
UC Davis
IDAV Publications

Title
Multiresolution Compression and Reconstruction

Permalink
https://escholarship.org/uc/item/5nr9j6tc

Authors
Staadt, Oliver G.
Gross, Markus
Weber, Roger

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5nr9j6tc
https://escholarship.org
http://www.cdlib.org/

Appeared in: Proceedings of IEEE Visualization ‘97, pp. 337-346, 1997.

Multiresolution Compression And Reconstruction

Oliver G. Staadt, Markus H. Gross, Roger Weber

Computer Science Department
ETH Zürich

ABSTRACT
This paper presents a framework for multiresolution compression
and geometric reconstruction of arbitrarily dimensioned data
designed for distributed applications. Although being restricted to
uniform sampled data, our versatile approach enables the handling
of a large variety of real world elements. Examples include nonpa-
rametric, parametric and implicit lines, surfaces or volumes, all of
which are common to large scale data sets. The framework is based
on two fundamental steps: Compression is carried out by a remote
server and generates a bitstream transmitted over the underlying
network. Geometric reconstruction is performed by the local client
and renders a piecewise linear approximation of the data. More
precisely, our compression scheme consists of a newly developed
pipeline starting from an initial B-spline wavelet precoding. The
fundamental properties of wavelets allow progressive transmission
and interactive control of the compression gain by means of global
and local oracles. In particular we discuss the problem of oracles in
semiorthogonal settings and propose sophisticated oracles to
remove unimportant coefficients. In addition, geometric con-
straints such as boundary lines can be compressed in a lossless
manner and are incorporated into the resulting bit-stream. The
reconstruction pipeline performs a piecewise adaptive linear
approximation of data using a fast and easy to use point removal
strategy which works with any subsequent triangulation technique.
As a result, the pipeline renders line segments, triangles or tetrahe-
dra. Moreover, the underlying continuous approximation of the
wavelet representation can be exploited to reconstruct implicit
functions, such as isolines and isosurfaces more smoothly and pre-
cisely than commonplace methods. Although it scales straightfor-
wardly to higher dimensions the performance of our framework is
illustrated with results achieved on data very popular in practice:
parametric curves and surfaces, digital terrain models, and volume
data.

CR Descriptors: E.4 [Coding and Information Theory]: Data
compaction and compression; I.3.5 [Computational Geometry
and Object Modeling]: Curve, surface, solid, and object represen-
tations; Splines; I.3.7 [Three–Dimensional Graphics and Real-
ism]; I.4.5 [Reconstruction]: Transformation methods.

Additional Keywords and Phrases: wavelets, isosurfaces, vol-
umes, triangulation, tetrahedralization, meshing, oracles.

1 INTRODUCTION

1.1 Motivation and Previous Work
Geometry compression is an attractive and emerging subfield in
computer graphics research which has gained much importance in
recent years. Especially when aiming at distributed, interactive
rendering and visualization applications, many of which are
closely related to the WWW, efficient data encoding is an essential
prerequisite for both storage efficiency and real time performance.
In this context, we often face client server setups where a remote
server maintains complex data sets which have to be browsed,
inspected, analyzed or rendered with low latency by a local client.
Apart from rendering complex scenes, consider the case of visual-

izing large digital terrain or medical volume data sets located
somewhere in a remote data base: For fast searching and browsing
it is often sufficient to generate a low level of detail representation.
Conversely, it is sometimes desirable to preserve interesting fea-
tures such as boundaries, isolines, or spatially appealing regions in
full detail while keeping the overall through-put of the communi-
cations channel as low as possible. Fig. 1 illustrates some exam-
ples where different criteria hold for a meaningful data
representation.

Hence, the underlying data representation should be flexible
and has to encompass both global and local level of detail while
accounting for constraints imposed by special data features. Obvi-
ously, as opposed to standard image compression methods, infor-
mation loss is a manifold problem and has to be controlled much
more carefully in graphics applications. As a consequence, elabo-
rate data encoding and compression methods are called for which
successfully address the situations featured above. While, on the
client side, visual data inspection and analysis is tightly related to
the computation of geometric reconstructions from the data,
mostly in terms of piecewise linear elements such as line segments,
triangles, or tetrahedra. It is therefore desirable to perform recon-
structions efficiently from the bitstream of incoming data. More-
over, geometry should be refined progressively as more and more
data arrives at the client. All representations have to be adaptive, in
the way that the number of triangles has to vary as a function of the
client’s performance and interest while still providing a meaning-
ful representation.

It is clear that much successful research effort has been spent
on developing appropriate methods for geometry compression.
Early approaches go back to Douglas et. al. [6] who proposed a
simplification method for line segments. We can also find a vast
amount of literature on mesh representation strategies, a good sur-
vey of which is provided by Heckbert et. al. [11]. Later, Deering
[5] for instance, proposed a scheme to compress triangular shapes
and their attributes. Hoppe [12] and Popovic et. al. [16] suggested
the concept of progressive meshes for triangulated shapes where
edge split and collapse techniques lead to a continuous hierarchy
of levels of detail of an object and constraints may be imposed eas-
ily. Others [15], [7] discussed representation and parametrization
strategies for meshes of arbitrary topology using linear wavelets.
However, high compression gain along with continuous approxi-
mation requires smooth, higher order polynomial wavelets, which
are difficult to define over arbitrary meshes. The special case of
digital terrain data was addressed, for instance, by Lindstrom

Email: {staadt, grossm, weber}@inf.ethz.ch
WWW: http://www.inf.ethz.ch/department/IS/cg

Figure 1: Illustration of situations arising from visual inspec-
tion of data sets: a) 2D nonparametric surface. b) 2D parametric
surface. c) 3D implicit isosurface.

a) b) c)

Appeared in: Proceedings of IEEE Visualization ‘97, pp. 337-346, 1997.

et. al. [14] and Gross et. al. [10]. The latter one used an underlying
wavelet representation to govern mesh refinement and featured
both global and local levels of detail.

In summary, much effort has been spent on finding appropriate
mesh simplification and representation methods which allow for
fast and progressive transmission and rendering of complex
scenes. However, little attention has been spent on the following
issues:

• Many technical applications in practice, such as medical
imaging systems, produce raw data sampled over uni-
form grids. Due to their complexity, these data sets have
to be compressed and stored in a remote database server.
Thus, visual inspection and browsing requires computa-
tion of piecewise linear geometric reconstructions from
the compressed data set.

• Up to now compression was mostly considered a mesh
representation problem. The manifold aspects of a full
compression pipeline such as precoding, global and local
oracles, quantization, and optimal bit allocation have
rarely been discussed in full detail.

• Compression and reconstruction should be embedded in
a framework which provides an interface for the client
and offers a testbed for individual methods. In particular,
both lossy and lossless compression must be combined
to satisfy demands arising from geometric reconstruc-
tions.

1.2 Our Approach
The research presented in this paper was stimulated by the issues
discussed above. The goal was to provide an efficient and versatile
compression and reconstruction pipeline which accounts for cli-
ent-server setups. The framework is hybrid in the sense that it com-
bines both lossy and lossless compression. Being restricted to
uniform sampled data, we can use bounded B–spline wavelets,
such as in [20] and [18], for data precoding. Some of their relatives
have successfully been used in image compression [22]. The
underlying approximation features high compression gain, elimi-
nation of boundary problems, multiresolution progressive setups,
and both global and local oracles within the error bounds of .
Furthermore, B–spline wavelets allow one to build linear time
decomposition and reconstruction schemes forming a basis for fast
compression and decompression. The geometric reconstruction of
the data essentially combines a generalized point removal/insertion
strategy with a subsequent triangulation. We restrict our attention
to vertex removal and keep it independent of the meshing. That is,
we consider a meaningful triangulation as a plug-in, such as pro-
vided by the qhull library [1]. Special emphasis, however, is given
to implicit reconstruction tasks which occur in many applications.
For this, we exploit the smoothness properties of the underlying
approximation which allows more smooth and precise computa-
tion of implicit intersections than current methods. Again, triangu-
lation algorithms, such as marching tetrahedra [2], are provided as
plug–ins from other sources. Thus, our framework features modu-
lar and object oriented design, currently embedded in AVS/Express.

Fig. 2 depicts an overview of the framework. The individual
components can be combined according to requirements of the
application. The remote server performs data compression and is
governed by parameter settings for global and local oracles, and a
bitstream received by a client is produced. It is at this step where
geometric reconstruction and interactive visualization are com-
puted. The quality of the geometric reconstruction computed by
the client can be controlled depending on network performance,
computational and storage capabilities of the client, or on the data
themselves.

We are aware that the restriction to uniform sampled data
might be considered a major drawback. We believe, however, that
the rich variety of applications covered by our approach justifies
the presented research.

The remainder of our contribution is organized as follows: In
Section 2 we describe the fundamentals of the multiresolution data
precoding emphasizing new methods for the construction of global
oracles for semiorthogonal B–spline wavelets. Section 3 addresses
all relevant issues related to our compression strategies for quanti-
zation and bit allocation. A fast and easy to use geometric recon-
struction technique based on progressive point removal/insertion is
explained in Section 4. The special problem of implicit interpola-
tion for isolines and -surfaces is elucidated in Section 5. Finally,
we illustrate the versatility of our framework with various exam-
ples ranging from different surface types to volume data.

2 MR APPROXIMATIONS
In this section we discuss the mathematical fundamentals of the
preprocessing we employ for data preconditioning. As stated ear-
lier, B–spline wavelets are used as a precoding transform since
they combine various advantageous features, such as vanishing
moments, continuous approximation, bounded interval definition,
linear time algorithms, and localization. For reasons of readability,
we first review some basics of cardinal B–spline wavelets. How-
ever, our attention is mostly directed to the definition of global ora-
cles, that is, schemes to reject unimportant coefficients. Our global
oracle consists of a greedy algorithm resulting from an elaborate
analysis of errors in semiorthogonal settings [9], an excerpt of
which is given in Section 2.2. Additionally, we will demonstrate
how local oracles reject coefficients in unimportant spatial regions
and thus enable the construction of electronic magnifying glasses
for interactive data inspection. For reasons of simplicity, we per-
form all computations for 1D functions, but the results extend
straightforwardly to higher dimensions.

2.1 B-Spline Wavelets
B–spline wavelets were initially introduced by Chui [4], and were
extended to bounded intervals by [18] and [20], while nonuniform
knot sequences were addressed for instance by [3]. Due to a rich
variety of literature in this area, we restrict our introduction to
those topics essential for an understanding of our framework.

B–spline wavelets can be constructed from a multiresolution
hierarchy of cardinal B–spline scaling functions. Semiorthogona-
lity invokes an additional degree of freedom, however. Thus,

L2

Figure 2: Illustration of the conceptual components of our com-
pression and reconstruction framework embedded into a client-
server setup

Data

Wavelet Transform

Oracle

Compression

Constraints

Decompression / WT-1

Point Removal

Meshing

Rendering

compression pipeline decompression pipeline

clientserver
progressive

compressed bitstream

transmission

L2

Appeared in: Proceedings of IEEE Visualization ‘97, pp. 337-346, 1997.

approaches as in [18] or [20] end up in slightly different construc-
tion schemes. We adapted the methods of Quak et. al. [18] to con-
struct B–spline wavelets of arbitrary order bounded to the interval.

Assuming the reader is familiar with some fundamentals of
discrete wavelet transforms (DWT), the implementation of the for-
ward transform is carried out by sequences of projection operators

, where stands for the decomposition level.

An initial function is mapped from the higher resolution

approximation space onto a lower resolution space

and onto its orthogonal complement space . Given the

coefficient vectors and for the scaling functions ,

and wavelets in the 1D setting, with

(1)

,

the decomposition is performed by matrix operations

. (2)

Due to the semiorthogonality, we require the inverse operators
 and to compute the reconstruction with

. (3)

It can be easily proven [18] that the operators relate to each
other by

. (4)

In the case of cardinal B–spline wavelets, sparse operators
and come along with dense matrices and . In order to
construct linear time algorithms for both decomposition and recon-
struction, it is sufficient to know the sequences and to
perform an additional base transform of the coefficients into their
duals and using the inner product matrices and .
This results in a decomposition and reconstruction scheme as
depicted in Fig. 3.

Note that the decomposition involves solutions of the sparse

linear systems of type for each iteration and

for the last iteration step. Fortunately, this can be
accomplished in linear time as well. For brevity we abandon all
mathematical details associated with the construction of these
transforms and refer the reader to [18]. Instead, we direct our
attention in the following section to the problem of global oracles.

2.2 Global Oracles
A global oracle rejects unimportant wavelet coefficients from the
transform while minimizing a given error norm. It is clear that the
global oracle controls the compression and is essential for infor-
mation loss. In orthogonal settings, optimal oracles can be con-
structed easily by sorting coefficients according to their
magnitude, and by rejecting the smallest ones from the list [20].
This strategy is commonplace in many applications and offers
good results [8]. Unfortunately, in semiorthogonal spaces, con-
struction becomes more difficult and has hardly been addressed in
depth. Maximum distance norm oracles have been proposed by
[21] for biorthogonal wavelets. Mathematical analysis of the
behavior of approximation errors for semiorthogonal wavelets is
closely related to signal energy computations.

The computational scheme for the global oracle is based on the
observation that the energy of a function expanded by semi-
orthogonal wavelets is obtained by the following sum of scalar
products:

(5)

• : scalar product operator.

Due to the orthogonality of different complement spaces it is

sufficient to analyze the error norm of a single space . In order

to derive an incremental method we assume out of

coefficients in this space to vanish. The approx-
imation error is determined by the following relation:

(6)

where represents the residual approximation and
denotes the set of all coefficients being rejected from the initial
transform. In a next step we compute how the upper error behaves

when rejecting an arbitrary , assuming coefficients to

have already been rejected in previous procedures. That is, we
compute an expression for the error increment generated by a sin-
gle coefficient.

(7)

Figure 3: Linear time decomposition and reconstruction pyra-
mids for cardinal B–spline wavelet transforms a) decomposition.
b) reconstruction.

Am Bm, m 1…M=

f x()

V m V m 1+

W m 1+

cm dm φi
m

x()

ψi
m

x()

ci
m

f φi
m,〈 〉= di

m
f ψi

m,〈 〉=

i: 1…N 2m⁄ order 1– , order: B-Spline order+

c
m 1+ Amcm

= dm 1+ Bmcm
=

Pm Qm

cm Pmcm 1+ Qmdm 1+
+=

Am

Bm
------- Pm

|Qm[]
1–

=

Pm

Qm Am Bm

Pm Qm

c̃m d̃m Φm Ψm

cm c̃mΦmcm PM()T
c̃M 1–

c̃M 1– c̃M

QM()T
c̃M 1–

d̃
M

ΨMdM d̃
M

=

dM

…

cM

ΦMcM c̃M
=

a)

c̃m d̃
m

: coefficient vectors in dual space, T: transpose,

…

cM

dM

PMcM

QMdM

…
Pm 1+ cm 1+

Qm 1+ dm 1+

cm

…

cm 1+

dm 1+

b)

…

Ψm dm⋅ d̃
m

=

ΦM cM⋅ c̃
M

=

L2

f x()

f x()
L

2
2 cM c̃

M• dm d̃
m

•
m 1=

M

∑+=

W
m

K

N 2
m

order 1–+⁄

∆ f
m

x() ∆ f '
m

x()– L
2

2

Rej K()

di
mψi

m
x()

i Rej K()∈
∑ di

mψi
m

x()
i Rej K()∈

∑,=

di
m

d j
m

j Rej K()∈
∑

i Rej K()∈
∑ ψi

m
x() ψ j

m
x(),〈 〉⋅=

∆ f '
m

x() Rej K()

dk
m

0≠ K

∆ f
m

x() ∆ f '
m

x()– L
2

2

Rej K k,()

∆ f
m

x() ∆ f '
m

x()– L
2

2

Rej K()
dk

m()
2

2+ dk
m

di
m

i Rej K()∈
∑ ψk

m
x() ψi

m
x(),〈 〉⋅ ⋅

+=

Appeared in: Proceedings of IEEE Visualization ‘97, pp. 337-346, 1997.

Equation (7) expresses the dependence of the error on an incre-
ment of the rejection set. We will refer to it as the conditional
approximation error in all subsequent discussions. The factor of 2
follows immediately from the symmetry of the inner product
matrix. Apparently, the conditional increment is computed by add-
ing one row and one column to the matrix type structure represent-
ing the double summation of (6), such as depicted in Fig. 4. In
summary, the error can be updated by adding the products of the
coefficient and the elements of the rejection set times the asso-
ciated entry of the inner product matrix. Note that this error can be
considered a score which reflects the conditional importance of an
individual coefficient.

The relations derived represent an essential step towards the
development of an oracle. They allow one to predict how the
approximation error changes when rejecting an individual wavelet
coefficient under the precondition that K other coefficients have
been rejected earlier. Based on this fundamental relationship, it is
possible to develop a greedy rejection algorithm which optimizes
locally and computes a minimum error rejection set of coefficients.
In essence, the greedy oracle operates as follows: It first assigns an
initial score to all wavelet coefficients of all iterations . The
score is defined by the overall conditional approximation error,
which governs the oracle. In a second step, the oracle iteratively
selects the coefficient with the minimum score, rejects it, and
recomputes the scores of all other coefficients. The iteration loop
runs up to a predefined number of cycles or up to a predefined
error bound . As with equation (7), the score can be recom-
puted by an appropriate increment after each iteration. Thus we
end up with a simple reject–and–update scheme for our oracle. The
pseudocode is provided below:

Initialize: score[i,m] ← d[i,m]⋅d[i,m];
for i ← 1 to K
for m ← 1 to M do
Search: coefficient[irej,mrej]|score[irej,mrej] = min ≠ 0;
Reject: d[irej,mrej] ← 0;
if m = mrej && score[i,m] ≠ 0 then
increment[i,m] ← 2⋅d[i,m]⋅d[irej,mrej]⋅ψ[i,irej,m]

+ score[irej,mrej] - old_score
else if score[i,m] ≠ 0
increment[i,m] ← score[irej,mrej] - old_score;

Update: score[i,m] ← score[i,m] + increment[i,m];
end;

After each step, the score[i,m] of a coefficient d[i,m]
represents the overall conditional approximation error when reject-
ing d[i,m]. Note that the time–complexity of the oracle equals

 and applies only on forward compression.

2.3 Local Oracles and Selective
Refinement

A local oracle allows one to control the approximation locally in
interesting regions. Here, the spatial localization of the basis func-
tions enables us to accentuate particular wavelets while suppress-
ing the influence of others. In this understanding, a straightforward
local oracle consists of a weighting function which operates on the
coefficients of the transform. A first approach to this is given in

Gross et. al. [10] who employed a Gaussian weighting. The basic
idea is to assume some ellipsoidal weighting area as a local region
of interest in the spatial domain. Localization of the wavelet trans-
form enables the projection of scaled and translated versions of it
into wavelet space, where individual coefficients are influenced.
The initial version presented in [10], however, did not consider the
support regions of individual basis functions, and can lead to some
artifacts by rejecting wavelets ranging into the region of interest.
Therefore, we extended the method with the computation of sup-
port and bounded wavelets.

An illustration for geometry based image representation is
given in Fig. 5. In Fig. 5a, we computed a mesh of the IEEE Com-
puter Society logo using the approach explained subsequently.
Selectively refined meshes using Gaussian weighting are presented
in Fig. 5b and Fig. 5c respectively, where the areas of interest are
located around different areas of the logo. For illustration, the
mesh was kept artificially dense.

3 COMPRESSION STRATEGIES

This section explains in detail all essential processing steps associ-
ated with the definition of appropriate compression strategies. We
first give an overview of the compression and decompression pipe-
lines, which are hybrid, in the sense that they combine both lossy
and lossless methods depending on the type of feature to encode.

Data compression has a long tradition and has been studied
intensively [19]. However, the individual requirements of a geome-
try based approach encouraged us to design the pipeline explained
subsequently. For instance, in the context of lossy compression,
issues of floating point data handling and quantization must be
adapted to our needs where the structure of the wavelet representa-
tion plays an important role. Furthermore, additional effort has to
be spent on progressive settings. Since the preservation of con-
straints, such as iso- or boundary values or lines, is desirable in
many applications we propose a lossless compression strategy for
these features.

3.1 Overview

Based on the wavelet precoding steps explained previously, we
designed a compression/decompression pipeline as depicted in
Fig. 6. The forward compression proceeds as follows: After extrac-
tion of constraints, the data set is normalized, wavelet-transformed
and both local and global approximation errors are controlled by
the oracles introduced above. Sorting of the individual channels of
the WT transforms the multidimensional array into a 1D data vec-
tor which is quantized and encoded subsequently. Line-constraints,
as extracted earlier, are fed into a lossless compression scheme.
Conversely, the decompression pipeline inverts the procedure and
prepares the data for subsequent geometric reconstruction.

Figure 4: Illustration of the conditional approximation error in-
crement.

dk
m

dk
m

di
m ψk

m
x() ψi

m
x(),()

dk
m()

2

∆ f
m

x() ∆ f 'm x()– L
2

2

Rej K()

m

K
Eb

O N2()

Figure 5: Illustration of the effect of a local oracle on a triangu-
lated image. a) Initial triangulation. b), c) Local oracle is centered
at the upper and central area of the triangulation.

a) b) c)

Appeared in: Proceedings of IEEE Visualization ‘97, pp. 337-346, 1997.

3.2 Progressive Lossy Compression
Handling of Floating Point Values. First the data is nor-
malized, i. e. the values are scaled to . We decided to
carry this out before transformation, because post–normalization
maps an offset onto small wavelet coefficients and is more difficult
to handle upon compression.

In order to prepare the data for bandwise progressive transmis-
sion, we sort the multidimensional coefficient array into a 1D vec-
tor as displayed in Fig. 7. Here, the array is traversed from the
most significant scaling function coefficients to the high frequency
bands representing fine grained detail.

Note that the vector contains floating point values and has to be
converted into an array of integers.

Quantization. The quantization step comprises a multiplica-

tion of the initial floating point coefficients with a factor of ,

where represents the number of bits to be assigned for each
coefficient. Subsequent rounding operations transform the floating
point value into signed integer formats of size . Let be a

coefficient, we obtain it’s quantized version by

. (8)

Note that strongly affects the quantization error and appears
as noise after reconstruction. Lossless quantization would typically
require 23 bits on a 32 bit machine for single precision due to the
IEEE–754 floating point format.

Coding and Bit Allocation. The major task in the proposed
compression is to convert the quantized integer vector into a bitst-
ream of data. Therefore, we employ an entropy coding scheme in

the spirit of JPEG [23]. Assuming that many of the coefficients
will equal zero, encoding is carried out as follows: All nonzero
coefficients are represented by 2–tuples, where the first element
represents the number of bits of the second one. The second ele-
ment contains the data value itself. All negative numbers are thus
replaced by their absolute values, where in the case of a positive
number the first bit is cleared. This enables the encoding of the
sign. Let’s say to encode a value of 17 we get (5, 00001), whereas
to encode -17 we obtain (5, 10001). Similarly, 5 is represented by
(3, 001), whereas -5 is converted to (3, 101). Note specifically that
since the number of bits is known in advance, the representation is
unique and the additional encoding of the sign bit in the most sig-
nificant bit is possible.

Zero valued coefficients are encoded differently. Here we rec-
ommend a runlength coding up to a length of which gen-
erates a set of 32 new symbols. These symbols, together with the
first part of our 2-tuples, are stored in a Huffman–table which has
essentially 64 entries. The Huffman symbols are as follows:

• Symbols 0 – 30: First element of a 2–tuple minus 1

• Symbol 31: ‘EOB’ (End Of Bitstream)

• Symbols 32 – 63:Runlength of ‘zero’–coefficients

The scheme proposed here compromises the complexity of the
Huffman–table with the maximum number of zero coefficients
(32) to be encoded in one symbol. The ‘EOB’ Symbol usually
allows the encoding of long sequences of ‘zero’–coefficients in the
least significant positions of our data vector. However, it is only
used where the Huffman table has not been built individually. The
following pseudocode illustrates the procedural flow of the
scheme:

// N:total number of integer coefficients
// di: coefficient i
// huffleni: length of Huffman–code for symbol i
// huffcodei: Huffman-code for symbol i
// WriteBits(l,i):
// appends the last l bits of i to bitsream
// Make2Tupel(i,first,second):
// converts integer into 2-tuple
i ← 0;
while i < N do
if di = 0 then
j ← 0;
while j<32 && di ← 0 do inc(i); inc(j); end;
WriteBits(hufflenj+31, huffcodej+31);

else
Make2Tupel(di,first,second);
WriteBits(hufflenfirst-1,huffcodefirst-1);
WriteBits(first,second);
inc(i);

end;
end;
WriteBits(hufflen31,huffcode31);

For brevity we do not explain the construction of the Huff-
man–table and refer to standard literature, such as [19]. However,
in our framework the Huffman–table is generated individually for
each data set upon compression and is transmitted along with the
data and header information, which is presented in Table 2. Since
the size of the table is fixed to 64 entries, this does not lead to a
notable overhead. Another solution would be the employment of a
generic table, such as in image compression which, however, drops
the compression gain and, due to the variety of geometric data, is
much more difficult to construct. An example of encoding a
sequence of coefficients is given in Fig. 8.

It should be stated again that progression is achieved channel
by channel. That is, we transmit the low frequency scaling function
coefficients first followed by the wavelet coefficient channels in
order of ascending frequency.

Figure 6: Compression pipeline including both lossless and
lossy data compression. For decompression, all of the above steps
have to be reversed.

Figure 7: Conversion of the multidimensional array into a 1D
coefficient vector depicted for a 2D WT.

Normalization

Wavelet Transform

Channel Weighting

Oracle

Channel Sorting

C
om

pr
es

si
on

Quantization

Encoding

Input Data

Constraint Extraction

∆ Coding ∆ Coding ∆ Coding

Arithmetic
Coding

Arithmetic
Coding

Arithmetic
Coding

Merge Bitstream

C
on

st
ra

in
t

C
om

pr
es

si
on

x y data

Merge Bitstream

lo
ss

y

lo
ss

le
ss

0 … 1,,[]

ψ2 1,

ψ2 3,

ψ2 2,

φ2

ψ2 1,

ψ1 1,

ψ1 3,

ψ1 2,

φ2ψ1 1,ψ1 2, ψ2 3, ψ2 2,

M 2=

direction of transmission

2
n 1–

n

n cfloat

cquant

cquant round 2n 1– cfloat⋅()=

n

25 32=

Appeared in: Proceedings of IEEE Visualization ‘97, pp. 337-346, 1997.

Some results of the lossy compression of a B–spline surface
with different parameter settings are depicted in Fig. 9. In order to
decompose the control points of this B–spline surface we used the
pipeline explained in detail in Section 4.3.

Finally, Table 1 compares the proposed encoding scheme
(encode) with some of the most popular lossless compression
methods, like zip, arc, urbon and compress. Note that information
loss occurs only upon coefficient removal and quantization. Thus,
all subsequent steps in our pipeline are lossless and can be com-
pared with some standard algorithms. Results are given for a 3D
volume data set, where the data was prequantized with 8 bits and
16 bits respectively. Interestingly, even in lossless mode our
method competes with popular algorithms in overall performance.

3.3 Compression of Constraints
In many cases it is desirable to compress spatially interesting fea-
tures, such as boundary- or isolines and individual vertices in a los-
sless manner. We call these data constraints, since they usually
constrain subsequent geometric reconstruction. In our pipeline we
represent constraints as polylines or polygons. Fig. 10 illustrates
the use of constraints in a digital terrain data set of the Swiss Alps.
Here the geometric reconstruction, i. e. triangulation of the sur-
face, was simplified up to a given bound. The constraints invoked

by the polygon force the reconstruction to keep the triangulation
dense, however. The constraint is imposed in terms of a terrain fol-
lowing polyline of a given extent.

Assuming the polyline constraint is represented as a stream of
vertices of type (x, y, data), we employ a lossless compres-
sion strategy, as shown in Fig. 6.

The position and the data value are encoded separately
using both delta and higher order arithmetic compression algo-
rithms. For details see [19].

The resulting bitstream format is presented below in Fig. 11,
where two headers are followed by the individual x-, y- and data-
streams.

4 VERTEX REMOVAL STRATEGIES
The following section is dedicated to vertex removal methods,
which enable the client to compute geometric reconstructions
adaptively and progressively from the incoming bitstream of data.

Figure 8: Example of encoding a sequence of coefficients and
the resulting bitstream.

Figure 9: Compression of a B–spline surface with different
quantizations. No additional point removal is performed ().
Some triangles degenerate due to quantization. a) 50% coeffi-
cients, 23 bit quantization, compression gain 1:1.33. b) 10 bit, 1:4.
c) 7 bit, 1:5. d) 5 bit, 1:10.
(Data source: Courtesy Advanced Visual System Inc.)

Table 1: Comparison of the proposed method (encode) with some pop-
ular compression algorithms (3D volume data set of Fig. 19 and Fig. 20:
128x64x64 voxels).

8 BIT QUANT. 16 BIT QUANT.
CPU
(IN S)

50%
COEFF.
(IN KB)

10%
COEFF.
(IN KB)

50%
COEFF.
(IN KB)

10%
COEFF.
(IN KB)

ENCODE 568 245 1,835 466 2

ZIP 618 290 2,399 660 5

ARC 711 300 2,727 764 13

URBAN 501 233 1,888 496 69

COMPRESS 533 253 2,407 607 3

UNCOMPRESSED 2,248 2,248 4,496 4,496 0

0.037 0.147 0.000 0.000 0.000 0.439Wavelet Coefficients

Quantization

2–tuples

1011 0001100 11 000101101 100010 1011 0111101

Huffman symbol value ‘zero’ Huffman symbol

Bitstream

76 301 0 0 0 899

(7,76) (9,301) 0 0 0 (10,899)

(256 bits)

with 12 bits

(67 bits)

a) b) c) d)

ε 0=

Figure 10: Illustration of constraints in a digital terrain data set.
a) Interactive specification of the constraint path. b) Mesh after
constraint insertion.
(Data source: Courtesy Bundesamt für Landestopographie, Bern,
Switzerland)

Figure 11: Data format of the bitstream for constraint compres-
sion. The individual header formats are given in Table 2.

Table 2: Header formats of bitstream.

NAME TYPE DESCRIPTION

G
E

N
E

R
A

L
H

E
A

D
E

R

magic_number byte ASCII ‘67’
stream_size integer total size

xValues_size integer size of x-stream
yValues_size integer size of y-stream

info byte misc info
width float constraint width

field_dims integer[2] mesh dimension
npoints integer # points of constraint

ndata integer # extracted data values
xFirstValue float first x-coordinate
yFirstValue float first y-coordinate

H
E

A
D

E
R

F
O

R

A
R

IT
H

M
E

T
T

IC

C
O

D
IN

G

arithFirstValue float first extracted data value
maxValue float maximal value
minValue float minimal value

nIntBits integer multiplication factor
huffFirstValue integer 1st integer value

H
E

A
D

E
R

F
O

R

E
N

C
O

D
E

iterationDepth short iteration depth
weightArr float[] array of weights
huffTable integer[64] Huffman–table
quantBits short quantization (# of bits)

degree short degree of B–spline bases
minValue float minimum coefficient value
maxValue float maximum coefficient value

nDim short # of dimensions
dimArr short[] dimension array

a) b)line constraint path

x y,()

general headerAC headerx-streamy-streamdata-stream

transmission

Appeared in: Proceedings of IEEE Visualization ‘97, pp. 337-346, 1997.

When seeking an appropriate algorithm, computational perfor-
mance and invariance to the dimensionality are important consid-
erations. Due to the rich literature on vertex removal in graphics
and computational geometry we found that the well-known algo-
rithm of Douglas et. al. [6] is a good starting point. First, we briefly
explain its initial form in a nonparametric 1D setting and illustrate
its application in multiresolution representations. Here, special
emphasis is given to extension of the method for progressive
reconstruction. Next, we generalize the method to multidimen-
sional and parametric cases and give some examples of how it
works. The versatility of the introduced method imposes no
restriction on subsequent triangulation methods, which can range
from constraint Delaunay [17] to fast look–up tables [10].

4.1 1D Settings
In order to construct a point removal strategy, let’s first consider
the 1D setting. Here, the problem reduces to finding a strategy for
the reduction of line segments in piecewise linear approximations.
Inspired by the algorithm of [6] we extended these ideas and mod-
ified the method to a recursive and progressive algorithm, illus-
trated in Fig. 12. It starts by connecting the first point of a curve,

, with the last point . All intermediate points representing

the curve are compared against the line segment and the

point with the largest distance, for instance , is identified. If its

distance exceeds a predefined threshold , the vertex is consid-

ered important and labeled. We split the initial line segment in two
halves, on each of which the algorithm can be applied recursively.
Obviously, the quality of the removal can be controlled by the dis-
tance threshold. The advantage of this extension to the original
method lies in the tree type refinement of the vertex analysis com-
ing along with the recurrence relations.

The distance can be computed in different ways, where, how-
ever, the computation of the vertical distance, such as depicted in
Fig. 12c, is computationally much more expensive for general
multidimensional settings. Therefore, we recommend computation
of the y-distance (see Fig. 12a) approximating nonparametric data.
The problem of parametric data sets will be discussed in upcoming
sections.

4.2 Generalizations to Multiple
Dimensions

Generalizations of the method towards multidimensional nonpara-
metric data is straightforward. Starting from an initial grid, as in
Fig. 13, the algorithm seeks the vertex with the maximum dis-
tance and subdivides the field into 4 (in 2D) or 8 (in 3D) subcells

on which the method is applied recursively. In these cases the dis-
tances to the bilinear and trilinear interpolants of the cell vertices
are computed, respectively.

Recalling the multiresolution B–spline approximation of the
data motivates the extension of the algorithm towards a channel-
wise progressive point insertion. Therefore, the algorithm analyzes
mesh vertices progressively and labels unimportant points as new
data comes in. In 2D, for instance, the basic idea is to start from an
initial vertex field of resolution in each direction, where
represents the maximum iteration. The vertices are provided by the
scaling function approximation and are processed further
by our algorithm. To define a distance metric, we assume a bilinear
interpolant between the vertices which approximates the B–spline
scaling function representation. If the difference signal
is received, the resolution is refined by 2 and all newly inserted
vertices are checked conforming to our distance metric. If
required, they will be inserted.

In order to compute the intermediate vertices for each iteration,
an inverse wavelet transform has to be applied on all coefficients of
a given iteration as soon as they are received and decompressed.

An apparent drawback of this approach, however, deserves
some attention: Once a vertex is labeled as important there is no
way to reject it in subsequent steps. Obviously, the detail signals
added during progression influence the importance of each vertex.
Therefore, we recommend an exponential alignment of the thresh-
old to the iteration. That is if stands for the current iteration
step, the associated threshold is computed by

(9)

: global threshold governing the point removal.

In our implementation we employ a tree type data structure to
maintain the individual cells representing the mesh. The tree grows
iteratively as progression proceeds. After iteration, the leaves of
the tree represent the remaining cells and can be triangulated with
appropriate methods. Fig. 14 further elucidates the data representa-
tion.

Figure 12: a) Recursive algorithm assuming a smooth represen-
tation of the underlying curve: a) P2 has largest vertical distance. b)
new approximation after insertion of P2. c) example for vertical
distance measure. d) final result.

P0 Pk

P0Pk

P2

ε0

curve

approximation
a)

y-distance

vertical distance

b)

c) d)

P0 Pk

P2

P0

P2

Pk

P0

P2

PkP1
P3 P0

P2

PkP1

P3

P

Figure 13: Extension towards multiple dimensions exemplified
for nonparametric data: 2D version. The underlying B–spline patch
is outlined in bold. A new vertex is inserted at position and the
distance is computed with respect to the bilinear-interpolant of

.

Figure 14: Construction of a 1D tree data structure with 64 ver-
tices and its growth during progression. The equivalent list struc-
ture is given below. a) First segment at the beginning. b) Insertion
of P29 causes split into two segments. c) Final tree after inserting
all points.

Pij

Pij 1+

Pi 1 j 1+ +

Pi 1 j+

P

surface patch

distance to the
bilinear interpolant

P

Pij Pij 1+ Pi 1 j+ Pi 1 j 1+ +, , ,

2m M– M

f M x y,()

∆ f m x y,()

m

ε0 m
ε m()

ε m() ε0 e
M m–⋅=

ε0

begin end
1 64

root

a) b) c)

1 64root root 1 28 29 64 root

1 28 29

641

64

root
active segment

root

Appeared in: Proceedings of IEEE Visualization ‘97, pp. 337-346, 1997.

For subsequent triangulations we employed the qhull library
from [1] in 2D and 3D. Note, that the N–tree type cell structure
enables computation of very fast meshings using look–up tables,
such as the ones presented in [10]. An example of progressive
point removal is depicted in Fig. 18, where the mesh is refined
gradually with each wavelet channel arriving at the client side.

4.3 Parametric Data Sets
A parametric version of the introduced algorithm can be con-
structed as elucidated below. For reasons of simplicity, we restrict
our description to 2D parameter spaces, however higher dimen-
sional spaces can be easily generalized from that. The conceptual
components of our pipeline are illustrated in the diagram of Fig.
15. We assume an initial parametric B–spline surface to be
defined by its vector valued control points

 at iteration .

(10)

: number of tensor product B–spline scaling functions.

Thus compression has to proceed separately on the x, y and z
components of the control vertices. Specifically, the WT and the
oracles operate for now independently on the individual coordi-
nates.

However things become more complicated upon reconstruc-
tion, which operates again in parameter space indepen-

dently for the spatial coordinates , , and .

As a result three binary label fields are generated indicating the
importance of individual vertices in parameter space for subse-
quent triangulation. Unfortunately, different results are obtained

for , , and and we have to decide on the

final removal. This decision is accomplished by applying a Bool-
ean OR operator over the individual vertex fields a motivation of
which is given as follows: As explained earlier the non-parametric
version of our removal strategy holds for linear approximations in
terms of triangulations and thus refines the mesh in spatial regions,
where the underlying function features nonlinear behavior. In the
parametric setting similar criteria are valid for a linear approxima-
tion of a surface. The mesh has to be refined in those regions where
the surface shows nonlinear behavior, that is where the local curva-
ture does not equal zero. This however happens if either ,

or indicate nonlinearity. Obviously, the Boolean

OR of the label fields considers a vertex important if one or more
of the three coordinates behave locally nonlinear. The usefulness
of this approach can be seen in Fig. 17, where a parametric surface
is compressed and reconstructed with different parameter settings.
Here, we end up with a dense mesh in spatial regions of high cur-
vature and simplification occurs in regions of local planarity.

5 IMPLICIT INTERPOLATION
In the following section the problem of implicit reconstruction is
addressed. In practice, implicit structures are mostly isolines or
isosurfaces. An advantageous feature coming along with the multi-
resolution B–spline representation is the higher order continuous
approximation of the underlying data. Although any computation
bases on adaptive triangulations obtained from previous proce-
dures, this property can be exploited to reconstruct implicit struc-
tures more precisely. For instance, in 2D data sets, piecewise linear
representations of isolines can be recovered by immediate compu-
tation of the intersections along the triangle edges from the B–
spline approximation. Similar procedures hold for isosurface
reconstructions from tetrahedralizations. The cubic polynomials
perform data smoothing and cancel out most of the jags and dis-
continuities commonplace in standard methods.

5.1 Isolines
In order to handle isolines we start from the initial B–spline
description of the underlying 2D height function and
obtain an implicit formulation by

(11)

: isovalue.

Recalling the approximation properties of B–splines we rec-
ommend to precompute an interpolation problem to get the appro-

priate coefficients related to the data samples to be

interpolated. These types of interpolations are extensively investi-
gated and relate tightly to inverse B–spline filtering problems
which perform in linear time [22].

For (11) we provide a polyline approximation using a march-
ing triangle-like look-up table which operates on a triangle mesh
representing . A slight extension of the look-up table
enables the extraction of those parts of the surface which are inte-
rior to the isoline, that is whose function values . The
vertices of the describing polygonal hull are given by the intersec-
tions of the isoline with triangle edges, such as shown in Fig. 16a.

Figure 15: Illustration of the conceptual components for para-
metric compression and reconstruction.

s u v,()

cij
0

ci j x,
0

ci j y,
0

ci j z,
0, ,()

T
= m 0=

s u v,() cij
0 φ j

0
v()φi

0
u()

j 1=

J

∑
i 1=

I

∑=

J I⋅

u

v

1011100110011100101101100010111111110110

WT

OracleC
om

p.
 z

WT

OracleC
om

p.
 y

u

v

cij{ }

cij y,{ } cij z,{ }cij x,{ }

WT

OracleC
om

p.
 x

bitstream

Decomp. x Decomp. y Decomp. z

Removal x Removal y Removal z

u

v

u

v

label fields

OR

Meshing

u
v

adaptive mesh in u

v

control mesh of a
parametric surface

in parameter
space

parameter space

triangulated surface in
spatial domain

Merge Bitstream

u v,()
sx u v,() sy u v,() sz u v,()

sx u v,() sy u v,() sz u v,()

sx u v,()

sy u v,() sz u v,()

f x y,()

f x y,() cij
0 φ j

0
y()φi

0
x()

j 1=

J

∑
i 1=

I

∑ τ= =

τ

cij
0

f x y,()

f x y,() τ>

Appeared in: Proceedings of IEEE Visualization ‘97, pp. 337-346, 1997.

Note that in cases 011, 101, and 110 the initial triangle repre-
senting the surface is split into 2 primitives. The intersection of the
isoline, implicitly defined by (11), with the triangle edge is calcu-
lated using a binary search along the edge. Here we exploit the
regional separation with respect to provided by the isoline.

Fig. 18 illustrates the performance of the method on digital ter-
rain data. We employed progressive triangular approximations of
different quality to compute both isolines and to extract interior
regions. Comparing the isolines computed by our method with
those of a linear interpolation reveals the superiority of the
approach.

5.2 Isosurfaces
Similar relations hold for the generation of isosurfaces and interior
or exterior volumes. Here we start from a B-spline volume approx-
imation of :

(12)

: number of tensor product volume B–splines.

After solving the initial B–spline interpolation problem the
isosurface is obtained by a marching tetrahedron [2] algorithm,
where the intersections of the surface with the tetrahedral edges are
computed using the binary search on the B–spline volume. Again,
a little work on the look-up table enables one to extract interior or
exterior volume segments which are important for many applica-
tions, such as finite element simulations [13]. Fig. 16b exploits
symmetry and illustrates the 5 out of 16 cases arising upon triangu-
lation giving the connectivity for the extraction of interior vol-
umes.

Note especially that individual tetrahedra may split up into
three primitives for representing the bounding surface of the inte-
rior volume.

The results given in Fig. 19 and Fig. 20 illustrate the approxi-
mation behavior of the method, where standard marching cubes
and marching tetrahedron with linear interpolation are contrasted
to the B-spline binary search algorithm. Although intersection
computation is more expensive we observe that the resulting isos-
urface is figured out more precisely and smoothly using the new
approach.

6 RESULTS

In this section we demonstrate the versatility of the introduced
compression and reconstruction framework by investigating its
performance on different data sets. First, Fig. 17 shows a series of
triangulations of a parametric interpolating B-spline surface gener-
ated in accordance to the diagram in Fig. 15. The initial control
mesh of points was decomposed and reconstructed
using 60% of the coefficients. By fixing the quantization to 10 bits
we achieved a compression gain of 1:5. We observe that the quality
of the reconstruction is governed by the parameter . The trian-
gulation was computed using the qhull library from [1]. Interest-
ingly, our method generates numerous slivers, long thin triangles,
which are mostly located along the shaft of the object. This effect
can be explained easily by analyzing the curvature in those
regions. We find that it differs significantly in u and v direction in
parameter space and therefore long, thin structures provide an effi-
cient planar approximation.

Further progressive mesh refinements and isoline reconstruc-
tions are depicted in Fig. 18 for a digital terrain data set of the
Swiss Alps, Matterhorn region. The initial grid consists of

vertices and 168,000 triangles. We applied a forward
compression by keeping only 5% of the coefficients at a decompo-
sition level of , which corresponds to a compression gain
of 1:40 at 10 bits quantization. The series reveals how the mesh is
refined progressively and adaptively upon reconstruction with each
incoming wavelet channel. The extracted isolines were computed
using the method of Section 5.1 and are contrasted against the bili-
near interpolations of Fig. 18e. By comparing them to Fig. 18a we
note that artifacts coming along with linear interpolation are
avoided in our approach using the binary search technique. Further
pictures from this series illustrate the extraction of interior and

Figure 16: Polyline approximation of isolines: a) Isoline as computed by intersections with the triangle edges and look-up table to extract interior
or exterior parts of the surface. b) Generation of isosurfaces and interior volumes using a marching tetrahedron algorithm: 5 basis cases arising upon
triangulation. The connectivity table for generation of interior volumes is presented in Table 3.

10

11
12

14

24

25 26

27
13

001 010

100

011

101 110

000

111

positive negative

v0

v2

v1 v0

v2

v1
v3

v5

v0

v2

v1

v0

v2

v1 v0

v2

v1

v0

v2

v1 v0

v2

v1 v0

v2

v1

v4

a)

isoline positive

negativecase 0 case 1

case 2 case 3

case 4

v3

v2

v1v0

v7 v8

v6
v5

v4

v9

b)

τ

f x y z, ,()

f x y z, ,() cijh
0 φh

0
z()φ j

0
y()φi

0
x()

h 1=

H

∑
j 1=

J

∑
i 1=

I

∑ τ= =

H J I⋅ ⋅

Table 3: Connectivity table for generation of interior volumes (see Fig.
16b).

NO. V0 V1 V2 V3 TETRAHEDRA (VERTEX LIST)
0 - - - - {}
1 - - - + { {v4, v7, v8, v3} }

2 - - + +
{ {v8, v5, v6, v2}, {v5, v8, v7, v3},

{v8, v5, v2, v3} }

3 - + + +
{ {v7, v5, v9, v2}, {v3, v1, v2, v7},

{v7, v2, v9, v1} }
4 + + + + { {v0, v1, v2, v3} }

100 100×

ε0

701 481×

M 7=

Appeared in: Proceedings of IEEE Visualization ‘97, pp. 337-346, 1997.

exterior regions and variations of the compression gain. Especially
Fig. 18h illustrates the quality of the approximation at a compres-
sion gain of 1:100.

A set of 3D isosurface reconstructions is presented in Fig. 19.
Here a voxels subset of the CT–VHD (Fig. 20a)
was decomposed, compressed and tetrahedralized adaptively to
obtain a fraction of the skull surface. We fixed the parameters to

and achieved a compression gain of 1:15 at 20 bits. In this
picture our method is compared to a standard marching cubes tech-
nique and to a trilinear interpolating marching tetrahedron, as
included in the libraries of AVS/Express 3.0. Again, the higher
order interpolation provided by the cubics smooths out most arti-
facts striking in the reconstruction of Fig. 19c, where continuity is
lost and the surface “breaks up”. Moreover, we avoid even some of
the “voxel-like” artifacts of the marching cubes reconstruction
shown in Fig. 19b.

Reconstructions of interior and exterior volumes from the
same data set are depicted in Fig. 20b and Fig. 20c. We observe
that our point removal strategy keeps the tetrahedra dense in those
regions, where the underlying volume features high spatial fre-
quencies. The adaptive tetrahedralizations were computed using
the look–up table extensions proposed in Section 5.2. This allows
one to extract anatomic substructures for further processing, such
as FEM. Finally, the computing times of some of the examples are
listed in Table 4.

7 CONCLUSION AND FUTURE WORK
We presented a versatile framework for multiresolution compres-
sion and reconstruction of non-parametric, parametric and implicit
data which bases on wavelet approximations. Although being
restricted to uniform grids the scheme handles many real world
data types and features numerous advantageous properties, such as
both lossless and lossy compression or progressive and selective
mesh refinement. However the current implementation only sup-
ports channelwise progressive mesh refinement. Hence, future
research activities have to comprise the development of a true
“coefficient-wise” progressive mesh refinement procedure, which
improves the approximation as data comes in. The extension of the
framework toward nonuniform sample grids is still interesting, in
spite of the fact that appropriate WTs have already been introduced
to the community [3]. In addition the inclusion of 2D and 3D tex-
ture compression and reconstruction is an important issue for
ongoing investigations.

8 ACKNOWLEDGMENT
This research was supported in parts by the ETH research council
under grant No. 41–2642.5. We are grateful to the Bundesamt für
Landestopographie, Bern, Switzerland, for the digital terrain data
and to the NLM for providing the VHD set. Our special thanks to
R. Kisseleff, U. Hengartner, J.–P. Hofstetter, and P. Ruser for
implementing parts of the framework.

9 REFERENCES
[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. “Qhull,” 1996.

http://www.geom.umn.edu/locate/qhull.

[2] J. Bloomenthal. “An implicit surface polygonizer.” In P. Heckbert,
editor, Graphics Gems IV, pages 324–349. Academic Press,
Boston, 1994.

[3] M. D. Buhmann and C. A. Micchelli. “Spline prewavelets for non-
uniform knots.” Numerische Mathematik, 61(4):455–474, May
1992.

[4] C. Chui. An Introduction to Wavelets. Academic Press, 1992.
[5] M. F. Deering. “Geometry compression.” In R. Cook, editor, SIG-

GRAPH 95 Conference Proceedings, Annual Conference Series,
pages 13–20. ACM SIGGRAPH, Addison Wesley, Aug. 1995.
held in Los Angeles, California, 06-11 August 1995.

[6] D. Douglas and T. Peucker. “Algorithms for the reduction of the
number of points required to present a digitized line or its carica-
ture.” The Canadian Cartographer, 10(2):112–122, December
1973.

[7] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle. “Multiresolution analysis of arbitrary meshes.” In
R. Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual
Conference Series, pages 173–182. ACM SIGGRAPH, Addison
Wesley, Aug. 1995. held in Los Angeles, California, 06-11 August
1995.

[8] S. J. Gortler, P. Schroder, M. F. Cohen, and P. Hanrahan.
“Wavelet radiosity.” In Computer Graphics Proceedings, Annual
Conference Series, 1993, pages 221–230, 1993.

[9] M. H. Gross. “L2 optimal oracles and compression strategies for
semiorthogonal wavelets.” Technical Report 254, Computer Sci-
ence Department, ETH Zürich, 1996. http://www.inf.ethz.ch/
publications/tr200.html.

[10] M. H. Gross, O. G. Staadt, and R. Gatti. “Efficient triangular sur-
face approximations using wavelts and quadtree data structures.”
IEEE Transactions on Visualization and Computer Graphics,
2(2):130–143, June 1996.

[11] P. S. Heckbert and M. Garland. “Survey of polygonal surface sim-
plification algorithms.” Technical report, CS Dept., Carnegie
Mellon U., to appear. http://www.cs.cmu.edu/~ph.

[12] H. Hoppe. “Progressive meshes.” In H. Rushmeier, editor, Compu-
ter Graphics (SIGGRAPH ’96 Proceedings), pages 99–108, Aug.
1996.

[13] R. M. Koch, M. H. Gross, F. R. Carls, D. F. von Büren,
G. Fankhauser, and Y. I. H. Parish. “Simulationg facial surgery
using finite element models.” In H. Rushmeier, editor, Computer
Graphics (SIGGRAPH ’96 Proceedings), pages 421–428, Aug.
1996.

[14] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and
G. A. Turner. “Real-time, continuous level of detail rendering of
height fields.” In H. Rushmeier, editor, Computer Graphics (SIG-
GRAPH ’96 Proceedings), pages 109–118, Aug. 1996.

[15] J. M. Lounsbery. Multiresolution Analysis for Surfaces of Arbi-
trary Topological Type. PhD thesis, University of Washington,
Seattle, 1994.

[16] J. Popovic and H. Hoppe. “Progressive simplicial complexes.” In
Computer Graphics (SIGGRAPH ’97 Proceedings), to appear,
Aug. 1997.

[17] F. P. Preparata and M. I. Shamos. Computational Geometry.
Springer, New York, 1985.

[18] E. Quak and N. Weyrich. “Decomposition and reconstruction
algorithms for spline wavelets on a bounded inverval.” Applied
and Computational Harmonic Analysis, 1(3):217–231, June 1994.

[19] K. Sayood. Introduction to Data Compression. Morgan Kauf-
mann, San Francisco, 1996.

[20] E. J. Stollnitz, T. D. DeRose, and D. Salesin. Wavelets for Compu-
ter Graphics. Morgan Kaufmann Publishers, Inc., 1996.

[21] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin. “Wavelets for
computer graphics: A primer.” IEEE Computer Graphics and
Applications, 15(3):76–84, May 1995 (part 1) and 15(4):75–85,
July 1995 (part 2).

[22] M. Unser, A. Aldroubi, and M. Eden. “Fast b–spline transforms
for continous image representation and interpolation.” IEEE Tran-
sactions on Pattern Analysis and Machine Intelligence, 13(3):277–
285, Mar. 1991.

[23] G. K. Wallace. “The jpeg still picture compression standard.”
Communications of the ACM, 34(4):30–44, Apr. 1991.

Table 4: Computing times for various steps of our compression and re-
construction framework.

STEP
B-SPLINE SURFACE

(FIG. 17)
DTM

(FIG. 18)
VHD

(FIG. 19/20)

Compression 0.1 sec. 1.5 sec. 2 sec.

Decompression 0.1 sec. 1.5 sec. 2 sec.

Point Removal 1 sec. 2 sec. 2 sec.

128 64 64××

M 4=

Appeared in: Proceedings of IEEE Visualization ‘97, pp. 337-346, 1997.

Figure 17: Compression and reconstruction of a parametric B–spline surface for different levels of linear approximation. a) , 19602 triangles
(100%). b) , 43% triangles. c) , 34% triangles. d) , 22% triangles.

Figure 18: Extraction of isolines and interior surfaces from a digital terrain model of the Swiss Alps and progressive mesh refinement: 3 iso-
lines are extracted for , and , respectively. a) , Wavelet channel 1, 0.1% triangles. b) Channel 3, 1.15% tri-
angles. c) Channel 5, 5.80% triangles. d) Channel 7, 15.83% triangles. e) Standard isoline algorithm for channel 1. f) DTM split into interior
and exterior regions at . g) 5% coeff., compression gain 1:33, , 62% triangles. h) 1% coeff., compression gain 1:100,

, 62% triangles.

Figure 19: Extraction of isosurfaces volume data. Isovalue (skull). a) Our method, 20% coefficients, , 124,343 tetrahedrons, com-
pression gain 1:15. 51,970 triangles b) Marching Cubes, same compression settings, 540,800 cells, 40,522 triangles. c) Marching Tetrahedron (as
provided by AVS/Express 3.0), same settings as a). Data source: Visible Human Project. Courtesy National Library of Medicine.

Figure 20: Extraction of interior and exterior volumes. a) Initial CT volume data set with 2,704,000 tetrahedrons. b) Interior and exterior volumes,
 (skin surface), 133,091+ 34,290 tetrahedrons. c) Interior volume, (skull), 124,491 tetrahedrons.

a) b) c) d)

ε0 0=
ε0 0.005= ε0 0.01= ε0 0.02=

a) b) c) d)

e) f) g) h)

τ 120= τ 125= τ 130= ε0 0.01=

τ 130= ε0 0.0035=
ε0 0.0035=

a) b) c)

τ 75= ε0 0.1=

a) b) c)

τ 42= τ 75=

