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Abstract of the Thesis

Splitting Algorithms for Convex Optimization

and Applications to Sparse Matrix Factorization

by

Rong Rong

Master of Science in Electrical Engineering

University of California, Los Angeles, 2013

Professor Lieven Vandenberghe, Chair

Several important applications in machine learning, data mining, signal and im-

age processing can be formulated as the problem of factoring a large data matrix

as a product of sparse matrices. Sparse matrix factorization problems are usually

solved via alternating convex optimization methods. These methods involve at

each iteration a large convex optimization problem with non-differentiable cost

and constraint functions, which is typically solved by block coordinate descent

algorithm. In this thesis, we investigate first-order algorithms based on forward-

backward splitting and Douglas-Rachford splitting algorithms, as an alternative

to the block coordinate descent algorithm. We describe efficient methods to eval-

uate the proximal operators and resolvents needed in the splitting algorithms. We

discuss in detail two applications: Structured Sparse Principal Component Anal-

ysis and Sparse Dictionary Learning. For these two applications, we compare the

splitting algorithms and block coordinate descent on synthetic data and bench-

mark data sets. Experimental results show that several of the splitting methods,

in particular Tseng’s modified forward-backward method and the Chambolle-Pock

splitting method, are often faster and more accurate than the block coordinate

descent algorithm.
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CHAPTER 1

Introduction

1.1 Sparse Matrix Factorization

Matrix factorization problems are widely encountered in several fields, includ-

ing signal processing [CDS98], statistical and machine learning [Tib96, XLG03],

pattern classification [LHZ01], and image processing [EA06, BBL07]. They can

be seen as extensions of the singular value decomposition (SVD) with additional

properties imposed on the matrix factors. Sparse matrix factorization problems

arise in sparse coding in signal processing [LBR07], and sparse principal compo-

nent analysis (PCA) [ZHT06]. In other applications such as Structured Sparse

PCA [JOB10] or hierarchical dictionary learning [JMO10], certain sparsity struc-

tures or preferred sparsity patterns are imposed as well. There are many other

types of modified frameworks of matrix factorizations, such as penalized matrix

decomposition (PMD) [WTH09], minimum cardinality relaxations and approxi-

mations [BMP08], and non-negative matrix factorization (NMF) [DLJ06]. Similar

to sparse matrix factorization, these matrix factorization problems are extremely

complex and non-convex. Algorithms for these matrix factorization problems do

not give guarantees of convergence to global optimal solutions.

Many of these applications can be formulated as approximating a matrix by

a product of two matrices with certain sparsity patterns. More precisely, given

a matrix X ∈ R
n×p, the goal is to find an approximation X̂ ≈ X of the form
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X̂ = UV T , U ∈ R
n×r, V ∈ R

p×r, such that the matrix factors U and/or V are

sparse. The number of columns r for both matrices depends on the specific ap-

plications and conditions on the sparsity pattern.

To formulate the sparse matrix factorization as a minimization problem, we

approximate the matrix X by X̂ = UV T , such that the square Frobenius norm of

X − X̂ is minimized with additional convex penalties or constraints on U and V

that promote sparsity. More precisely, consider the problem

minimize
1

2
‖X − UV T‖2F + λg(V )

subject to h(U) ≤ 1. (1.1)

The parameter λ > 0 controls the level of regularization: Choosing λ = 0 solves

the rank r matrix factorization exactly while choosing larger λ introduces more

regularization. The choice of the regularization functions g(V ) and h(U) depends

on the applications and the desired type of sparsity patterns.

Generally it is hard to directly impose sparsity constraints. It requires knowl-

edge of the exact sparsity pattern. In general the formulation is non-convex and

scales poorly with problem size. Instead, applying additional convex penalties that

indirectly promote sparsity is much more efficient in terms of problem formulation

and scalability. For example, the typical lasso type penalty [Tib96] applying as

the matrix l1 norm

g(V ) = ‖V ‖1 =
∑

i

∑

j

|Vi,j|

promotes element-wise sparsity in the factorization matrix V . Witten et al. [WTH09]

proposed that adding an l1 penalty on the columns of V in least squares problem

gives a sparse solution for the PCA problem. Furthermore, Jenatton et al. [JOB10]

proposed that adding suitable l1-l2 penalties on the columns of V introduces struc-

tured sparsity in the principal components according to the predefined structure.
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Mairal et al. [MBP09] also proposed that adding suitable penalties on the rows

of V gives a factorization of X with a sparse decomposition matrix factor, which

can be used to solve sparse dictionary coding problems.

In this thesis, we focus on column-wise sparsity or group sparsity using l1, l1-l2

or l1-l∞ norms as regularization penalty. They are all targeted at promoting spar-

sity pattern with certain structures. Namely, consider a more specific formulation

from (Eq. 1.1):

minimize
1

2
‖X − UV T‖2F + λ

∑

k

g(V k)

subject to h(Uk) ≤ 1, ∀k, (1.2)

where V k and Uk are the k-th columns of matrix V and U , respectively. The

convex penalty or constraint functions

g(V k) =
∑

α∈A

‖V k
α ‖p, h(Uk) =

∑

β∈B

‖Uk
β‖q, (1.3)

with p, q ∈ {2,∞}, are considered as group l1 norms. A and B are groups of index

sets based on prior knowledge of sparsity structure of matrix U and V , such that

α ∈ A and β ∈ B are index set whose elements belong to the same sparsity group.

In the next section, we discuss algorithms developed for problem (Eq. 1.1).

1.2 Previous Approaches and Algorithms

The optimization problem (Eq. 1.1) is non-convex and hence extremely hard to

solve in general. However, there are some important properties of this optimiza-

tion problem.
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The most important one is bi-convexity. The objective function itself in

(Eq. 1.1) is not convex jointly in U and V . However, for either U or V alone, it is

a regularized quadratic minimization problem if the other variable is fixed: For a

fixed V , the objective is just a quadratic function of U with a domain constraint,

minimize
1

2
‖X − UV T ‖2F

subject to h(Uk) ≤ 1, ∀k. (1.4)

As long as the domain defined by h(Uk) ≤ 1 is convex, this objective is convex

in U for a fixed V . Similarly, for a fixed U , the objective is a penalized quadratic

function,

minimize
1

2
‖X − UV T‖2F + λ

∑

k

g(V k). (1.5)

It is also convex in V for a fixed U if the regularization function g(V k) is convex.

The other important property of (Eq. 1.1) or (Eq. 1.2) is non-differentiability:

In many applications, the constraints and/or penalty functions (Eq. 1.3) are non-

differentiable. In sparse matrix factorization, it is hard to use gradient type de-

scent methods since the gradient is not defined on the entire domain. Fortunately,

there are many ways to handle non-differentiability in various different algorithms

for both of the convex optimization problem in (Eq. 1.4) and (Eq. 1.5).

Since this optimization problem is convex in U for a fixed V and vice versa, it is

simple to consider one variable at a time. Therefore, an algorithm called alternat-

ing descent is a promising way to achieve local optimality. This alternating descent

algorithm works for various matrix factorization problems [Eld07, JOB10]. For

sparse matrix factorization problem in (Eq. 1.2), this algorithm can be formulated
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as:

U+ = argmin
U :h(Uk)≤1

{

1

2
‖X − UV T‖2F

}

,

V + = argmin
V

{

1

2
‖X − U+V T‖2F + λ

∑

k

g(V k)

}

. (1.6)

The alternating descent algorithm just solves the two separate minimization prob-

lems in an alternating manner. One can use different approaches for each of the

two sub-problems in (Eq. 1.6) to handle the non-differentiability of the constraint

and penalty term. In fact, various different approaches have been proposed to

solve these two convex sub-problems.

1.2.1 Block Coordinate Descent

In many applications, the variables are in some way separable depending on the

regularization penalty and constraint. For example, column-wise sparsity penal-

ties (Eq. 1.3) are independent between columns. Jenatton et al. [JOB10] proposed

a block coordinate descent (BCD) method for Structured Sparse Principal Compo-

nent Analysis. Similarly Jenatton et al. [JMO10] also proposed a block coordinate

ascent method, which is BCD applied to the dual problem, for sparse hierarchical

dictionary learning. Block coordinate descent algorithm updates variables in each

block in a cyclic manner, by solving a smaller problem of the desired variables

while fixing the other.

BCD explicitly exploits the separable structure of the penalty and constraint

in the matrix factorization problem. Many of the coordinates or variables are

formulated in groups which are independent across different groups. Each inner

iteration of BCD deals with one group of variables at a time and consider the

other variables constant in order to reduce complexity. This makes BCD a fast
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algorithm and easy to implement. Since BCD updates one group of variables at

a time, it can handle more complex, non-convex penalties as long as the prob-

lem for each inner iteration remains easy and fast to solve. Namely, Jenatton et

al. [JOB10] proposed a method to handle non-convex lp norm where p < 1 for

(Eq. 1.3) in the convex sub-problems for alternating descent.

On the outer iteration, there are some heuristic strategies to arrange the order

in which the block variables are being updated. Yet there is no general conver-

gence analysis. There is no guaranteed bounds on convergence rate because BCD

highly depends on application, input data, and the strategy of ordering. For some

applications, these strategies are limited. Moreover, BCD does not provide certifi-

cates of optimality since it minimizes a subset of variables at a time. In fact, there

are no guarantee of local optimality for each sub-problem in (Eq. 1.6). Even if it

converges to local optimum, there is no way to examine or verify such optimality.

Many applications of BCD simply use a fixed number of iterations without stop-

ping condition [JOB10].

1.2.2 Proximal Point Methods

Both sub-problems in (Eq. 1.6) are least squares problems with a regularization

penalty or constraint. It is hard to minimize the objective function due to the non-

differentiable regularization terms. The proximal point algorithm (PPA) [G91] is

usually considered suitable for these type of problems. Starting from an initial

point, PPA solves a convex optimization problem obtained by adding to the ob-

jective a quadratic penalty of the distance to the point from previous iteration.

It iteratively solves them until the point is close enough to the optimum of the

original problem. Some famous algorithms are special cases of PPA, such as aug-

mented Lagrangian methods and proximal methods of the multipliers.
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Each iteration of PPA updates all variables at the same time. No update

sequence or ordering of variables is necessary for PPA. In addition, PPA only re-

quires one simple update for every iteration, which makes it perfectly simple. In

addition, PPA guarantees rate of convergence for convex objective and provides

an easy way to verify optimality if certain conditions are satisfied. In the alter-

nating descent algorithm (Eq. 1.6), it is important to know the error from the

exact global optimum when solving each of the two convex sub-problems.

On the other hand, PPA solves at each iteration a convex optimization prob-

lem obtained by adding a quadratic penalty. Normally this quadratic penalty is

added to handle non-differentiable regularizations. It does not reduce complexity

of the objective. In fact, most of the problems in real applications do not have

easy or closed form solutions. Therefore, this convex optimization problem for

each iteration of PPA might be very expensive and sometimes impossible to solve.

1.3 Splitting Algorithms

The splitting algorithms are inspired by the advantages and difficulties of PPA.

It splits the original objective in to two parts and solves two convex optimization

problems obtained by adding quadratic penalties similar to PPA, which are much

easier to solve in many cases [CP10]. Namely, if the original objective can be

separated into two simple functions, as in

minimize f(x) + g(x),

then the splitting algorithms provide such an iterative update method that deals

with the two functions f(x) and g(x) separately. As long as the two separate func-

tions remain simple, these splitting algorithms do not require additional properties

7



such as block separability. For sparse matrix factorization problem (Eq. 1.1), the

splitting algorithms only require the penalty and constraint functions to be sim-

ple. However, BCD could only deal with problems like (Eq. 1.2) since it requires

the column-wise separability.

The splitting algorithms make it possible to deal with complex coupled objec-

tive functions that PPA cannot handle in a reasonable complexity. However, they

require to solve two simple problems in each iteration. These two problems have

to be very cheap to evaluate and usually one or both of them must have closed

form solutions. In the sparse matrix factorization problem, the Frobenius norm

square term in (Eq. 1.1) is a simple, strongly convex function. Splitting algorithms

are excellent choices if the penalty and constraint are simple. As an example, the

column-wise sparsity penalties in (Eq. 1.3) certainly fit in this category.

1.4 Outline of Thesis

The remainder of this thesis is organized as follows: Convex optimization back-

ground is introduced in Chapter 2, where we briefly discuss resolvent and mono-

tone operator followed by splitting algorithms. In Chapter 3 and Chapter 4, we

will discuss two specific applications of sparse matrix factorization: Structured

Sparse Principal Component Analysis [JOB10] and Sparse Hierarchical Dictio-

nary Learning [JMO10]. At last, we discuss possible further applications of sparse

matrix factorization as well as conclude our contributions in Chapter 5.
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CHAPTER 2

Proximal Operators and Splitting Algorithms

In this chapter, we introduce convex optimization background related to the al-

ternating descent algorithm in (Eq. 1.6) for sparse matrix factorization. First we

discuss the regularization penalties and constraints (Eq. 1.3) and their properties

for convex optimization algorithms. Then we introduce the optimality conditions

and various splitting algorithms for a general convex optimization problem which

includes both convex optimization sub-problems that arise in the alternating de-

scent algorithm.

2.1 Sparsity Promoting Penalty

The sparsity promoting penalty term in problem (Eq. 1.5), one of the convex sub-

problems in (Eq. 1.6), is essential in sparse matrix factorization. It is well known

that the l1 norm penalty or constraint promotes sparsity. Applying the l1 regular-

ization to least squares problem leads to the well-known lasso formulation [Tib96].

Correspondingly, applying the l1-l2 norm penalty described in (Eq. 1.3) leads to

group or overlapping group lasso formulation [FHT10]. The l1-l2 norm promotes

sparsity over all variables in the same group. Consider the l1-l2 norm,

g(x) =
∑

α∈A

‖xα‖p. (2.1)

It is defined by the index sets group A. One simple example is the l1 norm in

R
n. Each element forms its own group: A = {{1} , {2} , . . . , {n}}. This is an

9
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Figure 2.1: The l1 norm ball (left) and the group l1-l2 norm ball (right) in 3 dimen-

sional space.

element-wise sparse penalty, and it prefers the extreme points of the l1 norm ball.

See its level set in 3 dimensional space in Figure 2.1. Another example is the

group l1-l2 norm with A = {{1} , {2, 3}}. The level set {x|g(x) = 1} is shown in

Figure 2.1 for

g(x) =
∑

α∈A

‖xα‖2

= ‖x{1}‖2 + ‖x{2,3}‖2

= |x1|+
√

x2
2 + x2

3

= 1.

It prefers the boundary of the disk where x1 = 0 and the two conic extreme points

where x2 = x3 = 0. In other words, either the first or the second group of variables

are set to be sparse.

In general, one variable can appear in different groups. For example, consider

A = {{1} , {1, 2} , . . . , {1, 2, . . . , n}}. Figure 2.2 shows the level set {x|g(x) = 1}

for this overlapping group l1-l2 norm in 3 dimensional space.
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Figure 2.2: The overlapping group l1-l2 norm ball in 3 dimensional space.

Additionally, some linear scaling or weight functions can be imposed on each

group. This leads to penalty functions of the form

g(x) =
∑

α∈A

‖Dαxα‖p, (2.2)

where Dα is a square diagonal weight matrix. There are many different ways to

determine weights for a given index set α. A straightforward example is the group

cardinality weight matrix

Dα = |α|I.

This kind of weight matrix is used to give larger groups more weight.

Based on the prior knowledge of the problem, the desired sparsity pattern,

and other rules from the applications, the index set and weight matrix can be

very different so that this function (Eq. 2.2) is suitable to be used as penalty

or constraint for various different applications. However, the formulation of this

function remains simple regardless of how the group of index sets is formed.
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2.2 Optimality Conditions

Recall the two convex sub-problems (Eq. 1.4) and (Eq. 1.5) for alternating descent

algorithm (Eq. 1.6),

minimize
U

1

2
‖X − UV T‖2F s.t. h(Uk) ≤ 1, ∀k.

minimize
V

1

2
‖X − UV T‖2F + λ

∑

k

g(V k).

Consider the convex constraints h(Uk) ≤ 1 as indicator functions, which takes 0

as function value when it is feasible and +∞ otherwise. Then both of the sub-

problems are obtained by adding a regularization to the least squares problem.

Namely, consider a general optimization problem

minimize f(x) + g(Cx). (2.3)

Function f and g are closed, convex with non-empty domains. The two convex

sub-problems are just special cases of (Eq. 2.3) with f as a quadratic function and

g as a regularization function.

2.2.1 Primal Optimality

Consider the problem (Eq. 2.3). The optimality condition for this problem is

0 ∈ ∂f(x) + CT∂g(Cx). (2.4)

It is called a monotone inclusion problem. In (Eq. 2.4), ∂f stands for the subdif-

ferential of function f , such that vector y ∈ ∂f(x) if and only if

f(x′) ≥ f(x) + yT (x′ − x), ∀x′ ∈ domf. (2.5)

Generally ∂f(x) is not unique for non-smooth functions. When f is differentiable

at x, it is equivalent to a singleton with its value equals to the gradient of f at x:
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∂f(x) = {∇f(x)}. If f is smooth over the entire domain, the optimality condi-

tion (Eq. 2.4) simply means the gradient of the objective function is zero. When

both f and g are convex, a solution x for this problem is optimal if and only if it

satisfies the condition (Eq. 2.4) [BV04].

2.2.2 Dual Optimality

Consider the convex optimization problem

minimize f(x) + g(y)

subject to y = Cx. (2.6)

It is equivalent to the problem (Eq. 2.3). The Lagrangian of (Eq. 2.6) is

L(x, y, z) = f(x) + g(y) + zT (Cx− y). (2.7)

The Lagrange dual function [BV04] is obtained by minimizing the Lagrangian

(Eq. 2.7) over the primal variables x and y:

φ(z) = inf
x,y

L(x, y, z)

= inf
x

{

f(x) + (CT z)Tx
}

+ inf
y

{

g(y)− zT y
}

= −f ∗(−CT z)− g∗(z). (2.8)

In (Eq. 2.8), the function f ∗ is defined as

f ∗(x) = sup
u∈domf

{

xTu− f(u)
}

. (2.9)

It is called the Fenchel conjugate function [Fen49] of f . The Fenchel conjugate

function is always closed and convex even though the original function is not

convex. The Lagrangian dual of the problem (Eq. 2.6) is to maximize the Lagrange

dual function φ(z):

maximize −f ∗(−CT z)− g∗(z). (2.10)
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Its optimality condition is

0 ∈ −C∂f ∗(−CT z) + ∂g∗(z). (2.11)

The primal dual pair of this problem is similar with each other both in formula-

tions (Eq. 2.3, 2.10) and in optimality conditions (Eq. 2.4, 2.11). One can easily

transfer analysis and algorithms for the primal problem to the dual problem.

2.2.3 Primal-Dual Optimality

The Karush-Kuhn-Tucker (KKT) conditions [BV04] of the problem (Eq. 2.6) are

0 ∈ ∂xL(x
∗, y∗, z∗) = ∂f(x∗) + CT z∗ (2.12)

0 ∈ ∂yL(x
∗, y∗, z∗) = ∂g(y∗)− z∗ (2.13)

0 = y∗ − Cx∗. (2.14)

(Eq. 2.12) and (Eq. 2.13) are the optimality condition of the Lagrangian (Eq. 2.7)

over the primal variables. (Eq. 2.14) guarantees that the constraint is satisfied

at the optimum since a primal-dual pair (x∗, y∗, z∗) is optimal if and only if it

is primal and dual feasible, the primal variables (x∗, y∗) are the minimizer of the

Lagrangian, and the complementary slackness is satisfied. The KKT conditions

can also be written in a single monotone inclusion problem:

0 ∈











0 0 CT

0 0 −I

−C I 0





















x

y

z











+











∂f(x)

∂g(y)

0











. (2.15)

This gives an optimality condition for the primal and dual problem together.

Furthermore, applying a property of the Fenchel conjugate pair of convex func-

tions [Van12]:

u ∈ ∂f(v) ⇐⇒ v ∈ ∂f ∗(u), (2.16)
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the above monotone inclusion problem can be further simplified as

0 ∈





0 CT

−C 0









x

z



+





∂f(x)

∂g∗(z)



 . (2.17)

The primal-dual optimality condition gives another way to look at the optimality

of problem (Eq. 2.3). The convex optimization algorithms that work with the

primal-dual optimality condition usually update primal and dual variables at the

same time. The Lagrangian dual function (Eq. 2.8) value for any dual feasible

variable always gives a lower bound on the optimal value of the primal [BV04]. It

provides a stopping criterion almost without extra cost.

2.3 Proximal Operators and Resolvent

For a general problem formulated as (Eq. 2.3), a variable is optimal if and only if

the optimality conditions are satisfied. Therefore, finding a solution that satisfies

either one of the optimality conditions gives the solution to the original prob-

lem. However, instead of solving an equation, one needs to find one solution that

satisfies a monotone inclusion problem because the objective function might not

be smooth. The definition of proximal operator and resolvent are important to

address the non-smoothness before finding the solution to any monotone inclusion

problem.

2.3.1 Monotone Operator and Resolvent

An operator F is defined as a set function that maps a vector to a set of vectors

of the same dimension, or

x ∈ R
n → F (x) ⊂ R

n.
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The graph of an operator F is defined as

gr(F ) = {(x, y) ∈ R
n × R

n|y ∈ F (x)} .

For example, a subdifferential ∂f is an operator that maps a point within the

domain of f to any vector that satisfies (Eq. 2.5). The graph of the subdifferential

∂f is any two vectors (x, y) such that y is an element in the subdifferential ∂f

evaluated at point x ∈ domf . An operator F is monotone if

(y − ŷ)T (x− x̂) ≥ 0, ∀x, x̂ ∈ domF, y ∈ F (x), ŷ ∈ F (x̂).

An operator F is maximal monotone if the graph of F is not properly contained

in the graph of another monotone operator [Van12]. Monotone inclusion problem

is to find the solution to

0 ∈ F (x). (2.18)

The maximal monotonicity of F implies that the solution to the monotone inclu-

sion problem is a closed convex set. The type of monotone operators discussed in

this thesis are subdifferentials and skew-symmetric linear operators. The subdif-

ferential of a proper closed convex function F (x) = ∂f(x) is maximal monotone.

A linear operator F (x) = Mx is a single-valued maximal monotone operator if

M + MT � 0 [Van12]. Obviously a skew-symmetric linear operator is maximal

monotone because M +MT = 0 for a skew-symmetric matrix M .

The resolvent of an operator F is another operator. For any t > 0, the resolvent

of F is defined as

x ∈ R
n → (I + tF )−1(x) ⊂ R

n

Note that the inverse sign means the inverse of the operator,

y ∈ F−1(x) ⇐⇒ x ∈ F (y).
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Its definition is closely related to the monotone inclusion problem of operator F :

x ∈ (I + tF )−1(x̂) ⇐⇒
x̂− x

t
∈ F (x).

If F is a maximal monotone operator, the resolvent is a single-valued operator

and is defined for all x [Van12]. This indicates that even if an operator is not sin-

gleton, its resolvent is still a singleton and defined on the entire space by maximal

monotonicity. This is a very important property as it enables all proximal-based

methods.

As a special case, the resolvent of a skew-symmetric linear operator F (x) = Mx

is

x = (I + tM)−1(x̂),

in which the inverse of the operator is just the matrix inversion becase matrix

M is skew-symmetric and M + MT = 0 by definition. In practice, matrix M is

usually large but structured such that there exist many efficient ways to calculate

the solution.

As discussed before, we are interested in the monotone inclusion problem in-

volving operators such as subdifferential and skew-symmetric linear operators. In

the rest of this section, we work out the detail of the resolvent for subdifferential.
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2.3.2 Proximal Operator

Consider the subdifferential operator of a closed convex function ∂f(x). Its resol-

vent is equivalent to a strongly convex minimization problem:

x ∈ (I + t∂f)−1(x̂) ⇐⇒ x̂ ∈ x+ t∂f(x)

⇐⇒ 0 ∈ ∂f(x) +
1

t
(x− x̂)

⇐⇒ x = argmin
x

(

f(x) +
1

2t
‖x− x̂‖22

)

. (2.19)

This defines the proximal operator of function f . For any t > 0,

proxtf (x̂) = argmin
x

(

f(x) +
1

2t
‖x− x̂‖22

)

. (2.20)

Since the proximal operator is the resolvent of subdifferential from (Eq. 2.19),

the proximal operator is defined and unique for every x̂. This property also

follows from (Eq. 2.20), that the minimization problem is strongly convex hence

the optimum is unique and attained in domf . The optimality condition of the

minimization problem (Eq. 2.20) gives an element in the subdifferential ∂f(x),

x = proxtf(x̂) ⇐⇒
1

t
(x̂− x) ∈ ∂f(x).

It exists and is unique for all x̂.

Interestingly, the proximal operator of the conjugate function f ∗ can be easily

calculated from the proximal operator of f . Consider the Fenchel conjugate pair

f and f ∗, the Moreau decomposition [Van12] states that

x = proxf(x) + proxf∗(x), ∀x,

which follows from the property of Fenchel conjugate in (Eq. 2.16),

u = proxf (x) ⇐⇒ x− u ∈ ∂f(u)

⇐⇒ u ∈ ∂f ∗(x− u)

⇐⇒ x− u = proxf∗(x).
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In practice, we are more interested in a more general extension of the Moreau

decomposition:

x = proxth∗(x) + tproxh/t(x/t).

This property is essential for proximal evaluation of conjugate function.

2.3.3 Augmented Lagrangian

Consider the subdifferential of the conjugate function f ∗(−CT z) from (Eq. 2.8).

Its resolvent is

z ∈ (I + tA)−1(ẑ) ⇐⇒ 0 ∈ −C∂f ∗(−CT z) +
1

t
(z − ẑ)

⇐⇒ z = argmin
z

(

f ∗(−CT z) +
1

2t
‖z − ẑ‖22

)

.

This monotone inclusion problem is very similar to the proximal operator (Eq. 2.19).

It is also strongly convex and has a unique, attained optimum. The only difference

is that the minimization problem involves a linear transformation. By introducing

a new variable x and applying (Eq. 2.16) such that

x ∈ ∂f ∗(−CT z) ⇐⇒ −CT z ∈ ∂f(x),

the monotone inclusion problem can be written as

0 ∈





0 CT

−C 0









x

z



+





∂f(x)

0



+
1

t





0

z − ẑ



 . (2.21)

This is an optimality condition to another minimization problem:

x = argmin
x

(

f(x) +
t

2
‖Cx− ẑ/t‖22

)

(2.22)

z = ẑ + tCx. (2.23)

One can find the resolvent via solving (Eq. 2.22) then simply applying the result

to (Eq. 2.23).
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2.4 Proximal Point Algorithm

Consider the optimality conditions (Eq. 2.4, 2.11, 2.15, 2.17). Each of them is

a monotone inclusion problem for some maximal monotone operator F as in

(Eq. 2.18). Sometimes this monotone inclusion problem is hard to solve directly.

Instead, if F is maximal monotone, the optimal x∗ of (Eq. 2.18) is a fixed point

of the resolvent of F ,

0 ∈ F (x∗) ⇐⇒ x∗ = (I + tF )−1(x∗) (2.24)

for some t > 0. Finding the solution to (Eq. 2.18) is equivalent to finding a fixed

point for the corresponding resolvent (Eq. 2.24). Starting from any feasible point

x, the fixed point iteration of the resolvent is defined as

x+ = (I + tF )−1(x). (2.25)

It is guaranteed to converge to the fixed point if F is monotone [Van12] with any

positive t > 0. Generally t affects the rate of convergence. If we can find an

algorithm that solves the resolvent efficiently, then we have an iterative algorithm

to the fixed point problem with a trivial update (Eq. 2.25). This is known as the

proximal point algorithm (PPA) [G91].

The crucial step in PPA is to find an efficient way to evaluate the resolvent.

Consider the problem (Eq. 2.3). By choosing one of the optimality conditions

discussed in Section 2.2, each iteration of PPA needs to solve a minimization

problem to evaluate the resolvent. For example, consider the dual optimality

condition (Eq. 2.11), the operator F1 is

F1(z) = −C∂f ∗(−CT z) + ∂g∗(z).

The fixed point iteration of PPA derived from (Eq. 2.25) is

z − z+

t
∈ C∂f ∗(−CT z+) + ∂g∗(z+).
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It is equivalent to solving the minimization problem

(x+, y+) = argmin
x,y

{

f(x) + g(y) + ẑT (Cx− y) +
t

2
‖Cx− y‖22

}

z+ = ẑ + t(Cx+ − y+). (2.26)

The objective is obtained by adding a strongly convex term t
2
‖Cx − y‖22 to the

Lagrangian of the equivalent problem (Eq. 2.6). This is the well known augmented

Lagrangian method [Ber82].

Another example, consider the primal-dual optimality condition (Eq. 2.17).

The operator F2 is

F2(x, z) =





0 CT

−C 0









x

z



+





∂f(x)

∂g∗(z)



 .

The fixed point iteration of PPA derived from (Eq. 2.25) is

1

t





x− x̂

z − ẑ



 ∈





0 CT

−C 0









x

z



+





∂f(x)

∂g∗(z)



 .

It is equivalent to solving the minimization problem

(x+, y+) = argmin
x,y

{

f(x) + g(y) + ẑT (Cx− y) +
t

2
‖Cx− y‖22 +

1

2t
‖x− x̂‖22

}

z+ = ẑ + t(Cx+ − y+). (2.27)

It is similar to augmented Lagrangian problem but with an additional augmented

term 1
2t
‖x− x̂‖22. This is known as the proximal method of multipliers [Van12].

In general, PPA solves a minimization problem at each iteration to update

the fixed point variable. The complexity of the algorithm depends on the cost of

solving this minimization problem.
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2.5 Splitting Algorithms

PPA is definitely an easy algorithm to implement as it only involves a simple

iterative update. However the underlying minimization problem for each iteration

might be very difficult to solve. Take problem (Eq. 2.6) as an example. It is

difficult to solve problems in (Eq. 2.26) or (Eq. 2.27), even with simple f and

g. Therefore, many different techniques are introduced to split the optimality

condition as a sum of two operators, so that the resolvent of each operator is

much easier to compute. Consider any optimality condition in the format of

0 ∈ A(x) +B(x). (2.28)

The splitting algorithms only require the resolvents of A(x) and B(x) but not the

resolvent of the sum.

2.5.1 Douglas-Rachford Splitting Algorithm

The Douglas-Rachford splitting algorithm [EB92] is a very simple algorithm that

dates back to the 1950s. Consider the monotone inclusion problem (Eq. 2.28).

Starting from any feasible point z, the Douglas-Rachford splitting algorithm up-

dates variables as following:

x+ = (I + tB)−1(z)

y+ = (I + tA)−1(2x+ − z)

z+ = z + y+ − x+,

with any t > 0. The Douglas-Rachford splitting algorithm requires the resolvent

of A and B, but not A + B. Depending on the complexity to evaluate these two

resolvents, it can be considerably faster than PPA. In general, one can choose any

optimality conditions as the target monotone inclusion problem and this mono-

tone inclusion problem can be split into a sum of any two operators. Therefore,
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there are many well-known implementations of the Douglas-Rachford splitting al-

gorithm.

Consider the format of (Eq. 2.28) applied to the dual optimality condition

(Eq. 2.11):

0 ∈ −C∂f ∗(−CT z) + ∂g∗(z),

with

A(z) = −C∂f ∗(−CT z), B(z) = ∂g∗(z).

The Douglas-Rachford Splitting algorithm can be represented as

v+ = (I + tA)−1(z − w)

= argmin
v

{

f ∗(−CTv) +
1

2t
‖v − (z − w)‖22

}

z+ = (I + tB)−1(v+ + w)

= proxtg∗(v
+ + w)

= argmin
z

{

g∗(z) +
1

2t
‖z − (v+ + w)‖22

}

w+ = w + v+ − z+.

This can be shown to be equivalent to the alternating direction method of multi-

pliers (ADMM) [BPC11].

Consider the same format (Eq. 2.28) applied the primal-dual optimality con-

dition (Eq. 2.17):

0 ∈





0 CT

−C 0









x

z



+





∂f(x)

∂g∗(z)



 ,

with

A(x, z) =





0 CT

−C 0









x

z



 , B(x, z) =





∂f(x)

∂g∗(z)



 .
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Instead of directly solving the linear equations, the first resolvent (x, z) = (I +

tA)−1(x̂, ẑ) is equivalent to solving

x = argmin
x

(

t

2
‖Cx−

ẑ

t
‖22 +

1

2t
‖x− x̂‖22

)

z = ẑ + tCx.

It has a closed form solution as the minimization problem is just a least squares

problem. The second resolvent (x, z) = (I + tB)−1(x̂, ẑ) is equivalent to solving

(x, y) = argmin
x,y

(

f(x) + g(y) +
t

2
‖
ẑ

t
− y‖22 +

1

2t
‖x− x̂‖22

)

= argmin
x

(

f(x) +
1

2t
‖x− x̂‖22

)

+ argmin
y

(

g(y) +
t

2
‖
ẑ

t
− y‖22

)

=
(

proxtf (x̂), proxg/t(ẑ/t)
)

z = ẑ − ty

= ẑ − tproxg/t(ẑ/t)

= proxtg∗(ẑ).

It evaluates the two proximal operators for functions f and g∗ separately.

The step size in these Douglas-Rachford splitting methods is an arbitrary pos-

itive number. However, this step size is usually limited by numerical instability

in practice.

2.5.2 Forward-Backward Algorithm

Consider the monotone inclusion problem (Eq. 2.28). The forward-backward al-

gorithm has a very simple iterative update:

x+ = (I + tB)−1(x− tA(x)),

with a t > 0 that satisfies some conditions of convergence. It requires only the

resolvent of B, not the resolvent of A+B or A. As a trade-off, there is a limitation
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on the step size t. The efficiency of the forward-backward algorithm depends on

the complexity to evaluate the resolvent of B and the limitation on the step size t

introduced by the forward evaluation x− tA(x). The convergence theory requires

co-coercivity of A [Van12]. A is co-coercive if

(A(u)− A(v))T (u− v) ≥
1

L
‖A(u)− A(v)‖22, ∀u, v ∈ domA

for some L > 0. The step size is limited by t ∈ (0, 2/L). This is a rather

strong condition. For example, a skew-symmetric linear operator is not co-coercive

because the left hand side of this inequality is always zero. Instead, Tseng [Tse00]

proposed another modified forward-backward method,

y = (I + tB)−1(x− tA(x))

x+ = y − t(A(y)− A(x)),

which requires only Lipschitz continuity of A. A is Lipschitz continuous if

‖A(u)−A(v)‖2 ≤ L‖u− v‖2, ∀u, v ∈ domA.

In fact, co-coercivity implies Lipschitz continuity, which follows directly from

Cauchy-Schwarz inequality.

There are several typical examples for the forward-backward algorithm. Con-

sider the primal optimality condition in (Eq. 2.4) for differentiable g as the mono-

tone inclusion problem in the format of (Eq. 2.28)

0 ∈ ∂f(x) + CT∇g(Cx),

with,

A(x) = CT∇g(Cx), B(x) = ∂f(x).

The forward-backward splitting algorithm is just proximal gradient method

x+ = proxtf (x− tCT∇g(Cx)).
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The convergence rate for the proximal gradient method is generally considered

slower than normal gradient method. However, there are many different acceler-

ated proximal gradient methods like FISTA [BT09] and Nesterov methods [Nes07]

that could improve convergence rate for proximal gradient methods.

As discussed above, the forward-backward algorithm requires co-coercivity for

the forward operator, a stronger condition than Lipschitz continuity. If the for-

ward operator is only Lipschitz continuous, the formulation proposed by Tseng [Tse00]

can be used. Consider the primal-dual optimality condition (Eq. 2.17)

0 ∈





0 CT

−C 0









x

z



+





∂f(x)

∂g∗(z)



 ,

with

A(x, z) =





0 CT

−C 0









x

z



 , B(x, z) =





∂f(x)

∂g∗(z)



 .

The first operator is a skew-symmetric linear operator, which does not satisfy the

co-coercivity condition. However, it is Lipschitz continuous with L = ‖C‖2 which

enables the modified forward-backward splitting method

u = proxtf(x− tCT z)

v = proxtg∗(z + tCx)

x+ = u− tCT (v − z)

z+ = v + tC(u− x).

These forward-backward methods require only one of the resolvents if the

other operator is co-coercive or Lipschitz continuous. In terms of complexity, the

forward-backward methods are more efficient in each iteration since only one re-

solvent evaluation is necessary. The trade-off is the limitation on the step size.
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2.5.3 Semi-Implicit Splitting Algorithm

Semi-implicit splitting methods generally apply to the primal-dual optimality con-

dition. For example, consider the monotone inclusion problem (Eq. 2.28) for op-

timality condition (Eq. 2.17),

0 ∈





0 CT

−C 0









x

z



+





∂f(x)

∂g∗(z)



 ,

with

A(x, z) =





0 CT

−C 0









x

z



 , B(x, z) =





∂f(x)

∂g∗(z)



 .

In the proximal point algorithm, (x+, z+) is the solution of the monotone inclusion

problem

1

t
(x− x+, z − z+) ∈ A(x+, z+) +B(x+, z+).

For both of the operator A and B, evaluations are based on the resulting point

(x+, z+), which in this case are called backward evaluations. Typically back-

ward evaluation requires the solution of a minimization problem. In the forward-

backward algorithm, (x+, z+) is the solution of the monotone inclusion problem

1

t
(x− x+, z − z+) ∈ A(x, z) +B(x+, z+).

Here operator A is evaluated at current point (x, z), which is called a forward

evaluation while B is evaluated at the resulting point (x+, z+), which is called a

backward evaluation.

In a so-called semi-implicit algorithm, the primal and dual variable are treated

separately: For one operator, it evaluates the primal variable as a forward step

and the dual variable as a backward step or vice versa. For example, the monotone

inclusion problem

1

t
(x− x+, z − z+) ∈ A(x, z+) +B(x+, z+)
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corresponds to a semi-implicit algorithm. If we simplify this monotone inclusion

problem:

1

t





x− x+

z − z+



 ∈





0 CT

−C 0









x

z+



+





∂f(x+)

∂g∗(z+)



 ,

then this semi-implicit algorithm involves two resolvent evaluations:

z+ = proxtg∗(z + tCx)

x+ = proxtf(x− tCT z+).

It consists of two very simple update steps that only require the proximal operators

of f and g. This is known as Arrow-Hurwicz algorithm, which dates back to

the 1950s. There are many variations of Arrow-Hurwicz algorithm. Chambolle

and Pock [CP11] proposed a modified algorithm for the primal-dual optimality

condition (Eq. 2.17),

z+ = proxtg∗(z + tCx̄)

x+ = proxtf (x− tCT z+)

x̄ = x+ + θ(x+ − x), θ ∈ [0, 1].

It is a modified Arrow-Hurwicz method by adding a predictor x̄. As a special case,

when θ = 0 it is exactly the same as Arrow-Hurwicz algorithm. The parameter θ

controls the level of inertia corresponding to the current update direction x+ − x.

The step size is limited by the first operator.

Chen and Teboulle [CT94] proposed another algorithm based on the primal-

dual optimality condition in (Eq. 2.15),

0 ∈











0 0 CT

0 0 −I

−C I 0





















x

y

z











+











∂f(x)

∂g(y)

0











.
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with the trivial splitting. The update steps for this semi-implicit algorithm are

z̄ = z + t(Cx− y)

x+ = proxtf (x− tCT z̄)

y+ = proxtg(y + tz̄)

z+ = z + t(Cx+ − y+).

It is a modified Arrow-Hurwicz algorithm with z+ substituted by z̄ as a predictor.

Similar to the algorithm Chambolle and Pock proposed, this heuristic is used for

better performance in convergence and stability. The step size is limited by the

first operator as well.

These semi-implicit methods are adaptable for many different splittings of the

operator for the primal-dual optimality condition. They have limitations on the

step size similar to the forward-backward methods in general. But they are sim-

pler to calculate compared to the Douglas-Rachford splitting methods.

We have proposed three general forms of splitting algorithms for a general

convex optimization problem (Eq. 2.3). In Chapter 3 and Chapter 4, we further

discuss the formulations, performance and other properties of the specific splitting

methods in practical applications.
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CHAPTER 3

Structured Sparse Principal Component

Analysis

3.1 Problem Description

Principal Component Analysis (PCA) is a very useful tool in unsupervised di-

mension reduction, lossy data compression, feature extraction, and data visual-

ization [Jol02]. There are two commonly used definitions of PCA [Bis06].

• The orthogonal projection of the data onto a lower dimensional linear sub-

space so that the variance of the projected data is maximized.

Consider a data set {xn}, where n = 1, 2, . . . , N . The variance of the data

set projected on v is

1

N

N
∑

n=1

(

vTxn − vT x̄
)2

= vTSv,

where S is the data covariance matrix:

S =
1

N

N
∑

n=1

(xn − x̄)(xn − x̄)T .

The goal is to find the unit vector v, ‖v‖2 = 1, such that the projection

variance vTSv is maximized. This vector v is call the principal component.

One can prove that v is the eigenvector of S corresponding to the largest

eigenvalue. PCA tries to find a set of these orthogonal projection vectors vi

such that the overall variance of projection is maximized [Bis06, Eld07].
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• The orthogonal projection of the data onto a lower dimensional linear sub-

space so that the average projection lost, or the total distance between the

data points and their projections is minimized.

Consider a set of complete D-dimensional basis vectors vi ∈ R
D, where

i = 1, 2, . . . , D. The goal is to approximate the data set {xn} using M < D

number of basis vectors. This can be considered as a projection to a lower-

dimension subspace:

x̃n =

M
∑

i=1

univi +

D
∑

i=M+1

bivi,

such that the total projection error between xn and x̃n is minimized. The

coefficient uni is called the loading vector of the principal component vi for

x̃n. The last term
∑D

i=M+1 bivi is the center of the projection. It is defined

such that bi = x̄T vi. The precise definition of total projection error is

J =
1

N

N
∑

n=1

‖xn − x̃n‖
2

=
1

N

N
∑

n=1

‖

D
∑

i=M+1

(

(xn − x̄)Tvi
)

vi‖
2

=
1

N

N
∑

n=1

D
∑

i=M+1

(

xT
nvi − x̄T vi

)2

=
D
∑

i=M+1

vTi Svi.

One can prove from the last equation that the M optimal projection vectors

vi are the M eigenvectors of S corresponding to the M largest eigenval-

ues because the projection error is minimized when choosing the D − M

eigenvectors of S corresponding to the D −M smallest eigenvalues.

PCA can be computed via a singular value decomposition (SVD) of the data

matrix. It is also related to matrix factorization problem if the principal compo-

nents and corresponding loading vectors are formed in two matrices. Namely, if
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we assume the center of the projection is at the origin, then the projection error

function is

J =
1

N

N
∑

n=1

‖xn − x̃n‖
2

=
1

N
‖X − X̃‖2F

=
1

N
‖X − V UT ‖2F , (3.1)

where V = (v1, v2, . . . , vM) and U = (uT
1 , u

T
2 , . . . , u

T
n)

T and X = (x1, x2, . . . , xn).

Therefore, PCA can be formulated as a matrix factorization problem where the

solution is related to SVD of the data matrix. However, the regular PCA does not

consider any sparsity pattern in the principal components or the loading vectors

even if prior knowledge of sparsity is known in the applications.

In many applications, the principal components obtained from PCA are not

sparse especially when the original data set is corrupted by heavy noise. There are

many alternatives that aim at promoting sparsity in principal components while

achieving a dimension reduction similar to PCA. These alternative methods are

known as Sparse Principal Component Analysis (SPCA). Zou et al. [ZHT06] pro-

posed a regression-type approach to SPCA. They established a connection between

PCA and l2 regression, and extended this connection to SPCA using lasso and

elastic net. d’Aspremont et al. [dBG08] proposed a direct formulation of SPCA

by minimizing the approximation error of the data covariance matrix with addi-

tional cardinality penalty. It can be formulated as a semi-definite programming

(SDP) problem using convex relaxation. Lee et al. [LBR07] proposed a sparse cod-

ing method based on non-negative matrix factorization (NMF) technique. The

sparse coding technique promotes sparsity in the principal components as well as

minimizes the projection cost similar to other SPCA formulations. However, the

sparse coding problem does not emphasize the orthogonality between principal

components.
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Although SPCA successfully promotes sparsity in principal components while

still managing to achieve dimension reduction, many applications require cer-

tain structures or patterns of sparsity to be imposed based on some prior knowl-

edge of the application. Most of these applications emphasize sparsity structures

more than orthogonality between principal components. Jenatton et al. [JOB10]

proposed a structured sparse principal component analysis (SSPCA) application

based on the sparse coding formulation. This is one of the applications that can

be handled efficiently by formulating it as a sparse matrix factorization problem.

Namely, given a data matrix X ∈ R
n×p. The goal is to find a structured sparse

principal component matrix V and a corresponding loading matrix U , such that

the reconstruction error of X by the representation X̂ = UV T is minimized.

3.2 Matrix Factorization Formulation

In this thesis, we represent the SSPCA problem based on the formulation from

Jenatton et al. [JOB10]. It can also be interpreted as a sparse coding formulation

from Lee et al. [LBR07]. The problem is

minimize
1

2
‖X − UV T‖2F + λ

r
∑

k=1

g(V k)

subject to h(Uk) ≤ 1, k = 1, 2, . . . , r. (3.2)

The n rows of the data matrix X ∈ R
n×p correspond to n observations in R

p. The

n rows of the decomposition matrix U ∈ R
n×r correspond to n different loading

vectors in R
r. The r columns of the principal component matrix V ∈ R

p×r corre-

spond to r principal components in R
p. This is identical to the problem defined

in (Eq. 1.2). It also relates to the minimal projection loss definition of PCA dis-

cussed in (Eq. 3.1).
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The structured sparsity inducing norm g(V k) is a group sparsity norm de-

fined as (Eq. 2.2). It is defined by the groups of index sets and the group weight

matrix. The index set group is defined based on the prior knowledge of the

structured sparsity pattern. It is similar to the column-wise sparsity norm in

(Eq. 1.3). In SSPCA, this structured sparsity inducing norm proposed by Jenat-

ton et al. [JOB10] is known to exploit structured sparsity. However, determining

the best overlapping sparsity group and weight matrix for each group still remains

an open problem. We will not discuss this topic in this thesis.

Additionally, since the penalty function can be close to zero if we do not

constrain the magnitude of U , a regularization constraint on the decomposition

matrix U is introduced. Typically, the l2 norm constraints h(Uk) = ‖Uk‖2 ≤ 1

for the loading vectors are considered suitable for SSPCA application.

Consider the typical SSPCA formulation,

minimize
1

2
‖X − UV T‖2F + λ

r
∑

k=1

g(V k)

subject to ‖Uk‖22 ≤ 1, k = 1, 2, . . . , r. (3.3)

It can be formulated as two convex sub-problems through the alternating descent

algorithm in (Eq. 1.6): The convex minimization problem over the weight decom-

position matrix U with a fixed principal component matrix V ,

minimize
1

2
‖X − UV T‖2F

subject to ‖Uk‖22 ≤ 1, k = 1, 2, . . . , r, (3.4)

and the convex minimization problem over the principal component matrix V

with a fixed weight decomposition matrix U ,

minimize
1

2
‖X − UV T‖2F + λ

r
∑

k=1

g(V k). (3.5)
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These two problems both fit in the same format of the generalized problem

(Eq. 2.3) discussed in Chapter 2. We will discuss these two problems separately

due to the difference in problem characteristics and properties.

3.3 Minimization over Weight Decomposition Matrix

Consider the convex minimization problem over weight decomposition matrix U

with a fixed principal component matrix V in (Eq. 3.4). The l2 norm constraint

can be represented as an indicator function of the unit l2 norm ball. The problem

(Eq. 3.4) can be written as

minimize f̃(U) + h̃(U),

with the two parts of the objective function as:

f̃(U) =
1

2
‖X − UV T‖2F (3.6)

h̃(U) =
r
∑

k=1

I‖.‖2≤1(U
k). (3.7)

The function h̃ is the sum of the l2 norm ball indicator functions applied to all

columns of matrix U . It is in the same format of problem (Eq. 2.3) with the linear

mapping as identity matrix: C = I.

3.3.1 Proximal Operators

In order to use splitting algorithms discussed in Chapter 2 to solve this problem,

the following proximal evaluations are required in general:

The first resolvent is for the subdifferential ∂f̃ (U). It is the proximal operator
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for the quadratic loss function in (Eq. 3.6):

U = argmin
U

{

1

2
‖X − UV T‖2F +

1

2t
‖U − Û‖22

}

⇐⇒ 0 = (UV T −X)V +
1

t
(U − Û)

⇐⇒ U = (XV +
1

t
Û)(V TV +

1

t
I)−1.

The second resolvent is the proximal operator for the indicator function of a

l2 norm ball (Eq. 3.7). It is a projection onto the l2 norm ball:

Uk = argmin
U :‖Uk‖2≤1

{

1

2t
‖Uk − Ûk‖22

}

= P‖.‖2≤1(Û
k)

=















Ûk

‖Ûk‖2
, ‖Ûk‖2 > 1

Ûk, otherwise.

These two resolvents are easy to compute with explicit solutions. In the splitting

methods, at least one of the two proximal operator is used each iteration.

3.3.2 Methods

The problem formulation does not involve any linear mapping of U . Additionally,

the subdifferential for the quadratic loss function is a singleton. Therefore, it is

generally considered appropriate to apply primal (Eq. 2.4) or dual (Eq. 2.11) op-

timality condition to the problem.

Consider the primal optimality condition as an example. This problem can be

solved efficiently using the projected gradient method, a special case of proximal

gradient method. The projected gradient method is a forward-backward method

with the forward operator as a gradient update and the backward operator as a
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projection on a convex set. The projected gradient method for problem (Eq. 3.4)

has a simple update:

U+ = proxth̃(U − t∇f̃(U))

= P‖.‖2≤1(U − t(UV T −X)V ).

Since the forward operator is just gradient mapping, there are many accelerated

methods suitable in this problem with better convergence rate. Consider using

FISTA [BT09] as an example. The accelerated proximal gradient method is

Ũ = U(k−1) +
k − 2

k + 1
(U(k−1) − U(k−2))

U(k) = P‖.‖2≤1(Ũ − t(ŨV T −X)V ).

The gradient or forward step is evaluated at a point along the previous update

direction. Intuitively, it uses the previous update information as a corrector for

the current update. Generally the accelerated gradient methods are considered

much faster than simple projected gradient method.

3.4 Minimization Over Principal Component Matrix

Consider the convex minimization problem over the principal component matrix V

with a fixed weight decomposition matrix U in (Eq. 3.5). The typical overlapping

group sparsity penalty function is in the format of (Eq. 1.3),

g(V k) =
∑

α∈A

‖V k
α ‖2.

Since the group sparsity penalty has coupled variables within each column of V ,

it is hard to compute the proximal operator for it. Instead, the overlapping group

sparsity constraint over g can be formulated into a non-overlapping group sparsity

constraint applied to some linear transformation of V . Namely, consider writing
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each index set explicitly:

g(V k) =
∑

α∈A

‖V k
α ‖2

=

|A|
∑

i=1

‖V k
αi
‖2.

The variable V k
αi

is the vector formulated by elements in the i-th index set. Denote

vector x(i) = V k
αi

and x = (xT
(1), x

T
(2), . . . , x

T
(|A|))

T . Then the overlapping group l1-l2

norm (Eq. 1.3) is equivalent to

g̃(x) =

|A|
∑

i=1

‖x(i)‖2. (3.8)

This is a non-overlapping group norm with respect to its own variable x. Inter-

estingly, notice that vector x is a linear transform of V k:

x = CV k =

















V k
α1

V k
α2

...

V k
α|A|

















, ∀αi ∈ A. (3.9)

This linear mapping is extremely simple and therefore, the matrix C is expected

to be extremely sparse.

Let’s use an example to explain the linear transformation. Consider a vector

v = (v1, v2, v3, v4) ∈ R
4 and the overlapping group

A = {{1} , {1, 2} , {1, 2, 3} , {1, 2, 3, 4}} .

We use the linear transformation (Eq. 3.9):

x = Cv =

















(v1)

(v1, v2)
T

(v1, v2, v3)
T

(v1, v2, v3, v4)
T

















∈ R
10.
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Then the overlapping group norm can be represented as:

g(v) =
∑

α∈A

‖Vα‖2

= |v1|+ ‖(v1, v2)‖2 + ‖(v1, v2, v3)‖2 + ‖(v1, v2, v3, v4)‖2

= ‖x(1)‖2 + ‖x(2)‖2 + ‖x(3)‖2 + ‖x(4)‖2

= g̃(x)

= g̃(Cv).

For a more complicated group sparsity norm with a weight matrix such as (Eq. 2.2),

we can use the same non-overlapping function (Eq. 3.8) with a variation of the

linear mapping (Eq. 3.9):

x = CV k =

















Dα1
V k
α1

Dα2
V k
α2

...

Dα|A|
V k
α|A|

















, ∀αi ∈ A, (3.10)

such that the modified mapping matrix C includes the weight matrix for each

group. This modified matrix C in (Eq. 3.10) has the same sparsity pattern as the

matrix C in (Eq. 3.9).

With the above linear transformation, the problem (Eq. 3.5) can be reformu-

lated as:

minimize
1

2
‖XT − V UT ‖2F + λ

r
∑

k=1

|A|
∑

i=1

‖W k
(i)‖2

subject to W = CV, (3.11)

with the matrix C defined above. Notice that the Frobenius norm square does

not change if the matrix is transposed. Problem (Eq. 3.11) has the same format

as problem (Eq. 2.3). It can be written as

minimize f̃(V ) + g̃(W )

subject to W = CV,
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with the two parts of the objective in (Eq. 3.11) as:

f̃(V ) =
1

2
‖XT − V UT‖2F (3.12)

g̃(W ) = λ
r
∑

k=1

|A|
∑

i=1

‖W k
(i)‖2. (3.13)

This is the exact same formulation in (Eq. 2.6) with a linear transformation ma-

trix C defined in (Eq. 3.9) or (Eq. 3.10).

3.4.1 Linear Mapping

The linear mapping in problem (Eq. 3.11) is much more complicated than in

problem (Eq. 3.4). There are some interesting properties from the definition in

(Eq. 3.9, 3.10).

Consider the linear mapping for a non-weighted matrix C in (Eq. 3.9). The

elements in C are either 1 or 0. Each row of C is a unit vector ei corresponding

to the particular element in vector V k. This comes directly from the property of

C, an element-wise mapping from an original vector V k to the new vector W k.

Additionally, CTC is a diagonal matrix. All columns of C are orthogonal to each

other. The diagonal element (CTC)ii equals to the total number of appearances

of element V k
i in all index sets.

For a weighted matrix C in (Eq. 3.10), each row of C is the unit vector ei

scaled by the corresponding diagonal element in the weight matrix. The sparsity

pattern of C does not change by these weight matrices. CTC is still a diagonal

matrix. The diagonal elements now equal to the l2 norm square for each column

of C. In other words, it is the square sum of all group weights for every element V k
i .
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3.4.2 Proximal Operators

In order to use splitting algorithms to solve this problem, the following proximal

evaluations are required:

The first resolvent is for the subdifferential ∂f̃ . It is the proximal operator for

the quadratic loss function (Eq. 3.12):

V = proxtf̃ (V̂ )

⇐⇒ V = argmin
V

{

1

2
‖XT − V UT‖2F +

1

2t
‖V − V̂ ‖2F

}

⇐⇒ 0 = (V UT −XT )U +
1

t
(V − V̂ )

⇐⇒ V = (XTU +
1

t
V̂ )(UTU +

1

t
I)−1.

The second resolvent is the proximal operator for the non-overlapping l1-l2

penalty function (Eq. 3.13). Since the non-overlapping l1-l2 norm is separable,

the proximal operator is also separable:

W = proxtg̃(Ŵ )

⇐⇒ W = argmin
W







λ

r
∑

k=1

|A|
∑

i=1

‖W k
(i)‖2 +

1

2t
‖W − Ŵ‖2F







⇐⇒ W k = argmin
W k







λ

|A|
∑

i=1

‖W k
(i)‖2 +

1

2t
‖W k − Ŵ k‖22







⇐⇒ W k
(i) = argmin

W k

(i)

{

λ‖W k
(i)‖2 +

1

2t
‖W k

(i) − Ŵ k
(i)‖

2
2

}

⇐⇒ W k
(i) = argmin

W k

(i)

{

‖W k
(i)‖2 +

1

2λt
‖W k

(i) − Ŵ k
α̃i
‖22

}

⇐⇒ W k
(i) = proxλt‖.‖2(Ŵ

k
(i)).

The notation proxλt‖.‖2 is the proximal operator of the l2 norm function scaled by
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λt. It has a closed form solution:

proxλt‖.‖2(x̂) =















(

1−
λt

‖x̂‖2

)

x̂ ‖x̂‖2 ≥ λt

0 otherwise.

This is a soft-thresholding function for a scaled l2 norm. It is zero inside the norm

ball and scale linearly with respect to the distance from the boundary of the norm

ball.

The problem (Eq. 3.11) is considered much more complicated than (Eq. 3.4).

Generally speaking there is no way to judge which splitting method is the best

unless with actual experiment results. For all these splitting methods, we denote V

and W as the primal variable, Z as the dual multiplier for the equality constraint

W = CV . We discuss these methods in three categories based on the optimality

conditions.

3.4.3 Primal Methods

Problem (Eq. 3.11) is equivalent to the reformulation:

minimize f̃(V ) + g̃(W )

subject to
[

−I C
]





W

V



 = 0, (3.14)

with the f̃ and g̃ defined in (Eq. 3.12, 3.13). It is the similar definition in (Eq. 2.6)

except this formulation explicitly shows that the constraint is a subspace with

respect to the joint variable (V,W ).
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Douglas-Rachford Splitting

Spingarn’s method [LS86] is Douglas-Rachford splitting method apply to a specific

type of problem like (Eq. 3.14). Consider

minimize f(x)

subject to x ∈ S,

where S is a subspace. The Douglas-Rachford splitting algorithm for this type of

problem is

x+ = proxtf (z) (3.15)

y+ = PS(2x
+ − z) (3.16)

z+ = z + y+ − x+, (3.17)

with the first resolvent as the proximal operator over f and the second resolvent

as a projection onto the subspace S. Apparently the modified primal problem

(Eq. 3.14) falls in this category because the linear constraint is a subspace of the

combined variable V and W .

In the Spingarn’s method formulation, the first resolvent requires the proximal

operators for both f̃ and g̃ because the combined variable V and W are separable

without the equality constraint in (Eq. 3.11). The second resolvent requires a

projection onto the subspace formulate by the linear constraint W = CV . The

projection can be represented as the minimum distance point on the subspace

from the point of evaluation:

PS(Ŵ , V̂ ) = argmin
(W,V )∈S

{

‖V − V̂ ‖2F + ‖W − Ŵ‖2F

}

,

where the subspace is defined as

S =











W

V





∣

∣

∣

∣

∣

∣

[

−I C
]





W

V



 = 0







.
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This projection has a closed form solution:





W ∗

V ∗



 =







I −





I

−CT





(

I + CCT
)−1
[

I −C
]











Ŵ

V̂





=







I −





I

−CT





[

I − C
(

I + CTC
)−1

CT
] [

I −C
]











Ŵ

V̂



 .

The second formulation is much more efficient because CTC is diagonal. This is

an advantage of using Spingarn’s method. However, matrix C is usually extremely

overdetermined, especially in SSPCA application. Therefore, W is much larger

than V . It is generally considered not efficient to project on the subspace S of

the joint variable (W,V ).

3.4.4 Primal-Dual Methods

Consider the primal-dual optimality condition in (Eq. 2.17),

0 ∈





0 CT

−C 0









V

Z



+





∂f̃ (V )

∂g̃∗(Z)



 .

We consider the obvious splitting of the monotone inclusion as 0 ∈ A(V, Z) +

B(V, Z) with

A(V, Z) =





0 CT

−C 0









V

Z



 , B(V, Z) =





∂f̃ (V )

∂g̃∗(Z)



 .

Douglas-Rachford Splitting

Douglas-Rachford splitting applied to the primal-dual optimality condition with

the obvious splitting above gives a simple method to solve this problem. The

first resolvent for operator A(V, Z) is equivalent to the following minimization
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problem:

V = argmin
V

(

t

2
‖CV −

Ẑ

t
‖2F +

1

2t
‖V − V̂ ‖2F

)

,

which has a closed form solution:

V ∗ = (t2CTC + I)−1(−tCT Ẑ + V̂ )

Z∗ = Ẑ + tCV̂ .

The second resolvent for operator B(V, Z) is separable between f̃ and g̃∗. The

resolvents are just proximal operators applied to the subdifferential of the two

functions. Moreover, the proximal operator for the conjugate g̃∗ is the projection

onto the scaled l2 norm ball because the original function is the scaled l2 norm.

The Douglas-Rachford splitting algorithm:

Ṽ = (t2CTC + I)−1(−tCT Ẑ + V̂ ),

Z̃ = Ẑ + tCṼ (3.18)

V̄ = proxtf̃(2Ṽ − V̂ ),

Z̄ = proxtg̃∗(2Z̃ − Ẑ) (3.19)

V̂ + = V̂ + V̄ − Ṽ ,

Ẑ+ = Ẑ + Z̄ − Z̃. (3.20)

Comparing to the Spingarn’s method, the extra resolvent only requires to solve

a system with the size the same as the matrix CTC, which is relatively small for

an under-determined matrix C. Theoretically it should be more efficient than the

Spingarn’s method.

Forward-Backward Splitting

The the first operator A(V, Z) of the primal-dual optimality condition is an

skew-symmetric linear operator which is not co-coercive. Therefore, the modified
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forward-backward method proposed by Tseng is suitable. It uses the linear oper-

ator A(V, Z) as the forward operator and the combined subdifferential B(V, Z) as

the backward operator. The forward-backward method is

Ṽ = proxtf̃(V − tCTZ) (3.21)

Z̃ = proxtg̃∗(Z + tCV ) (3.22)

V + = Z̃ − tCT (Z̃ − Z) (3.23)

Z+ = Ṽ + tC(Ṽ − V ). (3.24)

The skew-symmetric linear operator is Lipschitz continuous with L = ‖C‖2.

Therefore, Tseng’s modified forward-backward method can be applied with a lim-

ited step size t ≤ 1/‖C‖2.

Semi-Implicit Splitting Methods

Consider the primal-dual optimality condition in (Eq. 2.17). It is suitable for semi-

implicit algorithms. The modified Arrow-Hurwicz method proposed by Chambolle

and Pock [CP11] is

Z+ = proxtg̃∗(Z + tCV̄ ) (3.25)

V + = proxtf̃ (V − tCTZ+) (3.26)

V̄ = V + + θ(V + − V ). (3.27)

Its step size is limited by t < 1/‖C‖2 when using θ = 1. Another semi-implicit

splitting method is based on the primal-dual optimality condition in (Eq. 2.15)

with the obvious splitting. It corresponds to the semi-implicit method proposed

46



by Chen and Teboulle [CT94]:

Z̄ = Z + t(CV −W ) (3.28)

V + = proxtf̃ (V − tCT Z̄) (3.29)

W+ = proxtg̃(W + tZ̄) (3.30)

Z+ = Z + t(CV + −W+). (3.31)

The step size limitation from Chen and Teboulle is t < 1
2
min{1, 1/‖C‖2}.

Similar to Tseng’s forward-backward method, these semi-implicit splitting

methods only require the evaluations of the two proximal operators f̃ and g̃.

They are more efficient than Douglas-Rachford splitting methods per iteration.

However, its step size t is limited by the Lipschitz continuity parameter. Usually

this Lipschitz constant for the linear operator L = ‖C‖2 depends highly on the

type of sparsity structure required by the application. Fortunately, it is sufficiently

small in SSPCA application.

3.4.5 Dual Methods

Consider the dual optimality condition in (Eq. 2.11),

0 ∈ −C∂f̃ ∗(−CTZ) + ∂g̃∗(Z).

We consider the trivial splitting of the monotone inclusion as 0 ∈ A(Z) + B(Z)

with

A(Z) = −C∂f̃ ∗(−CTZ), B(Z) = ∂g̃∗(Z).
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Douglas-Rachford Splitting

The Douglas-Rachford Splitting applying to the dual optimality condition is the

ADMM method:

P+ = argmin
P

{

f̃ ∗(−CTP ) +
1

2t
‖P − (Q− Z)‖2F

}

Q+ = argmin
Q

{

g̃∗(Q) +
1

2t
‖Q− (P+ + Z)‖2F

}

= proxtg̃∗(P
+ + Z)

Z+ = Z +Q+ − P+.

P and Q are dual variables. Alternatively, it can also be written in primal formu-

lation by manipulating the relationship between primal an dual variables using

the property of Fenchel’s conjugate (Eq. 2.16). Its primal formulation is

V + = argmin
V

{

f̃(V ) +
t

2
‖CV −W + Z/t‖2F

}

(3.32)

W+ = argmin
W

{

g̃(W ) +
t

2
‖CV + −W + Z/t‖2F

}

= proxg̃/t(CV + + Z/t) (3.33)

Z+ = Z + t(CV + −W+). (3.34)

The first resolvent is an augmented Lagrangian. It requires the solution for

V (UTU) + (tCTC)V = XTU + tCT (W − Z/t), (3.35)

which is a rectangular Lyapunov equation. It is also a special case of the general

Sylvester matrix equation [GLA92]. Fortunately, matrix CTC is diagonal and

(Eq. 3.35) can be solved using singular value decomposition.

Denote M = CTC, N = [XTU + tCT (W − Z/t)]. Since M is diagonal by

construction, the equation (Eq. 3.35) is equivalent to

V (k)(UTU + tMk,kI) = N (k), ∀k,
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where V (k) and N (k) are the k-th rows of matrix V and N , respectively. Let

U = PΣQT be the singular value decomposition (SVD) of U . Because matrix Q

is an orthogonal matrix, the equation (Eq. 3.35) can be further simplified as

N (k) = V (k)(UTU + tMk,kI)

= V (k)(QΣ2QT + tMk,kI)

= V (k)Q(Σ2 + tMk,kI)Q
T .

It is a simple linear equation with respect to the rows of V . Notice that Q is

orthogonal and Σ2 + tMk,kI is diagonal. The solution is trivial:

V (k) = N (k)Q(Σ2 + tMk,k)
−1QT

= [XTU + tCT (W − Z/t)]kQ(Σ2 + tMk,k)
−1QT .

Therefore, ADMM requires SVD for the decomposition matrix U . It is used to

update all rows of V . The computation complexity for this SVD solution is com-

parable with proximal operator since it only requires one SVD operation if the

matrix CTC is diagonal.

Forward-Backward Splitting

If f̃ ∗ is differentiable, its gradient evaluated at point −CTZ is

∇f̃ ∗(−CTZ) = argmin
V

{

f̃(V )− 〈V,−CTZ〉
}

= argmin
V

{

f̃(V )− tr(V,−CTZ)
}

= (−CTZ +XTU)(UTU)−1,

for a non-singular matrix UTU [Van12]. Using this gradient evaluation as the

forward step for the operator A(Z), the proximal gradient method on the dual
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with a backward step over B(Z) is

Z+ = proxtg̃∗(Z + tC∇f̃ ∗(−CTZ))

= proxtg̃∗(Z + tC(−CTZ +XTU)(UTU)−1). (3.36)

In this algorithm, the forward operator C∇f̃ ∗(−CTZ) is Lipschitz continuous

with L = ‖C‖22/µ, where µ is the strong convexity modulus parameter of function

f̃ . This modulus parameter of f̃ is related to the smallest eigenvalue of matrix

U : µ = min λ(UTU). The step size t is limited by t < 1/L. This is a fairly easy

proximal gradient method applied to the dual problem.

The goal of SSPCA is to find the structured sparse principal components. Gen-

erally the matrix UTU at the local optimum is non-singular. However, during the

alternating descent algorithm, the matrix UTU might become singular or close to

singular. An ill-conditioned matrix UTU will still affect the speed of convergence

by limiting the step size t with a large Lipschitz constant. On the other hand, the

benefit of using proximal gradient method is the use of accelerated methods for

better convergence rate.

3.5 Experiments

We first consider the 1-dimensional and 2-dimensional randomly generated struc-

tured sparsity patterns discussed by Jenatton et al. [JOB10]. Then we consider

the SSPCA analysis on the AR Face Database [MB98] as unsupervised learning

problem for face recognition application. In these experiments, first we compare

the efficiency and convergence rate between block coordinate descent and split-

ting methods on one of the alternating descent convex sub-problem discussed in

Section 3.4. The other problem discussed in Section 3.3 is much easier in terms

of formulation, which is not discussed in these experiments. Then we focus on
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applying these methods in alternating descent algorithm (Eq. 3.3) and discuss the

overall results of the sparse matrix factorization problems.

Our experiments are carried out in MATLAB on a system with an Intel Core

i7 Qual-core processor running at 2.3 GHz with CPU performance throttle off and

8Gb of memory.

3.5.1 1-D Group Sparsity Recovery

In the randomly generated structured sparsity example, we use an element-wise

uniform distribution to generate r basis vectors V i with 1-D continuous pattern,

where all the non-zero elements in vectors V i are in a random consecutive region.

Then we use these basis vectors to generate n data points s,

s =

r
∑

i=1

uiV
i + ǫ ∈ R

p. (3.37)

The parameters ui are the decomposition weights generated randomly through a

uniform distribution as well. The parameter ǫ is an independent identical dis-

tributed (IID) Gaussian noise such that the generated signal satisfies a predeter-

mined signal-to-noise ratio (SNR).

Convex Sub-problem Minimization

Consider using splitting methods to solve (Eq. 3.5), one of the two sub-problems

in (Eq. 3.3). We formulate our experiment with r = 10 continuous basis vectors

of dimension p = 50 and n = 100 data points with an SNR of 0.5 dB. Since

the objective function for (Eq. 3.5) changes every iteration due to the alternating

descent algorithm, we compare the splitting methods with BCD in two scenarios:

Initial Phase, where the parameters are randomly generated starting points for
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Figure 3.1: Iterations for the relative objective of the convex sub-problem in 1-D ran-

domly generated sparsity pattern experiment. Splitting methods are separated into two

categories by there speeds of convergence for a better comparison with BCD.

the alternating descent algorithm, and Sub-optimal Phase, where the parameters

are determined after approximately 10 alternating descent iterations.

Figure 3.1 shows the relative objective versus iteration plot for these methods.

Most splitting methods perform similarly, or better than BCD. Namely, FISTA

on the dual, Chambolle-Pock semi-implicit, and Tseng’s forward-backward meth-

ods perform much better than BCD in both initial and sub-optimal phase. For

Douglas-Rachford type methods such as ADMM or primal-dual Douglas-Rachford

splitting, the step size can only be roughly estimated due to numerical instability.

52



Methods ADMM Tseng FISTA Chambolle-Pock BCD

Runtime (ms) 11.7 9.95 9.40 9.42 9.07

Table 3.1: Average runtime per iteration in 1-D randomly generated sparsity pattern

experiment, averaging over the entire alternating descent algorithm. We only compare

four splitting methods faster than or equivalent to BCD during the alternating descent.

Table 3.1 shows the average runtime per iteration for these methods. The

closed form solution of BCD is cheaper than the evaluation of proximal operator

used by the splitting methods. However, a preprocessing step is necessary for

each complete BCD cyclic iteration. This preprocessing step is highly complex.

Overall performance for BCD is at the same scale as the splitting methods in

smaller problems.

Alternating Descent

Although the experiments for the convex sub-problem (Eq. 3.11) show that the

performance of splitting methods is better than BCD, it is still important to look

at the result in the alternating descent algorithm (Eq. 3.3). Since BCD method

does not have a good stopping criterion, we implemented two BCD instants: one

with the relative improvement of objective per iteration as a stopping criterion

(Soft), and the other with a fixed number of iteration (Hard). We only included

splitting methods that perform better or equivalent to BCD in the following ex-

periment.

Figure 3.2 shows the results of the alternating descent for different methods.

Each column of an image indicates a 1-D structured sparse principal component,

or basis vector. The color gray (128, 128, 128) stands for zero, or sparse elements in
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ADMM Tseng FISTA Chambolle−Pock BCD−Soft BCD−Hard Ground Truth

Figure 3.2: SSPCA results of four splitting methods and two BCD instants comparing

with the ground truth in 1-D randomly generated sparsity pattern experiment. Each

column of an image corresponds to one principal component.

the variables. Color black (0, 0, 0) and white (255, 255, 255) stand for the negative

and positive maximum of the principal components. Comparing to the ground

truth, these methods all give a very close estimation of structured sparse basis

vectors and most importantly, preserve the structured sparsity patterns. Notice

that some of the structured sparse basis vectors are the negative of the ground

truth because it is allowed in our experiment setup.

Figure 3.3 shows the relative objective versus iteration plot for the alternat-

ing descent algorithm. Together with the results shown in Figure 3.2, we can

conclude that the splitting methods and BCD all converge to the same local min-

imum. Moreover, these methods follow almost the exact same path converging to

the local minimum.

Table 3.2 shows the average iteration per alternating descent step for these
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Figure 3.3: Iterations for the relative objective of the alternating descent in 1-D ran-

domly generated sparsity pattern experiment. Splitting methods are separated into two

categories: dual optimality methods (left) and primal-dual optimality methods (right).

Methods ADMM Tseng FISTA Chambolle-Pock BCD-Soft BCD-Hard

Iteration 72.5 22.8 17.1 47.3 33.0 70

Table 3.2: Average iteration count per alternating descent step in 1-D randomly gen-

erated sparsity pattern experiment. The numbers of inner iterations necessary for these

methods to solve a convex sub-problem.
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methods. FISTA and Tseng’s forward-backward method use less than half of the

number of iteration per alternating descent than BCD does, with almost the same

performance each iteration.

To summarize our observations from the 1-D group sparsity pattern experi-

ments, the splitting methods give the same results through alternating descent as

BCD does. Most splitting methods perform equivalently or better than BCD in

this small-scaled problem.

3.5.2 2-D Group Sparsity Recovery

In the 2-D continuous structured sparsity experiment, we randomly generate r

basis vectors with 2-D rectangular/diamond-shape pattern and use these basis

vectors to generate n data points s using the same formula in (Eq. 3.37). More

precisely, we randomly choose the top-left and bottom-right coordinates drawn

from a uniform distribution and form a rectangular region within an image. This

region is assigned a non-zero value also following a uniform distribution and the

rest of the image is zero, or sparse.

Convex Sub-problem Minimization

Consider using the splitting methods to solve the same convex sub-problem (Eq. 3.11).

We formulate our experiment with r = 10 basis vectors of dimension p = 18× 18

with 2-D continuous rectangular pattern. We generate n = 1000 data points with

an SNR of 0.5 dB. This is a relatively large-scale problem. We still compare all

methods in two scenarios, Initial Phase and Sub-optimal Phase.
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Figure 3.4: Iterations for the relative objective of the convex sub-problem in 2-D ran-

domly generated sparsity pattern experiment. Splitting methods are separated into two

categories.

Figure 3.4 shows the relative objective versus iteration plot for these methods.

We did not include Spingarn’s method and Chen-Teboulle semi-implicit method

because their convergence speeds are much slower than the other methods. FISTA

on the dual, Chambolle-Pock semi-implicit, Tseng’s forward-backward methods

perform better than BCD in both phases similarly to the 1-D experiment. Com-

paring with BCD, these splitting methods are only slightly better in terms of the

convergence rate per iteration because The 2-D experiment is much larger than

the 1-D experiment. ADMM still performs as well as BCD and in some cases

better.
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Methods ADMM Tseng FISTA Chambolle-Pock BCD

Runtime (ms) 35.7 35.0 36.3 31.2 182

Table 3.3: Average runtime per iteration in 2-D randomly generated sparsity pattern

experiment, averaging over the entire alternating descent algorithm. We only compare

four splitting methods faster than BCD during the alternating descent.

Table 3.3 shows the average runtime for one iteration of these methods. In

terms of convergence speed, BCD is much more complex than all splitting meth-

ods. In a larger problem, the preprocessing step necessary for BCD becomes

much more complex. Furthermore, the proximal operator evaluations are highly

suitable for parallel computing and can be easily optimized automatically in MAT-

LAB. Therefore, these splitting methods are much better than BCD, especially

Chambolle-Pock semi-implicit method, in terms of efficiency per iteration.

Alternating Descent

We consider the 2-D alternating descent experiment in a similar way of the 1-D

experiment. In this experiment, we did not include BCD method with a fixed

number of iteration as a stopping criterion. In a large scale problem, to fix a large

number of iteration for BCD is almost impossible to compute in a reasonable time.

Figure 3.5 shows the results of alternating descent for these methods. Each

row of image contains all 2-D structured sparse basis vectors for one method in de-

scending order of their average absolute magnitude. The color gray (128, 128, 128)

stands for zero, or sparse elements in the variables. Color black (0, 0, 0) and white

(255, 255, 255) stand for the negative and positive maximum of the principal com-

ponents. Comparing to the ground truth in the last row, all the splitting methods
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Figure 3.5: SSPCA results of four splitting methods and BCD comparing with the

ground truth in 2-D randomly generated sparsity pattern experiment. Each image in

one row corresponds to one principal component. Each row corresponds to the result of

alternating descent with that particular method for the convex sub-problem.

capture the structured sparsity patterns with larger magnitudes (Basis vectors 1

through 5) while the smaller ones are most likely to be lost due to the high SNR

(Basis vectors 6 through 10). Basically, the larger the magnitude, the cleaner the

structured sparsity pattern is. BCD failed to capture the patterns most likely

because it converges to a different local minimum.

Figure 3.6 shows the relative objective versus iteration plot for the alternating

descent algorithm. Together with results from Figure 3.5, we further confirmed

that most of the splitting methods converge to the same local minimum while

BCD converges to a different local minimum. Interestingly, FISTA is not per-

forming as well as other splitting methods, most likely because the step size for

FISTA is limited by a large Lipschitz continuity parameter. This small step size

might introduce numerical problems.

59



0 10 20 30 40 50
−5

0

5

10

15

Iteration (t)

Lo
g 

R
el

at
iv

e 
E

rr
or

 (
Lo

g 2)

Objective vs. Iteration, Alternating Descent

 

 

Tseng
Chambolle−Pock
BCD

0 10 20 30 40 50
2

4

6

8

10

12

Iteration (t)

Lo
g 

R
el

at
iv

e 
E

rr
or

 (
Lo

g 2)

Objective vs. Iteration, Alternating Descent

 

 

ADMM
FISTA
BCD

Figure 3.6: Iterations for the relative objective of the alternating descent in 2-D ran-

domly generated sparsity pattern experiment. Splitting methods are separated into two

categories.

Methods ADMM Tseng FISTA Chambolle-Pock BCD

Iterations 7.51 19.3 23.3 57.0 49.0

Table 3.4: Average iteration count per alternating descent step in 2-D randomly gen-

erated sparsity pattern experiment. The numbers of inner iterations necessary for these

methods to solve a convex sub-problem.

Table 3.4 shows the average iteration per alternating descent step for these

methods. Most of the splitting methods use much less iteration per alternating

descent than BCD. Except for Chambolle-Pock semi-implicit method.

To summarize our observations from the 2-D group sparsity pattern experi-

ments, splitting methods presented above not only give better results capturing

more structured sparsity patterns than BCD. Most of the splitting methods are

significantly better than BCD in terms of speed and rate of convergence.
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3.5.3 AR Face Recognition

We apply these splitting methods to the SSPCA application for the AR Face

Database1 created by Aleix Martinez and Robert Benavente [MB98]. This database

consists of face images of 100 different individuals. There are 14 non-occluded and

12 occluded images per subject. The goal is to find r leading principal compo-

nents, such that the principal components for different subjects are separated with

2-D continuous structure sparsity pattern. This experiment is a good example to

show how these splitting methods performed in real application.

Intuitively, choosing the correct the number of columns r, or the number of

principal components is very important in sparse matrix factorization problem. It

will slow down speed of convergence if it is not correctly estimated. In previous

experiments, number of principal components r are predetermined by the ground

truth. However, in real SSPCA application, the data points are considered very

close to each other and hence making it difficult to estimate the correct number

of principal components. The starting point of the alternating descent is also a

key factor to speed of convergence. If the starting point is randomly generated

without any selection, it might generate a close-to-singular decomposition matrix

during the initial phase.

In our experiment, first we downscale the face images into 20 × 20 images.

Then we use 14 non-occluded face image as training data and obtain r = 7 prin-

cipal components for each subject. These principal components can be used to

test over the remaining 12 occluded face images to verify the recognition results.

Figure 3.7 shows the results of the alternating descent for the one of the

1The AR Face was created by Aleix Martinez and Robert Benavente, which can be found on

http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html.

61



ADMM

Tseng

Chambolle−Pock

BCD

SVD

Figure 3.7: SSPCA results of three splitting methods and BCD comparing with the

SVD in AR Face database application. Each image in one row corresponds to one

principal component. Each row corresponds to the result of alternating descent with

that particular method for the convex sub-problem.

subjects. It is similar to the 2-D continuous pattern experiment. There is no

ground truth in general. Instead, we use the SVD of the original data as a refer-

ence. Comparing the results from BCD, the splitting methods (ADMM, Tseng’s

forward-backward and Chambolle-Pock semi-implicit) successfully capture the left

and right half of the faces (Image 2 and 3) due to shadowing, and the emotion

changes like laughing (Image 6 on the mouths) and smiling (Image 5 on the eyes

and mouths). However, the BCD method failed to capture the emotions, and the

left and right shadowing image are separated in different principal components.

Figure 3.8 shows the relative objective versus iteration plot for the alternating

descent algorithm. Together with the results from Figure 3.7, we conclude that

BCD converges to a different local minimum. The reason is similar to the 2-D

randomly generated sparsity pattern experiment: BCD does not have good stop-

ping criterion and a trivial stopping condition will cause early termination when
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Figure 3.8: Iterations for the relative objective of the alternating descent in AR Face

database application.

Methods ADMM Tseng Chambolle-Pock BCD

Runtime (ms) 52.1 51.1 41.3 288

Table 3.5: Average runtime per iteration in AR Face database application.

solving the convex sub-problems. All three splitting methods presented above

perform similarly. However, FISTA does not work in this experiment due to

the ill-conditioned convex sub-problem during the alternating descent. The other

splitting methods are considerably slower than the three methods presented. They

are not included in our discussion of experimental results.

Table 3.5 and 3.6 show the average runtime per iteration and the average itera-

tion count per alternating descent step for these methods. Although BCD spends

much more time per iteration due to the size of the problem, BCD uses much

Methods ADMM Tseng Chambolle-Pock BCD

Iterations 362 152 230 17

Table 3.6: Average iteration count per alternating descent step in AR Face database

application.
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less iterations per alternating descent step than other splitting methods. This is

because of the early termination discussed before, which is also the main reason

that BCD converges to a wrong local minimum.

To summarize our observations from the AR-Face recognition application,

BCD does not converge to the desired local minimum while the selected split-

ting methods provided the desired results and performed much faster than BCD.

Therefore, to summarize the experiments, choosing the appropriate splitting meth-

ods for the alternating descent algorithm makes it much faster than using the

existing methods such as BCD. Most importantly, using splitting methods for

alternating descent algorithm achieves the desired result of the sparse matrix fac-

torization problem.
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CHAPTER 4

Sparse Hierarchical Dictionary Learning

4.1 Problem Description

In many applications in signal processing, the observed signal can be represented

by a decomposition of a series of dictionary components. One famous example is

the Fourier Transformation. Instead of using a predefined dictionary, e.g., Fourier

basis or Wavelet basis, the dictionary learning problem tries find such a dictionary

from the training data. As an example, consider a discrete signal x ∈ R
n and a

finite dictionary D with components Di ∈ R
n, i = 1, 2, . . . , r. The signal x can be

represented exactly or approximately by a decomposition v of this dictionary:

x̂ = Dv

=

r
∑

i=1

viD
i,

such that x̂ ∼= x. Mathematically, it is very similar to the PCA problem. Namely,

given a set of training signals in a matrix X ∈ R
n×m, the goal of the dictionary

learning problem is to find a finite dictionary D ∈ R
n×r and the corresponding

decompositions V ∈ R
r×m, such that these training signals can be reconstructed

by X̂ = DV , and the total reconstruction error is minimized: X̂ ∼= X . The

dictionary learning problem has been adapted to various applications such as

unsupervised learning, pattern classification, and compressive sensing.

In some applications, it is interesting to limit the number of components in the

dictionary used to reconstruct the signal while minimizing the overall reconstruc-

tion error. In other words, the decomposition matrix V is column-wise sparse.
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This is known as sparse dictionary learning (SDL). The SDL problem is known to

be computationally challenging. Many algorithms have been developed for SDL

problems. Olshausen et al. [OF97] proposed a second-order iterative batch proce-

dure algorithm for general SDL problems. Lee et al. [LBR07] proposed a general

first-order gradient descent method specifically for sparse coding.

Unlike the predefined dictionaries, dictionary components acquired from SDL

might be meaningless since the learning process is highly unsupervised. Compo-

nents in the dictionary have no explicit connections with each other. Therefore,

the structure of the decomposition matrix V , which indirectly promotes relation-

ships among dictionary components, is as important as the sparsity condition. Je-

natton et al. [JMO10] proposed a hierarchically structured sparse decomposition

of V to further exploit relationships among dictionary components and maintain

the sparsity in the decomposition. With properly chosen constraints and penalty

functions, this sparse hierarchical dictionary learning (SHDL) problem can be for-

mulated as a sparse matrix factorization problem.

4.2 Matrix Factorization Formulation

In this thesis, we represent the SHDL problem based on the formulation from

Jenatton et al. [JMO10]:

minimize
1

2
‖X −DV ‖2F + λ

m
∑

i=1

g(V i)

subject to h(Dj) ≤ 1, j = 1, 2, . . . , p,

The m columns of the data matrix X ∈ R
n×m correspond to m sample signals

in R
n. The p columns of the dictionary matrix D ∈ R

n×p correspond to p differ-

ent dictionary components in R
n. The m columns of the decomposition matrix

66



(4)  

(2)  

(5)  

(1)  

(6)  

(3)  

(7)  

Figure 4.1: Example of a hierarchical tree with 7 variables

V ∈ R
p×m correspond to m decomposition vectors in R

p. This is a variation of the

sparse matrix factorization problem (Eq. 1.2). The major difference would be the

row-wise penalties over decomposition matrix V T . It will affect the formulation

and separability of the problem as well as the optimality conditions. However, it

is still recognized as a sparse matrix factorization problem (Eq. 1.1).

The hierarchical group sparsity inducing norm g(V k) in SHDL, proposed by

Jenatton et al. [JMO10], is known to exploit sparsity in a hierarchical architecture.

To exploit such sparsity, Jenatton et al. proposed the hierarchical group sparsity

inducing norm in the format of (Eq. 2.2):

g(x) =
∑

i∈∆

‖xδi‖2

=
∑

i∈∆

√

∑

j∈δi

x2
j . (4.1)

In (Eq. 4.1), ∆ is a hierarchical sparsity tree where δi is a subtree of ∆ rooted at

node i. For example, consider a hierarchical tree ∆ for x = (x1, x2, x3, x4, x5, x6, x7) ∈

R
7. Figure 4.1 shows the hierarchical tree ∆ for this example. There are 7 subtrees

in ∆. The subtree rooted at node 2 is δ2 = {2, 4, 5}. The subtree rooted at node

4 contains only one node, δ4 = {4}. The subtree rooted at node 1 is the entire

tree. The hierarchical group sparsity norm (Eq. 4.1) for x with this particular
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tree structure is:

g(x) =
∑

i∈∆

√

∑

j∈δi

x2
j

= |x4|+ |x5|+ |x6|+ |x7|+
√

x2
2 + x2

4 + x2
5 +

√

x2
3 + x2

6 + x2
7 +

√

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7.

Other constraints and penalties on the dictionary D and decomposition V

might also apply in SHDL application. They typically depend on the specific ap-

plication. Jenatton et al. [JMO10] proposed a general constraint for the dictionary

components Dk:

h(Dk) = (1− µ)‖Dk‖22 + µ‖Dk‖1 ≤ 1, (4.2)

where µ ∈ (0, 1). For example, Jenatton et al. proposed to use µ = 0 or the l2

norm for image processing and µ = 1 or the l1 norm for text mining.

Additionally, the decomposition vectors and/or dictionary components might

be restricted in the non-negative orthant R+ in some applications. It can be rep-

resented as element-wise constraints D ≥ 0 and/or V ≥ 0.

Consider the typical SHDL formulation,

minimize
1

2
‖X −DV ‖2F + λ

m
∑

k=1

g(V k)

subject to ‖Dk‖2 ≤ 1, k = 1, 2, . . . , p,

V ≥ 0. (4.3)

Here we choose µ = 0 in (Eq. 4.2) to formulate the l2 norm constraint in dictio-

nary components. We also choose an element-wise non-negative constraint on the

decomposition matrix. This formulation is the same as the example discussed by
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Jenatton et al. [JMO10]. It can be formulated as two convex sub-problems through

alternating descent algorithm (Eq. 1.6): The convex minimization problem over

the dictionary matrix D with a fixed decomposition matrix V ,

minimize
1

2
‖X −DV ‖2F

subject to ‖Dk‖2 ≤ 1, k = 1, 2, . . . , p, (4.4)

and the convex minimization problem over the decomposition matrix V with a

fixed dictionary matrix D,

minimize
1

2
‖X −DV ‖2F + λ

m
∑

k=1

g(V k)

subject to V ≥ 0. (4.5)

These two problems are almost identical to the two convex sub-problems in

(Eq. 3.4, 3.5). Therefore, most of the analysis for SSPCA apply to SHDL as

well. Section 4.3 and Section 4.4 discuss the major differences between SHDL and

SSPCA.

4.3 Minimization over Dictionary Matrix

Consider the convex minimization problem in (Eq. 4.4). It can be written as

minimize f̃(D) + h̃(D)

with the two parts of the objective function as:

f̃(D) =
1

2
‖X −DV ‖2F (4.6)

h̃(D) =

p
∑

k=1

I‖.‖2≤1(D
k), (4.7)

This convex problem (Eq. 4.4) is very similar to the problem (Eq. 3.4) for

SSPCA. The proximal operators necessary for splitting methods are almost the
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same as those discussed in Section 3.3. The best method applied to this convex

sub-problem of SHDL is also a projected gradient methods with the proximal

operator as a projection onto a l2 norm ball. Therefore, the proximal gradient

methods and accelerated proximal gradient methods discussed in Section 3.3 for

SSPCA can be applied to SHDL.

4.4 Minimization over Sparse Decomposition Matrix

The problem (Eq. 4.5) is a penalized least squares problem with g(V j) as the

hierarchical sparsity inducing norm in the format of (Eq. 2.2) . It is similar to the

problem discussed in Section 3.4 for SSPCA. The hierarchical sparsity inducing

norm (Eq. 4.1) can be represented in the exact same non-overlapping group norm

in (Eq. 3.8), such that

g̃(x) =

|∆|
∑

i=1

‖x(i)‖2 (4.8)

with x(i) = V k
δi
and x = (xT

(1), x
T
(2), . . . , x

T
(|A|))

T , where x(i) is the vector containing

all variables in the hierarchical subtree δi. Therefore, the vector x is also the linear

transform of V k identical to (Eq. 3.9):

x = CV k =

















V k
δ1

V k
δ2

...

V k
δ|V |

















, ∀δi ∈ ∆. (4.9)

The weighted version of the linear transform (Eq. 3.10) can be adapted in a similar

manner, which we do not discuss in detail here. The problem (Eq. 4.5) can be
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reformulated as

minimize
1

2
‖X −DV ‖2F + λ

m
∑

k=1

|∆|
∑

i=1

‖W k
(i)‖2

subject to W = CV,

V ≥ 0.

The major difference between SHDL and SSPCA is the additional non-negative

constraint on the decomposition matrix V ≥ 0. Fortunately, this constraint V ≥ 0

is equivalent to W ≥ 0 because of the property of matrix C discussed in Sec-

tion 3.4. The problem (Eq. 4.5) can be further reformulated as

minimize
1

2
‖X −DV ‖2F + λ

m
∑

k=1

|∆|
∑

i=1

‖W k
(i)‖2

subject to W = CV,

W ≥ 0. (4.10)

Denote the two parts of the objective in (Eq. 4.10) as:

f̃(V ) =
1

2
‖X −DV ‖2F (4.11)

g̃(W ) = λ

m
∑

k=1

|∆|
∑

i=1

‖W k
(i)‖2, W ≥ 0. (4.12)

Then the problem can be written as

minimize f̃(V ) + g̃(W )

subject to W = CV.

This is the exact same format as in SSPCA application with different functions f̃

and g̃. Most of the splitting methods discussed for SSPCA are suitable for SHDL

as well. The formulation (Eq. 4.10) for SHDL is separable over the columns of V ,

which makes it more suitable for parallel computing. Both the Frobenius norm

term and the column-wise hierarchical sparsity inducing norm are column-wise
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independent. Solving the problem (Eq. 4.10) is equivalent to solving m individual

regularized least squares problems for every columns of Xk, k ∈ (1, 2, . . . , m):

minimize f̃(V k) + g̃(W k)

subject to W k = CV k,

We use the same notation f̃ and g̃ for the functions because the vectors V k and

W k can be treated as a matrix with only one column.

4.4.1 Proximal Operators

The properties of the linear mapping W = CV is the same as in SSPCA appli-

cation. The first resolvent is the proximal operator for quadratic loss function

(Eq. 4.11) with respect to vector V k. It is very similar to the analysis in Sec-

tion 3.4 as well. In this section, we focus on the second proximal operator with

the extra non-negative constraint.

The second resolvent is the proximal operator for the non-overlapping l1-l2

norm function (Eq. 4.12) with an element-wise non-negative domain:

W k = proxtg̃(Ŵ
k)

⇐⇒ W k = argmin
W k≥0







λ

|∆|
∑

i=1

‖W k
(i)‖2 +

1

2t
‖W k − Ŵ k‖22







⇐⇒ W k
(i) = argmin

W k

(i)
≥0

{

λ‖W k
(i)‖2 +

1

2t
‖W k

(i) − Ŵ k
(i)‖

2
2

}

⇐⇒ W k
(i) = argmin

W k

(i)
≥0

{

‖W k
(i)‖2 +

1

2λt
‖W k

(i) − Ŵ k
(i)‖

2
2

}

.

Each W k
(i) equals to the proximal operator of a scaled l2 norm function with the
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domain constraint. It has a closed form solution:

W k
(i) =



















(

1−
λt

‖Ŵ k
(i)+‖2

)

Ŵ k
(i)+ ‖Ŵ k

(i)+‖2 ≥ λt

0 otherwise,

where Ŵ k
(i)+ = max{0, Ŵ k

(i)}, the non-negative part of the vector Ŵ k
(i).

The proximal operators for both parts of the objective are easy to calculate

with closed form solution. Therefore, most of the methods discussed in Section 3.4

are also suitable for SHDL. However, some characteristics and properties of SHDL

problem are different from those of SSPCA. We will discuss the difference for each

method in detail in the rest of this section. For all these splitting methods, we

denote v and w as the primal variable, z as the dual multiplier for the equality

constraint w = Cv. Lower case variables indicate vector operation since columns

of V is separable. The variable x represents the corresponding column of data

from the original formulation.

4.4.2 Primal Methods

Consider reformulating the equality constraint of the problem (Eq. 4.10) into the

subspace representation:

minimize f̃(v) + g̃(w)

subject to
[

−I C
]





w

v



 = 0,

This is identical to the problem formulation (Eq. 3.14) for the Spingarn’s method.
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Douglas-Rachford Splitting

The Spingarn’s method discussed in SSPCA can be directly applied to SHDL ap-

plication with the appropriate proximal operators and the linear transformation

matrix C. The formulations are identical to those in (Eq. 3.15-3.17).

4.4.3 Primal-Dual Methods

Consider the primal-dual optimality condition in (Eq. 2.17),

0 ∈





0 CT

−C 0









v

z



+





∂f̃(v)

∂g̃∗(z)



 .

We consider the trivial splitting of the monotone inclusion as 0 ∈ A(v, z)+B(v, z)

with

A(v, z) =





0 CT

−C 0









v

z



 , B(v, z) =





∂f̃ (v)

∂g̃∗(z)



 .

Douglas-Rachford Splitting

In SHDL, the optimality condition and the splitting of operator are identical to

those in SSPCA. The detail of the Douglas-Rachford splitting methods is not dis-

cussed again. The formulations are identical and discussed in (Eq. 3.18-3.20).

Forward-Backward Splitting

The modified forward-backward method for SHDL application has the exact same

formulation as SSPCA. The step size is limited by the inverse of the norm of ma-

trix C, t ≤ 1/‖C‖2 for Tseng’s forward-backward splitting algorithm. It does not

involve any of the proximal operators for the objective function. Fortunately, the

matrix C for SHDL application has a small Lipschitz continuity parameter just
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like SSPCA. The formulations are identical to those in (Eq. 3.21-3.24).

Semi-Implicit Splitting

In SHDL, both of the semi-implicit splitting method from Chambolle and Pock,

and method from Chen and Teboulle are identical to the formulation in SSPCA.

The step size for both methods are also limited by an upper bound proportional

to the inverse of the norm of matrix C. The formulations are identical to those

in (Eq. 3.25-3.27) and (Eq. 3.28-3.31).

4.4.4 Dual Methods

Consider the dual optimality condition,

0 ∈ −C∂f̃ ∗(−CT z) + ∂g̃∗(z).

We also consider the trivial splitting of the monotone inclusion as 0 ∈ A(z)+B(z)

with

A(z) = −C∂f̃ ∗(−CT z), B(z) = ∂g̃∗(z).

Douglas-Rachford Splitting

The Douglas-Rachford splitting method applying to the dual optimality condition

is the ADMM method as discussed in SSPCA. The primal formulation are similar
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to those in (Eq. 3.32-3.34):

v+ = argmin
v

{

f̃(v) +
t

2
‖Cv − w + z/t‖22

}

w+ = argmin
w

{

g̃(w) +
t

2
‖Cv+ − w + z/t‖22

}

= proxg̃/t(Cv+ + z/t)

z+ = z + t(Cv+ − w+).

The first update requires the solution for

(DTD + tCTC)v = DTx+ tCT (w − z/t),

which has a closed form solution:

v = (DTD + tCTC)−1(DTx+ tCT (w − z/t)). (4.13)

The major difference between SHDL and SSPCA is that this convex sub-problem

for SHDL application is column-wise independent. Instead of solving the general

Sylvester equation, the explicit solution to the first update is just the solution for

the linear equations. Therefore, ADMM for SHDL application is easier to formu-

late than for SSPCA application. However, there is only a marginal difference in

terms of calculation complexity.

The dictionary components in SHDL generally require extra redundancy in

order to make the decomposition matrix sparse and structured. Therefore, the

matrix DTD is most likely to be singular or close to singular. It will cause nu-

merical problem in solving the linear equation (Eq. 4.13). Therefore, the correct

estimation of the size of the dictionary is very important for ADMM since an

over-redundant dictionary could lead to singularity condition in DTD, which lim-

its the step size.
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Forward-Backward Splitting

The forward-backward splitting method applied to the dual optimality condition

is the proximal gradient method (Eq. 3.36). It requires f̃ ∗ to be differentiable and

the gradient at −CT z is

∇f̃ ∗(−CT z) = argmin
v

{

f̃(v)− < v,−CTz >
}

= (DTD)−1(−CT z +DTx),

for a non-singular matrix DTD. In SSPCA, the matrix DTD is usually non-

singular. However, this matrix DTD is most likely to be singular in SHDL ap-

plication. Therefore, the proximal gradient method is not suitable for SHDL

application.

4.5 Experiments

We first consider the 2-dimensional randomly generated images from certain basis

vectors with colored rectangular region. Then we consider using SHDL to extract

the dictionary for some images randomly selected from the Berkeley Segmentation

Dataset [MFT01] to see the performance of the splitting methods in a practical

application.

In these experiments, we first compare the efficiency of the splitting methods

on one of the convex sub-problems of alternating descent discussed in Section 4.4).

Then we compare them in the alternating descent algorithm (Eq. 4.3). We did

not include BCD method from Jenatton et al. [JMO10] in the comparison. This

BCD method uses a proximal algorithm to solve the dual problem for each inde-

pendent column in the decomposition matrix. Since the problem is completely

column-wise independent, it is almost identical to ADMM method applied to one
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Figure 4.2: Example of a randomly generated hierarchical dictionary tree. The image

in the middle is the root of the tree and each non-leaf image has 4 child images.

column of the decomposition matrix at a time.

4.5.1 Randomly Generated Image Dictionary Learning

In the randomly generated image example, we first generate a random hierarchi-

cal dictionary tree. This hierarchical dictionary tree is organized as follows: Each

component of this hierarchical tree corresponds to a uniformly colored rectangular

region within the image. The color of this region is randomly selected through a

uniform distribution in [0, 255]. The rectangular region for the root node covers

the entire image. Each non-leaf node in this tree has 4 children and their rectan-

gular region cover the top-left, top-right, bottom-left, bottom-right part of their

parent. Figure 4.2 shows one example of this dictionary tree with a maximum

depth of 3.

Now we randomly generate training data images s using the hierarchical dic-
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tionary tree:

s = u0D(0) + u1D(1) + u2D(2) + ǫ ∈ R
n. (4.14)

The parameters ui are randomly selected through a uniform distribution. The

vectors D(i) are the 3 dictionary components in a randomly selected path from

root node to one of the leaf nodes. The parameter ǫ is an independent identical

distributed (IID) Gaussian noise such that the generated signal satisfies a prede-

termined signal-to-noise ratio (SNR).

Convex Sub-problem Minimization

Consider using the splitting methods to solve (Eq. 4.10). We generate m = 200

images in the size of 8×8 pixels. We assume the hierarchical tree has a maximum

depth of 4 with a structure such that each node in level 0, 1, 2 has 10, 2, 2 chil-

dren, respectively. These splitting methods perform very differently through the

process of alternating descent algorithm. We also compare the splitting methods

in two scenarios: Initial Phase and Sub-optimal Phase, which are consistent with

the definition in SSPCA application.

Figure 4.3 shows the relative objective versus iteration plot for the convex sub-

problem discussed in Section 4.4. At the initial phase, the methods with respect to

the primal-dual optimality conditions: Tseng’s forward-backward and Chambolle-

Pock semi-implicit algorithm works much better than methods using primal or

dual optimality condition, such as ADMM and Spingarn’s. Chen-Teboulle semi-

implicit method still converges much slower than the other methods and is not

included in the experiments. At the sub-optimal phase, it further confirms that

methods with respect to the primal-dual optimality condition is much better than

the other methods.
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Figure 4.3: Iterations for the relative objective of the convex sub-problem in randomly

generated image experiment. Splitting methods are separated into two categories by there

speeds of convergence.
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Methods ADMM Tseng PD-DR Chambolle-Pock

Runtime (ms) 11.2 11.6 13.4 17.4

Table 4.1: Average runtime per iteration in randomly generated image experiment,

averaging over the entire alternating descent algorithm. We only compare four splitting

methods: primal-dual optimality methods and ADMM.

Table 4.1 shows the average runtime per iteration for these methods. Chambolle-

Pock semi-implicit method takes a little bit more time each iteration that the other

methods.

Alternating Descent

Consider applying these splitting methods to the alternating descent algorithm

(Eq. 4.3). We assume the hierarchical tree structure and the other problem set-

tings are the same as the convex sub-problem experiment. We only include the

3 methods based on primal-dual optimality and ADMM in the following experi-

ments because the other methods are considerably slower.

Figure 4.4 shows the dictionaries obtained by the alternating descent algo-

rithm for all these methods in a hierarchical tree structure. We can see that the

result from ADMM is very similar to the result from Jenatton et al. [JMO10],

which further confirms the similarity between ADMM and their BCD method.

The decomposition for the training data is evenly spread over the entire dictio-

nary on each level using ADMM. However, the training data images are randomly

generated from 17 ground truth dictionary components as shown in Figure 4.2.

It is not a good approximation of the ground truth because there are too many
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ADMM

Primal−Dual Douglas−Rachord
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Tseng’s Forward−Backward

Chambolle−Pock

Figure 4.4: SHDL results for the four methods in randomly generated image experi-

ment. The root of the hierarchical tree is in the middle of each figure. The most outer

circle of images is the leaf nodes of the hierarchical tree.
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Figure 4.5: Iterations for the relative objective of the alternating descent in randomly

generated image experiment.

redundant dictionary components.

The results for Tseng’s forward-backward method and Chambolle-Pock semi-

implicit method are very close to each other. They both have components in

part of the tree as noisy images. These noisy dictionary components have almost

negligible decomposition weights. For the primal-dual Douglas-Rachford method,

we can make the same observation, except that the noisy images are more regu-

larized. All of these methods produce a good hierarchical structure in the dictio-

nary. Naturally these dictionary components are organized in groups of sectors,

components closer to the root have lower frequencies or smoother changes while

components closer to the leaf nodes have higher frequencies or sharper changes.

For those primal-dual based methods, most of the noise images are located on the

leaf nodes due to an overestimated number of dictionary components.

Figure 4.5 shows the relative objective versus iteration plot for alternating de-

scent algorithm. It is consistent with the dictionary results shown in Figure 4.4.

ADMM converges to a different local minimum from other methods. The Douglas-

Rachford splitting method applied to the primal-dual optimality condition per-
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Methods ADMM Tseng PD-DR Chambolle-Pock

Iteration 123 23.5 67.1 23.8

Table 4.2: Average iteration count per alternating descent step in randomly generated

image experiment. The numbers of inner iterations necessary for these methods to solve

a convex sub-problem.

forms slightly better than the other two methods. However, they all converge to

the same local minimum.

Table 4.2 shows the average iteration count per alternating descent step for

these methods. Tseng’s forward-backward method performs the fastest over-

all, following by Chambolle-Pock semi-implicit method. Although the Douglas-

Rachford splitting method has a faster convergence rate in Figure 4.5. It takes

more iterations per alternating descent to solve the convex sub-problems. ADMM

is the slowest. It takes much more iteration to compute one convex sub-problem

on average.

To summarize the randomly generated image dictionary learning experiments,

ADMM descent to a different local minimum from the other splitting methods

presented in our experiments with a higher objective value. Also, ADMM takes

much more time than the other splitting methods, and the resulting dictionary is

over redundant. The other three methods based on primal-dual optimality con-

dition perform similarly with each other. They are much faster and better than

ADMM.

85



4.5.2 Berkeley Segmentation Dataset Dictionary Learning

We apply the splitting methods to solve a practical SHDL application. The train-

ing data used in this experiment are from the Berkeley Segmentation Dataset

(BSD) [MFT01]1. These data images are downscaled to a size of 8 × 8 pixels.

They are highly uncorrelated and obtained in very different scenarios. It is inter-

esting to see the dictionary learning results for these splitting methods in such a

complicated dataset.

Figure 4.6 shows the dictionaries obtained by the alternating descent algorithm

for all these splitting methods. All of these methods produce a fair hierarchical

structure in the dictionary. Dictionary components with lower frequencies locate

closer to the root while components with higher frequencies stay closer to the leaf

nodes. Overall, the resulting dictionary from ADMM still has less details recov-

ered and the dictionary components on the leaf nodes are not sharp enough. The

results from the other three methods have more details (high frequency compo-

nents) recovered on the leaf nodes.

Figure 4.7 shows the relative objective versus iteration plot for alternating de-

scent algorithm. The most obvious observation is still that ADMM converges to

a different local minimum than the other three methods based on the primal-dual

optimality condition. Tseng’s forward-backward method performs slightly better

than Chambolle-Pock semi-implicit method. The primal-dual Douglas-Rachford

splitting method has the slowest rate of convergence among the three.

Table 4.3 and Table 4.4 show the average iteration count per alternating de-

scent and average runtime per iteration for these splitting methods. ADMM is

1The Berkeley Segmentation Dataset can be found at http://www.eecs.berkeley.edu/

Research/Projects/CS/vision/bsds/
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Tseng’s Forward−Backward

Chambolle−Pock

Figure 4.6: SHDL results for the four methods in the BSD application. The root of

the hierarchical tree is in the middle of each figure. The most outer circle of images is

the leaf nodes of the hierarchical tree.
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Figure 4.7: Iterations for the relative objective of the alternating descent in the BSD

application

Methods ADMM Tseng PD-DR Chambolle-Pock

Iteration 11.2 11.9 12.5 18.4

Table 4.3: Average iteration count per alternating descent step in the BSD application

Methods ADMM Tseng PD-DR Chambolle-Pock

Runtime (ms) 139 12.5 60.3 13.0

Table 4.4: Average runtime per iteration in the BSD application, averaging over the

entire alternating descent algorithm.
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still the slowest among the four methods. This observation is similar to the ran-

domly generated image experiment. The other three methods are much faster than

ADMM by using less runtime per iteration. Tseng’s forward-backward method is

the overall best choice in terms of performance.

To summarize the experiments for SHDL application, the splitting methods

applied to the primal-dual optimality condition are much faster, more accurate

in terms of objective value than splitting methods applied to the dual optimality

condition. The primal-dual based splitting methods recover more detail or high

frequency dictionary components than ADMM does. It is extremely important to

recover more details within a finite dictionary.
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CHAPTER 5

Summary

Sparse matrix factorization and many other matrix factorization problems are usu-

ally solved by the alternating descent algorithm. We demonstrated this alternating

descent algorithm applied to two applications of the sparse matrix factorization

problem in machine learning: Structured sparsity principal component analysis

and sparse hierarchical dictionary learning.

In this thesis we presented various splitting methods to solve the convex sub-

problems of the alternating descent algorithm. We presented a linear transfor-

mation technique to reformulate the convex sub-problem with overlapping group

norm so that the splitting methods can be applied. We also presented a novel

singular value decomposition approach for one of the proximal operators used in

the splitting methods. Our experimental results showed that most of the splitting

methods performed much better than block coordinating descent methods in these

two applications in terms of performance and stability. These splitting methods

are capable of solving large-scale sparse matrix factorization problems with the

proximal operators and resolvents for skew-symmetric linear operator presented

in this thesis.

Most of the splitting methods discussed in this thesis are widely adaptable

for other applications through the alternating descent algorithm. One example

will be the sparse non-negative matrix factorization by adding non-negative con-
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straints to both of the matrix factors. Besides the column-wise sparsity pattern,

these splitting methods may also be applied to other type of sparsity penalties

as long as the underlying proximal operators and resolvents are simple to calculate.
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