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BIOPHYSICS AND COMPUTATIONAL BIOLOGY

Transcriptional drift in aging cells: A global decontroller
Tyler Matsuzakia,1 , Corey Weistuchb,1 ID , Adam de Graffc , Ken A. Dilla,2 ID , and Gábor Balázsia,d,e,2 ID

Contributed by Ken A. Dill; received January 26, 2024; accepted June 11, 2024; reviewed by Murat Acar and Jean Hausser

As cells age, they undergo a remarkable global change: In transcriptional drift, hundreds
of genes become overexpressed while hundreds of others become underexpressed. Using
archetype modeling and Gene Ontology analysis on data from aging Caenorhabditis
elegans worms, we find that the up-regulated genes code for sensory proteins upstream
of stress responses and down-regulated genes are growth- and metabolism-related.
We observe similar trends within human fibroblasts, suggesting that this process is
conserved in higher organisms. We propose a simple mechanistic model for how such
global coordination of multiprotein expression levels may be achieved by the binding
of a single factor that concentrates with age in C. elegans. A key implication is that a
cell’s own responses are part of its aging process, so unlike wear-and-tear processes,
intervention might be able to modulate these effects.

aging | transcriptional drift | archetype analysis

Upon aging, cells can undergo changes that are either extrinsic to the cell (nonau-
tonomous), including signaling between tissues, or intrinsic to the cell (autonomous).
Cell-intrinsic factors can be roughly classified into two types: either 1) wear-and-tear, or
2) the cell’s responses, i.e., adaptive actions taken by the cell in response to aging. Examples
of wear-and-tear include when mitochondria become less effective (1, 2), membranes
become leaky (3–5), DNA, lipids, and proteins accumulate damage (6–8), and protection
within the proteostasis system weakens (9–11).

A manifestation of aging is changes in gene expression. On the one hand, with some
notable exceptions (12), aging can be associated with increases in transcriptional noise,
which is the cell-to-cell variation in gene expression and which results in variations in
mRNA and protein levels (13–15).

On the other hand, of interest here, Rangaraju et al. have recently explored more
systematic changes in gene expression in aging Caenorhabditis elegans worms, which they
call transcriptional drift. In transcriptional drift, hundreds of genes become increasingly
overexpressed with age (relative to younger cells) while hundreds of others become
increasingly underexpressed within the same cell (14). Transcriptional drift has been
observed not only in adult C. elegans, where cells do not reproduce, but also within mice
and humans (14, 16), organisms that age much slower than their constituent cells (17).
In the latter, cell populations are constantly rejuvenated by the loss of old cells and the
gain of new cells through division and differentiation. While similar large-scale concerted
changes in gene expression occur in the Environmental Stress Response (ESR) (18) in
yeast and the Integrated Stress Response (ISR) (19) in worms and higher organisms
to combat stress, the ESR and ISR are typically only transient, whereas transcriptional
drift is prolonged and persists over the full process of aging. Moreover, transcriptional
drift is interesting because it may arise primarily as an actionable cell response to aging
and thus potentially be susceptible to intervention. In support of this notion, inhibiting
transcriptional drift extends the lifespan of C. elegans (14).

In the present work, we analyze the C. elegans transcriptomic time-course profile
data from Rangaraju et al. (14). The experiment was conducted over 10 d which spans
the organism’s reproductive lifespan (8 d) and 67% of the typical lifespan (15 d) (20).
First, using Normalized Nonnegative Matrix Factorization (N-NMF) to analyze patterns
in the data in an unbiased way, we identify two underlying archetypes that capture
this concerted transcriptional variation with age. Second, we use gene ontology (GO)
analysis to determine which cell functions are involved in these archetypes, i.e., which
functions are up- and down-regulated in aging. Third, we propose a simple biophysical
model to explain how such many-protein coordination could be achieved in a simple
way in response to aging. Finally, we validate our findings in human fibroblasts using
transcriptomic data from Sturm et al. (21).

Significance

Our current inability to effectively
decelerate human aging
motivates our research into
transcriptional drift—a global
change in the expression of
hundreds of genes across the
lifespan. Here, we quantitate
transcriptional drift in the model
organism Caenorhabditis elegans
and suggest that it is caused by
linear changes in a single global
regulatory factor. Given the
conservation of this aging
phenotype within human
fibroblasts, our findings identify a
system-wide biomarker with the
potential to improve antiaging
drug screening.
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Gene Grouping by Archetype Analysis

To verify the observed patterns in transcriptional drift, we applied
Normalized Nonnegative Matrix Factorization to the data of
Rangaraju et al. (14). This allowed us to identify concerted
temporal gene expression signatures in the data. NMF is a widely
used clustering algorithm for decomposing high-dimensional
nonnegative signals into their dominant constituent parts (22).
Somewhat like Principal Component Analysis, these component
parts or archetypes represent coupled collections of signals that,
roughly, behave the same way. However, this approach has two
key advantages. First, the components tend to cluster the signals
into distinct parts (22, 23). Second, by adding a normalization
constraint, our N-NMF approach gives the relative contributions
of the parts to each data sample. This method, which we detail
in SI Appendix, has recently been used to identify and score
the enrichment of distinct functional modules in many-gene
cancer expression data (24, 25). Our treatment allows us to
find patterns within the transcriptional data in an unbiased
manner and evaluate how the components of these patterns
evolve.

One principal finding is that the aging C. elegans data is best
represented by two dominant archetypes (SI Appendix, Fig. S1).
Each archetype is a grouping of hundreds of genes. An archetype
can be thought of as an idealized exemplar, a kind of functional
averaging over types of proteins, that best characterizes the
behavior (increasing or decreasing with age) within the group
(26). In our dataset, the archetypes that emerged were genes that
had either monotonically increasing or monotonically decreasing
expression levels measured in counts per million (cpm) over time,
validating the observed patterns of Rangaraju et al. The relative
contributions of these two archetypes to the total C. elegans gene
expression varies over time (Fig. 1) and represents the concerted
transcriptional changes associated with aging.

Although the patterns that emerged from N-NMF are not
novel discoveries, our archetype analysis allowed us to quantita-
tively measure how well each gene follows the archetypes of the
transcriptome. Fig. 2A shows a histogram of Pearson Correlations
among gene expression levels in C. elegans between the increasing
archetype and individual gene expression time-course data. The
figure shows the number of genes for which expression tends to
go down (Left) or up (Right), as a function of age. A remarkably
large fraction of the whole genome changes systematically with
age—either up or down—as seen by the areas under the curve of
the two peaks on the Left and Right.

We leveraged this to extract and examine the concerted time-
dependent behaviors of the most representative genes in the

Fig. 1. The relative changes of the two archetypes of genes with age.
Using normalized nonnegative matrix factorization, we identified two key
archetypes: one that increases with age (red) and one that decreases (green).

relative composition of the C. elegans archetypes. By examining
these genes, we reasoned we would gain better insight into the
driving forces behind the archetypes. We refer to these genes
as our archetype centers, since they dominate the changes in
proteome composition. We defined these archetype centers as
genes that have a Pearson correlation coefficient with the global
archetypes of≤−0.9 or≥0.9, for a total of 1,859 down-regulated
and 3,006 up-regulated genes, respectively. These dominant
components are indicated to the Left and Right of the purple
lines in Fig. 2A. The expression of these genes is plotted in
Fig. 2B. From visual inspection, we noted that the up-regulated
archetype centers tended to increase roughly linearly with age. In
contrast, the down-regulated archetype centers tended to decrease
nonlinearly, similar to a saturating function like a Michaelis–
Menten binding process.

GO Analysis of Protein Functions

To determine what biological functions are systematically up-
regulated and down-regulated with age, we analyzed each
archetype center using PANTHER GO Enrichment Analysis
for functional classifications with Fisher’s Exact Test (27–29).
This allowed us to compare which genes were overrepresented
in each subset compared to our reference list (consisting of all
genes in the full dataset). Dataset S1 gives the results of our GO
analysis, ordered by fold enrichment.

We found that the up-regulated archetype is enriched in
functions related to sensing and transmitting signals (henceforth
referred to as signaling genes). Genes having increased expression
include acy-2, an adenylyl cyclase, and str-88, a G protein-
coupled receptor (GPCR) protein, and genes involved in nervous
system processes (116 genes), particularly those that act through
G protein-coupled receptor activity (140 genes) and neurotrans-
mitter receptor activity (36 genes). This heightened allocation to
signaling between cells is in contrast to the downregulation we
saw next of processes within cells.

We found the down-regulated archetype involves growth
processes that run the day-to-day metabolic and protein turnover
processes inside the cell (henceforth referred to as growth genes).
Those having reduced expression include cullin-5, a ubiquitin
protein ligase, and atp-2, the beta subunit of adenosine triphos-
phate (ATP) Synthase. More broadly, they include the pathways
for mammalian target of rapamycin (mTOR) signaling, mRNA
surveillance, and protein degradation (proteasome) that regulate
growth, as well as glycolysis/gluconeogenesis, the tricarboxylic
acid (TCA) cycle, and oxidative phosphorylation that power this
growth. Also down-regulated are components of ATP Synthase,
which is notable given its importance both in aging mice (30)
and in the regulation of mTOR signaling and transcriptional
drift (31).

Overall, C. elegans’s large-scale transcriptional drift appears to
take a quasi-beneficial or adaptive path where synthesis of high-
biomass pathways consisting of long-lived proteins are made early
in life (thus down-regulated with age), while signaling processes
needed to sense the environment and coordinate beneficial
actions are relatively overexpressed later in life.

A Proposed Mechanism: The Cumulative
Factor Model

What mechanism might explain such large-scale coordination
of up-regulated and down-regulated protein levels with age?
Here, we propose a minimalist model in which simply the

2 of 7 https://doi.org/10.1073/pnas.2401830121 pnas.org

https://www.pnas.org/lookup/doi/10.1073/pnas.2401830121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2401830121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2401830121#supplementary-materials


A
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Fig. 2. Much of the transcriptome changes with age. (A) Pearson correlation coefficient of all genes with the increasing archetype. Genes with high positive R2

are strongly monotonically increasing whereas genes with high negative R2 are monotonically decreasing. Genes selected as archetype centers are to the Left
and Right of the purple lines. (B) Rescaled expression data for genes with correlation coefficients ≥0.9 (Top) and ≤−0.9 (Bottom). The black lines represent the
mean trajectory to better illustrate the shape of the curves.

concentration [f ] of a single underlying molecular factor f —
say, some ligand or protein—rises passively with age. This could
result from some age-related decline, such as in proteostasis (32)
or metabolism (2), or it could represent an age-related program
that changes proteome composition and energy expenditure in
a way that improves fitness (33, 34). Also, there is evidence
for self-destructive processes in C. elegans (35). Regardless of the
exact mechanism, a single such factor would be sufficient to drive
concerted expression levels of large subsets of the genome (36).

Here’s how it could work. Suppose the factor concentration [f ]
accumulates linearly with age. If t is the cell’s adult age (the time
since completion of larval development), then the concentration
of f at time t is

[f ] = at, [1]

where a is a constant rate of accumulation of the factor.
Next, we describe how the cell turns that aging signal into a

modulation of gene expression levels in the model. We suppose
that sensory genes are precursors to genes that respond to stress
(37). The cell uses these sensory or “signal” genes to detect the
type of stress (start/end of starvation, oxidative, osmotic, DNA
damaging stress, etc.), and signaling initiates cellular responses to
counteract the stress as an attempt to reestablish homeostasis (38).
Thus, we assume that signal genes correlate with stress genes.

In a young cell, we expect that the number of mRNAs and
proteins involved in growth are in some optimal balance relative
to those involved in signaling/stress. The data indicate that at
time t = 0, in young cells, we have an initial level of signal
genes s0, averaged over all the corresponding proteins in that
class. Similarly, the cell will also have an initial level of growth

genes g0. We suppose that s0 < g0 since a young cell has
seen little stress yet and is poised to grow. However, cells will
naturally experience stress throughout their day-to-day activities.
This creates a gradual change in transcriptome regulation and
proteotoxic stress which the cell must adapt to, resulting in a
necessary increase in signal-related gene expression (14, 37).

The cell can detect its age by monitoring [f ] through
Langmuir-type binding of f to a stress-sensor biomolecule. Thus,
the number of signal mRNAs, s, will be

s = s0 + �
(

[f ]
Ks + [f ]

)
, [2]

H⇒ Δs = s − s0 ≈
(
�a
Ks

)
t = bt > 0. [3]

where s0 is the initial concentration of the average signal mRNAs,
Ks is a binding association constant, � gives the number of
molecules binding and b = �a/Ks is the slope of the time
dependence in units of s per unit time. Mathematically, s0
is the minimum value of s, at time zero and the signal gene
expression is an increasing function of age. Because these time
courses are observed to be linear, we can approximate a � Ks.
So we can fit the experimental data with a single parameter b,
which gives mechanistic insight because it is proportional to the
average number of mRNA copies made for the signaling/stress
subgenome.

The same mechanism applies to the growth genes:

Δg = g − g0 =
g0Kg

Kg + [f ]
−  =

g0K
K + t

− g0 < 0, [4]

PNAS 2024 Vol. 121 No. 30 e2401830121 https://doi.org/10.1073/pnas.2401830121 3 of 7



Table 1. Parameter values for equation fits
Gene Parameter Value with 95% confidence bounds

Signal b 0.592 ± 0.005 d−1

Growth  0.98 ± 0.40
Growth K 3.3 ± 2.7 d

Here, g0 is the maximum value of g, which occurs at the youngest
age since g is a decreasing function of age. K = Kg/a is the
binding association constant for growth genes. Since the levels of
the growth genes are not linear in age (unlike the signal genes),
we now require two parameters, g0 and K , to fit the experimental
data. The necessity of this second parameter was validated using
the Akaike information criterion (AIC) during model fitting.

Fitting to Experimental Data. We now use the experimental data
to assess these linear and Michaelis–Menten binding mecha-
nisms. Rangaraju et al. reported their data on transcriptional
drift for each particular gene as TDratio = cpmx/cpm0, where
cpm (counts per million reads mapped) refers to the expression
level of a gene as measured through RNA-seq, and where the
subscripts indicate day number × starting from day 0, which is
the first day sexual maturity is reached (14). Our purposes here
are best served by normalizing relative to day 0, cpmx − cpm0,
to allow equal ranges between increasing and decreasing changes
(since division restricts decreases to [0, 1] and increases to [1,∞]).
We also scaled relative to the mean to prevent overemphasis on
outliers, so instead we use

TDdiff =
cpmx − cpm0

cpmmean
, [5]

where cpmmean is the mean cpm across the time points we
analyzed. This allowed for better comparisons between genes
without changing the overall shape of the data. Note that Δs
measures TDdiff for signaling genes and Δg measures TDdiff for
growth genes. In addition, the formula for TDdiff is similar to the
(rescaled) percent change in expression for an individual gene,
PCexp:

PCexp = 100 ∗
cpmx − cpm0

cpmmean ∗ cpm0
=

100
cpm0

∗ TDdiff. [6]

Thus, PCexp is a more interpretable measure of TDdiff, and by
extension, Δs and Δg.

We used Eq. 3 to create best-fit curves to the average PCexp of
archetype center genes in our signaling archetype. This allowed
us to approximate a value for [f ] since it is directly correlated with
b, the resulting best-fit coefficient. We then used this to fit Eq. 4
to the average PCexp of the growth archetype center genes using
Eq. 4. These best-fit parameters are listed in Table 1. As demon-
strated in Fig. 3, both equations give good fits for the experimental
PCexp with R2 values of > 0.99. In addition, compared to
linear models (AIC = 15.9), we found that Eq. 4 captured
the data significantly better (AIC = 13.9), showing the need
for a nonlinear model of the archetypes as a whole. We further
validated that these results were due to individual gene behavior
(and not an emergent property of the gene group) by fitting the
cumulative factor model equations to the data of each individual
gene (SI Appendix, Fig. S2). This supports that our model
can predict the aging trajectories of our signaling and growth
archetype centers. Taken together with the observation that drugs
and longevity genes can broadly delay this drift (14), this supports

the hypothesis that signaling and growth genes are coordinated—
rising and falling together under shared control—because each
group’s behavior is characterized by their dependence on a shared
variable, [f ] = at.

Validation in Human Fibroblasts

To determine the generalizability of patterns in transcriptional
drift to other organisms and cell types, we analyzed
transcriptomics time course data within human fibroblasts
from the data of Sturm et al. (21). In this study, human
fibroblast samples collected from healthy humans were grown
for 200 to 300 d, until the doubling time of the sample became
larger than 30 d, which the authors argued represented the
end of the cells’ lifespan. We repeated our archetype analysis
on this dataset and found a similar trend: The data were
best represented by one monotonically increasing and one
monotonically decreasing archetype, as seen in Fig. 4.

We then examined the archetype centers of the human
fibroblast data in the same manner asC. elegans (Fig. 5). Although
the downgoing genes followed a similar Michaelis–Menten type
curve as in C. elegans, the upgoing genes appear to show a
sigmoidal shape well-fit by a Hill function with a coefficient
≈2.8 (SI Appendix, Fig. S3). This difference is not surprising,
considering that C. elegans, cells stop dividing at adulthood and
age simultaneously by a self-destructive process (35), whereas
human fibroblasts still divide in the dish as they do in the
human body, where their cell population is also constantly
rejuvenated by newly differentiating cells. The aging of single
cells underlies the aging of whole organisms, but it occurs at a
different organizational and temporal scale (17). Consequently,
the reason for sigmoidal rather than linear upgoing trends
might be differences in cell–cell interactions that mediate aging.
Nonetheless, we still observe the essence of transcriptional drift

A

B

Fig. 3. The cumulative factor model captures the linear increase in
up-regulated expressions and the Michaelis–Menten decrease in down-
regulated expressions.. Best-fit regressions to the data using the equations in
the text. The average value of PCexp across all genes in each subset is plotted
in blue. (A) models the signaling genes with an R2 of 0.9999 and (B) models
the growth genes with an R2 of 0.9964.
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Fig. 4. Monotonically increasing and decreasing archetypes trajectories are present in human fibroblasts and can distinguish between increased aging
mutations. HC cells are normal human fibroblasts, whereas SURF1 cells are fibroblasts with an accelerated aging mutation. A1 and A2 represent the two
archetypes for each cell line. Our model was trained on technical replicates HC1 and HC2, then validated on technical replicate HC3 to show that similar cells
show archetypes with similar trajectories. We then applied our model to SURF1 technical replicates 1 and 2 which produced archetypes that have lower/higher
values at any given time point for the decreasing/increasing trajectories, suggesting that these cells have accelerated aging.

in human fibroblasts which is the focus of our paper. Indeed,
we also saw similar patterns in the types of gene functions
in the archetype center genes as C. elegans. Dataset S2 shows
selected gene ontologies from both archetypes, indicating that
signaling genes tended to be overexpressed and growth genes
were underexpressed with age.

In addition, the authors collected data for fibroblasts contain-
ing the mitochondrial SURF1 mutation which causes hyperme-
tabolism and accelerated biological aging (39). We reasoned that
our pretrained model may be able to distinguish the accelerated
aging phenotype. By examining the trajectory of the same
representative genes, we found that the resulting archetypes in
the SURF1 mutants were further along in the aging process

compared to the normal fibroblast cells at any given timepoint
(Fig. 4). Using this method, we believe that we can look for
factors that accelerate or decelerate aging in future Perturb-
seq experiments, helping to discern the identity of our model’s
factor f . In addition, this would provide valuable insight into
discovering which drugs can extend lifespan.

Altogether, this suggests that transcriptional drift is a feature
present not only in C. elegans, but also in fast-aging human cells
that participate in the much slower process of human aging. Our
findings are generalizable across the two species, with similar
trajectories and gene functions changing with age. Last, we also
show that we can use our archetype analysis method to distinguish
between lifespan-extending and lifespan-shortening factors.

A

B

Fig. 5. The transcriptome of human fibroblasts follow similar patterns to C. elegans with age. (A) Pearson correlation coefficient of all genes vs. the increasing
archetypes. Genes with high positive R2 are strongly monotonically increasing whereas genes with high negative R2 are monotonically decreasing. Genes
selected as archetype centers are to the Left and Right of the purple lines. (B) Rescaled expression data for genes with correlation coefficients ≥0.9 (Top) and
≤−0.9 (Bottom). Black lines show mean trajectory to better illustrate the shape of the curves.
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Discussion

We have distilled the complexity ofC. elegans aging to an elemen-
tary form, showing how a single factor [f ] accumulating linearly
with age is capable of regulating the concerted drift observed
in a large fraction of the aging transcriptome. Both upward
and downward gene expression follow Michaelis–Menten or
Langmuir-like binding forms, with the activating binding-action
of the sensor archetype being less saturated—and thus more
linear—than the saturating downward growth archetype.

Previous work by Karin et al. has demonstrated that the
linear accumulation of a single factor (namely senescent cells)
can explain the Gompertzian survival curves of mice and their
temporal scaling behavior (40). Strikingly, the authors also found
that this linear accumulation model also applied to organisms
such as C. elegans where aging is not believed to be driven by
senescent cells. Similarly, a stochastic model based on a global
state variable captured the Weibull survival curve of Saccharomyces
cerevisiae (41). Together, these provide additional evidence for
the existence of a common key factor within the aging process
which could be important at both the transcriptional and
organismal level. While the physical identity of this regulating
factor [f ] remains unknown, there are a few key possibilities.

First, age-related drift in gene expression has been associated
with changes in the levels of master regulators such as daf-16 and
skn-1(37, 42)—known to control growth and stress resistance
(33)—as well as to changes of regulatory miRNAs that impact
mRNA turnover (11). While the activity of these regulators (42)
may individually not be as smooth as the genome-wide patterns
seen here (14), they may collectively shape—and be responsive
to—the underlying changes captured by our factor [f ].

Second, our factor [f ] could reflect the accumulation of a
more distributed, bottom–up loss of information. For example,
something as basic as making mRNA molecules and their protein
products in the correct ratios to form a functional multiprotein
complex or pathway fails with age (15, 31, 43–45). This loss
of coordination could arise from the accumulation of random
changes in the epigenome that impact mRNA production
(mRNA-first stoichiometry loss) (14) or may result from less
efficient or spatially localized translation and assembly of protein
complexes (protein-first stoichiometry loss) (45). Any protein

subunits made in excess of the functional ratio would need to
be stabilized and degraded, creating a proteostasis burden that
scales with the growth rate. Adaptation to this loss of biological
coordination would favor the rise of signaling/stress genes and
the decline in growth genes seen here.

Last, it should be acknowledged that individual cell types
undergo unique aging trajectories at the gene and pathway levels
(37). Each cell appears to be adapting to stresses unique to their
cell type, activating different sets of stress response genes that
delay their aging decline. For example, neurons up-regulate pro-
tective skn-1 target genes. At the same time, they strongly down-
regulate respiratory metabolism (37), an action that may amplify
cell-wide transcriptional changes (46, 47). In contrast, the rise of
heat shock proteins is shared across cells, suggesting that protein
folding and assembly is a fundamental stress closely related to our
factor [f ] (37). Moreover, organisms in which cells still reproduce,
differentiate, and die during adulthood must age faster than their
constituent cells, raising questions about universal eukaryotic
programs underlying multiscale aging, which will be interesting
to investigate in facultatively multicellular organisms like yeasts
(48) and slime molds (49).

In future work, we recommend conducting time course
experiments that apply external variations to global variables
such as temperature, osmolarity, oxidative stress, and pH, which
could potentially give rise to similar changes in the transcriptome
as observed in this study (9, 50). By using our archetype
analysis methods, it will be possible to distinguish perturbations
that accelerate aging, thereby narrowing down the identity of
factors involved, and promoting screens for potential antiaging
therapies.

Data, Materials, and Software Availability. Previously published data were
used for this work NCBI Gene Expression Omnibus (Accession no: GSE63528)
(51).
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