested on that specific drug. Each cell is colored by the log odds ratio
(LOR) with respect to the AMR phenotype. The numbers in the bottom right of each allele
co-occurrence box describes the number of unique sub-lineages comprised by the strains with
both alleles (Methods). The alleles enclosed by a purple box represent those chosen as features
by the support vector machine (SVM). Note that in some cases the rows and columns do not
sum up to the total strains due to rare cases when strains lack those alleles (Methods).

the embR alleles appeared few times across the multiple SVM simulations, their appearance was

highly correlated with alterations in the sign and weight of the ubiA allele (see Supplementary

Figure 6). This implies that embR is only a predictive feature within the context of ubiA, which
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may result from the weak penetrance of embR alleles within M. tuberculosis (Figure 2.2a). Lo-

gistic regression modeling identified significant allele-allele interactions between ubiA and embR

alleles (Supplementary Table 3). We investigated these interactions through a co-occurrence ta-

ble of the genes, where each cell corresponds to the number of resistant strains with both alleles

over the total number of strains with both alleles (Figure 2.2a). The log odds ratio (LOR)—a

measurement of the association of the co-occurrence of both alleles with AMR phenotype—was

used to color each cell in the co-occurrence table ((Figure 2.2a, see Methods). We observed that

the resistant-dominant ubiA alleles (i.e., those with high positive LOR), 2 and 4, occurred exclu-

sively in the background of non-susceptible-dominant embR alleles (Figure 2.2a). Interestingly,

in contrast to embB and ubiA, no embR allele appeared as a clear resistance determinant (Fig-

ure 2.2a). Furthermore, neither embR nor ubiA were significantly associated with ethambutol

AMR in pairwise associations tests (Table 1 and Supplementary Data File 1), showing that our

ensemble-based machine learning approach uncovers M. tuberculosis AMR complexity. In addi-

tion to these known AMR determinants of ethambutol, our analysis implicated ubiA interactions

with Rv3848 in ethambutol resistance (Table 2 and Supplementary Table 3). Interestingly, the

resistant-dominant allele of Rv3848 occurs exclusively in the background of the AMR-neutral

ubiA allele 3, hinting at an alternative route of high-level ethambutol resistance.

For identified isoniazid AMR genes, the co-occurrence table highlighted cases where either

katG or inhA genes provide the dominant mode of resistance (Figure 2.2b). Specifically, the

incidence of susceptible katG alleles 1, 2, 5, and 6 (i.e., low LOR) with the resistance inhA alleles

2 and 3 (i.e., high LOR) showed that isoniazid resistance in our dataset arose from either katG or

inhA mutations, but not both. Aside from these two highly studied isoniazid AMR determinants,

epistatic interactions between katG and oxcA appeared with a high signal and further displayed
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an interesting co-occurrence relationship with katG (Figure 2.2b). This epistatic interaction for

oxcA has not been previously described; specifically, alleles 3 and 7 of oxcA appear exclusively in

isoniazid resistant strains. While the AMR phenotypes for the strains containing these alleles may

be attributed to the presence of the resistance dominant katG alleles 3 and 7, as is often offered

in studies to “explain resistance”, the variation in AMR phenotypes across the different alleles

were determined to be significant by the machine learning algorithm and thus motivated further

investigation. Co-occurrence tables of epistatic AMR genes are provided for the 10 antibiotic

classifications (Supplementary Data File 4).

2.2.5 Structural analysis of implicated AMR genes suggest a mechanistic

driver of selection

Although the machine learning results agree with experimental literature, it remains un-

clear whether the uncovered genetic features are either true determinants of AMR or possible

artifacts of the statistical learning algorithm. To gain additional insight into whether or not the

uncovered alleles are causal in AMR evolution, we mapped the alleles of the 254 AMR genes to

protein structures using both experimental crystal structures (20/254) and predicted homology

models (50/254) using the ssbio Python package (Methods) [61]. Out of the 254 genes, 217 had

available protein sequence annotations (i.e., binding domains, secondary structures, etc.). First,

we established a positive control by mapping the alleles of known AMR genes to protein structures

and verified that resistance conferring alleles were located in annotated structural regions that in-

dicate the known mechanism of action (Supplementary Fig. 7). For example, structural mapping

of the isoniazid AMR-determinant, inhA, showed that the resistance-dominant alleles of 2 and 3

are located within two NAD-binding domains (Figure 2.3a). The incidence of these two alleles
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in proximal NAD-binding domains is congruent with the experimentally-derived mechanism of

action, which describes the bactericidal effect of tight binding between the isoniazid-NAD adduct

and inhA [62, 63]. Moreover, the resistance-conferring mutations in the NAD-binding domains

explains the previously described allele co-occurrence of susceptible katG alleles 1, 2, 5, and 6,

with resistant inhA alleles 2 and 3, because the isoniazid-NAD adduct results from binding to

katG, which would only occur if the M. tuberculosis strain lacks the resistance-conferring katG

mutation that disables the isoniazid binding opportunity. With established confidence through

case-controls, we set out to analyze the implicated and uncovered AMR genes.

Revisiting the ethambutol case study, we noticed that the susceptible-dominant embR

alleles shared an SNP that is 14.6 Å away from the DNA-binding domain (Figure 2.3a). Given

that embR is a positive regulator of embB [64] and that the expression of embB decreases in

the presence of ethambutol [40], the SNP suggests a relative increase over alleles 1 and 3 in

expression of the ethambutol target, embB, through increased DNA binding. For oxcA, the

resistance-dominant alleles, 3 and 7, uniquely share mutations at residue 253, which is contained

in the thiamin diphosphate-dependent enzyme M-terminal domain and is 4.51 Å proximal to

a mutation at residue 224 shared by most alleles (Figure 2.3). Notably, oxcA is an essential

oxalyl-CoA decarboxylase enzyme that converts toxic oxalyl-CoA to CO2 and formyl-CoA, and

plays a role in low pH adaptation in E. coli [65]. The totality of studies describing the poisonous

effect of glyoxylate [66], significant acid stress in the macrophage environment, use of CO2 as

a carbon source [67], and the importance of glyoxylate metabolism in antibiotic tolerance [68],

all suggest that the uncovered resistance-conferring adaptations in oxcA increase depletion of

oxalyl-CoA through increased binding affinity of the thiamin diphosphate cofactor. Without

structural models, sequence annotations of structural features enabled the delineation of resistant
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Figure 2.3: 3D and annotated protein structure mutation maps for identified AMR genes. (a)
3D protein structures with mapped mutations are shown for inhA, embR, and oxcA. The colors
adjacent to and within the structural mutation table correspond to domains and mutations
displayed on the protein structure, respectively. (b) Mutation tables for seven new AMR genes.
The colors in the mutation table correspond to the incidence of an annotated structural feature
located below the table. The two rows directly below the mutation table are colored according
to the log odds ratio between the allele frequency and AMR phenotype. Two AMR classes are
shown for Rv3471c and Rv3041c.

and susceptible allele mutations to unique structural domains—highlighting an advantage of

our exact-variant perspective (Figure 2.3b). We provide a list of newly implicated AMR genes
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Table 2.2: Newly proposed AMR genes. The mutation column represents the distinguishing
mutation for the resistant or susceptible-dominant allele(s). Abbreviations: R, resistant; S, sus-
ceptible; EMB, ethambutol; PAS, para-aminosalicylic acid; INH, isoniazid; PZA, pyrazinamide;
RMP, rifampicin; SM, streptomycin; OFX, ofloxacin; ETA, ethionamide; MDR, multidrug resis-
tant; XDR, extensively-drug resistant.

Gene Drug Dominant allele Mutation Structural domain feature

Rv3848 EMB, XDR R: (25/26) SNP Outside transmembrane helical domain

embR EMB S: (2/37, 9/129) SNP Proximal to DNA-binding domain

Rv3129 EMB R: (8/11) SNP –

proC EMB S: (1/27, 11/127) SNP –

kdpC EMB R: (80/91) SNP 11 Inside transmembrane helical domain

oxcA INH R: (66/66, 26/26) SNP 253 TPP enzyme M-terminal domain

chp2 ETA R: (29/37, 34/60) SNP 296 DELs in mutagen and helical domain

lipD ETA R: (48/58, 8/12) SNP 105 Inside beta-lactamase domain

Rv3471c ETA, XDR, SM R: (48/50) SNP 64 Inside Cupin 1 domain

mmpL11 PAS R: (35/48) SNP 520 –

Rv0044c PAS R: (13/13) DEL 137–264 BAC Luciferase

Rv0954 PAS R: (34/46, 4/6) SNP 223 Different mutational backgrounds

Rv2560 PZA S: (6/41) DEL 1–80 Compositional bias Proline-rich domain

Rv2090 RIF, INH S: (9/67, 6/46, 5/51) SNP 295 –

lpqZ RIF S: (10/91, 12/79) SNP 119 Within opuAC signaling domain

Rv1597 RIF, MDR, INH R: (18/19) SNP 196 No mutation in methyltransferase domain

Rv1543 RIF, MDR S: (10/84, 12/80) SNP 128 Proximal to binding domain

nuoL MDR, PAS R: (17/17) SNP 503 Outside transmembrane helical domain

dnaA SM R: (22/22) SNP 233 Proximal to nucleotide binding domain 213

yajC SM R: (30/30) SNP 87 Within transmembrane helical domain

accD5 OFX, MDR R: (16/16) SNP 127 Within CoA carboxyltransferase domain

Rv3041c RIF, OFX, SM,

MDR

R: (20/28, 25/44) SNP 140 SNP in ATP binding domain

VapC21 XDR R: (14/23, 14/20) DEL 88–138 Within second magnesium binding domain

along with their associated antibiotic, key mutation frequency, and structural protein features

(Table 2.2).
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2.2.6 Geographic stratification of resistant and susceptible alleles provide in-

sight into country-specific adaptations

Since our set of M. tuberculosis strains spans multiple continents, we geographically con-

textualized our set of SVM-derived AMR genes towards delineating possible country-specific

adaptations. We observed that resistant and susceptible alleles of the identified AMR genes were

stratified amongst specific countries of origin: resistant-dominant alleles were primarily located

in Belarus, South Africa, and South Korea, while susceptible alleles were primarily located in In-

dia (Table 2.2). The geographic locality of ethambutol, rifampicin, and isoniazid resistant alleles

suggests a genetic basis underlying the successful proliferation of M. tuberculosis in Belarus—a

country with the highest prevalence of multidrug resistant (MDR) strains ever recorded [69]. We

observed that the resistant alleles associated with para-aminosalicylic acid (PAS) were based in

the high-burden MDR country of South Korea. Since PAS was a key component in the standard

MDR treatment regimen of South Korea [70], these alleles may represent specific adaptations

to post-MDR PAS treatment that could be leveraged to better optimize the regimen. In total,

these results portray a geographic basis for M. tuberculosis AMR evolution and demonstrate

that our phylogenetically-agnostic machine learning approach is capable of capturing population

behavior, which often confounds AMR predictions [71, 72].

2.3 Discussion

The data deluge on M. tuberculosis and its AMR characteristics is likely to continue

unabated until all M. tuberculosis strains isolated from patients will be sequenced with associated

metadata to guide clinical management. A reference-agnostic computational platform needs to
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be developed to receive, warehouse and continually analyze this data. We have taken the first

step at developing a computational platform to meet this challenge. The platform was applied to

1,595 sequenced strains to yield results in four categories: pan-genome properties, identification

of genes conferring antibiotic resistance, their epistatic interactions, and protein structure based

mechanistic insights.

The pan-genome properties derived by our computational platform reflect the current

understanding of M. tuberculosis genetic variability. The other three categories of results are

intertwined. We recovered 33 known AMR genes and uncovered an additional 24 novel genetic

targets. This demonstrates the platform’s ability to generate hypotheses that may expand our

knowledge of the genetic basis of AMR in M. tuberculosis . Some of these new targets are

surprising (e.g., Rv3471c) and some are understandable (e.g., oxcA), but all provide an impetus

for more detailed experimental studies (Supplementary Note).

The third and fourth categories of results are interconnected and detail intricate features

underlying M. tuberculosis AMR evolution. The 74 epistatic interactions revealed are new but in

many cases involve known gene partners (e.g., ubiA). In other cases, these new epistatic interac-

tions involve novel gene products (e.g., Rv2090). This novelty, reinforced by structural insights,

inform a new line of experimental inquiry (Supplementary Note). The larger implications of these

intricacies are threefold: (1) genetic background contributes to AMR phenotypic variation, but

may be subtle (e.g., embR); (2) high-level resistance mutations are prevalent in off-target genes,

such as transmembrane proteins (e.g., Rv3848); and (3) high-level resistance mutations localize

to countries with poor M. tuberculosis management (i.e., Belarus). These features point to the

adverse effects of prolonged treatment [73].

While our framework successfully identifies genetic AMR signatures, there are limita-
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tions to our approach that future efforts may expand upon. For one, our platform utilizes prior

knowledge of known gene-antibiotic relationships and thus does not provide a means to uniquely

deconvolve out an association of a region with a specific drug (Supplementary Note). In addi-

tion, while our structural analysis provided a foundation for hypothesizing potential evolutionary

drivers, it did not provide further support to the causality of an allele. Novel statistical methods

may leverage variations in structural features towards supporting causal alleles. Furthermore,

our approach lacks the ability to understand systemic relationships connecting the alleles on a

mechanistic level, such as interacting changes in biochemical flux. Future efforts may integrate

genome-scale models of pathogens towards elucidating and understanding the genetic signatures

of antibiotic resistance [74]

Taken together, the platform presented here meets the pressing need for disparate data

type analysis enabled by rapidly growing data available for M. tuberculosis pathogenesis and

AMR. It both recovers known AMR features (i.e., positive control) and reveals new ones. This

platform utilizes a unique combination of pan-genomic analysis, machine learning, structural

analysis, and geographic contextualization. These data types are likely to become available for

all urgent and serious threat human prokaryotic pathogens in the near future. Similar results to

those presented here are thus likely to appear on a pathogen-specific basis in the coming years.
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Chapter 3

An updated genome-scale model of

M. tuberculosis H37Rv metabolism

The efficacy of antibiotics against M. tuberculosis has been shown to be influenced by ex-

perimental media conditions. Investigations of M. tuberculosis growth in physiological conditions

have described an environment that is different from common in vitro media. Thus, elucidat-

ing the interplay between available nutrient sources and antibiotic efficacy has clear medical

relevance. While genome-scale reconstructions of M. tuberculosis have enabled the ability to in-

terrogate media differences for the past 10 years, recent reconstructions have diverged from each

other without standardization. A unified reconstruction of M. tuberculosis H37Rv would eluci-

date the impact of different nutrient conditions on antibiotic efficacy and provide new insights

for therapeutic intervention.

We present a new genome-scale model of M. tuberculosis H37Rv, named iEK1011, that

unifies and updates previous M. tuberculosis H37Rv genome-scale reconstructions. We func-
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tionally assess iEK1011 against previous models and show that the model increases correct gene

essentiality predictions on two different experimental datasets by 6% (53% to 60%) and 18% (60%

to 71%), respectively. We compared simulations between in vitro and approximated in vivo media

conditions to examine the predictive capabilities of iEK1011. The simulated differences recapit-

ulated literature defined characteristics in the rewiring of TCA metabolism including succinate

secretion, gluconeogenesis, and activation of both the glyoxylate shunt and the methylcitrate

cycle. To assist efforts to elucidate mechanisms of antibiotic resistance development, we curated

16 metabolic genes related to antimicrobial resistance and approximated evolutionary drivers of

resistance. Comparing simulations of these antibiotic resistance features between in vivo and

in vitro media highlighted condition-dependent differences that may influence the efficacy of

antibiotics.

3.1 Background

The success of M. tuberculosis as a pathogen has been partially attributed to its unique

metabolic capabilities. The metabolic network of M. tuberculosis has evolved to withstand and

navigate the harsh environment imposed by the alveolar macrophage. Most bacteria cannot

thrive in this hypoxic, acidic and nutrient-limited condition, yet it is in this harsh environment

that M. tuberculosis encounters and evolves resistance to antibiotics. Elucidating the robust

properties of metabolism that enable M. tuberculosis pathogenicity and drug resistance evolution

has become a key area of research.

Recent studies have demonstrated that the choice of experimental media conditions plays

an important role in understanding physiologically-relevant phenotypes of M. tuberculosis [1].

Commonly used experimental media conditions such as Middlebrook 7H9 are known to be much
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different from the physiological environment. For example, despite extensive research describing

fatty acids as a key carbon source within the macrophage environment, most studies forgo the

inclusion of fatty acids in the media, opting instead for glucose or glycerol [2]. Perhaps it is no

surprise then that differences between the in vitro and in vivo environments have been shown

to affect antibiotic screening results [3–11]. In particular, it has been shown that hypoxic or

nutrient limited conditions alter the metabolism of M. tuberculosis to a nonreplicating, drug-

resistant state [5–7]. Specific mechanism-changing effects between in vitro and in vivo conditions

have been shown to occur for many antibiotics [9, 10].

While it is understood that differences in experimental media conditions lead to pheno-

typic variations, dissecting a mechanistic understanding of these different phenotypes remains

challenging. Genome-scale models (GEMs) of metabolisms have emerged as powerful tools to

computationally probe the effect of media composition on a cell’s phenotype [12]. For the past

10 years, GEMs have provided a mechanistic basis for exploring the metabolic capabilities of

M. tuberculosis on the systems-level. GEMs of M. tuberculosis have helped interrogate a vari-

ety of biological phenomena, from understanding the transcriptional regulatory network [13] to

elucidating metabolic interactions between M. tuberculosis and the alveolar macrophage [14].

While new M. tuberculosis H37Rv GEMs have enabled novel insights, they have been

constructed from different base models resulting in divergent representations of the metabolic

network. For example, gene-protein-reaction rules (GPRs) (i.e., the Boolean relationship be-

tween a gene, or set of genes, and the corresponding reaction(s)) differ within reactions shared

amongst models (e.g., The GPR of Rv0904c differs between iOSDD and iSM810). In addition to

variation in network topology, divergent GEMs have a variety of identifiers used for metabolite

and reaction names, making them difficult to compare and build from (e.g., “R” reaction identi-
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fier nomenclature used in most models built primarily off of GSMN-TB). While such differences

may seem insignificant, the presence of multiple divergent M. tuberculosis H37Rv reconstructions

hinders progress and may result in future wasted efforts [15].

Here, we present iEK1011, a new GEM of M. tuberculosis H37Rv that unifies, standard-

izes, and updates previous divergent GEMs of this model organism. We assess the performance of

iEK1011 to that of previous GEMs through gene essentiality prediction on two different datasets.

iEK1011 is further characterized by performing simulations that examine the model’s predictions

in physiological conditions and interrogate differences between in vitro and in vivo media condi-

tions. Finally, in order to provide a comprehensive platform for elucidating antibiotic resistance

(AMR), we integrate knowledge derived from experimental literature into iEK1011.

3.2 Results

3.2.1 Workflow for updating, unifying, and standardizing previous recon-

structions of M. tuberculosis

In order to ensure a comprehensive unification, we first gathered and compared available

reconstructions of M. tuberculosis H37Rv. Since the first two M. tuberculosis H37Rv reconstruc-

tions released in 2007 [16, 17], a total of 9 reconstructions have been built (Table 3.1). Most

models were largely based off of either iNJ661 [16] or GSMN-TB [17]. Specifically, out of the most

recent M. tuberculosis reconstructions, sMtb [18], iSM810 [13] and gal2015 [19] were primarily

built from GSMN-TB while iOSDD [20] was built from iNJ661.

Using a variety of both quantitative and qualitative criteria (e.g., standardized identifiers,

gene essentiality predictions, mass balanced reactions; see Methods), iOSDD and sMtb were cho-
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Table 3.1: Summary of existing genome-scale models of M. tuberculosis . iAB-AMØ-1410-Mt-
661 has over 2000 genes because it combines an updated version of iNJ661 with a macrophage
model. The model provided by Garay et al. was given the name of gal2015 because it is unnamed
in the original publication.

Model Year Genes Reactions Metabolites Reference

iNJ661 2007 661 1025 826 [16]

GSMN-TB 2007 726 856 645 [17]

MMF-RmwBo 2009 776 1108 ??? [21]

HQMTB 2009 686 607 734 [22]

iNJ661v 2010 663 1049 838 [23]

iAB-AMØ-1410-Mt-661 2010 2071 4489 3400 [14]

MergedTBmodel 2012 917 1400 1017 [24]

GSMN-TB1.1 2013 759 876 667 [25]

iOSDD890 2014 890 1152 961 [20]

sMtb 2014 915 1192 929 [18]

gal2015 2015 760 965 754 [19]

iSM810 2015 810 938 723 [13]

iNJ661mu 2016 672 1057 846 [26]

iEK1011 2017 1011 1228 998 This study

sen as the base reconstructions for the unification process (Figure 3.1A). The recently developed

M. tuberculosis H37Rv BioCyc Database [27] provided an additional reconstruction resource to

supplement the standardized draft model. The reconstruction process was performed following a

clear workflow (Figure 3.1A): the base models were mapped to standardized BiGG identifiers [28],

joined into a draft model of shared reactions and unified by assessing model disagreements. The

resulting unified draft model was then expanded through manual curation of new biochemical

knowledge. Thus, the reconstruction process was iterative and involved constant re-evaluation

of model content (see Methods).

The resulting unified and updated reconstruction of M. tuberculosis H37Rv, named

iEK1011, contains 1011 genes, 1228 reactions, and 998 metabolites. iEK1011 encapsulates the

majority of genes in the previous models based on either iNJ661 or GSMN-TB (Figure 3.1B).

iEK1011 accounts for 96% of sMtb genes (874 of 915 genes) and 91% of iOSDD genes (807 of
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Figure 3.1: (A) Workflow of reconstruction process. A draft GEM model was built from the
TB BioCyc 20.0 database and mapped to BIGGs IDs along with sMtb and iOSDD. The models
were then unified by first joining the similarities between them, followed by manual curation of
model differences literature and database validation. (B) Overlap of genes across different model
sets. The model that covers most of the models within the particular set is enclosed by a box.

890). A total of 151 unique genes from iOSDD, iNJ661, gal2015, iSM810, and sMtb were not

accounted for in iEK1011 (see Additional File 2) either due to insufficient evidence necessary to

resolve major inconsistencies across models or lack of confidence in gene annotation.

In addition to unifying previous reconstructions, iEK1011 incorporated 39 new genes

absent from previous models. In particular, sulfur metabolism was updated by adding the

cysO-dependent biosynthesis of L-cysteine, which connects molybdenum metabolism with sulfur
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metabolism through the use of moeZ in both pathways [29]. New pathways and reactions include

heme uptake [30], tuberculosinol biosynthesis [31], ergothioneine biosynthesis [32, 33], and myco-

bilin biosynthesis [34]. The resulting unified reconstruction of M. tuberculosis , iEK1011, provides

a biochemically-derived knowledge-base that can be functionally assessed computationally.

3.2.2 Functional assessment of iEK1011

iEK1011 was converted to a mathematical model to examine the functional capabilities

of the improved reconstruction and to quantitatively compare it with previous reconstructions.

The primary tool for evaluating genome-scale reconstructions of M. tuberculosis H37Rv has been

in silico gene essentiality testing. Therefore, we used gene essentiality as a metric for evaluat-

ing and comparing the performance of iEK1011. Gene essentiality predictions across previous

M. tuberculosis H37Rv reconstructions were determined using the same data and quantitative

score used in evaluating the predictive ability of iSM810 [13]. In addition to the commonly used

gene essentiality dataset by Griffin et al. [35], a recent gene essentiality dataset by DeJesus et

al. [36] was also utilized in our model comparisons. The primary differentiating feature between

the datasets was the media condition used to generate them (see Additional File 2). Using these

gene-essentiality datasets, we evaluated and compared the ability of five models (iNJ661, iOSDD,

sMtb, iSM810, and iEK1011) to predict gene essentiality.

When using the Griffin dataset, we found that iEK1011 increases the prediction of true

positives (i.e., the model correctly predicts growth for the gene knockout when the gene is an-

notated as non-essential) by 23% (579) (Figure 3.2A) over sMtb (470), which had the largest

number of true positives amongst the previous models. iEK1011 gene essentiality predictions

decrease the number of false negatives (i.e., the model incorrectly predicts no growth for the
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Figure 3.2: Gene Essentiality Prediction Comparisons. (A) Model-predicted gene essentiality
results compared to both the Griffin et al. and deJesus et al. essentiality experimental datasets.
(B) Gene essentiality performance using the Matthews Correlation Coefficient. iSM810 and
sMtb, which were both built off of GSMN-TB 1.1, significantly outperform iNJ661 and iOSDD.
iEK1011 outperforms all models on both gene essentiality datasets.

gene knockout when the gene is annotated as non-essential) by 11.4% (31) (Figure 3.2A) over

iSM810 (35), which had the least number of false negatives amongst the previous models.

With respect to the more recent DeJesus essentiality dataset, iEK1011 increases the

number of true positives by 24% (666) (Figure 3.2A) over sMtb (538), and iEK1011 increases the

number of true negatives by 11% (221) (Figure 3.2A) over sMtb (199). iEK1011 decreases the

number of false positives by 14% (73) over sMtb (83), and increases the number of false negatives
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by one (45) over iSM810 (44). The increase in one more false positive over iSM810 is due to

having 9 genes tested in the false negative category that are not contained in iSM810. Moreover,

relating specific groups, such as false negatives or true positives, against other models with a

different number of genes may not correctly represent the changes due to significant differences

in class sizes.

In order to account for the variations in class sizes amongst models, we calculated the

Matthews Correlation Coefficient (MCC) for each model’s prediction on both gene essentiality

datasets (Figure 3.2B). iEK1011 scores the highest on both datasets with an MCC of 0.60 and

0.71 on the Griffin and DeJesus dataset, respectively (Figure 3.2B) (see Additional File 2). These

iEK1011 MCC values are a 6% and 18% increase over the previous best model MCC’s of sMtb

and iSM810 on the Griffin and DeJesus dataset, respectively.

Although the DeJesus essentiality dataset is more recent than the Griffin dataset by 6

years, the media condition used in determining essentiality on the DeJesus dataset was not as well

defined because it utilized oleic-albumin-dextrose-catalase (OADC) in middlebrook 7H10/7H9

media supplemented with a variety of carbon sources [36]. The contents of OADC are not well

defined primarily because of albumin, which may supplement amino acids to M. tuberculosis . The

extent of OADC’s impact remains unknown, which ultimately hinders the ability to rigorously

define the inputs for GEMs, which are crucial components of COBRA methods [37]. Conversely,

the media used in Griffin was well defined as minimal media supplemented with glycerol [35].

Therefore, the increase in MCC by 6% over sMtb on the Griffin essentiality data should be

evaluated with more confidence than the significantly higher percent increase in MCC over all

models on the DeJesus dataset. Thus, the gene essentiality results presented above demonstrate

improved predictive capability of iEK1011 over previous M. tuberculosis GEMs.
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3.2.3 iEK1011 qualitatively recapitulates flux states indicative of physiologi-

cally relevant media conditions

While the gene essentiality predictions are a useful metric to evaluate model quality, we

prioritized the model’s ability to recapitulate M. tuberculosis behavior described in the literature.

Specifically, an emphasis was placed on central carbon metabolism given its distinctive usage in

M. tuberculosis and recent emergence as an unexpected research frontier [38]. In addition, we fo-

cused on M. tuberculosis studies involving conditions relevant to pathogenicity [1]. Therefore, we

compared simulations between two conditions relevant to the purpose of this study: Lowenstein-

Jensen media, representing in vitro drug testing conditions; and an in vivo nutrient condition

approximated from the literature that attempts to replicate the pathogenic state. We used Flux

Variability Analysis (FVA) [39] and randomized sampling [40] to characterize and compare the

fluxes between the two media conditions.

Taking advantage of recent studies investigating nitrogen metabolism within the context

of M. tuberculosis pathogenicity [41–44], we set the in vivo nitrogen sources to be composed

of nitrate, aspartate, asparagine, glutamate, urea, and glutamine ((Figure 3.3), see Additional

File 2). Under hypoxic in vivo conditions, iEK1011 predicts use of nitrate in a respiratory

role as opposed to a nitrogen source where it is taken in and reduced to nitrite by narG, and

then exported out of the cell, a finding consistent with previous experiments [43]. The chosen

in vivo carbon sources include fatty acids (both even and odd chain), cholesterol, CO2, and

Alanine. Fatty acids were chosen as the primary source of carbon in vivo due to the vast amount

of literature evidence supporting the claim that M. tuberculosis uses host-derived fatty acids

[2, 45, 46]. iEK1011 catabolizes fatty acids through beta-oxidation, which generates acetate

(even chain fatty acid catabolism), propionyl-CoA (odd chain fatty acid catabolism) and acetyl-
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CoA (Figure 3.3). Although CO2 was incorporated due to evidence showing it being fixated

by M. tuberculosis in an approximated in vivo environment [44], iEK1011 was not predicted

to fixate CO2 due to a net gluconeogenic flux through phosphoenolpyruvate carboxykinase - a

simulation result also found in Beste et al. [44]. Alanine was included as a nutrient due to

evidence describing it to be in abundant quantities within the alveolar macrophage and being

imported from the macrophage [44].

The differences in flux state simulations predicted by iEK1011 between the two condi-

tions recapitulate key behavior described in the literature. Specifically, in the approximated

in vivo condition involving hypoxia and growth on fatty acids, model-predicted flux decreases

through TCA with an accompanying increase in succinate secretion (Figure 3.3). iEK1011 pre-

dicts the secretion of succinate to allow optimal growth in these conditions because it removes an

intracellular proton, allowing for membrane potential related reactions such as oxidative phospho-

rylation to proceed. This mechanism has been previously described to be specific and essential

in M. tuberculosis hypoxia adaptation [47]. Thus, iEK1011 can recapitulate known physiological

phenomena using stoichiometry alone.

In addition to succinate secretion, iEK1011 simulates the activation of both the glyoxy-

late shunt and the methylcitrate cycle in response to both hypoxia and growth on fatty acids

[47, 48]. Although the median flux values are low (Figure 3.3) (based on markov chain monte

carlo sampling of the solution space [40]), FVA simulations show maximum flux values through

methylcitrate cycle and glyoxylate shunt to have a threefold and twofold increase in in vivo media

conditions relative to in vitro conditions, respectively (see Additional File 2). Furthermore, the

metabolic model does not account for the toxic effect of glyoxylate and propionate which has

been shown to necessitate flux through glyoxylate shunt and methylcitrate cycle. While iEK1011
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simulations do not account for characteristics like toxicity, the examples outlined above show that

iEK1011 is capable of qualitatively recapitulating key phenomena uncovered in recent years.

Figure 3.3: Metabolic map of flux differences through central carbon metabolism in iEK1011
between approximate in vitro and in vivo conditions. The media conditions are represented by
nutrients outside of the dotted boundary line.
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Table 3.2: Table of antibiotics and the associated genes whose mutations confer antibiotic
resistance.

Drug Gene iEK1011 reaction Reference

Ethambutol

embABC EMB [49]

ubiA DCPT [50]

aftA AFTA [50]

D-cycloserine

alr ALAR [51]

ddl ALAALAR [52]

ald ALAD L, GXRA [53]

Isoniazid

katG CAT [54]

inhA FAS [55]

fabG1 MYCSacp56/58/50 [56]

Benzothiazinones dprE1 DCPE [57]

PAS

thyA TMDS [58]

ribD FOLR2, ASPRAUR, DHPPDA2 [58]

folC DHFS, THFGLUS [58]

Pyrazinamide pncA NNAM [59]

Ethionamide mshC CIGAMS [60]

Rifampicin drrABC PDIMAT, PPDIMAT [61]

3.2.4 iEK1011 as a computational knowledge base for interrogating features

of antibiotic resistance

We have shown that iEK1011 is a valuable source of computational inquiry through gene

essentiality predictions and its ability to recapitulate phenomena described in the literature.

In addition to providing a computational platform, GEMs are fundamentally a knowledge-base

that are capable of contextualizing a variety of concepts that extend beyond the genome-scale

metabolic network [37]. Taking advantage of this ability to incorporate abstractions, we translate

knowledge derived from experimental investigations of antibiotic resistance (AMR) evolution into

a format that can be integrated into GEMs.

Using the extensive literature on the mechanism of AMR evolution in M. tuberculosis , we

curated a relational table between antibiotics, genes, and metabolic reactions for eight different

antibiotics (Table 3.2). The genes associated with a particular antibiotic are those known to be
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central to AMR evolution (i.e., mutations in the genes that code for the reactions often confer

resistance to specific drugs). Displaying AMR genes on a metabolic map of iEK1011 portrays

relationships that would be difficult to comprehend without a GEM (Figure 3.4). Notably, we

found that the close topological relationships between para-aminosalicylic acid, ethambutol, D-

cycloserine, and pyrazinamide may hint at pleiotropic effects (i.e., mutations that affect multiple

phenotypes) of resistance conferring mutations on the efficacy of different antibiotics.

Figure 3.4: Escher map of arabinogalactan-peptidoglycan complex biosynthesis with known
resistance-conferring genes mapped. The gene-antibiotic relation is indicated by the number
placed proximal to the gene. The mechanistic effect by the antibiotic is indicated by the blue
line. No blue line is shown for mutations in which the gene-antibiotic relation remains unclear
(i.g., mshC, drrBC), Escher-usable maps were built for multiple subsystems in iEK1011 (see
Additional File 4).

In order to incorporate specific antibiotic pressures into iEK1011, we evaluated each

antibiotic and associated a biochemical objective function that approximates the evolutionary

drivers of selection (Table 3.3). In the case of ethambutol, it has been shown that flux-increasing
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Table 3.3: List of objective functions related to the evolutionary drivers of antibiotic resis-
tance. The abbreviations are as follows: PAS (para-aminosalicylic acid), MAX (maximize), MIN
(minimize).

Drug Objective Reaction in iEK1011 Reference

Ethambutol MAX DPA production decda tb c → φ [50]

PAS MAX Tetrahydrofolate production thf c → φ [58]

D-cycloserine MAX L-Alanine Production ala L c → φ [53]

Ethionamide MIN mycothiol production msh c → φ [62]

mutations in ubiA confer resistance by increasing the production of decaprenylphosphoryl-b-D-

arabinose (DPA), which outcompetes ethambutol for embB binding spots [50]. Therefore, in a

GEM, the evolutionary pressure imposed by ethambutol can be approximated as a metabolic

objective where the production of DPA is maximized (Table 3.3). A total of four antibiotics were

associated with approximated objective functions representing evolutionary forces (see Methods

for further reasoning of the choice of objective function).

Taking advantage of the translation of antibiotic features to formats amenable by

iEK1011, we simulated the evolutionary pressures induced by antibiotics and calculated the

maximum and minimum fluxes for the AMR-associated reactions in both in vivo and in vitro

conditions through FVA.

There were few differences in relative flux for a specific drug objective between these condi-

tions. However, those that were uncovered highlighted potential impacts of environmental/media

composition differences. In particular, we see major differences in the fluxes that correspond to

optimizing the approximated ethambutol-induced evolutionary pressure (Figure 3.5). Further-

more, this ethambutol flux is correlated with fluxes induced by the approximated d-cycloserine

objective. Closer inspection of the uptake differences driving these differential flux states points

to L-alanine as a key environmental influence. In particular, the differential fluxes within the

cases of ethambutol resistance-conferring genes ubiA (DCPT) and embB (EMB), as well as d-
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cycloserine resistance-conferring genes of alr (ALAR), ald (ALAD L), and ddlA (ALAALAr),

exemplify the differential effect of environmental L-alanine availability. Notably, L-alanine has

been shown to be an important substrate in the macrophage environment (Beste 2013). While

L-alanine and other amino acids may be available in LJ drug-testing media due to utilization

of egg base or bovine serum, our analysis only accounted for metabolites that were explicitly

stated in defined quantities within the media conditions. With respect to the efficacy of antibi-

otics, these results suggest that d-cycloserine and ethambutol may be less effective in vivo due

to increased availability of L-alanine, which is a key precursor reaction catalyzed by AMR genes

targeted by d-cycloserine and ethambutol, whereas in vitro conditions may increase susceptibility

to ethambutol. In both cases, the significant decrease in model-predicted maximum ALAD L

(ald) flux is in line with studies describing the deleterious mutations in ald that confer resistance

to D-cycloserine [53]. Altogether, iEK1011 provides a knowledge base for relating antibiotic

resistance features through genome-scale metabolic network analysis.

Figure 3.5: Heatmaps of maximum FVA values for for a matrix representing FVA values for
the curated AMR reactions across simulations of different drug-specific objective functions (see
(Table 3.2) for curated list of AMR genes and their associated iEK1011 reactions, see (Table 3.3)
for drug-specific objectives).
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3.3 Discussion

The divergence of M. tuberculosis H37Rv reconstructions has created an unnecessary ob-

stacle in contextualizing the increasing growth of biochemical data for this troublesome pathogen.

In order to address experimental insights to pathogenic conditions and alleviate roadblocks for

future reconstruction efforts of M. tuberculosis H37Rv, we built a unified and updated GEM of

M. tuberculosis , iEK1011. We tested the predictive potential of iEK1011 by comparing gene

essentiality predictions with previous models and showed that iEK1011 outperforms previous

models. We further assessed the predictive capabilities of iEK1011 by comparing simulated flux

states between in vitro drug testing and approximate in vivo media conditions. Comparisons reca-

pitulate specific phenomena indicative of biochemical flux states seen in physiological conditions.

We incorporated antibiotic resistance knowledge in iEK1011, which enabled a network-based

perspective of multi-antibiotic resistance evolution.

iEK1011 unified previous M. tuberculosis H37Rv reconstructions and encompassed the

majority of genes within the two divergent groups of reconstructions. Additionally, iEK1011 in-

corporates new pathways including the incorporation of ergothioneine biosynthesis. This addition

will aid a quantitative elucidation of the relationships between sulfur metabolism, bioenergetic

homeostasis, and redox balance [33]. As a unified, standardized, and updated model, iEK1011

provides a base for future models of M. tuberculosis H37Rv.

Functional assessment of previous M. tuberculosis H37Rv reconstructions through gene

essentiality predictions showed that iEK1011 achieves a higher MCC than previous models on

two different datasets. While the two datasets were crucial in both assessing and driving iEK1011

reconstruction, experimental gene essentiality datasets derived from physiologically-relevant con-

ditions are warranted for understanding the human-restricted lifestyle of M. tuberculosis .
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Using iEK1011, we qualitatively determined differences in biochemical states between in

vitro and approximated in vivo conditions. We showed that iEK1011 successfully recapitulates

specific phenomena described in physiologically-relevant studies of M. tuberculosis . Future re-

construction efforts may target iEK1011’s lack of predicted CO2 fixation [44] and account for

compartmentalized co-metabolism of multiple substrates [63, 64]. iEK1011 may provide a base

for future host-pathogen integrated reconstructions that leverage valuable experimental data.

An integrated knowledge-base of genome-scale metabolism and antibiotic resistance com-

ponents may enable new perspectives for understanding and combating M. tuberculosis H37Rv.

We translated experimental knowledge of AMR genes and specific adaptation mechanisms to for-

mats amenable to iEK1011. Comparing simulations of these AMR features between in vitro and

in vivo conditions emphasized the potential impact of hypoxia and L-alanine availability on the

pressures induced by antibiotics. Future constraint-based analysis of M. tuberculosis AMR may

leverage new experimental approaches, such as those that have analyzed changes in essentiality

under antibiotic exposure [65].

Taken together, iEK1011 is a new, comprehensive and predictive constraint-based model

of M. tuberculosis H37Rv. In this study, we computationally demonstrate that in vivo nutrient

sources absent from in vitro media significantly alter the flux state of central carbon metabolism.

As experimental insights to M. tuberculosis pathogenicity and antibiotic resistance continue to

grow, this GEM will provide a foundation to connect disparate data types and knowledge.
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Chapter 4

A biochemically-interpretable

machine learning classifier for

microbial GWAS

Current machine learning classifiers have successfully been applied to whole-genome se-

quencing data to identify genetic determinants of antimicrobial resistance (AMR), but they

lack causal interpretation. Here we present a metabolic model-based machine learning classi-

fier, named Metabolic Allele Classifier (MAC), that uses flux balance analysis to predict binary

phenotypes of microbial genomes. We apply the MAC to a dataset of 1,595 drug-tested My-

cobacterium tuberculosis strains and show that MACs achieve prediction accuracy on par with

mechanism-agnostic machine learning models (isoniazid AUC=0.93) while enabling a biochemi-

cal interpretation of the genotype-phenotype map. Interpretation of MACs for three antibiotics

(pyrazinamide, para-aminosalicylic acid, and isoniazid) recapitulates known AMR mechanisms
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and suggest a biochemical basis for how the identified alleles cause AMR. Extending flux balance

analysis to identify accurate sequence classifiers thus contributes mechanistic insights to GWAS,

a field thus far dominated by mechanism-agnostic results.

4.1 Background

Mycobacterium tuberculosis (TB) claims 1.6 million lives annually and resists eradica-

tion through evolution of antimicrobial resistance (AMR) [1]. To elucidate AMR mechanisms,

researchers have applied machine learning approaches to large-scale genome sequencing and drug-

testing datasets for identifying genetic determinants of AMR [2–7]. While current machine learn-

ing approaches have provided a predictive tool for microbial genome-wide association studies

(GWAS), such “black-box” models are incapable of mechanistically interpreting genetic associa-

tions. Such a limitation has become increasingly apparent in TB, where numerous experimental

studies have shown that AMR-associated genetic variants often reflect network-level metabolic

adaptations to antibiotic-induced selection pressures (Supplementary Figure 1, Supplementary

Table 1) [8–12]. These studies show that identified genetic associations have corresponding

network-level associations that are highly informative of AMR mechanisms. However, current

GWAS results only provide predictions for which alleles are most important, not their functional

effects. Therefore, machine learning models that incorporate biochemical network structure may

naturally extend GWAS results by estimating functional effects of identified alleles, leading to

an enhanced understanding of AMR [13–15].

Over the past couple of decades, the computational analysis of biochemical networks in

microorganisms has been advanced through the use of genome-scale models (GEMs) [16] [17]. By

computing metabolic flux states (see Glossary for definition of terms) consistent with imposed
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biological constraints, GEMs have been shown to predict a range of cellular functions, making

them a valuable tool for analyzing multi-omics datasets [18]. Although GEMs are transparent

genotype-phenotype models, they are largely outperformed by machine learning models in direct

comparisons of prediction accuracy. Approaches have thus been developed that integrate mean-

ingful GEM computations with predictive “black-box” machine learning to enable “white-box”

interpretations of data [19]. These approaches have worked well for endogenous metabolomics

data by using the GEM to directly transform the measurements to meaningful inputs for “black

box” machine learning.

This approach, however, may not be amenable to analyzing microbial GWAS data, in

which the genetic parameters of the GEM are not directly observed (see Supplementary Notes).

GEMs have previously modeled genetic variation at the resolution of gene presence-absence [20–

23], but have not yet been used to link nucleotide-level genetic variation (i.e., alleles) to observed

phenotypes (i.e., AMR) in a predictive manner [24]. Since alleles are the primary forms of causal

variation identified in GWAS, an approach for mechanistically integrating information about

alleles is of major interest [25].

Here we develop a GEM-based machine learning framework for modeling datasets used

in GWAS and apply it to a sequencing dataset of drug-tested TB strains. We show that our

framework achieves high performance in accurately classifying AMR phenotypes of TB strains.

We then characterize the identified classifiers for pyrazinamide, isoniazid, and para-aminosalicylic

acid AMR and show that they identify key genetic determinants and pathway activity discrimi-

nating between resistant and susceptible TB strains. This work demonstrates how GEMs can be

used directly as an input-output machine learning model to extract both genetic and biochemical

network-level insights from microbial GWAS datasets.
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4.2 Results

4.2.1 Assessing genes implicated in AMR mechanisms motivates the use of a

genome-scale metabolic model for data analysis

We first set out to assess the scope of a potential mechanism-based genotype-phenotype

map using a dataset of 1,595 drug-tested TB strains [2, 26] and a GEM of TB H37Rv, named

iEK1011 [27]. The acquired genetic variant matrix (G) of the 1,595 strains describes 3,739

protein-coding genes and their 12,762 allelic variants, where each variant is defined as a unique

amino acid sequence for the protein coding gene. Our analysis therefore does not account for

synonymous amino acid changes and intergentic genetic variants. The corresponding drug sus-

ceptibility status for a strain is described by a binary ‘susceptibility’ or ‘resistance’ phenotype

to a particular antibiotic. iEK1011 accounts for 1,011 genes (26% of H37Rv) and comprises a

metabolic network of 1,229 reactions and 998 metabolites.

Comparing the gene list between iEK1011 and the genomics dataset, we found that 26%

(981/3,739) of the total genes and 25% (3,310/12,762) of the total variants described by the

genetic variant matrix were accounted for by the GEM. To evaluate iEK1011’s potential to

model causal variants, we compiled a list of AMR genes and compared this list to the gene list

of iEK1011 (Supplementary File 1; Methods). We found that 72% (32/44) of known AMR genes

are accounted for in iEK1011 (Supplementary Table 1). In the case of six drugs (ethambutol,

isoniazid, d-cycloserine, para-aminosalicylic acid, ethionamide, and pyrazinamide), 87% (20/23)

of their AMR genes were accounted for in iEK1011. AMR genes not explicitly accounted for in

iEK1011 were primarily related to DNA transcription (e.g., rpoB) and transcriptional regulation

(e.g., embR). The antibiotics rifampicin, ofloxacin, and streptomycin do not have AMR genes

61



accounted for in iEK1011 and are therefore out of scope for our study. Taken together, the

abundance of AMR genes accounted for in iEK1011 motivated a GEM-driven analysis of the TB

AMR dataset.

4.2.2 A metabolic model-based framework for classifying microbial genomes

While we have shown that a GEM accounts for the majority of known genetic deter-

minants of AMR in TB, computational methods do not exist for integrating a fine-grained

description of allelic variation with GEMs to directly predict binary phenotypes (i.e., AMR

susceptible/resistant classification). We thus set out to develop a GEM-based machine learn-

ing framework for analyzing the TB dataset. The developed method, named Metabolic Allele

Classifier (MAC), takes the genome sequence of a particular TB strain as its input and classifies

strains as either resistant or susceptible to a specific antibiotic (Figure 4.1a). Specifically, the

MAC is an allele-parameterized form of flux balance analysis [28, 29] that represents a strain

as a set of allele-specific flux capacity constraints and classifies AMR according to the optimum

value attained by optimizing an antibiotic-specific objective.

We formulate the MAC within the flux balance analysis framework as follows,
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Figure 4.1: A metabolic systems approach for genetic associations. (a) In this study, data
describing TB genome sequences and AMR data types are integrated with a metabolic model
to learn a biochemically-interpretable classifier, named Metabolic Allele Classifier (MAC). The
MAC parameters consist of allele-specific flux capacity constraints, a, and an antibiotic-specific
metabolic objective, c, both of which are inferred from the data. (b) The optimal MAC describes
strain-specific polytopes in flux space that separate into resistant (R) and susceptible (S) regions.
The MAC objective function, cT v, is identified as normal to the plane that best separates R and
S. (c) The learned MAC provides a biochemically-based hypothesis of AMR mechanisms and
allele-specific effects through interpretation of c and v. The genome-scale flux state of a strain,
v, consists of fluxes that are directly activated by alleles (allelic fluxes) and those that are flux-
balance consequences of the allele-activated fluxes (compensatory fluxes). Abbreviations: S,
susceptible; R, resistant; AMR, antimicrobial resistance.

HMAC = sign(max
v
cTv + b) (Antibiotic-specific objective)

s.t.

Sv = 0 (Flux balance constraint)

vlb ≤ v ≤ vub (Over-all min/max flux constraints)

Galb =vlb ≤ v ≤ vub = Gaub (Allele-specific min/max flux constraints)
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Where each line of the MAC formulation is briefly described with plain text to the right,

and further detailed by the correspondingly ordered bullet points below;

• Hy,k is the sign of the MAC optimum value that classifies a strain, k, as either resistant

(R) or susceptible (S) to a specific antibiotic, y (see Supplementary Notes for comparison

between the MAC and the Support Vector Machine). The optimum value is determined by

optimizing the objective function, max cTy vk, which describes a linear combination of the

metabolic fluxes, vk, and is specific to an antibiotic, y. The antibiotic-specific objective

coefficients, cTy , are unknown a-priori and inferred from the data as a normal to the plane

that best separates resistant and susceptible strains (Figure 4.1b).

• The classical flux-balance constraints, Svk = 0, ensure that for each strain, k, the net mass

flux through each of their metabolites is balanced to 0 (i.e., steady internal homeostatic

state), where S is the stoichiometric matrix with 998 metabolites (rows) and 1229 reactions

(columns).

• The constraints on the fluxes (reaction rates) through the metabolic reactions, vlb,ub, de-

scribe the overall min/max flux constraints not changed by allelic variation and are thus

the same for all strains. Geometrically, the constraints vlb,ub and Svk = 0 define a polytope

in which all strain-specific fluxes must reside (Figure 4.1b).

• The binary genetic variant matrix, Gk,i, is the primary data type used in GWAS and

describes the presence/absence of i alleles (columns) across k strains (rows).

• The constraints, Gk,ia
lb,ub
i,j = vlb,ubk,j , represent the genome sequence of each strain (repre-

sented as a row in G) as a set of allele-specific flux constraints, vlb,ubk,j . The allele-constraint

matrix, alb,ub, describes the allele-specific flux constraint values of i alleles (rows) that
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encode for enzymes catalyzing j reactions (columns) (see Supplementary Notes for fur-

ther explanation on the biological relationship between alleles and flux constraints). The

allele-constraint matrix is unknown a-priori and inferred from the data. Geometrically,

Ga describes strain-specific polytopes that represent the best separation of resistant and

susceptible strains within the overall flux space (Figure 4.1b).

Importantly, the MAC was formulated such that for each strain-antibiotic classification,

Hy,k, there exists a corresponding flux state, vk, thereby providing a biochemical network expla-

nation of the classification. Geometrically, the flux state of the metabolic network of a particular

strain is described by the intersection of the objective function with its genome-specific polytope

(Figure 4.1c).

The objective function corresponds to the fluxes through a set of metabolic reactions that

form the basis for the MAC. By the fundamental nature of flux balancing, these reactions identify

activity levels of discriminating pathways. The objective function that best separates the two

polytopes formed by the spaces of resistant and sensitive phenotypes is a plane that describes a

critical level of pathway activity that discriminates between the R and S phenotypes. Thus, the

separating plane consists of fluxes that are directly activated by alleles (ci 6= 0) and those that

result from flux-balance consequences of ci 6= 0. Statistical tests can then be performed using

the set of all strain-specific intersections to identify both significant flux states discriminating

between resistant and susceptible strains (Supplementary Figure 2a) as well as their underlying

allele-specific flux effects (Supplementary Figure 2b). The MAC is therefore a biochemically

interpretable machine learning classifier.
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4.2.3 Validation of Metabolic Allele Classifiers

We utilized randomized sampling, machine learning, and model selection to identify pre-

dictive MACs (see Supplementary Figures 4-5, Methods, and Supplementary Notes for further

details of the process outlined below). Specifically, the MACs were trained on the same 375

strains to predict antibiotic phenotypes with 1,220 strains set aside for testing. Since the com-

putational cost of estimating MACs scales poorly with the number of alleles utilized, we limited

the set of alleles modeled by the MAC to 237, describing 107 genes consisting of both known and

unknown relations to AMR (Supplementary File 1). The known AMR genes provide validation

cases while the unknown genes enable novel insights.

Figure 4.2: Validation of Metabolic Allele Classifiers. (a) Receiver operator characteristic
(ROC) curves for MAC AMR predictions determined using a test set of 1,188 isoniazid-tested
strains. (b) Histogram of median absolute MAC objective function coefficients (cyT) for pyrazi-
namide, para-aminosalicylic acid, and isoniazid MACs. The reaction variables corresponding to
the two largest coefficients are noted in text. The reaction variable corresponding to the primary
genetic determinant is colored pink. Abbreviations: AUC, area under the curve.
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We assessed MACs for isoniazid, rifampicin, pyrazinamide, ethambutol, and ethionamide

using held out test sets and find that the MACs generally achieve high classification performance

(Figure 4.2a), with scores similar to our previous mechanism-agnostic machine learning models

[2]. The MACs were further validated by assessing their ability to recover the primary AMR

genes. We find that the largest objective weights for pyrazinamide, para-aminosalicylic acid, and

isoniazid MACs correspond to the primary known AMR genes of antibiotics (Figure 4.2b). These

results show that the MAC performs on par with state-of-the-art machine learning approaches

in AMR classification and identification of primary AMR genes.

4.2.4 MACs reveal known and new antibiotic resistance determinants

The ability of MACs to efficiently predict AMR phenotypes (i.e., high accuracy, low com-

plexity) suggests that the model parameters have biological relevance. Furthermore, in contrast

to “black-box” machine learning models, the genotype-phenotype map of a MAC was designed

to satisfy known biological constraints on metabolism e.g., reaction stoichiometry, mass conser-

vation, gene-product-reaction encoding, nutrient environment. Therefore, we hypothesized that

MACs should not only identify genetic determinants of AMR, but also provide metabolic systems

explanations of their predictions.

Below, we focus our analysis on three case studies: pyrazinamide, para-aminosalicylic

acid, and isoniazid AMR. These three antibiotics were chosen due to having both characterized

and uncharacterized mechanisms underlying their associated alleles, allowing for both test cases

and novel insights for the MAC. We analyze the best MACs for each antibiotic through four steps:

(i) identification of significant fluxes discriminating between resistant and susceptible strains (i.e.,

“flux GWAS”), (ii) pathway enrichments of significant fluxes, (iii) identification of key allelic flux
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effects, and (iv) network-level flux tracing of allelic effects (Methods).

4.2.5 Pyrazinamide resistance

To identify key flux states discriminating between resistant and susceptible strains, we

performed statistical associations between the strain-specific MAC fluxes, vk, and pyrazinamide

AMR phenotypes using the training set of 77 strains (52 resistant, 25 susceptible) (we refer to

this as “Flux GWAS”, see Figure 4.1d). Flux GWAS identified 25 significant reaction fluxes

(Bonferroni corrected P < 4.66x10 − 5, 0.05/1073 reactions) whose gene-protein-reaction rules

overlapped with 8 genes modeled by MAC alleles (pncA, ansP2, fadD26, ppsA, and drrABC)

(Supplementary Figure 7a; Supplementary File 3).

To gain a coarse systems view of the 25 significant fluxes, we performed pathway enrich-

ment tests using a curated gene-pathway annotation list consisting of both BioCyc [30] and KEGG

pathways [31] that accounts for 32% of protein-coding genes in the H37Rv genome (1,254/3906)

(Supplementary File 2; Methods). Of the 245 total pathways, 5 were enriched with significant

fluxes with less than 5% false discovery rate (FDR¡0.05) [32] and were primarily described by

“phthiocerol biosynthesis” and “nicotinate and nicotinamide metabolism” (Figure 4.3a). These

results recapitulate two pyrazinamide features describing flux variation in nicotinamidase activity

[33] and phthiocerol dimycocerosate (PDIM) biosynthesis [12].

We then set out to understand the genetic basis for the flux associations by identifying loci

in which the AMR association of each allele was correlated with their flux distribution (“LOR-

flux correlation”) (see Methods). The idea here is that resistant alleles have different metabolic

effects than susceptible alleles for key genes. These allele-specific flux differences underlie the

AMR classification accuracy of the MAC. We identified significant LOR-flux correlations at pncA,
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Figure 4.3: Characterization of pyrazinamide MACs. (a) Horizontal bar plots of pathways
enriched with significant pyrazinamide-associated fluxes with FDR¡0.05. (b) Boxplots of pncA,
ansP2, and ppsA allele-specific fluxes for the reactions catalyzed by their gene-products. Alleles
are rank ordered from least to greatest by their log odds ratio (LOR), from left to right. The boxes
are colored according to the allele LOR, where positive corresponds to resistant (R) dominant
while negative corresponds to susceptible (S) dominant. Regression between allele LOR and flux
is plotted. See Supplementary Data File 3 for list of mutations per allele. (c) Clustered heatmap
of allele LOR-flux correlations between genes (y-axis) and significant reactions fluxes (x-axis). (d)
Pathway depiction of “nicotinate and nicotinamide metabolism” and “phthiocerol biosynthesis”
with objective variables plotted. Coenzyme-A generation from L-asparagine through aspartate
decarboxylase (ASPTA) and citrate synthase (CS) is also depicted. Traced allelic effects are
shown as dashed lines and colored for pncA, ansP2, and ppsA.

ansP2, and ppsA loci (FDR¡0.05) (Figure 4.3b). Specifically, the MACs infer a flux decreasing

selection pressure at the pncA locus and flux increasing selection pressures at the ansP2 and ppsA

loci. The estimated decreased enzymatic activity of pncA is consistent with studies describing

resistant pncA mutants as loss of function [34]. Mutations in ppsA have previously been linked

to pyrazinamide AMR [12] and convergent AMR evolution [35] while ansP2 mutants have not
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yet been associated with AMR.

To understand the global effects of pncA, ppsA, and ansP2 alleles on the metabolic net-

work, we traced out their LOR-flux correlation through the 25 significant reactions (Figure 4.3c).

For ansP2, we observe that the increased generation of L-asparagine by the resistant ansP2 al-

lele was utilized to generate coenzyme A (CoA) through aspartate aminotransferase (ASPTA)

and citrate synthase (CS) (Figure 4.3d), which recapitulates experimental studies describing

L-aspartate-based modulation of CoA as a pyrazinamide resistance mechanism [12]. However,

our results differ from that of the proposed panD-based pantothenate route for CoA genera-

tion [36–38]. The lack of pyrazinamide-associated panD alleles in our dataset may underlie this

discrepancy.

In summary, pyrazinamide MACs correctly identify pncA and ppsA alleles as major ge-

netic determinants and recapitulate nicotinamide metabolism, CoA biosynthesis, and phthiocerol

metabolism as key metabolic associations [12, 34]. As for new hypothesis, the MACs implicate

ansP2 mutants in resistance through L-aspartate-based modulation of the coenzyme-A pool.

4.2.6 Para-aminosalicylic resistance

We performed flux GWAS using the para-aminosalicylic acid training set of 375 strains (80

resistant, 295 susceptible) and identified 52 fluxes discriminating between resistant and suscepti-

ble strains (Bonferroni corrected P ¡ 4.66x10-5, 0.05/1073 reactions) (Supplementary Figure 7b,

Supplementary File 4). Of these 52 reactions, 10 were directly encoded by MAC alleles of 8 genes

(thyA, katG, pncA, alar, cysK2, ald, fadE26, aspB, kdg, and inhA). Pathway enrichment tests

of these 52 reactions identified “S-adenosyl-L-methionine cycle II”, “NAD de novo biosynthesis

I (from aspartate)”, and “cysteine and methionine metabolism” as key para-aminosalicylic acid
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pathways (FDR¡0.05) (Figure 4.4a). The identification of “cysteine and methionine metabolism”

recapitulates known metabolic effects of para-aminosalicylic acid [39].

Figure 4.4: Characterization of para-aminosalicylic acid MACs. (a) Horizontal bar plots of
pathways enriched with significant para-aminosalicylic acid-associated fluxes with FDR¡0.05. (b)
Boxplots of thyA, cysK2, alr, pncA, and fadD26 allele-specific fluxes for the reactions catalyzed by
their gene-products. Alleles are rank ordered from least to greatest by their log odds ratio (LOR),
from left to right. The boxes are colored according to the allele LOR, where positive corresponds
to resistant (R) dominant while negative corresponds to susceptible (S) dominant. Regression
between allele LOR and flux is plotted. See Supplementary Data File 4 for list of mutations per
allele. (c) Clustered heatmap of allele LOR-flux correlations for significant reactions in cysteine
and methionine metabolism. (d) Pathway depiction of “cysteine and methionine metabolism”
and “one carbon pool by folate”. Significant allelic effects are shown by dashed lines and colored
for thyA and cysK2.

We tested these genes for allelic LOR-flux correlations and identified selection pressures

at thyA, cysK2, alr, pncA, and fadD26 loci (FDR¡0.05, R2¿0.1) (Figure 4.4b). Specifically, the

71



MACs infer flux decreasing selection pressures at the thyA, cysK2, pncA, and fadD26 loci and a

flux increasing selection pressure at the alr locus. The estimated decreased enzymatic activity of

thyA resistant alleles is consistent with experimental studies describing thyA resistant mutants

as loss of function [8, 40]. The identification of alr and pncA—known determinants of cycloserine

and pyrazinamide, respectively—reflect the co-resistance of these strains and are not known to

have selective pressure in para-aminosalicylic acid treatment. Of these genes, only cysK2 encodes

an enzyme in “cysteine and methionine pathway” and has not been previously linked to AMR.

We traced out the allelic LOR-flux correlation of cysK2 through cysteine and methionine

pathway flux and found that their effects positively correlated with fadD26 alleles and negatively

with thyA, alr, and pncA alleles (Figure 4.4c). Resistant cysK2 alleles are estimated to lead to in-

creased flux through O-succinylhomoserine (SHSL2r) and cystathionine beta-synthase (CYSTS).

The effect of cysK2 decreases from SHSL2r to CYSTS at the L-homocysteine flux balance node,

which implicates L-homocysteine modulation as the cysK2 selection pressure (Figure 4.4d). No-

tably, L-homocysteine was experimentally identified as the most differentially perturbed metabo-

lite resulting from para-aminosalicylic acid treatment [39].

In summary, para-aminosalicylic acid MACs recover thyA as the primary genetic deter-

minant and recapitulate cysteine and methionine metabolism as a major pathway induced by

the drug. As for novel hypothesis, the MACs implicate deleterious cysK2 mutants in resistance

through modulation of L-homocysteine that may either arise from deleterious thyA mutants or

para-aminosalicylic acid treatment.
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4.2.7 Isoniazid resistance

We performed flux GWAS using the isoniazid training set of 375 strains (248 resistant, 127

susceptible) and identified 160 significant fluxes (Bonferroni corrected P ¡ 4.66x10-5, 0.05/1073

reactions) (Supplementary Figure 7c, Supplementary File 5). We find that only 11.3% (18/160) of

the significant fluxes were catalyzed by gene-products of the MAC alleles. Pathway enrichments

of the 160 significant fluxes identified “TCA cycle V”, “oxidative phosphorylation”, “superpath-

way of mycolate biosynthesis”, and “gluconeogenesis I” as key isoniazid pathways (FDR¡0.05)

(Figure 4.5a). These results are consistent with numerous studies demonstrating TCA and ox-

idative phosphorylation as key TB pathways altered by isoniazid treatment [41–43] and studies

generally linking antibiotic efficacy to these pathways [44]. In general, we found that resistant

strains were characterized by decreased respiratory activity, which is consistent with studies con-

necting decreased respiration to increased isoniazid resistance [42]. The genes encoding enzymes

in these enriched pathways correspond to known (inhA, fabD, kasA, accD6, fadE24, ndh) and

unknown (accD5, nuoL, gpdA2) genetic determinants of isoniazid resistance; however, none of

these encoded for reactions annotated with “TCA cycle V”.

We tested the significant fluxes for allelic LOR-flux correlations and identified selection

pressures at katG, ndh, nuoL, accD6, gpdA2, fabD, kasA, and accD5 loci (FDR¡0.05) (Fig-

ure 4.5b). Specifically, the MACs infer flux decreasing selection pressures at the ndh, nuoL, fabD,

gpdA2, and kasA loci and a flux increasing selection pressure at the katG, accD6, and accD5

locus (MCOATA is depicted in reverse direction). The resulting increased CAT flux observed in

resistant strains is consistent with studies describing the majority of resistance-conferring katG

alleles in clinical isolates as preserving catalase-peroxidase activity while disabling isoniazid bind-

ing (i.e., strains carrying susceptible-dominant katG alleles have low catalase-peroxidase flux due
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Figure 4.5: Characterization of isoniazid MACs. (a) Horizontal bar plots of pathways enriched
with significant isoniazid-associated fluxes with FDR¡0.05. (b) Boxplots of katG, nuoL, ndh,
gpdA2, accD6, fabD, kasA, and accD5 allele-specific fluxes for the reactions catalyzed by their
gene-products. Alleles are rank ordered from least to greatest by their log odds ratio (LOR),
from left to right. The flux (y-axis) is the median scaled flux across the high-quality isoniazid
MACs. The boxes are colored according to the allele LOR, where positive corresponds to resis-
tant (R) dominant while negative corresponds to susceptible (S) dominant. See Supplementary
Data File 5 for list of mutations per allele. (c) Clustered heatmap of allele LOR-flux correlations
for significant reactions in “TCA Cycle V”, “Oxidative phosphorylation”, and “Mycolate biosyn-
thesis”. (d) Pathway depiction of “TCA Cycle V”, “Oxidative phosphorylation”, and “Mycolate
biosynthesis”. Significant allelic effects are shown by dashed lines and colored for gpdA2 and
nuoL.

to isoniazid binding) [45, 46]. The increased flux towards mycolic acid biosynthesis in resistant

strains by fabD, accD6, and kasA is consistent with studies showing increased expression of these

genes resulting from isoniazid treatment [47]. Furthermore, the metabolite acted on by these

genes, malonyl-CoA, has recently been shown to have a significant fold change in response to 16

antibiotics in TB [48].
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We traced out significant LOR-flux correlations of these genes through the enriched path-

ways to elucidate their global network effects (Figure 4.5c). For the novel genetic determinants,

nuoL and gpdA2, we find that their alleles have significant flux effects in cytochrome bd oxidase

reactions (CYTBD, CYTBD2) traced through menaquinone and ubiquinone flux balance nodes,

respectively (Figure 4.5d). The allelic effects of the primary genetic determinant, katG, are sim-

ilarly traced through cytochrome bd oxidase flux by oxygen. The importance of cytochrome

bd oxidase has recently been linked to isoniazid [41]. These results implicate gpdA2 and nuoL

mutants in isoniazid AMR through modulation of quinone/menaquinone pools.

In summary, isoniazid MACs recover the primary (katG) and secondary (inhA, fabD,

kasA, accD6, fadE24, ndh) genetic determinant and recapitulate oxidative phosphorylation, TCA,

and mycolic acid biosynthesis as major pathways induced by the drug [41–43]. As for novel genetic

hypothesis, the MACs implicate gpdA2 and nuoL mutants in resistance through modulation of

menaquinone and ubiquinone that may either arise from katG mutants or isoniazid-induced

oxidative stress.

4.2.8 Conventional pathway analyses do not recapitulate network-level AMR

mechanisms

To assess how MAC results compare to mechanism-agnostic approaches, we performed

conventional pathway analysis of the 197 alleles (Supplementary File 6, Methods). Comparison

of pathway-based analysis showed that results derived from conventional pathway enrichments do

not recapitulate the antibiotic mechanisms for isoniazid, pyrazinamide, and para-aminosalicylic

acid. For isoniazid, a total of five pathways were enriched (FDR¡0.05); however, the significant al-

lelic associations enriched in pathways were simply those annotated for katG, such as “superoxide
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radicals degradation” and “tryptophan metabolism”. For para-aminosalicylic acid, “L-alanine

biosynthesis I” was the only enriched pathway while no pathway was enriched for pyrazinamide

alleles (FDR¡0.05).

These results show that flux balance constraints are required to generate meaningful

network-level hypotheses for identified genetic associations. The basis for this advancement is

that flux balances represent how the entirety of metabolic gene products come together to produce

balanced homeostatic states.

4.3 Discussion

We have developed a computational framework for analyzing data sets (comprised of

genotypes and binary phenotypes) using a genome-scale model (GEM) to identify the genetic

and metabolic basis for TB AMR (Fig. 1a). The identification of the underlying biochemical

mechanisms is reflected in the MAC. We first discuss our approach, emphasizing key design

choices, and then describe the results it generates when applied to the TB dataset.

The outcome of the MAC depends on two major design choices: the set of alleles and

the objective function that optimally separates strains into resistant and sensitive strain cohorts

in the overall metabolic flux space. Although our approach does not explicitly require prior

knowledge of key AMR genes, we chose a set of alleles with just over 100 genes with known and

implicated AMR relations in order to both provide test cases and to address the combinatorial

explosion of sampling possible allelic effects. Relaxing the current computational bottleneck in

identifying MACs will enable the utilization of all alleles. For determining the objective function,

our approach was based on the key insight that a linear program may behave as a machine

learning classifier if its objective optimizes in the direction normal to a predictive classification
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plane. While we utilized PCA, L1-logistic regression, and the BIC metric to identify sparse linear

objectives, there are potentially alternative avenues that could be taken. The major concept that

should sustain in any model selection strategy is that a good model is simple (in structure) yet

accurate (in its predictions). Application of the MAC to other GWAS datasets may therefore

benefit from tuning these parameters appropriately.

The MAC advances current GWAS machine learning approaches by enabling a biochem-

ical interpretation of genetic associations. Although advancements have been made to increase

the “explainability” of black-box machine learning models [49–51], such interpretations are lim-

ited by the lack of mechanistic knowledge incorporated in the model. We show that causal

biochemical explanations for classifications can be derived by constraining a machine learning

classifier to satisfy knowledge-based biological constraints (gene function, reaction stoichiometry,

flux balance, etc).

Our interpretation of MACs for pyrazinamide, para-aminosalicylic acid, and isoniazid

AMR identified genome-scale flux states and key pathways discriminating resistant and sus-

ceptible strains. Notably, we found the MAC-identified pathways to be consistent with known

antibiotic mechanisms. In contrast, conventional pathway analysis using only alleles was un-

able to recapitulate known pathway mechanisms. The MAC therefore provides a mechanistic

approach for pathway-based analysis of genome-wide associations [52].

Dissection of the allele-specific fluxes underlying the significant fluxes further clarified the

genotype-phenotype map and provided hypotheses regarding specific allelic effects. For example,

pyrazinamide MACs implicate an ansP2 allele as a novel resistance determinant through increased

uptake of asparagine towards L-aspartate-based CoA generation. The MAC thus extends allele-

phenotype associations (i.e., LOR) by estimating allele-specific flux effects and their network
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interactions.

Taken together, the framework presented here meets the pressing need to integrate

comprehensive biochemical mechanisms for the analysis of genomics-phenomics datasets. Our

framework both recovers known gene-AMR relations and provides novel insights regarding their

metabolic basis. As genome sequences, phenotypes, and genome-scale network reconstructions

of microbes continue to grow in size and scope, similar results to those presented here are likely

to appear in the coming years. This initial development of an FBA based GWAS analysis (FBA-

GWAS) is likely to continue the development of a mechanistic basis into future GWAS methods.
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Chapter 5

Laboratory evolution of multiple

E. coli strains reveals unifying

principles of adaptation but diversity

in driving genotypes

Fitness landscapes are a central concept in evolutionary biology and have been thor-

oughly detailed in terms of genotypes. However, our understanding of the selected metabolic

and gene expression adaptations, and their dependence on genetic background, remains limited.

Here, we reveal multi-scale adaptation principles in the E. coli species by taking multi-omics

measurements of six different strains throughout their adaptive evolution to glucose minimal me-

dia. Statistics and matrix factorization is applied to yield four key results. First, analysis of the

metabolic and physiological data shows evolutionary convergence in growth rate, glucose uptake

84



rate, glycolytic ATP and NADH production but divergence in NADPH production strategies.

Second, factorization-based analysis of the transcriptome revealed six conserved transcriptomic

adaptations describing increased expression of ribosome and amino acid biosynthetic genes and

decreased expression of stress response and structural genes. Third, correlation analysis identi-

fies five tradeoffs underlying the transcriptomic profiles. Fourth, statistical tests leveraging ALE

design identify four mutation-flux correlates and eight mutation-transcriptomic correlates that

link mutations to systems level adaptation principles. Our total results reveal the dominant

metabolic and regulatory constraints governing E. coli growth adaptation that either distinguish

strains or are conserved principles.

5.1 Introduction

Advancements in biotechnology have enabled the unprecedented detailing of microbial

evolution. The process of evolution can now be studied in a controlled laboratory environment,

where genome sequencing and phenotypic measurements are routine [1, 2]. Although studies uti-

lizing genome sequences and fitness measurements have provided valuable insights ranging from

the dynamics of evolution on long time-scales [3–5] to general features of epistasis [6], evolution-

ary principles at the levels of gene regulation and metabolism remain unelucidated. Moreover,

the generality of principles identified in experimental evolution studies is ambiguous since studies

often focus on a single strain, not a species. For example, different strains of E. coli have been

shown to exhibit diverse regulatory and metabolic functions and thus may have different con-

straints governing their evolutionary trajectories [7]. A fundamental multi-scale description of

evolutionary landscapes may therefore be deduced through multi-omic measurements of different

strain-specific experimental evolutions. Towards revealing multi-scale features of evolutionary
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landscapes, researchers have taken transcriptomic and fluxomic measurements in their exper-

imental evolution studies [8]. However, it remains challenging to extract insights from these

data types due to a lack of effective data analysis methods, especially for gene expression data

sets. To date, no statistical correlation has been made between selected mutations and these

multi-omics measurements. Our lab has recently shown the effectiveness of independent compo-

nent analysis (ICA) to quantitatively interpret transcriptomic datasets in terms of transcription

factors [9]. Therefore, ICA and novel statistical approaches may reveal fundamental regulatory

principles and provide links between mutations and transcriptomic changes analogous to those

seen in genetic association studies.

Here, we reveal multi-scale adaptation principles in the E. coli species by taking multi-

omics measurements of six different strains throughout their adaptive evolution to glucose mini-

mal media. Our total results reveal the dominant metabolic and regulatory constraints governing

E. coli growth adaptation that either distinguish strains or are conserved principles.

5.2 Results

5.2.1 Consistent genetics in evolution of multiple E. coli strains

Six different E. coli wild-type strains exhibiting diverse genetics (K-12 MG1655, K-12

W3110, BL21, C, and Crooks) (Figure 5.1a). were evolved to select for rapid growth. Inde-

pendent triplicates of each strain were evolved under a strict selection pressure for growth in

that the cultures never left the exponential phase under batch culture 37 C and M9 glucose (see

Methods). Whole genome sequencing was performed for clones of all replicate lineages while

13-C fluxomics, RNA-seq, and physiological measurements were performed for a single replicate
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lineage (Figure 5.1b). We find that all strains start with different growth rates but evolve to

rates ranging between 0.98 and 1.11 hr-1 (Dt = 42 mins) (Figure 5.1c). Some strains (W and

Crooks) operate near this optimal in their wild-type state, while others require genetic mutations

to achieve the observed optimal (MG1655, W3110, BL21, and C). We observed striking consis-

tency in mutated genes, where each strain had at least one gene with a selected mutation in all

replicate lineages (Figure 5.1d). A total of seven genes (pykF, zwf, spoT, mrdA, hns/tdk, rpoC,

rpoB) had selected mutations appear both in multiple strains and in more than one replicate

lineage. The commonality of selected mutations indicated similar evolutionary constraints facing

these strains and motivated inquiry of their metabolic and gene expression profiles.

5.2.2 Characteristics of physiological and metabolic adaptations

Since a total of 8 selected mutations were in genes encoding metabolic enzymes—two of

which appear multiple strains (zwf, pykF)—we hypothesized that the strains may be evolving to-

wards similar metabolic states. We thus set out to examine convergent and divergent phenotypes

along the ALE trajectory by performing statistical tests for each physiological and fluxomic mea-

surement between the wild-type (WT) and end-point (EP) flasks for each strain (see Methods).

Of the 187 total phenotypes, 64 were identified as convergent (i.e., points became closer together)

and 6 were identified as divergent (i.e., points became further apart) with false discovery rate

(FDR) less than 5% (Figure 5.2a). Of the convergent phenotypes, we find that 86% (55/64) were

growth-correlated (spearman rho<0.05, FDR<0.05) (see Supplementary File 1).

We find that the convergent features are related to glucose uptake, glycolysis and ox-

idative phosphorylation while the top ranked divergent features relate to NADPH production

through malic enzyme (ME2) and pentose phosphate pathway (PPP) (Fig. 2A). Inspection of
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Figure 5.1: Overview of selected E. coli strains, experimental design, and key adaptation
trends (A) Phylogenetic tree of six different E. coli wild-type starting strains utilized in this
study. The wild-type (WT) growth rates (u) of the strains are noted. (B) Adaptive laboratory
evolution was performed for each strain using independent triplicates. The wild-type (WT),
evolved intermediate, and evolved end-point clones underwent multi-omics measurements. (C)
Bar Plot of measured growth rates for wild type (WT), intermediate, and end point (EP) flasks for
each strain. Clones are ordered left to right by trajectory. (D) Heatmap of gene-level mutation
frequency across replicate lineages of each strain. The intergenic region between two genes is
noted by a dash “/”.

the ALE trajectories for the most convergent (Mann-Whitney U¿169, P<5.7x10-5) and divergent

(Mann-Whitney U=19, P=5.7x10-5) phenotypes showed that phenotypes do not monotonically

increase/decrease along the ALE (i.e., not always increasing or decreasing along trajectory) (Fig-

ure 5.2b). For example, although the glucose uptake rate has a significant net increase between

WT and EP strains, four of the strains have one ALE jump where glucose uptake decreases.

Principal component analysis of the fluxes showed that two components explain 93% of the

variation and correspond to ATP production through oxidative phosphorylation and glycolysis
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(80%), and NADPH balance through pentose phosphate pathway and transhydrogenases (13%)

(Supplementary Figure 1).

Figure 5.2: Adaptation in physiology and metabolism. (A) Pie chart describing the fraction
of phenotypes that converge or diverge. Numbers in parentheses describe the number of re-
lated phenotypes. (B) Line plots of glucose uptake (top) and PPP NADPH balance (bottom)
vs growth rate. Line plots and frequency distributions for WT and EP are plotted to the right
for both cases. (C) Metabolic map of reactions in glycolysis, PPP, and exchange reactions col-
ored according to whether they diverge or converge. Blue describes divergence and red describes
convergence. (D-F) Bar plots of four reaction fluxes (absolute) that have strain-specific distribu-
tions. Abbreviations: abs, absolute flux (mmol/gDW/hr); rel, relative flux (mol/mol glucose);
TCA, citric acid cycle; PPP, pentose phosphate pathway; ME2, malic enzyme; OxPhp, Oxidative
phosphorylation; PDH, pyruvate dehydrogenase.
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To determine whether specific reaction fluxes distinguish specific strains, we tested all

fluxes for strain-specific distributions and found four subsystems specific to BL21, Crooks and C

(ANOVA F-test, FDR<0.05). The BL21 strain uniquely had no flux through glyoxylate shunt

while having the highest flux through transhydrogenase (Figure 5.2d). Since BL21 can’t regen-

erate NADPH through PPP due to lacking the pgl gene encoding 6-phosphogluconolactonase

(PGL) reaction activity (Meier, Jensen and Duus, 2012), the high transhydrogenase flux likely

compensates to regenerate NADPH. Furthermore, we find that all BL21 flask lineages select for

mutations in the intergenic region of a transhydrogenase (pntA/ydgH) (we test for mutation

correlates later in this study) (Figure 5.2d). C strain uniquely had high flux through the Entner-

Doudoroff (ED) pathway while BL21, MG1655, and W3110 had almost none (Figure 5.2e).

Crooks uniquely had the highest flux through TCA (Figure 5.2f). In total, these results describe

convergent and divergent phenotypes that are either conserved or distinguish strains.

5.2.3 Characteristics of transcriptome adaptation in E. coli

Underlying the phenotypic differences of these strains are differences in gene expression

strategies. We thus set out to analyze the transcriptome of these strains by performing both

differential expression analysis and a matrix factorization approach. Differential expression anal-

ysis showed that the number of differentially expressed genes (DEGs) generally decreases along

the trajectory, with the exception of the last BL21 flask (Figure 5.3a). To make sense of these

expression changes, we applied an alternative RNA-seq analysis workflow that was shown to

enable quantitative analysis of the E. coli transcriptome from the perspective of transcription

factors [9]. The authors showed that independent component analysis (ICA) deconvolved a large

compendium of E. coli MG1655 RNA-seq data into a linear combination of independent sources
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that reflect known regulons (“iModulons”), and source weightings (“iModulon activities”), which

describe the global regulatory state [10]. Using the previous set of 92 iModulons, we transformed

the flask-specific gene expression profiles into flask-specific iModulon activities (see Methods,

Supplementary Figure 2).

Figure 5.3: Characterization of gene expression adaptations. (A) Number of differentially
expressed genes (DEG) for each strain-specific jump in growth rate during ALE. (B) Bar plot
of total iModulon activation count in terms of iModulon functional category. The count is
summed across the 6 strains activated ranked by the total number of times they were differentially
activated between WT and EP flasks. (C) Bar plot of iModulons ranked by the total number
of times they were differentially activated in an ALE jump. (D) Differential iModulon activity
plots (DIMA). Comparison of iModulon activities between wild-type (WT) and end-point (EP)
flasks for each strain. Significant altered iModulons are colored red and noted with text.
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In order to first understand the different starting points of the strains, we tested for

iModulons that distinguish WT expression profiles and identify a total of 38 iModulons (Table

1, FDR<0.005). For BL21, the iModulons imply an original environment that was cold (cspA),

anaerobic and nitrate rich (ArcA-2), with gluconate (GntR/TyrR), allantoin, fructose, and ara-

binose (AllR/AraC/FucR) as possible carbon sources. For C, the identified iModulons hint at

a background with high acidity and osmotic stress (EvgA, proVWX). The low OxyR activity

in Crooks implies a WT environment facing low oxidative stress while high FliA activity in

MG1655 implies that high motility was advantageous to its original environment. The relatively

high GadEWX in W3110 implies an original environment with high acid stress.

To understand what iModulons changed the most throughout the ALEs, we performed

differential activity analysis between the WT and EP flasks of each strain (see Methods). We

find a total of 57 iModulons that were differentially activated at least once amongst the differ-

ent strains (P<0.05, FC¿2). The most commonly activated iModulons corresponded to stress

response and amino/nucleic acid biosynthesis (Figure 5.3b). The W3110 strain had the largest

number of differentially activated stress response iModulons while BL21 had the most activated

amino/nucleic acid biosynthesis iModulons. With respect to the total number of differentially

activated iModulons, we find that BL21 has the most while W has the least (Figure 5.3d), which

reflects their respective change in growth rate. Of those activated, we find decreased activ-

ity in iModulons describing stress response (rpoS, gadEWX, rpoH, hns-related, proVWX) and

motility (FlhDC, FliA, curli, fimbriae, RcsAB) while increased activity in iModulons describing

translation machinery (translation), amino acid biosynthesis (ArgR, His-tRNA).
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5.2.4 Linear growth-dependent transcriptome adaptations conserved in

E. coli

While differential activity analysis identifies general regulatory trends along the trajec-

tory, it does not directly account for changes in quantitative growth rates or similarity between

strains. We thus tested for iModulons that exhibit linear growth-dependence in all strains and

identify six iModulons (Figure 5.4, median Pearson —R—¿0.75, median P-value<0.05). Of the

six, three are positively correlated with growth-rate and describe the expression of ribosomal

genes (translation), arginine biosynthetic genes (ArgR), and nutrient response (ppGpp). The

other three iModulons are negatively correlated with growth-rate and describe stress response

(RpoS, GadEWX) and structural assembly (curli). These results describe growth-dependent

transcriptome adaptations that are mostly conserved in the E. coli species.

Figure 5.4: Conserved growth-dependent transcriptome. Strain-specific line plots of growth
rate vs iModulon activity for six iModulons (median Pearson abs(R)¿0.75, median P-value 0.05).
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5.2.5 Regulatory trade-offs governing E. coli adaptation

The identification of both positively and negatively growth-correlated iModulons imply

the existence of regulatory tradeoffs, and thereby a lower dimensionality of the iModulon activi-

ties (i.e., increased expression of certain genes requires decreased expression of others). We thus

used principal component analysis to further decompose iModulon activities. Prior to PCA, we

first transform the activity matrix (flask-specific) to the difference in flask activity along the tra-

jectory (jump-specific) in order to identify components describing general adaptation trends as

opposed to strain differences (see Supplementary Figure XX for PCA of flask-specific iModulon

activities). We find that the first three PCA components explain the majority of the variance

and have an explained variance ratio of 40%, 28%, and 12%, respectively (Figure 5.5a). The first

component describes activation of flagella machinery and is owed to the large deviation in FlhDC

and FliA activity seen in the first MG1655 jump. The second component describes metal-related

iModulons (Fur-1, Fur-2, iron-related, efuR-repair, Copper) and growth-correlated iModulons

(RpoS, translation, ppGpp). The third PCA component primarily describes carbon metabolism

iModulons (Crp-1, Crp-2, MalT, ) with positive weight and stress-response and structural iMod-

ulons with opposite weight (RpoS, GadWX, GadEWX, hns-related, CspA, curli). We test for

negative correlations and identify a total of six potential tradeoffs (RpoS vs translation/ppGpp,

Fur-2 vs translation/ppGpp, and Fur-1 vs Copper) in component 1 and (Crp-KO vs Crp-1, Crp-2)

in component 2 (Figure 5.5b-d).

5.2.6 Statistical tests leveraging ALE design reveal key mutational effects

Comparing mutations is challenging due to the large number of genetic differences between

strains. We therefore leveraged the directionality of the ALE data by transforming the flask-
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Figure 5.5: Regulatory trade-offs governing E. coli adaptations. (A) Plot of PCA loadings
for components 1 and 2. (B-D) Strain-specific line plots for iModulon activities for trade-offs
reflecting growth-correlated iModulons, metal homeostasis, crp activity, proton motive force.

specific reaction fluxes and iModulon activities to jump-specific differences in flux and activity,

thereby narrowing the view of genetic differences to those selected in ALE. Using the jump-

oriented perspective of the data, we then tested for significant associations between jump-specific

differences in reaction flux and iModulon activity with the selection of mutations at both the

nucleotide and gene levels (i.e., gene level groups two different ALE mutations together if they
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appear in the same gene).

For the metabolic fluxes, we find four flux correlations primarily describing reactions in-

volved in co-factor balancing (FDR<5%) (Figure 5.6a). Specifically, zwf mutations are correlated

with ∆G6PDH flux (NADPH balance through PP pathway), pykF mutations with ∆ME2 flux

(NADPH balance through Malic Enzyme), and lysC with ∆SUCCOAS flux (ATP and NADPH

through TCA cycle). We find that the zwf mutation in Crooks is uniquely associated with delta

∆ED pathway flux. For the iModulon activities, we identify eight mutation correlates that fall

into four different iModulon functional categories describing stress response, motility, structural

components, and carbohydrate metabolism (FDR<5%) (Figure 5.6b-e).

We find that similar statistical tests using DE fold changes instead of iModulon activities

did not uncover any significant correlations. Notably, there are only 7 cases where the selection

of a mutation coincided with significant differential expression of gene (Supplementary Figure 2).

Factorization-based analysis therefore enables statistical associations between the transcriptome

and selected mutations.

5.3 Discussion

Taken together, our total analysis of the multi-strain ALEs revealed metabolic and tran-

scriptomic adaptations principles of the E. coli species. Characterization of the phenotypic data

showed specific convergent and divergent features between the WT and EP flasks of these strains.

It remains open how many peripheral phenotypes change with the core genes. Since the exper-

imental condition was glucose minimal media, it remains unclear what principles are specific

to glucose minimal media and which ones are not. Future studies may gain deeper insight by

diversifying the measured phenotypes of these strains through high throughput approaches such
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Figure 5.6: (A) Boxplots of significant correlations between mutations and changes in metabolic
fluxes. The terms “abs” and “rel” in parenthesis refer to absolute flux (mmol/gDw/h) and relative
flux (mol/mol gluc), respectively. (B-E) Boxplots of significant correlations between mutations
and changes in iModulon activities. The boxplots are grouped by iModulon functional category.
Genes with strains in parenthesis note a strain-specific mutation correlation. Mutations are
grouped at the gene-level unless otherwise.

as biolog plates. Our ICA-based analysis of the transcriptome revealed key growth-correlated

gene sets and tradeoffs governing E. coli adaptation. By leveraging ALE design and the ICA-

determined iModulon weights, we identified . Many of these associations make sense (i.e., zwf

with ∆ G6PDH flux, hns/tdk with ∆hns-related iModulon activity) while others provide novel
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insights. Together, our results point to energy balance and proteome allocation (stress response,

structural components, motility) as the dominant constraints governing E. coli adaptation. In-

cluding more samples would increase the identification of metabolic and regulatory features

associated with mutations, providing a more clear picture of the logic underlying evolutionary

selection. Our results show that fluxomics and transcriptomics data types are valuable data types

for characterizing adaptive landscapes.
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Chapter 6

Conclusions

The advent of high throughput next-generation sequencing has ushered in a new era in

biology, allowing quantitative understanding of processes within the cell on an unprecedented

scale. The development of data modeling approaches that are both predictive and interpretable

are therefore required for transforming the explosion of biological datasets to valuable knowl-

edge. Such data-driven insights will have a broad impact, ranging from aiding drug development

to microbial engineering. In this dissertation, we develop and apply biologically-interpretable

models to various omics data types describing microbial diversity to improve our understanding

of M. tuberculosis drug resistance evolution and the multi-scale E. coli adaptive landscape.

In the first chapter of this dissertation “Machine learning of M. tuberculosis pan-genome

identifies genetic signatures of antibiotic resistance”, we applied classical machine learning to a

large genomics dataset in order to gain insight into the genetic basis of AMR. Our reference-

agnostic pan-genome approach was sufficient in capturing AMR variants through common uni-

variate statistical tests. Our machine learning approach levering L1-regularization, bootstrap-

ping, and model averaging was able to identify 33 known AMR genes and 24 novel candidates.
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Further analysis of these genes through epistatic and structural analysis provided hypothesis for

how these mutations may enable AMR.

The second chapter of this dissertation “An updated genome-scale model of M. tuber-

culosis H37Rv metabolism” describes an updated and standardized metabolic reconstruction of

M. tuberculosis strain H37Rv. The new GEM improves gene essentiality predictions over pre-

vious models, computes biologically meaningful flux states, and captures 72% of known AMR

genes. This study provided a stepping stone for the third thesis chapter.

The third chapter of this dissertation “A biochemically-interpretable machine learning

classifier for microbial GWAS” describes a novel mechanism-based machine learning model,

named Metabolic Allele Classifier (MAC), that is able to not only identify key genetic variants,

but also identifies mechanistic explanations for the predictive genotype-phenotype mapping. We

show that FBA—and any linear program— can behave as a ML classifier through design of

the objective function. For validation, we show that the MAC achieves prediction accuracy on

par with mechanism-agnostic machine learning models (isoniazid AUC=0.93). Application of

the MAC to three antibiotics recovers the primary and second genetic determinants of AMR,

and also estimates detailed metabolic explanations for the accuracy predictions that elucidate

allele-specific effects and pathway-level antibiotic effects. Our inferred mechanisms are consistent

with the literature and provide novel hypothesis for tackling AMR. We expect our method to

have a major impact in the field of genetic associations due to the value of providing mechanistic

biological explanations.

In the last chapter of this dissertation “Laboratory evolution of multiple E. coli strains

reveals unifying principles of adaptation but diversity in driving genotypes” we examine multi-

scale principles of the E. coli adaptive landscape that are either conserved or strain-specific.
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Application of independent component analysis enables the identification of 6 conserved tran-

scriptomic adaptations that describe decreasing stress response and structural component genes

and increasing ribosome and amino acid biosynthesis genes. Our ALE-based statistical tests

were able to associate causal mutations with specific changes in metabolic states and transcrip-

tomic profiles, which reveal co-factor metabolism and the stress response proteome as dominant

evolutionary constraints.

Multi-omics datasets of microbial adaptation have the potential to revolutionize industrial

biotechnology and medicine if meaningful insights are extracted from them. In this dissertation

we develop novel mathematical methods to cover three aspects of microbial adaptive landscapes:

genetic determinants of AMR evolution, metabolic determinants of AMR evolution, and lastly

the multi-scale genetic, metabolic, and transcriptomic adaptation principles conserved in E. coli

. These findings improve our understanding of microbial adaptation and pave the way for better

treatment regiments and more effective engineering of E. coli for industrial biotechnology.
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Appendix A

Machine learning of M. tuberculosis

pan-genome identifies genetic

signatures of antibiotic resistance -

Supplementary Information

A.1 Methods

A.1.1 M. tuberculosis strain dataset

The selected set of M. tuberculosis strains are representative of various antimicrobial resis-

tance phenotypes, geographic isolation sites, and genetic diversity. References for the published

and unpublished data sets can be found in Supplementary Table 5. The sequencing data for the

TB Antibiotic Resistance Catalog (TB-ARC) projects (Supplementary Table 5) were generated

103



at the Broad institute. Additional information for each of these unpublished projects can be

found at the Broad Institute website. Because Africa exhibits the most diverse set of M. tuber-

culosis strains in the world [1], a third of our strains were isolated there (Supplementary Fig. 1).

Furthermore, the chosen dataset constitutes a wide spectrum of isolation hotspots, ranging from

144 strains in Sweden to 141 strains in Belarus. Notably, 78 strains were isolated from South

Korea, a country that has endured a significant increase in M. tuberculosis incidence since 2005

[2]. In total, 70% of the selected strains were in “high burden countries” [2].

A.1.2 M. tuberculosis pan-genome construction and QA/QC

We employed QA/QC of the constructed 1595 pan-genome by initially filtering out outlier

strains. The initial selection of 1603 strains was reduced to 1595 upon review of both the cluster

size distribution and the number of unique clusters across the set of all strains (Supplementary

Fig. 3a-b). We found only 4 strains in the PATRIC database that had either a very low (¡2000) or

high number (¿5500) of clusters. The final selection of 1595 strains has a cluster size distribution

between 3900 and 4400, and a reasonable unique cluster distribution where the number of unique

clusters did not exceed 160 (note that unique is defined here as being in only one strain). The

pan-genome of all 1595 strains was constructed by clustering protein sequences based on their

sequence homology using the CD-hit package (v4.6). CD-hit clusters protein sequences based

on their sequence identity [3]. CD-hit clustering was performed with 0.8 threshold for sequence

identity and a word length of 5.
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A.1.3 Pan-genome core and unique cutoff determination

We determined the core and unique pan-genome through sensitivity analysis by plotting

the change in core and unique cutoff values by the change in percentage. The cutoffs were chosen

to be at the point where the second derivative of the curve is the largest. The curve represents

the change in pan-genome core percentage to changes in the number of strains a gene must be

found in to be defined as core (Supplementary Fig. 3c-d).

A.1.4 Phylogenetic Tree and categorization of lineages

We created a robust phylogenetic tree of the 1,595 strains using SNPs at the core genome.

Specifically, we chose a set of 2,803 core genes that appeared in at least 1,593 strains, included

the H37Rv reference strain (83332.12). We used needle [4] to align sequences within the 2803

pan-genome clusters (a cluster is representative of a particular loci) to the H37Rv reference allele.

We built a binary SNP matrix using all of the SNPs identified from the 2803 genes (21,206 SNPs

in total), and then estimated a maximum-likelihood phylogeny using RaXML version 8 [5]. The

tree was visualized using iTOL [6].

We used an existing SNP typing scheme [7] for categorizing the strains into lineages and

sublineages. Specifically, we used a total of 141 SNPs for identifying lineages and sublineages for

our 1595 TB strains. These SNPs were previously determined to be sufficient for categorizing

lineages [7]. Of these SNPs, 61 were in non-synonymous sites and the other 70 were SNPs

found in drug resistance genes. These 141 SNPs comprised a total of 74 genes. The presence of

SNPs were then used to categorize the strains into the defined lineages [7]. Of the 1595 strains,

1366 strains were categorized and 229 were uncategorized. The remaining 229 strains were

categorized according to their proximity to strains with lineage-defining SNPs, with proximity
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defined according to our core genome SNP phylogeny. We have included the frequency of lineage

variants in order to help readers discern between epistatic alleles and those in tight linkage

(Supplementary Table 6). Implicated co-occurring alleles that span different lineages are unlikely

to be in tight linkage (i.e., hitchhikers). We determined the lineages of our set of M. tuberculosis

strains using previously defined lineage/sub-lineage SNPs [7].

For the numeric subscripts shown in Figure 2—describing the number of unique sublin-

eages for each allele-allele pair—were determined as the maximum number of unique sub-lineages

at a single branch amongst all lineage/sublineage branches.. For example, an allele co-occurrence

which has strains in both lineage 1.1 and 1.2 counts as two sublineages. An allele co-occurrence

which has strains in both lineage 1.1, 1.1.2, 1.1.3, 1.1.3.1, 1.1.3.2, and 1.1.3.3 counts as three

sublineages (1.1.3.1, 1.1.3.2, and 1.1.3.3). If an allele co-occurrence has strains in sublineages 4.1,

4.1.2, and 4.1.2.1, then only one sublineage is counted, since the strains can be traced through a

single lineage (4.1 to 4.1.2 to 4.1.2.1).

A.1.5 Identification of key resistance-conferring genes with mutual informa-

tion, chi-squared, and ANOVA

Mutual information (MI) has many statistical benefits which include being a nonparamet-

ric method that can quantify nonlinear relationships, unlike Pearson’s correlation which measures

a linear relationship. MI has proven to be a natural and powerful means to equitably quantify

statistical associations in large datasets [8]. The pairwise mutual information was calculated

for each column vector in the unique variant pan-genome with each drug susceptibility vector

(Supplementary Fig. 3g). The discrete entropy calculations were carried out using the Non-

Parametric Entropy Estimation Toolbox (NPEET, https://github.com/gregversteeg/NPEET).
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Since both vectors are binary, the “naive” implementation of discrete entropy estimation used in

NPEET is sufficient. The formula for calculating MI is as follows (2):

where X is the presence(1)/absence(0) distribution of a specific allele across the 1595

strains and Y is the resistant(1)/susceptible(0) distribution of a specific drug across the 1595

strains, and x ∈ [0, 1], y ∈ [0, 1]. The top 40 MI associations for 11 drugs are recorded (Supple-

mentary Data File 1). Associations were similarly calculated with chi-squared and ANOVA tests.

P-values were adjusted using the Bonferroni multiple-hypothesis testing correction. Theses sta-

tistical tests and corrections were implemented using the python package, statsmodels [9]. The

top 40 associations determined by chi-squared and ANOVA F-test were recorded for 10 AMR

classifications are recorded (Supplementary Data File 1).

A.1.6 Allele feature selection through ensemble Support Vector Machine

The Support Vector Machine (SVM) attempts to account for all variants together by

learning a multidimensional hyperplane that best separates the susceptible and resistant strains.

The resulting hyperplane is a function of all exact-variant vectors in the pan-genome. Since the

goal is not to predict resistance with high accuracy, but to instead extract key insights from the

data, we take a more “loose” approach by gearing the linear SVM with an L1-norm penalty and

stochastic gradient descent optimization algorithm. It is known that there is a tradeoff between

accuracy and feature selection. The L1-norm enforces sparsity in the decision function, which

is ideal for feature selection. The stochastic gradient descent algorithm, in conjunction with the

L1-norm, returns a different set of significant features each run. Since the chosen SVM does

not reach the same solution, we look at the ensemble of 200 SVM feature selection simulations.

Furthermore, we performed bootstrapping by randomly selecting a subpopulation representing
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80% of the training data for each SVM simulation.

Prior to simulation, we took out the primary resistance-conferring gene of an antibiotic

from the machine learning analysis of other antibiotics in order to amplify the signal of other genes

- a pre-processing step previously utilized in AMR gene identification studies [10] (Supplementary

Table 2). For example, all katG alleles were only accounted for as features in the machine learning

analysis for isoniazid. Furthermore, we removed all mobile element proteins, PE/PPE/PE-PGRS

proteins, transposases, and hypothetical proteins from consideration in the machine learning

analysis due to primarily appearing in the accessory and unique pan-genome of M. tuberculosis

which may confound the results, as previously discussed in the pan-genome analysis. Finally, we

balanced the class weight in the SVM algorithm in order to account for the imbalance of resistant

and susceptible strains seen for each drug in our dataset.

Features were selected from the SVM based on a threshold value. The value was deter-

mined through 10-fold cross-validation where the threshold value was optimized through grid

search (Supplementary Table 2). The use of bootstrapping in the machine learning algorithm

may account for biased subpopulations in the data, which often confounds GWAS analysis for

M. tuberculosis [11, 12].

A.1.7 Determination of potential epistatic genes from SVM ensemble corre-

lations

Leveraging machine learning towards identification of genetic interactions, we constructed

a correlation matrix of allele weights across the ensemble of randomized SVM hyperplanes for

each antibiotic (Supplementary File 3). We limited our machine learning analysis to AMR

classifications that achieved an average AUC (i.e., average area under ensemble of receiver-
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operator curves) greater than 0.80 (Supplementary Fig. 5). We selected the top 100 gene-gene

correlations that include genes in the top 25 ranked SVM alleles for each antibiotic. We limited

the correlations to in the top 25 ranked alleles in order to avoid the case when low weighted

alleles appear sparsely with other low weighted alleles which lead to significant correlations.

The resulting set of gene-gene pairs were then analyzed using a logistic regression model in

order to determine statistically significant interactions. The filtering of potential gene-gene pairs

prior to classical quantitative epistasis analysis addresses the problem of combinatorial explosion

of pairwise interaction terms in conventional techniques. Identification of significant epistatic

interactions using logistic regression models. We utilized logistic regression to identify significant

epistatic interactions. A logistic regression model was built for each potential gene-gene pair

previously determined by the ensemble SVM correlation analysis. The variables of the gene-gene

logistic regression model were composed of both alleles and allele-allele interaction variables (3).

The interaction variables, aibj, were limited to those in which the two alleles co-occur

in at least one strain. The interaction variable was the dot product of the two allele presence-

absence vectors. In order to account for collinearity in the variables, we applied the following

three filtering criteria (note that ai is interchangeable with bj):

1. If the allele ai presence-absence is the same as the interaction aibj presence-absence, remove

the aibj interaction variable from the logistic regression model

2. If the allele ai presence-absence is equal to allele bj presence-absence, remove both variables

as well as the allele-allele interaction variable, aibj.

3. If the allele ai presence-absence is equal to the sum of all interaction variables involving

that allele (i.e., aibj for all j), remove the allele variable but keep the interaction variables.
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We filtered for allele-allele interactions with P-value ¡ 0.05 after Benjamini-Hochberg multiple-

testing corrections. The resulting set of gene-gene interactions encompassing significant allele-

allele interactions were portrayed through allele co-occurrence tables (Supplementary Data File

4). Logistic regression and statistical tests were implemented using the python package statsmod-

els [9].

A.1.8 Calculation of log odds ratio visualized in allele co-occurrence tables

The odds ratio of each cell in the allele co-occurrence tables was determined by the

following equation (4),

where BR is the number of strains that have both alleles and are resistant to the specified

antibiotic, NR is the number of strains that do not have both alleles and are resistant to the

specified antibiotic, BS is the of strains that have both alleles and are susceptible to the specified

antibiotic, NS is the number of strains that do not have both alleles and are susceptible to the

specified antibiotic. For a single allele, the odds ratio was calculated the same way with each

variable representing the single allele case. If any of the four values (BR, BS, NR, NS) were zero,

0.5 was added to each value in order to ensure a value when computing the logarithm of the odds

ratio.

A.1.9 Missing alleles in allele co-occurrence tables counts

The lack of specific alleles shown in the allele co-occurrence table is due to strains missing

some alleles. For example, embB allele 5 is found in 147 strains but only 144 strains have both

embB allele 5 and ubiA allele 2 (Fig. 2). Specifically, the three strains missing the three ubiA

alleles are the following PATRIC strains as described by their genome identifiers: 1423432.3,
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1448794.3, 1448824.3. Searching on the PATRIC database for either “ubiA” or “Rv3806c” results

in 0 hits for these organisms. While it is unlikely that the strain is missing this allele, these

limitations are not due to the analysis but instead results from the selection of strains. These

events happen quite rarely and were accounted for in the partitioning of pan-genome portions.

The large sample size was able to recapitulate the key genes due to large sample size.

A.1.10 Structural protein analysis of identified AMR genes

For identified AMR genes, the ssbio software was used to gain gene-specific, protein se-

quence and structure based information about residue-level changes (SNPs and deletions) present

in the M. tuberculosis alleles [13]. Each AMR gene was mapped to a reference protein sequence

file obtained from UniProt [14] and sequence-based metadata identifying protein-specific features

(e.g. active sites, secondary structures, and mutations in studied wild-type strains) was used to

determine the occurrence of allele-specific AMR mutations within the gene feature set (Supple-

mentary Table 4). When available, AMR genes were additionally mapped to experimentally

obtained protein structures from the RCSB Protein Data Bank or to homology structures gener-

ated using the Iterative Threading ASSEmbly Refinement (I-TASSER) platform [15, 16]. To help

elucidate the mechanistic effects of AMR mutations, both AMR mutations and the residue-level

feature set were mapped to these structures and visualized using the NGLview Jupyter notebook

plugin [17]. The structural information was utilized to calculate distances between each mutation

and annotated protein feature (Supplementary Table 4).
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A.2 Supplementary Notes

A.2.1 Characteristics of 1,595 Strain M. tuberculosis dataset

The chosen strains come from a wide range of studies [18–34]. Because Africa exhibits

the most diverse set of M. tuberculosis strains in the world [1], a third of our strains were isolated

in South Africa (Supplementary Fig. 1a). Furthermore, the chosen dataset constitutes a wide

spectrum of isolation hotspots, ranging from 144 strains in Sweden to 141 strains in Belarus.

Notably, 78 strains were isolated from South Korea, a country that has endured a significant

increase in M. tuberculosis incidence since 2005 [2]. In total, 70% of the selected strains were in

“high burden countries” [2].

A.2.2 Characterizing the M. tuberculosis pan-genome

Following selection of the representative set of M. tuberculosis genome sequences, we

determined the pan-genome (i.e., the union of all genes across all strains) represented by these

data (Methods). We categorized the genome content across all 1,595 strains as “core” (the set

of genes shared by at least 1590 strains), “accessory” (the set of genes present in some, but not

all, strains), or “unique” (the set of genes found in at most 5 strains) [35, 36]; the cutoffs for

each of these categories were evaluated using sensitivity analyses (Methods). The resulting pan-

genome consisted of 11,039 clusters, where each cluster represents a grouping of protein variants

determined to be sufficiently similar to each other (i.e., ¿80% sequence similarity). Using these

partitioning criteria, the core, accessory, and unique genomes were composed of 3,419 genes

(31%), 2,402 genes (21.8%), and 5,218 genes (47.3%), respectively (Supplementary Fig. 2a). The

core genome made up 80% of the average genome in our dataset, a result in agreement with

the hypothesis that M. tuberculosis is a clonal species [37]. This diversity is in stark contrast
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to that of Escherichia coli, which has a core genome percentage estimated to be between 20%

and 50% of the average full E. coli genome [38], and Staphylococcus aureus, where we recently

calculated the core genome to comprise 56% of the average genome [36]. Furthermore, we found

that virulence factors were highly conserved in the M. tuberculosis core genome (93%, 414/445

genes) (Supplementary Table 1 and Supplementary Note).

The remaining 7,620 genes that comprise the accessory and unique genomes represent

the genetic variability across M. tuberculosis strains. A significant portion of the unique and

accessory genome was attributed to Pro-Glu (PE)-related proteins and hypothetical proteins

(Supplementary Fig. 2b). Specifically, PE-related proteins represent products that contain the

characteristic motifs Pro-Glu (PE), Pro-Pro-Glu (PPE), or polymorphic GC-rich sequence motifs

(PE-PGRS) [39] and make up approximately 10% of the average M. tuberculosis coding capacity

[40]. Because of significant variation in both PE-related proteins and hypothetical proteins, we

computed the shape of the pan-genome by filtering out PE/PPE genes and genes with lengths

that were significantly longer (¿1 standard deviation) than the mean gene length of 1000 bp,

which are likely result of sequencing or annotation errors. In total, this led to the removal of

1,335 genes clusters from the pan-genome. The majority of these genes (826) were PE/PPE

genes. Following the removal of these genes we find that the pan-genome is closed for our 1595

strains of M. tuberculosis (Supplementary Fig. 2c).

A.2.3 Pan-genome COG Categories

We used eggNog with the eggNog-mapper tool [41] to functionally categorize the pan-

genome into Clusters of Orthologous Groups (COGs) [42] (Supplementary Fig. 3f). We filtered

out clusters annotated as PE genes or those marked as hypothetical proteins in order to focus on
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the functionally characterized pan-genome. The core genome made up less than 50% of the clus-

ters annotated with defense mechanisms (V), signal transduction mechanisms (T), inorganic ion

transport and metabolism (P), and secondary metabolism (Q) COGs. In contrast, the core made

up more than 70% of clusters annotated with intracellular trafficking, secretion, and vesicular

transport (U), and translation, ribosomal structure and biogenesis (J).

A.2.4 Virulence factors are highly conserved in the core genome

The pathogenicity of M. tuberculosis can be partly attributed to its unique set of virulence

factors, whose variable distribution may provide further insight into pathogenic requirements.

Thus, we determined the distribution of 445 virulence factors, curated by the PATRIC database

[43], across the constructed pan-genome. Of the 445 virulence factors, 7.0% (31 genes) were in

the accessory genome and 93.0% (414 genes) were in the core genome (Supplementary Table 1).

Of the 31 accessory virulence genes, 17 were PPE/PE/PGRS genes (Supplementary Table 1).

Also partitioned in the accessory genome was a set of six virulence factors composed of genes

encoding the phospholipases C (plcC, plcD, plcA, and plcB) [44], and lipR (a lipolytic esterase).

The remaining eight virulence factors found in the accessory genome were kdpD, mceC, rpfA,

trpD, aceAa, ribA1, Rv0969, and ctpV, and two ESAT-6 like proteins, esxG and esxH. esxG

and esxH comprise part of the ESX-3 secretion system involved in mycobactin-mediated iron

acquisition but may play an additional role in virulence [45]. The isocitrate lyase subunit (aceAa)

is a nonessential gene within the glyoxylate shunt and is downregulated in antibiotic conditions

[46].

In addition to virulence factors, we investigated the “CD4 counteractome”—defined as

the specific set of genes necessary for coping with the immune environment generated by CD4 T
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cells [47]. We found that all of the genes were partitioned in the core genome with the exception

of a trpD, Rv1053, and three adenylate cyclases (Rv1358, Rv1359, and Rv1319c) (Supplementary

Table 1). Interestingly, the existence of an alternative tryptophan biosynthesis pathway suggested

by [48, 49] is supported by the partitioning of trpD in the accessory genome.

Among the accessory genes found in the virulome and counteractome, trpD (anthranilate

phosphoribosyltransferase) stood out as it is an essential tryptophan biosynthesis gene. Interest-

ingly, in a study comparing trpE and trpD deleted strains, it was found that the trpE deleted

strains had a 100,000 fold loss of viability after 2 weeks in contrast to the trpD deleted ones

which could not achieve such a level after 13 weeks[48, 49]. Zang et al. hypothesized that such a

difference could either be due to either “an accumulation of intermediary metabolites or an as of

yet undescribed alternative tryptophan biosynthesis pathway”[49]. In our case, the partitioning

of trpD to the accessory genome could either be due to the absence of trpD in 1000+ strains

or due to trpD having significant sequence variability. A quick check on the PATRIC database

corroborates our findings in that many strains lack an annotated trpD. Given the drastic experi-

mental differences between trpD and trpE deletions and the rare occurrence of accessory virulence

factors, we believe that the significant absence of trpD in the constructed pan-genome supports

the claim that there is an alternative Tryptophan biosynthesis pathway in M. tuberculosis .

A.2.5 Motivation for using mutual information and observation of shared

AMR signals across multiple antibiotics

In our study, mutual information (MI) was used to quantify the dependence between the

labeled phenotype distribution of a specific drug (resistant or susceptible) and the distribution of

a specific variant (presence or absence), across all tested strains (Supplementary Figure 3g). MI
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was chosen due to having many statistical benefits, which include being a nonparametric method

that can quantify nonlinear relationships unlike Pearson’s correlation which measures a linear

relationship. MI has proven to be a natural and powerful means to equitably quantify statistical

associations in large datasets [8]. In addition to key AMR genes (Fig. 1), mutual information

picks up a other known resistance-conferring genes including ethA (Rv3854) [50], papA2 (Rv1182)

[51], drrA (Rv2936) [52], drrB (Rv2937) [52], gidB (Rv3919c) [53], moeW (Rv2338c) [54] and

ubiA (Rv3806c) [55, 56] (Supplementary Data File 1).

MI showed that the variants associated with the highest signals are often those repre-

sentative of susceptible rather than resistant phenotypes, thus indicating that knowledge of the

presence of a susceptible variants in M. tuberculosis holds more informational value in determin-

ing the AMR phenotype.

It is important to note that M. tuberculosis treatment consists of the combined use of

multiple drugs, which in turn make many M. tuberculosis strains (reflected in their genomes) re-

sistant to multiple antibiotics. Therefore, it comes as no surprise that key resistance-determining

genes showed up as tall peaks with other drugs (Fig. 1). These multi-antibiotic resistant M. tu-

berculosis strains make relating a specific variant to a AMR challenging [10, 57].

A.2.6 Motivation of ensemble support vector machine and limitations

Although simple and effective, mutual information does not account for the relationship

between interacting alleles since the pairwise calculations consider variants independently of one

another. In order to uncover possible structures in our dataset related to AMR, we used a

Support Vector Machine (SVM) to select AMR-associated alleles. We introduced both unstable

and randomized behavior in the SVM by using an L1-norm penalty and stochastic gradient
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descent. A “noisier” SVM was used in order to address the following two inherent biases in

the AMR data: (1) that the binary AMR phenotype (resistant or susceptible) is biased towards

in vitro drug testing conditions, and (2) that the binary AMR phenotype does not account

for varying levels of drug efficacy which may determine high level resistance. We looked at an

ensemble of noisy SVM simulations for each drug in order to get a notion of significance (genes

that pop out in many simulations are more likely to be significant) (Methods).

The unstable and randomized SVM method may slightly relieve the bias introduced by

the AMR phenotypes (resistant or susceptible) experimentally determined from in vitro testing

conditions. As noted earlier, the host environment of M. tuberculosis is drastically different

from the one encountered in the petri dish, and such differences influence the efficacy of drugs

[58]. Moreover, the AMR phenotype is binary and does not consider variation in the drug

concentration profiles. Therefore, “explaining resistance” by finding a minimal set of mutations

that best explains the in vitro AMR phenotypes may not capture subtle genetic adaptations.

Other possible influential adaptations, however, such as those under the complex resistance

category that have been shown to result in varying levels of resistance [55], may be hidden within

the genomic data. Thus, this “loose” machine learning method extracts features from suboptimal

peaks as well as from areas surrounding the global optima. Furthermore, it is important to note

that current treatments of M. tuberculosis infection consists of the combined use of multiple

drugs, which in turn make many M. tuberculosis strains resistant to multiple antibiotics.

A key biomarker that was not uncovered was the streptomycin AMR-determinant, rrs,

because only protein coding genes were taken into account in our analysis. We find many cell

wall genes implicated in the analysis as well including pks12 [59], pks9, pks2, dprE1, pks7, pks1 ,

pks6, ltp1, and ddpX. Furthermore, many implicated alleles occur in sulfur metabolism including
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cysK2, serA1, moaE2, mec, and metZ. The presence of cydC as an implicated gene was interesting

because studies have shown that it is important for host immune response and that disruptions

in cydC affect antibiotic efficacy [60, 61].

A.2.7 Detailed perspective of the presented platform-derived results.

Defining SNPs is not required for identification of AMR genes. Defining SNPs relative to

the M. tuberculosis H37Rv reference strain has provided the foundation both for diagnostics and

for identifying novel resistance-conferring mutations but has limited a comprehensive and unbi-

ased analysis of the M. tuberculosis AMR mutational landscape [10, 62–64]. Our representation

of genetic variation and subsequent identification of key AMR genes demonstrates that reference-

based genetic variation is not required for comprehensively identifying AMR genes. Rather, by

representing genetic features as exact allele sequences, each strain in our dataset contains a single

genetic feature for each of its genes, which removes potential confounding effects that may arise

when multiple genetic features appear in a single gene.

A.2.8 Limitations of our view of genetic variation

The primary limitation in our view of genetic variation is that we do not account for non-

protein coding genes. Therefore, our analysis is unable to identify known non-protein coding genes

that confer resistance such as eis and rrs. Furthermore, by only looking at protein sequences, we

do not account for synonymous SNPs, which have been shown to confer resistance [55]. While we

focused our view on protein-coding genes and their protein sequences, there is no limitation in the

ability of our computational platform to account for non-protein coding genes and synonymous

SNPs.
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A.2.9 Machine learning enables increased identification of known AMR genes

over GWAS.

Our results suggest that a machine learning approach that accounts for multi-dimensional

correlations is more powerful than a typical GWAS-based approach that tests positions on the

genome individually for association with a phenotype [65]. Implementing an ensemble SVM

identified 33 known AMR genes, including an additional 7 gene-to-antibiotic relations absent from

our lists derived from pairwise statistical associations. Our observation of significant correlations

between embB, ubiA, and embR implied that machine learning may provide a base for the

quantitative analysis of epistatic interactions. In particular, our pipeline identified an optimal

mapping between multiple genetic features and AMR phenotypes. This mapping elucidates

complex relations underlying AMR evolution that are hidden from simple GWAS analysis. While

we utilized an SVM for its clarity, future efforts may implement machine learning methods capable

of capturing more complexity, or integrate phylogenetic constraints in the optimization problem.

A.2.10 Adaptations in toxins are associated with XDR in M. tuberculosis .

In addition to analyzing the resistance to individual antibiotics, we looked at AMR genes

predicted to contribute to MDR (multidrug-resistant, AUC: 0.96) and XDR (extensively drug-

resistant, AUC: 0.92) strains of M. tuberculosis . In XDR cases, mazF3 (Rv1102c) appeared

as the top 5th allele and vapC21 (Rv2757c) appeared as the 10th ranked allele, both of which

ranked higher than alleles of known AMR determinants such as gyrA, embB, ethA, katG, thyA,

ppsA, and pncA (Supplementary Data File 2). Notably, mRNA levels of mazF3 have been shown

to be induced 6.0-, 8.9-, and 8-fold by isoniazid, gentamycin, and rifampicin, respectively, when

grown in a non-replicating, starved state [66]. The hyperplane weights for mazF3 and vapC21
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showed that mazF3 allele 6 and vapC21 allele 7 were selected as determinants for resistance and

susceptibility, respectively. In addition to the mentioned XDR-associated toxins, other implicated

AMR toxins that appeared across the antibiotics include mazF5 (8th rank, PAS), higA (30th

rank, PAS), vapC2 (21th rank, ETH), higB (49th rank, EMB). In particular, mazF5 is part

of a toxin-antitoxin module (mazF5-mazE5) that has been shown to be in the top five most

differentially expressed genes in a XDR M. tuberculosis strain [67]. The uncovering of toxins by

our machine learning approach complements and extends recent experimental studies by relating

toxin variation to host-relevant AMR evolution.

A.2.11 Epistatic and protein-structure-guided generation of experimental hy-

pothesis

Extending our sequence-based view of these implicated AMR genes by mapping alleles to

protein structures provides a basis for inferring the causal driver of adaptation. We found that the

two resistant-dominant alleles of oxcA uniquely share a SNP A253S located within the thiamin

diphosphate-dependent enzyme M-terminal domain, which led us to hypothesize that the SNP

A253S promotes acid stress resistance through increased enzyme efficiency. Observation that

oxcA SNP A253S occurs in the background of katG S315T suggests the use of acidic stress and

M. tuberculosis strains carrying the S315T harbinger mutation [30] in experimental interrogation

of oxcA in high-level isoniazid resistance.

Given the difficulty of experimenting with M. tuberculosis —where slow growth rate,

host-irrelevant media conditions, and biosafety level 3 requirements burden experimentalists—our

results demonstrate that an additional interpretation of computationally-derived mutations by

analysing protein structures may accelerate experimental investigation of this deadly pathogen.
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Beyond mutation proximality and feature incidence, future efforts may better utilize protein

structures by estimating changes in biochemical properties due to mutations, such as changes in

metabolite or cofactor binding affinities [68].

A.2.12 Geographic contextualization suggests modulation of antibiotic treat-

ment.

Our geographic contextualization of the implicated AMR genes identifies novel genetic

adaptations specific to Belarus—a country that had the highest rate of MDR M. tuberculosis

strains in the world between 2015-2016 [2]. While studies have described the genomic composition

of Belarus strains in terms of the commonly used AMR genes [69], our identification of resistant-

dominant alleles within Rv3848, oxcA, kdpC, dnaA, and vapC21 demonstrates that the focused

view of genetic variation is limiting. Modulation of treatment regimens may reflect these genetic

adaptations by removing isoniazid, streptomycin, and ethambutol. Furthermore, observation that

susceptible dominant alleles of thyA, mmpL11, and ald are localized in Belarus suggests that a

combinatorial antibiotic regimen based on PAS and d-cycloserine may increase the likelihood of

effective MDR M. tuberculosis treatment. We believe that additional epidemiological perspectives

should enable actionable insight to the problem of poor M. tuberculosis management.

A.3 Supplementary Figures
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Figure A.1: Characteristics of 1595 strain dataset. M. tuberculosis strains were selected to span
geography, resistances and phylogenetic space. (a) Geographic locations of strain isolation sites.
The locations are colored according to the “high burden countries” 2016-2020 watchlist categories
[2]. The size of the circles scale logarithmically with the number of strains found in that location.
(b) Phylogenetic tree of the 1595 strains (Methods). (c) Specific drug characteristics tested
across all 1595 strains. Abbreviations: RR, Rifampicin Resistant; MDR, Multidrug resistant;
XDR, Extensively Drug Resistant; NT, Not Tested.
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Figure A.2: M. tuberculosis pan-genome characteristics (a) Distribution of the core, unique, and
accessory genes across the pan-genome. (b) Products annotated across the pan-genome clusters
in ranked order. (c) The number of protein clusters in the pan-genome against the number of
M. tuberculosis strains. The green line indicates the size of the pan-genome as M. tuberculosis
strains are added to the pan-genome. The blue line indicates the size of the core genome with
addition of new strains.
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Figure A.3: Pan-genome quality check, characteristics, and allele-centric view. (a) Distribution
of M. tuberculosis luster size across the 1595 strains. (b) Number of unique clusters per strain in
our dataset. (c) Change in unique pan-genome percentage according to change in strain cutoff
values. (d) Change in core pan-genome percentage according to strain cutoff values. (e) Fit of
median unique genome line on Heap’s power law. The y-axis is the normalized number of new
genes discovered (note that this axis is not logarithmic). The x-axis is a logarithmic number of
strains added to pan-genome. (f) Distribution of the functional characterized pan-genome across
COG categories. (g) Higher resolution view of genetic variation and subsequent calculation of
pairwise associations. The allele pan-genome was constructed by separating out sequences of
exact similarity (i.e. 100% amino acid conservation) into separate columns. Therefore, each
column in the allele pan-genome matrix corresponds to the frequency of a unique allele across
the 1595 strains. Alleles that were found in less than 5 strains were taken out of the analysis. The
mutual information between each binary absence/presence allele vector (blue) and each AMR
phenotype vector (red) was taken.
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Figure A.4: Illustration of multi-layered analysis workflow. A support vector machine (SVM)
was trained on random subsets of the total population with equal size (i.e., bootstrapping).
The SVM utilized an L1-norm and stochastic gradient descent (SGD). Due to the randomness
and L1-norm, the SVM may choose different features with different weights for each subset.
Correlation matrix between the alleles was determined from the ensemble of SVMs. Large positive
correlations correspond to alleles whose weights often appear together and are of the same sign
(i.e., positive and positive, or negative and negative). Large negative correlations correspond to
alleles whose weights often appear together but are of different signs (i.e., positive and negative).
Significant correlations were evaluated using logistic regression models and visualized using allele
co-occurrence tables. Mapping alleles of both high ranked genes and correlated genes concluded
the quantitative analysis.
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Figure A.5: Ensemble ROC curves for SGD-SVM predictions Ensemble ROC curves for SGD-
SVM (stochastic gradient descent support vector machine) predictions of different AMR classi-
fications. (a) First-line drugs: isoniazid, rifampicin, ethambutol, and pyrazinamide. (b) Second-
line drugs of fluoroquinolones: ofloxacin and moxifloxacin, and (c) aminoglycosides: kanamycin,
amikacin, capreomycin. (d) Other antibiotics: 4-aminosalicylic acid, cycloserine, ethionamide,
streptomycin. (e) MDR (multidrug resistant) and XDR (extensively drug resistant) classification.
MDR is defined as M. tuberculosis strains that are resistant to at least Isoniazid and Rifampicin.
XDR is defined as M. tuberculosis strains that are MDR and resistant to at least one second
line aminoglycoside (i.e., amikacin, kanamycin, or capreomycin) and resistant to at least one
second line fluoroquinolones (i.e. ciprofloxacin, ofloxacin, moxifloxacin). The average AUC was
calculated by averaging over AUCs for the 200 independent SGD-SVM ROC curves. The y-axis
is the true positive rate and the x-axis is the false positive rate. For ethionamide, a logistic
regression estimator using both an L1-norm and SGD was used instead of the SVM due to have
a significantly larger AUC (0.79) than the SVM (0.71).
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Figure A.6: Pairwise correlation of ethambutol genetic features across ensemble of SGD-
SVM simulations. (a) SVM weightings across the hyperplane ensemble. The x-axis represents
the iterations for each unique SVM simulation. The y-axis represents the alleles selected by
each SVM. Red corresponds to a positive weighting while blue corresponds to a strong negative
weighting. The alleles of embB, ubiA, and embR are highlighted in green. (b) Clustering of
ethambutol allele correlation matrix. The color blue corresponds to a negative correlation while
a blue color corresponds to a positive correlation. The y-axis is shown since the figure since the
x-axis is the mirror of the y-axis. The alleles of embB, ubiA, and embR are highlighted in green.

Figure A.7: Case-controls for relating MoA with uniprot annotated protein structural features.
Mutation tables and uniprot color annotations are shown for katG, rpsL, thyA, rpoB, and embB.
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Appendix B

An updated genome-scale metabolic

model of M. tuberculosis -

Supplementary Information

B.1 Methods

B.1.1 Choosing a base reconstruction

A variety of both quantitative and qualitative criteria was considered in determining

which model would provide the base for the new model. The determining criterion included

the amount of curated data, extent of previous model unification, gene essentiality predictions,

standardized identifiers, cross-references to databases, and quality of physical representations,

such as the use of an extracellular compartment and mass balanced reactions. Based on this

criterion, the reconstruction of iEK1011 was based on the unification of iOSDD, sMtb, and
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portions of the M. tuberculosis H37Rv BioCyc Database [1] (Figure 1A).

With regards to the selection criterion, sMtb was chosen as the primary base model.

Notably, sMtb performed the best amongst the previous models in gene essentiality predictions

(Figure 2B). In addition, sMtb included metabolite formulas, an extracellular compartment, and

cross-references to databases. Both iSM810 and gal2015, which were both built off of GSMN-

TB 1.1, lacked standardized identifiers (i.e., reactions identifiers were arbitrarily named R1, R2,

etc.), metabolite formulas, and an extracellular compartment (i.e. inputs into the model could be

utilized without being transported across the membrane). The lack of chemical formulas disables

the assessment of mass conservation, which is a defining feature of constraint-based modeling.

Furthermore, an extracellular compartment is key in distinguishing between what goes into the

media and what is being transported across the membrane. While iOSDD performed well in

categories related to component descriptions, it was based on iNJ661 and thus had a lower gene

essentiality score, as previously shown [2]. Despite the low gene essentiality score, we utilized

iOSDD as a representative for the models based on iNJ661. In this study, we show through gene

essentiality predictions that the integration of iOSDD with sMtb results in a 6

The reconstruction process was straightforward (Figure 1A). The base models were first

algorithmically mapped to standardized BiGG identifiers [3]. Identifiers that could not be mapped

by the algorithm were manually assigned identifiers that follow the BiGGs format. Importantly,

BiGGs was chosen as the standardization platform due to being a centralized repository for high-

quality models. Once a standardized basis for identifiers was established, a draft reconstruction

was built from the set of reactions shared across the standardized models. The differences

between reactions across the models were manually assessed through literature references and

added to the draft reconstruction. Once the models were unified into the draft reconstruction,
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manual curation of new biochemical knowledge was incorporated in the reconstruction. The

reconstruction process was iterative and involved constant re-evaluation of model components.

B.1.2 Updating the reconstruction

The model was updated with newly characterized metabolic processes, standardized iden-

tifications, and mass balanced reactions. In addition, detailed and designable metabolic maps

of M. tuberculosis metabolism were manually built and provided in the supplement in order to

help in silico simulation and reconstruction efforts as well as provide access to systems biology

research for non-computational biologists. Specifics on using the escher maps are described in

the section titled “Escher Flux Maps”.

Before any updating took place, sMtb identifiers for metabolites and reactions were

mapped to standardized identifiers in the BiGG Models database [3]. In addition to sMtb,

the BioCyc M. tuberculosis H37Rv version 20.0 database was approximately converted to a co-

bra model - standardizing it first to BiGGs IDs, then MetaNetx, and then BioCyc identifiers

if no BiGGs or Metanetx reference mapping was available. When an sMtb component had no

equivalent BiGGs identification, a new identifier was created that followed the BiGG’s nomencla-

ture. The updated reconstruction utilizes data from Tuberculist, 2016 TB BioCyc database, and

manually curated literature sources. New pathways and major GPR updates include Tuberculosi-

nol biosynthesis, oxidized GTP and dGTP detoxification, Heme uptake and degradation, GlgE

pathway update, glucosylglycerate biosynthesis I, included essential genes Rv3805c and Rv2673

in MAP complex biosynthesis, and others. In addition to incorporating updates from the new

BioCyc database, we re-curated pathways that had inconsistencies across divergent models.
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B.1.3 Description of GAM and NGAM parameters

Our model includes both growth-associated (GAM) and non-growth (NGAM) associated

ATP maintenance parameters. NGAM quantifies the energy required by Mtb to maintain itself

in a given environment while GAM quantifies growth energy requirements not accounted for in

the metabolic model. For iEK1011, the GAM was chosen to be 60 mmol gDw-1, which was

the same as the GAM used in previous M. tuberculosis H37Rv reconstructions of iNJ661, iAB-

AMØ-1410-Mt-661, and iOSDD. For comparison, the GAM used for sMtb—a model built from

the GSMN-TB line of reconstructions—was 57 mmol gDw-1. For the NGAM, iEK1011 uses a

value of 3.15 mmol gDw-1h-1, which was taken from the E. coli model [4]. For comparison, the

NGAM used in sMtb was set to 0.1 mmol gDw-1h-1, while the NGAM used in iSM810 was 1

mmol gDw-1h-1. We are not aware of any datasets available for M. tuberculosis that enables a

rigorous evaluation of the NGAM parameter, such as those used for E. coli [5] (i.e., quantitative

substrate uptake rates for different substrates).

In order to assess the sensitivity of our chosen NGAM, we recomputed the gene essentiality

using an NGAM value of 1.0 and 0.01. With respect to our previous NGAM of 3.15, the NGAMs

of 1.0 and 0.1 result in very similar values (Table B.1). We hope that future experimental efforts

will enable a better parameterization of GAM and NGAM in genome-scale reconstructions of M.

tuberculosis.

B.1.4 Flux Variability Analysis and Sampling of in vitro and in vivo condi-

tions

All constraint-based simulations of iEK1011 were done using the python constraint-based

modeling package, COBRApy [6]. While the linear program is guaranteed to find the global
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Table B.1: Newly proposed AMR genes. The mutation column represents the distinguishing
mutation for the resistant or susceptible-dominant allele(s). Abbreviations: R, resistant; S, sus-
ceptible; EMB, ethambutol; PAS, para-aminosalicylic acid; INH, isoniazid; PZA, pyrazinamide;
RMP, rifampicin; SM, streptomycin; OFX, ofloxacin; ETA, ethionamide; MDR, multidrug resis-
tant; XDR, extensively-drug resistant.

iEK1011 iSM810 sMTb

NGAM 3.15 1.00 0.10

Griffin essentiality MCC 0.6 0.6 0.59

DeJesus essentiality MCC 0.71 0.7 0.7

optimum, the flux state solution to this optimization problem may not be unique, leading to

the alternate optimal flux states. To account for this, we ran Flux Variability Analysis (FVA)

in both the Lowenstein-Jensen media and approximated in vivo conditions using the “biomass”

objective function. FVA gives the maximum and minimum amount of flux a reaction can take

on. In addition to FVA, we sampled the solution space of iEK1011 on both media conditions

using markov-chain monte-carlo sampling (MCMC) package available in cobrapy.

Furthermore, for both FVA and MCMC sampling, we allowed for solutions within 95% of

the optimal value. The growth rate for both simulations were approximately the same to allow

for a meaningful quantitative flux value comparisons.

B.1.5 Comparison of FVA across different drug objective simulations

For both in vivo and in vitro media conditions, we simulated each of the drug objectives

and compared the maximum and minimum fluxes of the reactions catalyzed by the curated an-

tibiotic resistance genes (Table 3.3). The maximum and minimum fluxes for each reaction were

determined by FVA (described above) allowing for solutions within 95% of optimum. Further-

more, iEK1011 was constrained to produce at least 20% of biomass growth (i.e., the lower bound

of the “biomass” reaction was set to frac*max biomass growth, where max biomass growth is the

optimum value of iEK1011 when maximizing biomass on either in vivo or in vitro conditions),
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and frac is the percentage of biomass to maintain while optimizing the other objective functions.

B.1.6 Gene Essentiality predictions

Gene essentiality predictions were determined using the same data and quantitative score

used in evaluating the predictive ability of iSM810 [2]. The gene essentiality dataset was acquired

from Griffin et al. [7]. If the Griffin essentiality confidence score was less than 0.1, the gene was

determined to be essential. A growth cutoff of 20% of optimal growth was chosen to determine

whether the in silico knockout was essential or not (i.e. if it was less than 20% of optimal growth,

the gene was determined to be essential).

In addition to the Griffin gene essentiality dataset, we also evaluated the performance of

the models in using a recent gene essentiality dataset acquired from DeJesus et al. [8]. A cutoff

of 20% was used for the DeJesus dataset for the gene annotations of GD (growth defect), ES

(essential), and ESD (essential domain). If growth was above 20% of optimal growth, the gene was

said to be NE (non-essential) and GA (growth advantage). The matthews Correlation Coefficient

was used to score the quality of each model’s prediction, given by the following equation:

where TP (True Positive) represents the event where the model correctly simulates growth

when a gene is nonessential. TN (True Negative) represents the event where the model correctly

simulates no-growth when a gene is essential. FP (False Positive) represents the event where the

model simulates no growth with the gene knockout when the gene is in fact non-essential. FN

(False Negative) represents the event where the model simulates growth when the gene is in fact

essential. While the Griffin et al. essentiality dataset is older, we utilized it due to having a more

defined media conditions and was previous used in previous M. tuberculosis H37Rv reconstruction

studies. The default objective function (“biomass”) was used across all models. Differences in
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MCC values between this study and that in Ma et al. [2] are due to differences in growth cutoff

thresholds and media conditions. Despite inconsistencies, the values remained similar and did

not change the resulting 6% increase in gene essentiality by iEK1011.

B.1.7 Approximation of literature-derived evolutionary forces of antibiotic-

resistance evolution

A more in depth reasoning for the choice of objective function is described below for each

antibiotic.

Ethambutol: It has been shown that flux-increasing mutations in ubiA confer resistance

to ethambutol by increasing the production of decaprenylphosphoryl-b-D-arabinose (DPA), which

outcompetes ethambutol for embB bindings spots [9]. Therefore, we approximate the evolution-

ary force of adaptation as maximizing the production of DPA.

D-cycloserine: Analogous to the mechanism of ethambutol, it has been shown that

loss-of-function mutations in ald confer resistance to the d-cycloserine by increasing the pool

of Alanine (i.e. ald no longer converts Alanine to pyruvate), thereby competitively inhibiting

d-cycloserine [10].

Para-aminosalicylic acid (PAS): Mutations in folC, ribD, and thyA have been shown

to confer resistance to PAS [11]. It was suggested that thyA mutations are selected in order to

decrease the utilization of folates. In addition, it was suggested that the up-regulation of ribD

occurs as an alternative when dfrA is inhibited.

Ethionamide: It has been shown that mycothiol biosynthesis is essential for ethion-

amide susceptibility [12]. We approximate ethionamide resistance is minimizing the production

of mycothiol. It is worth noting that the objective defined for ethionamide is a much looser
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approximation than the other objectives defined before.

143



B.2 References

1. Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., Kothari,
A., Krummenacker, M., Latendresse, M., Mueller, L. A., Ong, Q., Paley, S., Subhraveti, P.,
Weaver, D. S. & Karp, P. D. The MetaCyc database of metabolic pathways and enzymes
and the BioCyc collection of pathway/genome databases. en. Nucleic acids research 44,
D471–80. issn: 0305-1048, 1362-4962 (Jan. 2016).

2. Ma, S., Minch, K. J., Rustad, T. R., Hobbs, S., Zhou, S.-L., Sherman, D. R. & Price,
N. D. Integrated Modeling of Gene Regulatory and Metabolic Networks in Mycobacterium
tuberculosis. en. PLoS computational biology 11, e1004543. issn: 1553-734X, 1553-7358
(Nov. 2015).
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Appendix C

A biochemically-interpretable

machine learning classifier for

microbial GWAS - Supplementary

Information

C.1 Methods

C.1.1 Characteristics of utilized datasets.

The TB AMR datasets utilized in this study were acquired from a previous study that

performed machine learning and protein structure analysis. References describing this data

set are provided in the supplementary information of the previous study [1]. The dataset was

initially acquired from the PATRIC database [2]. The sequencing and phenotypic testing data for
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these strains were generated at the Broad Institute. Additional information for these sequencing

projects can be found at the Broad Institute website for the TB Antibiotic Resistance Catalog

(TB-ARC).

C.1.2 Curation and functional assessment of TB AMR genes

A list of known and implicated TB AMR genes was curated for 8 antibiotics (isoniazid,

rifampicin, ethambutol, pyrazinamide, ofloxacin, d-cycloserine, para-aminosalicylic acid) using a

combination of databases [3], experimental studies, and computational studies [1, 4–6]. Exper-

imental studies on allele-specific effects for these AMR genes were curated utilizing a previous

study performing 3D structural mutation mapping [1] and functional annotation from UNIPROT

[7]. The lists of known and implicated TB AMR genes and mutational effects are provided (Sup-

plementary File 1).

C.1.3 Modification of base genome-scale model

We performed minor modifications to the base genome-scale model, iEK1011, in order to

use it for the MAC. Specifically, we performed quality-assurance and quality check (QA/QC) by

removing blocked reactions (i.e., cannot carry any flux) and imposing maximum and minimum

allowable flux constraints on the model determined by Loopless Flux Variability Analysis (LFVA)

[8, 9]. Before FVA-derived constraints were imposed, we parameterized the exchange reactions

according to the experimental nutrient media for testing AMR phenotypes, Middlebrook 7H10

(m7H10). Specifically, the LFVA simulations were constrained to have a biomass flux of at least

10% of its maximum value, and the total flux was bounded from above by 1.5 times the minimum

total flux determined by parsimonious flux balance analysis [10]. The code for initializing the
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base genome-scale model is provided in the code repository.

C.1.4 Generation of allele-constraint map ensemble through randomized sam-

pling

Since knowledge of allele-specific effects are unavailable, we generated an ensemble of

landscapes through randomized sampling of the allele-constraint map. Specifically, we generated

an allele-constraint sample by sampling from each allele’s discretized constraint set. The con-

straint set per allele includes the “no change” option and has a uniform probability distribution

(i.e., each constraint has equal probability). An allele-constraint map sample is thus derived from

sampling each allele’s constraint distribution for all alleles.

C.1.5 Statistical tests for allelic AMR and flux stratification

We tested the AMR-based flux stratification of alleles by fitting a linear regression line

between the allele log odds ratio (LOR) and fluxes. Linear regression was implemented using the

linregress function in the scipy package. The LOR for each allele with respect to a specific an-

tibiotic was quantified as LOR=log10((PR/PS)/(AR/AS)). PR, PS, AR, and AS denote number

of strains that have the allele and are resistant (PR), have the allele and are susceptible (PS), do

not have the allele and are resistant (AR), and do not have the allele and are susceptible (AS),

respectively. If any of the values were 0, then 0.5 was added to each value to ensure a value when

computing the logarithm. The fluxes for each allele were defined as the set of fluxes in strains

containing that allele. We identified significant allelic LOR-flux correlations as having less than

5% FDR by the Benjamini-Hochberg method.

Conventional GWAS and pathway analysis of allelic variants Genome-wide association
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analysis was performed to identify significant associations between allele frequencies and AMR

phenotypes in our dataset using an ANOVA F-test, carried out using scikit-learn [11]. The

set of significant alleles was determined by the Bonferroni-corrected significance threshold set

at P ¡ 0.05/195 = 2.56x10-4. We identified metabolic pathways enriched in significant alleles

through hypergeometric enrichment tests using the scipy function hypergeom and the gene-

pathway annotation list described above. We identified significant pathways as having less than

5% false discovery rate (FDR) correction by the Benjamini-Hochberg method.
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Appendix D

Laboratory evolution of multiple

E. coli strains reveals unifying

principles of adaptation but diversity

in driving genotypes -

Supplementary Information

D.1 Methods

D.1.1 Adaptive laboratory evolution and DNA sequencing

ALE was performed using 3 independent replicates of each strain. Cultures were serially

propagated on M9 minimal medium [1] with 2 g/L glucose at 37C and well-mixed for proper
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aeration using an automated system[1, 2] that periodically passed 150 µL of the cultures to a

new fresh 30 mL flasks with a total working volume of 15 mL M9 medium (i.e., a 1:100 ratio)

once they had reached an optical density (OD600) of 0.3 (Tecan Sunrise plate reader, equivalent

to an OD600 of 1.3 on a traditional spectrophotometer with a 1 cm path length). Such a routine

to pass at the late exponential phase of growth, was to keep cells under constant selection

pressure for higher fitness, i.e. growth rate. Cultures were always maintained in excess nutrient

conditions assessed by non-tapering exponential growth. The laboratory evolution was performed

for a sufficient time interval to allow the cells to reach its fitness plateau. Periodically, glycerol

cryogenic stocks were prepared and stored at -80C for any culture restarting. The fitness jump

was observed in about 200 generations; however, the experiment was continued for approximately

900 generations to explore the possibility of any secondary fitness jump. Further passaging was

stopped due to the absence of any appreciable growth rate increase in about 700 generations. The

slope of ln(OD600) vs. time of four OD600 measurements from each flask was used to determine

the growth rate. A cubic interpolating spline constrained to be monotonically increasing was fit

to these growth rates to obtain the smoothed fitness trajectory curves. DNA resequencing was

performed on a clone from the end points of evolved strains as described earlier by Lacroix et al.,

2015 [2]. The ALE mutation data is provided for all replicate lineages (Supplementary Table 7).

D.1.2 RNA-sequencing and processing

Total RNA was sampled from duplicate cultures. Growth curve analysis was performed

using a Bioscreen C Reader system with 200µ L culture volume per well. Two biological replicates

were used in the assay. Media components were purchased from Sigma-Aldrich (St. Louis, MO).

After inoculation and growth, 3mL of cell broth (OD600) was immediately added to two volumes
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Qiagen RNA-protect Bacteria Reagent (6mL), vortexed for 5s, incubated at room temperature

for 5min, and immediately centrifuged for 10min at 11,000g. The supernatant was decanted, and

the cell pellet was stored in the -80C. Cell pellets were thawed and incubated with ReadyLyse

Lysozyme, SuperaseIn, Protease K, and 20% SDS for 20min at 37C. Total RNA was isolated

and purified using the Qiagen RNeasy Mini Kit columns and following vendor procedures. An

on-column DNase-treatment was performed for 30min at room temperature. RNA was quantified

using a Nanodrop and quality assessed by running an RNA-nano chip on a bioanalyzer. The

rRNA was removed using Illumina Ribo-Zero rRNA removal kit for Gram-negative bacteria. A

KAPA stranded RNA-Seq Kit (Kapa Biosystems KK8401) was used following the manufacturer’s

protocol to create sequencing libraries with an average insert length of around 300bp. Libraries

were run on a HiSeq4000 (Illumina). All RNA-seq experiments were performed in biological

duplicates from distinct samples. Raw-sequencing reads were deposited to GEO.

Raw-sequencing reads were mapped to the reference genomes using bowtie (v1.1.2)[3]

with the following options “-X 1000 -n 2 -3 3”. Transcript abundance was quantified using

summarizeOverlaps from the R GenomicAlignments package (v1.18.0)[4]. To ensure the quality

of the compendium, genes shorter than 100 nucleotides and genes with under 10 fragments per

million-mapped reads across all samples were removed before further analysis. Transcripts per

million (TPM) were calculated by DESeq2 (v1.22.1) [5]. The final expression compendium was

log-transformed log2(TPM+1) before analysis, referred to as log-TPM. Biological replicates with

R2¡0.9 between log-TPM were removed to reduce technical noise.
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D.1.3 Fluxomics

Metabolic characterization by 13C metabolic flux analysis was performed as described

in [6, 7]. Briefly, for 13C-tracer experiments, strains were cultured aerobically in glucose M9

minimal medium at 37C in mini-bioreactors with 10 mL working volume. Pre-cultures were

grown overnight and then used to inoculate the experimental culture at an OD600 of 0.01,

in which 2 g/L of [1,6-13C]glucose was present. Cells were harvested for GC-MS analysis at

mid-exponential growth when OD600 was approximately 0.7. [1,6-13C]glucose was previously

identified as an optimal tracer for global flux resolution [8].

Chemicals and M9 minimal medium were purchased from Sigma-Aldrich (St. Louis,

MO). Isotopic tracers were purchased from Cambridge Isotope Laboratories (Tewksbury, MA):

[1,6–13C]glucose (99.2% 13C) (99.7%). The isotopic purity and enrichment of all tracers were

validated by GC-MS analysis. All solutions were sterilized by filtration. Samples were collected

during the exponential growth phase to monitor cell growth, glucose consumption and acetate

production. Cell growth was monitored by measuring the optical density at 600 nm (OD600)

using a spectrophotometer (Eppendorf BioPhotometer). The OD600 values were converted to

cell dry weight concentrations using a predetermined OD600-dry cell weight relationship for E.

coli (1.0 OD600 = 0.32 gDW/L) [9]. After centrifugation, the supernatant was separated from the

biomass pellet and glucose concentration was measured with a YSI 2700 biochemistry analyzer

(YSI, Yellow Springs, OH). Acetate was measured by HPLC.

GC-MS analysis was performed on an Agilent 7890B GC system equipped with a DB-

5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; Agilent J&W Scientific),

connected to an Agilent 5977A Mass Spectrometer operating under ionization by electron im-

pact (EI) at 70 eV. Helium flow was maintained at 1 mL/min. The source temperature was
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maintained at 230°C, the MS quad temperature at 150C, the interface temperature at 280C, and

the inlet temperature at 250C. GC-MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized

proteinogenic amino acids was performed as described [6]. Labeling of glucose (derived from

glycogen) and ribose (from RNA) were determined as described. In all cases, mass isotopomer

distributions were obtained by integration [10] and corrected for natural isotope abundances [11].

All mass isotopomer data are provided.

The metabolic network model used for 13C-MFA is provided. The model [7] includes

all major metabolic pathways of central carbon metabolism, lumped amino acid biosynthesis

reactions, and a lumped biomass formation reaction. 13C-MFA calculations were performed using

the Metran software [12], which is based on the elementary metabolite units (EMU) framework

[13]. Fluxes were estimated by minimizing the variance-weighted sum of squared residuals (SSR)

between the measured and model predicted mass isotopomer distributions and acetate yield using

non-linear least-squares regression. Flux estimation was repeated 10 times starting with random

initial values for all fluxes to find a global solution. At convergence, accurate 95% confidence

intervals were computed for all estimated fluxes by evaluating the sensitivity of the minimized

SSR to flux variations. Precision of estimated fluxes was determined as follows60: Flux precision

(stdev) = [(flux upper bound 95%) – (flux lower bound 95%)] / 4.

To describe fractional labeling of biomass amino acids G-value parameters were included

in 13C-MFA. As described previously [6], the G-value represents the fraction of a metabolite

pool that is produced during the labeling experiment, while 1-G represents the fraction that is

naturally labeled (e.g., from inoculum). By default, one G-value parameter was included for each

measured amino acid in each data set. Reversible reactions were modeled as separate forward

and backward fluxes. Net and exchange fluxes were determined as follows: vnet = vf-vb; vexch
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= min(vf, vb). To determine the goodness-of-fit, 13C-MFA fitting results were subjected to a

2-statistical test [14].

D.1.4 Mann-Whitney U tests for identifying convergent and divergent phe-

notypes

To perform statistical tests for convergent and divergent features, we transformed the

data vectors describing the mean physiological and fluxomics values for the size WT and EP

flasks to vectors containing the pairwise distances amongst the points. The conversion resulted

in a total of 15 points for each the WT and EP flasks. The transformation to pairwise distances

accounts for how close the strains were at each point (i.e., convergence describes points coming

closer together). Mann-Whitney U tests were then carried out to test whether the EP pairwise

distances are smaller than the WT pairwise distances (i.e., the EP values are closer together than

the WT values). We calculated the p-values using both a normal approximation implemented

with the mannwhitneyu function in scipy stats. Both of the statistic estimates captured the

general behavior, but the normal approximation was utilized due to the lack of table p-values for

U statistics less than 36. We then selected the convergent and divergent features as those with a

false discovery rate (FDR) less than 5% using the Benjamini Hochberg correction, implemented

in the statsmodels package version 0.9.0 [15].

D.1.5 Differential expression analysis of RNA-seq

We performed differential expression analysis of the RNA-seq profiles between consecutive

ALE flasks (i.e., ALE evolution stages) using the R package DESeq2 [5]. Specifically, differential

expression was performed for each pair of flasks describing the before and after of an ALE

157



experiment. We utilized an adaptive t prior shrinkage estimator [16] to transform the log fold

changes for better ranking and visualization of the differential expression results. We performed

a sensitivity analysis of the p-value and Log2 fold change thresholds on determining sets of

significantly expressed genes.

D.1.6 iModulon analysis of RNA-seq data

We previously showed that Independent Component Analysis (ICA) deconvolved a large

compendium of E. coli MG1655 RNA-seq data into a linear combination of independent sources

(“iModulons”), that reflect known regulons, and source weightings (“iModulon activities”), which

describe the global regulatory state [17]. The resulting matrix decomposition by ICA in Anand

et al [17] is formulated as follows, XPRECISE = MPRECISE * APRECIS.

Where XPRECISE is the previously utilized PRECSE RNA-seq data described in tran-

scripts per million (TPM), MPRECISE is the matrix describing the iModulon gene sets (genes

as rows and iModulons as columns), and APRECISE is the sample-specific iModulon activities

(iModulons as rows and samples as columns). Using the previous set of 92 iModulons (MPRE-

CISE), we transformed the flask-specific gene expression profiles of our six E. coli strain ALEs

(X6strain) into flask-specific iModulon activities (APRECISE), formulated as follows, A6strain

= MPRECISE-1 * X6strain.

Where A6strain and X6strain describe the flask specific iModulon activities and flask-

specific gene expression TPM profiles, respectively. The previously uncharacterized iModulons

Uncharacterized-6, Uncharacterized-5, and Uncharacterized-3 were characterized in this study as

hns-related, ppGpp, and CspA, respectively. Together, the 92 iModulons explained 52% of the

expression variance of the multi-strain core genome, where they explained the most expression

158



for MG1655 (67.78%) and the least for C (44.23%).

D.1.7 Differential expression analysis of RNA-seq

Distribution of differences in iModulon activities between biological replicates were first

calculated and a log-norm distribution was fit to the differences [18]. In order to test statistical

significance, absolute value of difference in activity level of each iModulon between the two

samples were calculated. This difference in activity was compared to the log-normal distribution

from above to get a p-value. Because differences and p-value for all iModulons were calculated,

the p-value was further adjusted with Benjamini-Hochberg correction to account for multiple

hypothesis testing problem. Only iModulons with change in activity levels greater than 5 were

considered significant. Differential activity analysis was performed for all ALE jumps as well as

between the WT and EP flask for each strain.

D.1.8 Data transformation to jump-specific perspective

We utilize a jump-specific perspective of the data was taken for our iModulon PCA and

mutation correlation analysis. Specifically, we transform the activity matrix (flask-specific) to the

difference in flask activity along the trajectory (jump-specific) in order to identify components

describing general adaptation trends as opposed to strain differences. We formulate this as

follows, Xjump i, strain j = Xflask i+1, strain j - Xflask i, strain j.

Where δX describes the jump-specific dataset with 16 rows (jumps) and X describes the

original flask-specific dataset with 22 rows (flasks).
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D.1.9 Trade-off analysis through PCA and ANCOVA

In order to avoid harsh statistical corrections when testing all possible iModulon pairs, we

performed PCA using the jump-specific iModulon activities in order to filter out a candidate set

of iModulons for downstream correlation tests. Since our initial run of PCA resulted in the first

component (explaining 40% of the variation) describing large FlhDC and FliA activity unique

to the first MG1655 jump, we filtered out the FlhDC and FliA iModulon outliers. We then

performed both analysis of covariance (ANCOVA) and pearson correlation tests for iModulons

that had PCA weights greater than 0.10 in components explaining at least 5% of the variation.

ANCOVA was performed to test the similarity of the strain-specific regression lines (dependence

on strain-specific categorization). Tradeoffs were identified as iModulon pairs with ANCOVA R2

greater than 0.90.
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