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Abstract The nuclear modification factors of J/ψ and
ψ(2S) mesons are measured in PbPb collisions at a centre-of-
mass energy per nucleon pair of

√
sNN = 5.02 TeV. The anal-

ysis is based on PbPb and pp data samples collected by CMS
at the LHC in 2015, corresponding to integrated luminosities
of 464 μb−1 and 28 pb−1, respectively. The measurements
are performed in the dimuon rapidity range of |y| < 2.4 as
a function of centrality, rapidity, and transverse momentum
(pT) from pT = 3 GeV/c in the most forward region and
up to 50 GeV/c. Both prompt and nonprompt (coming from
b hadron decays) J/ψ mesons are observed to be increas-
ingly suppressed with centrality, with a magnitude similar
to the one observed at

√
sNN = 2.76 TeV for the two J/ψ

meson components. No dependence on rapidity is observed
for either prompt or nonprompt J/ψ mesons. An indication
of a lower prompt J/ψ meson suppression at pT > 25 GeV/c
is seen with respect to that observed at intermediate pT. The
prompt ψ(2S) meson yield is found to be more suppressed
than that of the prompt J/ψ mesons in the entire pT range.

1 Introduction

Quarkonium production in heavy ion collisions has a rich
history. In their original article [1], Matsui and Satz proposed
that Debye color screening of the heavy-quark potential in a
hot medium prevents the production of J/ψ mesons (and this
applies also to other heavy-quark bound states such as ψ(2S),
and Υ (1S) mesons [2]). Consequently, the suppression of
quarkonium yields in heavy ion collisions, relative to those
in pp collisions, has long been considered to be a sensitive
probe of deconfinement and quark-gluon plasma formation.
The J/ψ meson suppression observed in PbPb collisions at
the CERN SPS [3] and AuAu collisions at the BNL RHIC [4]
is compatible with this picture. Similarly, the disappearance
of Υ resonances in PbPb collisions at the CERN LHC [5,6]
is consistent with the Debye screening scenario.

� e-mail: cms-publication-committee-chair@cern.ch

When produced abundantly in a single heavy ion collision,
uncorrelated heavy quarks may combine to form quarko-
nia states in the medium [7,8]. This additional source of
quarkonium, commonly referred to as recombination, would
enhance its production in heavy ion collisions, in contradis-
tinction with the Debye screening scenario. Signs of this
effect can be seen in the recent results from the ALICE Col-
laboration at the LHC [9,10], which measured a weaker J/ψ
meson suppression than at RHIC [4,11], despite the higher
medium energy density. Note that recombination is only
expected to affect charmonium production at low transverse
momenta (pT), typically for values smaller than the charmo-
nium mass (pT � mψ c), where the number of charm quarks
initially produced in the collision is the largest [8].

At large pT, other mechanisms may contribute to charmo-
nium suppression. Until recently, no quarkonium results were
available at high pT, because of kinematic constraints at the
SPS and too low counting rates at RHIC. At the LHC, a strong
J/ψ suppression has been measured up to pT = 30 GeV/c by
the CMS Collaboration [12] in PbPb collisions at a centre-of-
mass energy per nucleon pair of

√
sNN = 2.76 TeV. Results at

5.02 TeV have also been reported, up to pT = 10 GeV/c, by
the ALICE Collaboration [10]. According to Refs. [13,14],
quarkonium suppression by Debye screening may occur even
at high pT. At the same time, when pT � mψ c, heavy
quarkonium is likely to be produced by parton fragmenta-
tion, hence it should rather be sensitive to the parton energy
loss in the quark-gluon plasma. The similarity of J/ψ meson
suppression with the quenching of jets, light hadrons, and D
mesons supports this picture [12,15,16].

At the LHC, the inclusive J/ψ meson yield also con-
tains a significant nonprompt contribution coming from b
hadron decays [17–19]. The nonprompt J/ψ component
should reflect medium effects on b hadron production in
heavy ion collisions, such as b quark energy loss. Measuring
both prompt and nonprompt J/ψ meson production in PbPb
collisions thus offers the opportunity to study both hidden
charm and open beauty production in the same data sample.
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In this paper we report on a new measurement of the
prompt and nonprompt J/ψ and ψ(2S) nuclear modification
factors (RAA) using PbPb data, collected at the end of 2015
with the CMS experiment at

√
sNN = 5.02 TeV. The analy-

sis is performed via the dimuon decay channel. The results
are compared to those obtained at 2.76 TeV [12]. The larger
integrated luminosities allow for more precise and more dif-
ferential measurements of RAA, as functions of centrality,
rapidity (y), and pT up to 50 GeV/c.

2 The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic
field of 3.8 T. Within the solenoid volume are a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic
calorimeter, and a brass and scintillator hadron calorime-
ter, each composed of a barrel and two endcap sections. For-
ward calorimeters extend the coverage provided by the barrel
and endcap detectors. Muons are measured in the pseudora-
pidity range |η| < 2.4 in gas-ionisation detectors embed-
ded in the steel flux-return yoke outside the solenoid, with
detection planes made using three technologies: drift tubes,
cathode strip chambers, and resistive-plate chambers. The
hadron forward (HF) calorimeters use steel as an absorber
and quartz fibres as the sensitive material. The two HF
calorimeters are located 11.2 m from the interaction region,
one on each side, and together they provide coverage in the
range 2.9 < |η| < 5.2. They also serve as luminosity moni-
tors. Two beam pick-up timing detectors are located at 175 m
on both sides of the interaction point, and provide information
about the timing structure of the LHC beam. Events of inter-
est are selected using a two-tiered trigger system [20]. The
first level (L1), composed of custom hardware processors,
uses information from the calorimeters and muon detectors to
select events. The second level, known as the high-level trig-
ger (HLT), consists of a farm of processors running a version
of the full event reconstruction software optimised for fast
processing. A more detailed description of the CMS detector,
together with a definition of the coordinate system used and
the relevant kinematic variables, can be found in Ref. [21].

For pp data the vertices are reconstructed with a deter-
ministic annealing vertex fitting algorithm using all of the
fully reconstructed tracks [22]. The physics objects used to
determine the primary vertex are defined based on a jet find-
ing algorithm [23,24] applied to all charged tracks associ-
ated with the vertex, plus the corresponding associated miss-
ing transverse momentum. The reconstructed vertex with the
largest value of summed physics object p2

T is taken to be the
primary pp interaction vertex. In the case of PbPb data, a
single primary vertex is reconstructed using a gap clustering
algorithm [22], using pixel tracks only.

3 Data selection

3.1 Event selection

Hadronic collisions are selected offline using information
from the HF calorimeters. In order to select PbPb collisions,
at least three towers with energy deposits above 3 GeV are
required in each of the HF calorimeters, both at forward and
backward rapidities. A primary vertex reconstructed with at
least two tracks is also required. In addition, a filter on the
compatibility of the silicon pixel cluster width and the ver-
tex position is applied [25]. The combined efficiency for this
event selection, including the remaining non-hadronic con-
tamination, is (99 ± 2)%. Values higher than 100% are pos-
sible, reflecting the possible presence of ultra-peripheral (i.e.
non-hadronic) collisions in the selected event sample.

The PbPb sample is divided into bins of collision cen-
trality, which is a measure of the degree of overlap of the
colliding nuclei and is related to the number of participat-
ing nucleons (Npart). Centrality is defined as the percentile
of the inelastic hadronic cross section corresponding to a HF
energy deposit above a certain threshold [26]. The most cen-
tral (highest HF energy deposit) and most peripheral (low-
est HF energy deposit) centrality bins used in the analysis
are 0–5% and 70–100% respectively. Variables related to
the centrality, such as Npart and the nuclear overlap function
(TAA) [27], are estimated using a Glauber model simulation
described in Ref. [28].

The pp and PbPb data sets correspond to integrated lumi-
nosities of 28.0 pb−1 and 464 μb−1, respectively. Both J/ψ
and ψ(2S) mesons are reconstructed using their dimuon
decay channel. The dimuon events were selected online by
the L1 trigger system, requiring two tracks in the muon detec-
tors with no explicit momentum threshold, in coincidence
with a bunch crossing identified by beam pick-up timing
detectors. No additional selection was applied by the HLT.
Because of the high rate of the most central dimuon events, a
prescale was applied at the HLT level during part of the PbPb
data taking: as a consequence only 79% of all the dimuon
events were recorded, resulting in an effective luminosity of
368 μb−1. For peripheral events we were able to sample the
entire integrated luminosity of 464 μb−1. This was done by
adding an additional requirement that events be in the central-
ity range of 30–100% to the dimuon trigger. The prescaled
data sample is used for the results integrated over centrality
and those in the centrality range 0–30%, while for the results
in the 30–100% range the data sample with 464 μb−1 was
used instead. The results reported in this paper are unaffected
by the small number of extra collisions potentially present in
the collected events: the mean of the Poisson distribution of
the number of collisions per bunch crossing (pileup), aver-
aged over the full data sample, is approximately 0.9 for the
pp data and less than 0.01 for PbPb collisions.
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Simulated events are used to tune the muon selection cri-
teria and the signal fitting parameters, as well as for accep-
tance and efficiency studies. These samples, produced using
pythia 8.212 [29], and decaying the b hadrons with evtgen
1.3.0 [30], are embedded in a realistic PbPb background event
generated with hydjet 1.9 [31] and propagated through the
CMS detector with Geant4 [32]. The prompt J/ψ is sim-
ulated unpolarised, a scenario in good agreement with pp
measurements [33–35]. For nonprompt J/ψ , the polarisation
is the one predicted by evtgen, roughlyλθ = 0.4. The result-
ing events are processed through the trigger emulation and
the event reconstruction sequences. The assumptions made
on the quarkonium polarisation affect the computation of the
acceptance. Quantitative estimates of the possible effect eval-
uated for several polarisation scenarios can be found in Refs.
[36,37]. While there are no measurements on quarkonium
polarisations in PbPb collisions, a study in pp collisions as
a function of the event activity [38] has not revealed signif-
icant changes. Therefore the effects of the J/ψ polarisation
on the acceptance are not considered as systematic uncer-
tainties.

3.2 Muon selection

The muon reconstruction algorithm starts by finding tracks
in the muon detectors, which are then fitted together with
tracks reconstructed in the silicon tracker. Kinematic selec-
tions are imposed to single muons so that their combined trig-
ger, reconstruction and identification efficiency stays above
10%. These selections are: pμ

T > 3.50 GeV/c for |ημ| < 1.2
and pμ

T > 1.89 GeV/c for 2.1 < |ημ| < 2.4, linearly interpo-
lated in the intermediate |ημ| region. The muons are required
to match the ones selected by the dimuon trigger, and soft
muon selection criteria are applied to global muons (i.e.
muons reconstructed using the combined information of the
tracker and muon detectors), as defined in Ref. [39]. Match-
ing muons to tracks measured in the silicon tracker results in
a relative pT resolution for muons between 1 and 2% for a
typical muon in this analysis [39]. In order to remove cosmic
and in-flight decay muons, the transverse and longitudinal
distances of approach to the measured vertex of the muons
entering in the analysis are required to be less than 0.3 and
20 cm, respectively. The probability that the two muon tracks
originate from a common vertex is required to be larger than
1%, lowering the background from b and c hadron semilep-
tonic decays.

4 Signal extraction

Because of the long lifetime of b hadrons compared to
that of J/ψ mesons, the separation of the prompt and non-
prompt J/ψ components relies on the measurement of a

secondary μ+μ− vertex displaced from the primary colli-
sion vertex. The J/ψ mesons originating from the decay of
b hadrons can be resolved using the pseudo-proper decay
length [40] �J/ψ = Lxyz mJ/ψ c/|pμμ|, where Lxyz is the
distance between the primary and dimuon vertices, mJ/ψ is
the Particle Data Group [41] world average value of the J/ψ
meson mass (assumed for all dimuon candidates), and pμμ

is the dimuon momentum. Note that due to resolution effects
and background dimuons the pseudo-proper decay length
can take negative values. To measure the fraction of J/ψ
mesons coming from b hadron decays (the so-called non-
prompt fraction), the invariant mass spectrum of μ+μ− pairs
and their �J/ψ distribution are fitted using a two-dimensional
(2D) extended unbinned maximum-likelihood fit. In order to
obtain the parameters of the different components of the 2D
probability density function (PDF), the invariant mass and
the �J/ψ distributions are fitted sequentially prior to the final
2D fits, as explained below. These fits are performed for each
pT, rapidity and centrality bin of the analysis, and separately
in pp and PbPb collisions.

The sum of two Crystal Ball functions [42], with differ-
ent widths but common mean and tail parameters, is used to
extract the nominal yield values from the pp and PbPb invari-
ant mass distributions. The tail parameters, as well as the ratio
of widths in the PbPb case, are fixed to the values obtained
from simulation. The background is described by a polyno-
mial function of order N , where N is the lowest value that
provides a good description of the data, and is determined by
performing a log-likelihood ratio test between polynomials
of different orders, in each analysis bin, while keeping the tail
and width ratio parameters fixed. The order of the polynomial
is chosen in such a way that increasing the order does not sig-
nificantly improve the quality of the fit. The typical order of
the polynomial is 1 for most of the analysis bins. The invari-
ant mass signal and background parameters are obtained in
an initial fit of the invariant mass distribution only and then
fixed on the 2D fits of mass and �J/ψ distributions, while the
number of extracted J/ψ mesons and background dimuons
are left as free parameters.

The prompt, nonprompt, and background components of
the �J/ψ distributions are parameterised using collision data
and Monte Carlo (MC) simulated events, and the signal and
background contributions unfolded with the sPlot technique
[43]. In the context of this analysis, this technique uses the
invariant mass signal and background PDFs to discriminate
signal from background in the �J/ψ distribution. The �J/ψ

per-event uncertainty distributions of signal and background,
provided by the reconstruction algorithm of primary and sec-
ondary vertices, are extracted from data and used as tem-
plates. The �J/ψ resolution is also obtained from the data by
fitting the distribution of events with �J/ψ < 0 with a com-
bination of three Gaussian functions. The resolution varies
event-by-event, so the per-event uncertainty is used as the
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width of the Gaussian function that describes the core. To take
into account the difference on the per-event uncertainty dis-
tributions of signal and background dimuons, the resolution
PDF is multiplied by the per-event uncertainty distribution of
signal and background dimuons separately. All the resolution
parameters are fixed in the 2D fits. The b hadron decay length
is allowed to float freely in the fit, and it is initialised to the
value extracted by fitting the �J/ψ distribution of nonprompt
J/ψ mesons from a MC sample with an exponential decay
function, at generator level. The �J/ψ distribution of back-
ground dimuons is obtained from fits to the data, using an
empirical combination of exponential functions. The param-
eters of the �J/ψ background distribution are also fixed in
the 2D fits. Finally, the number of extracted J/ψ mesons, the
number of background dimuons and the nonprompt fraction
are extracted from the 2D fits. An example of a 2D fit of
the invariant mass and pseudo-proper decay length for the
PbPb data is shown in Fig. 1 for a representative analysis
bin.

5 Acceptance and efficiency corrections

Correction factors are applied to all results to account for
detector acceptance, trigger, reconstruction, and selection
efficiencies of the μ+μ− pairs. The corrections are derived
from prompt and nonprompt J/ψ meson MC samples in pp
and PbPb, and are evaluated in the same bins of pT, cen-
trality, and rapidity used in the RAA and cross section anal-
yses. The prompt and nonprompt J/ψ meson pT distribu-
tions in bins of rapidity in MC samples are compared to
those in data, and the ratios of data over MC are used to
weight the MC J/ψ distributions to describe the data bet-
ter. This weighting accounts for possible mis-modelling of
J/ψ kinematics in MC. The acceptance in a given analysis
bin is defined as the fraction of generated J/ψ mesons in
that bin which decay into two muons entering the kinematic
limits defined above, and reflects the geometrical coverage
of the CMS detector. The value of the acceptance correc-
tion ranges from 4 to 70%, depending on the dimuon pT,
both for prompt and nonprompt J/ψ mesons in pp and PbPb
collisions. The efficiency in a given analysis bin is defined
as the ratio of the number of reconstructed J/ψ mesons in
which both muons pass the analysis selection and the num-
ber of generated J/ψ mesons in which both muons pass the
analysis selection. The efficiency correction depends on the
dimuon pT, rapidity and event centrality, and ranges from 20
to 75% (15 to 75%) for prompt (nonprompt) J/ψ mesons in
PbPb data, and from 40 to 85% for both prompt and non-
prompt J/ψ mesons in pp data. The efficiency is lower at
low than at high pT, and it decreases from mid to forward
rapidity; it is also lower for central than peripheral events.
The individual components of the efficiency (tracking recon-

)2 (GeV/c-μ+μm
2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

 )2
E

ve
nt

s 
/ (

 0
.0

25
 G

eV
/c

0

200

400

600

800

1000

1200

1400
 < 5.5 GeV/cμμ

T
 p≤4.5

| < 2.4μμ |y≤1.8

Cent. 0-100%

Data
Total fit

ψPrompt J/
 from b hadronsψJ/

Background

 (5.02 TeV)-1bμPbPb 368 

CMS

 (mm)ψJ/l
3− 2− 1− 0 1 2 3 4

E
ve

nt
s 

/ (
 0

.1
 m

m
 )

1−10

1

10

210

310

410

510

610

 < 5.5 GeV/cμμ
T

 p≤4.5

| < 2.4μμ |y≤1.8

Cent. 0-100%
Data
Total fit

ψPrompt J/
 from b hadronsψJ/

Background

 (5.02 TeV)-1bμPbPb 368 

CMS

Fig. 1 Invariant mass spectrum of μ+μ− pairs (upper) and pseudo-
proper decay length distribution (lower) in PbPb collisions for 1.8 <

|y| < 2.4, 4.5 < pT < 5.5 GeV/c, for all centralities. The result of the
fit described in the text is also shown

struction, standalone muon reconstruction, global muon fit,
muon identification and selection, and triggering) are also
measured using single muons from J/ψ meson decays in
both simulated and collision data, using the tag-and-probe
(T&P) technique [36,44]. The values obtained from data
and simulation are seen to differ only for the muon trig-
ger efficiency and the ratio of the data over simulated effi-
ciencies is used as a correction factor for the efficiency.
The correction factor for dimuons is at most 1.35 (1.38)
for the pp (PbPb) efficiency in the 3 < pT < 4.5 GeV/c
and forward rapidity bin, but the pT and rapidity integrated
value of the correction is about 1.03. The other T&P effi-
ciency components are compatible, hence only used as a
cross-check, as well as to estimate systematic uncertain-
ties.
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6 Systematic uncertainties

The systematic uncertainties in these measurements arise
from the invariant mass signal and background fitting model
assumptions, the parameterisation of the �J/ψ distribution,
the acceptance and efficiency computation, and sample nor-
malisation (integrated luminosity in pp data, counting of the
equivalent number of minimum bias events in PbPb, and
nuclear overlap function). These systematic uncertainties are
derived separately for pp and PbPb results, and the total sys-
tematic uncertainty is computed as the quadratic sum of the
partial terms.

The systematic uncertainty due to each component of the
2D fits is estimated from the difference between the nominal
value and the result obtained with the variations of the dif-
ferent components mentioned below, in the extracted number
of prompt and nonprompt J/ψ mesons, or nonprompt frac-
tion separately. In the following, the typical uncertainty is
given for the observable on which each source has the biggest
impact.

In order to determine the uncertainty associated with the
invariant mass fitting procedure, the signal and background
PDFs are independently varied, in each analysis bin. For the
uncertainty in the signal, the parameters that were fixed in
the nominal fits are left free with a certain constraint. The
constraint for each parameter is determined from fits to the
data, by leaving only one of the parameters free, and it is
chosen as the root mean square of the variations over the dif-
ferent analysis bins. A different signal shape is also used: a
Crystal Ball function plus a Gaussian function, with the CB
tail parameters, as well as the ratio of widths in the PbPb
case, again fixed from MC. The dominant uncertainty comes
from the variation of the signal shape, yielding values for the
number of extracted nonprompt J/ψ mesons ranging from 0.1
to 2.9% (0.3–5.5%) in pp (PbPb) data. For the background
model, the following changes are considered, while keeping
the nominal signal shape. First, the log-likelihood ratio tests
are done again with two variations of the threshold used to
choose the order of the polynomial function in each analysis
bin. Also the fitted mass range is varied. Finally, an expo-
nential of a polynomial function is also used. The dominant
uncertainty in the background model arises from the assumed
shape (invariant mass range) in pp (PbPb) data. The corre-
sponding uncertainty ranges from 0.1 to 2.1% (0.1–2.8%).
The maximum difference of each of these variations, in each
analysis bin and separately for the signal and the background,
is taken as an independent systematic uncertainty.

For the �J/ψ distribution fitting procedure, four indepen-
dent variations of the different components entering in the
2D fits are considered. For the �J/ψ uncertainty distribution,
instead of using the distributions corresponding to signal and
background, the total distribution is assumed. The contribu-
tion to the systematic uncertainty in the number of extracted
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Fig. 2 Fraction of J/ψ mesons coming from the decay of b hadrons, i.e.
nonprompt J/ψ meson fraction, as a function of dimuon pT (upper) and
rapidity (lower) for pp and PbPb collisions, for all centralities. The bars
(boxes) represent statistical (systematic) point-by-point uncertainties

nonprompt J/ψ mesons ranges from 0.3 to 2% (0.3–9.5%) in
pp (PbPb) data. The �J/ψ resolution obtained from prompt J/ψ
meson MC is used instead of that evaluated from data. The
corresponding uncertainty in the nonprompt fraction ranges
from 1 to 5% (1–11%) in pp (PbPb) data. A nonprompt J/ψ
meson MC template replaces the exponential decay function
for the b hadron decay length. In this case, the contribution
of this source to the systematic uncertainty in the nonprompt
J/ψ yield ranges from 0.2 to 8% (0.2–20%) in pp (PbPb) data.
A template of the �J/ψ distribution of background dimuons
obtained from the data is used to describe the background,
instead of the empirical combination of exponential func-
tions. This variation has an impact on the nonprompt J/ψ
yield ranging from 0.1 to 1.3% (0.2–22%) in pp (PbPb)
data. Therefore the dominant sources of uncertainty in the
�J/ψ fitting are the background parameterisation and the MC
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Fig. 3 Differential cross section of prompt J/ψ mesons (left) and J/ψ
mesons from b hadrons (nonprompt J/ψ) (right) decaying into two
muons as a function of dimuon pT (upper) and rapidity (lower) in pp
and PbPb collisions. The PbPb cross sections are normalised by TAA

for direct comparison. The bars (boxes) represent statistical (systematic)
point-by-point uncertainties, while global uncertainties are written on
the plots

template for the nonprompt signal. They have an important
impact on the nonprompt J/ψ meson yield, especially at the
lowest pT reached in this analysis for the most central events
in PbPb collisions. The reason for this is that the background
dimuons largely dominate over the nonprompt J/ψ signal.

The uncertainties in the acceptance and efficiency deter-
mination are evaluated with MC studies considering a broad
range of pT and angular spectra compatible with the pp and
PbPb data within their uncertainties. These variations yield an
uncertainty about 0.2% (<1.7%) in pp (PbPb) collisions, both
for prompt and nonprompt J/ψ acceptance and efficiency.
The statistical uncertainty of the weighting of the MC dis-
tributions, reflecting the impact of the limited knowledge on
the kinematic distribution of J/ψ mesons on the acceptance
and efficiency corrections, is used as systematic uncertainty.
This uncertainty is at most 6% (11%) in pp (PbPb) colli-
sions at the largest pT but it usually ranges from 1 to 3% in
both collision systems. In addition, the systematic uncertain-
ties in the T&P correction factors, arising from the limited

data sample available and from the procedure itself, are taken
into account, covering all parts of the muon efficiency: inner
tracking and muon reconstruction, identification, and trigger-
ing. The dominant uncertainty in the T&P correction factors
arises from muon reconstruction and ranges from 2 to 10%
for both collision systems.

The global uncertainty in the pp luminosity measurement
is 2.3% [45]. The number of minimum bias events corre-
sponding to our dimuon sample in PbPb (NMB) comes from
a simple event counting in the events selected by the Mini-
mum Bias triggers, taking into account the trigger prescale.
The corresponding uncertainty arises from the inefficiency
of trigger and event selection, and is estimated to be 2%.
Finally, the uncertainty in the TAA is estimated by varying
the Glauber model parameters within their uncertainty and
taking into account the uncertainty on the trigger and event
selection efficiency, and ranges from 3 to 16% from the most
central to the most peripheral events used in this analysis.
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Fig. 4 Nuclear modification factor of prompt J/ψ mesons as a func-
tion of dimuon rapidity (upper left), Npart (upper right) and dimuon
pT (lower) at

√
sNN = 5.02 TeV. For the results as a function of Npart

the most central bin corresponds to 0–5%, and the most peripheral one

to 70–100%. Results obtained at 2.76 TeV are overlaid for compari-
son [12]. The bars (boxes) represent statistical (systematic) point-by-
point uncertainties. The boxes plotted at RAA = 1 indicate the size of
the global relative uncertainties

7 Results

In this section, the results obtained for nonprompt J/ψ frac-
tions, prompt and nonprompt J/ψ cross sections for each col-
lision system, and nuclear modification factors RAA are pre-
sented and discussed. In addition, a derivation of the ψ(2S)
RAA is also presented and discussed. For all results plotted
versus pT or |y|, the abscissae of the points correspond to
the centre of the respective bin, and the horizontal error bars
reflect the width of the bin. The lower pT thresholds in the
different rapidity intervals reflect the detector acceptance.
In the range 1.8 < |y| < 2.4 J/ψ are measured down to
3 GeV/c, while for the bins with |y| < 1.8 they are measured
down to 6.5 GeV/c. When plotted as a function of central-
ity, the abscissae are the average Npart values for minimum
bias events within each centrality bin. The weighted average
Npart values (weighted for the number of binary nucleon-
nucleon collisions) correspond in most cases to the average

Npart values for minimum bias events, with the exception of
the most peripheral bin (50–100%) where Npart changes from
22 to 43. The centrality binning used is 0–5–10–15–20–25–
30–35–40–45–50–60–70–100% for the results in |y| < 2.4,
and 0–10–20–30–40–50–100% for the results differential in
rapidity.

7.1 Nonprompt J/ψ meson fractions

The nonprompt J/ψ meson fraction is defined as the propor-
tion of measured J/ψ mesons coming from b hadron decays,
corrected for acceptance and efficiency. It is presented in
Fig. 2 for pp and PbPb collisions, as a function of pT and
rapidity, in the full |y| < 2.4 and 6.5 < pT < 50 GeV/c
range. No significant rapidity dependence is observed, while
there is a strong pT dependence, from about 20% at low pT

to 60% at high pT, reflecting the different pT distributions
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Fig. 5 Nuclear modification factor of prompt J/ψ meson as a function
of dimuon pT (upper) and Npart (lower), in the mid- and most forward
rapidity intervals. For the results as a function of Npart the most central
bin corresponds to 0–10%, and the most peripheral one to 50–100%.
The bars (boxes) represent statistical (systematic) point-by-point uncer-
tainties. The boxes plotted at RAA = 1 indicate the size of the global
relative uncertainties

of prompt and nonprompt J/ψ mesons, which highlights the
necessity of separating the two contributions.

7.2 Prompt and nonprompt J/ψ meson cross sections in pp
and PbPb collisions

The measurements of the prompt and nonprompt J/ψ cross
sections can help to test the existing theoretical models of
both quarkonium production and b hadron production. The
cross sections are computed from the corrected yields,

d2N

dpT dy
= 1

ΔpT Δy

NJ/ψ

A ε
, (1)
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Fig. 6 Nuclear modification factor of prompt J/ψ mesons. Upper: as a
function of dimuon pT in three centrality bins. Lower: as a function of
Npart at moderate and high pT, in the forward 1.8 < |y| < 2.4 range.
For the results as a function of Npart the most central bin corresponds to
0–10%, and the most peripheral one to 50–100%. The bars (boxes) rep-
resent statistical (systematic) point-by-point uncertainties. The boxes
plotted at RAA = 1 indicate the size of the global relative uncertainties

where NJ/ψ is the number of prompt or nonprompt J/ψ
mesons, A is the acceptance, ε is the efficiency, and ΔpT

and Δy are the pT and rapidity bin widths, respectively. To
put the pp and PbPb data on a comparable scale, the cor-
rected yields are normalised by the measured integrated lumi-
nosity for pp collisions (σ = N/L), and by the product of
the number of corresponding minimum bias events and the
centrality-integrated nuclear overlap value for PbPb colli-
sions (N/(NMBTAA)). Global uncertainties (common to all
measurements) arise from these normalisation factors and
account for the integrated luminosity uncertainty in pp col-
lisions (±2.3%) and the NMB and TAA uncertainty for PbPb

collisions
(+3.4%

−3.9%

)
, respectively.
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Fig. 7 Nuclear modification factor of prompt J/ψ and ψ(2S) mesons as
a function of Npart (left) and dimuon pT (right), at central (upper, start-
ing at pT = 6.5 GeV/c) and forward (lower, starting at pT = 3.0 GeV/c)
rapidity. The vertical arrows represent 95% confidence intervals in the
bins where the double ratio measurement is consistent with 0 (see text).

For the results as a function of Npart the most central bin corresponds to
0–10% (0–20%), and the most peripheral one to 50–100% (40–100%),
for |y| < 1.6 (1.6 < |y| < 2.4). The bars (boxes) represent statistical
(systematic) point-by-point uncertainties. The boxes plotted at RAA = 1
indicate the size of the global relative uncertainties

The cross sections for the production of prompt and non-
prompt J/ψ mesons that decay into two muons (Bσ , where
B is the branching ratio of J/ψ to dimuons) are reported as a
function of pT and rapidity in Fig. 3.

7.3 Prompt J/ψ meson nuclear modification factor

In order to compute the nuclear modification factor RAA in
a given bin of centrality (cent.), the above-mentioned PbPb
and pp normalised cross sections are divided in the following
way:

RAA = NPbPb
J/ψ (cent.)

N pp
J/ψ

× App × εpp

APbPb εPbPb(cent.)

× Lpp

NMB 〈TAA〉 (cent. fraction)
,

where the centrality fraction is the fraction of the inclusive
inelastic cross section probed in the analysis bin. Global
uncertainties (indicated as boxes in the plots at RAA = 1)
arise from the full pp statistical and systematic uncertainties
and the PbPb NMB uncertainty when binning as a function of
the centrality; and from the integrated luminosity of the pp
data, and the NMB and TAA uncertainties of the PbPb data,
when binning as a function of rapidity or pT.

In Fig. 4, the RAA of prompt J/ψ mesons as a function of
rapidity, Npart and pT are shown, integrating in each case over
the other two non-plotted variables. The results are compared
to those obtained at

√
sNN = 2.76 TeV [12], and they are

found to be in good overall agreement. No strong rapidity
dependence of the suppression is observed. As a function of
centrality, the RAA is suppressed even for the most peripheral
bin (70–100%), with the suppression slowly increasing with
Npart. The RAA value for the most central events (0–5%) is
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Fig. 8 Nuclear modification factor of J/ψ mesons from b hadrons (non-
prompt J/ψ) as a function of dimuon rapidity (upper left), Npart (upper
right) and dimuon pT (lower) at

√
sNN = 5.02 TeV. For the results as a

function of Npart the most central bin corresponds to 0–5%, and the most

peripheral one to 70–100%. Results obtained at 2.76 TeV are overlaid
for comparison [12]. The bars (boxes) represent statistical (systematic)
point-by-point uncertainties. The boxes plotted at RAA = 1 indicate the
size of the global relative uncertainties

measured for 6.5 < pT < 50 GeV/c and |y| < 2.4 to be
0.219 ± 0.005 (stat) ± 0.013 (syst). As a function of pT the
RAA is approximately constant in the range of 5–20 GeV/c,
but an indication of less suppression at higher pT is seen for
the first time in quarkonia. Charged hadrons, for which the
suppression is usually attributed to parton energy loss [16,
46], show a similar increase in RAA at high pT for PbPb
collisions at

√
sNN = 5.02 TeV [27].

Double-differential studies are also performed. Figure 5
shows the pT (upper) and centrality (lower) dependence of
prompt J/ψ RAA measured in the mid- and most forward
rapidity intervals. A similar suppression pattern is observed
for both rapidities. Figure 6 (upper) shows the dependence
of RAA as a function of pT, for three centrality intervals.
Although the mean level of suppression strongly depends on
the sampled centrality range, the general trend of the pT

dependence appears similar in all three centrality ranges,

including the increase of RAA at high pT. Finally, Fig. 6
(lower) considers the rapidity interval 1.8 < |y| < 2.4,
where the acceptance goes down at lower pT. The suppres-
sion is found to be similar in peripheral events at moderate
(3 < pT < 6.5 GeV/c) and high (6.5 < pT < 50 GeV/c)
transverse momentum ranges, but it is weaker for lower pT

in the most central region. This is also reflected in the first
bin of the most forward measurement in Fig. 5 (upper). A
similarly reduced suppression at low pT is observed by the
ALICE Collaboration, which is attributed to a regeneration
contribution [9,10].

7.4 Prompt ψ(2S) meson nuclear modification factor

Having measured the prompt J/ψ RAA, one can derive that
of the ψ(2S) meson by multiplying it by the double ratio
(Nψ(2S)/NJ/ψ)PbPb/(Nψ(2S)/NJ/ψ)pp of the relative modifi-
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cation of the prompt ψ(2S) and J/ψ meson yields from pp
to PbPb collisions published in Ref. [47]. Since the ψ(2S)
yield suffers from lower statistics, the current J/ψ analy-
sis is repeated using the wider bins of Ref. [47]. The cen-
trality binning used is 0–10–20–30–40–50–100% for the
results in |y| < 1.6, and 0–20–40–100% for the results in
1.6 < |y| < 2.4. Since the statistical uncertainty in the
ψ(2S) largely dominates, the J/ψ uncertainties are propa-
gated by considering them to be uncorrelated to the double
ratio uncertainties.

The results are presented in Fig. 7 as a function of dimuon
pT and Npart, in two rapidity ranges of different pT reach.
In the bins where the double ratio is consistent with 0, 95%
CL intervals on the prompt ψ(2S) RAA are derived using the
Feldman–Cousins procedure [48]. The procedure to obtain
the CL intervals is the same as in the double ratio measure-
ment, incorporating the J/ψ RAA statistical and systematic
uncertainties as a nuisance parameter. It can be observed that
the ψ(2S) meson production is more suppressed than that of
J/ψ mesons, in the entire measured range. The ψ(2S) meson
RAA shows no clear dependence of the suppression with pT,
and hints of an increasing suppression with collision cen-
trality. These results show that the ψ(2S) mesons are more
strongly affected by the medium created in PbPb collisions
than the J/ψ mesons.

7.5 Nonprompt J/ψ meson nuclear modification factor

The procedure applied to derive the prompt J/ψ meson RAA

is applied to the nonprompt component. In Fig. 8, the RAA

of nonprompt J/ψ as a function of rapidity, centrality and pT

are shown, integrating in each case over the other two non-
plotted variables. The results are compared to those obtained
at

√
sNN = 2.76 TeV [12]. A good overall agreement is

found, although no rapidity dependence is observed in the
present analysis, while the suppression was slowly increas-
ing towards forward rapidities in the lower-energy measure-
ment. A steady increase of the suppression is observed with
increasing centrality of the collision. The RAA for the most
central events (0–5%) measured for 6.5 < pT < 50 GeV/c
and |y| < 2.4 is 0.365 ± 0.009 (stat) ± 0.022 (syst).

As for the prompt production case, double-differential
studies are also performed. Figure 9 shows the pT (upper)
and centrality (lower) dependence of nonprompt J/ψ meson
RAA measured in the mid- and most forward rapidity inter-
vals. No strong rapidity dependence is observed, and a hint of
a smaller suppression at low pT is seen in the 1.8 < |y| < 2.4
range. Figure 10 (upper) shows the dependence of RAA as
a function of pT, for three centrality ranges. While the non-
prompt J/ψ meson RAA does not seem to depend on rapid-
ity, the data indicates a larger pT dependence in peripheral
events. Finally, Fig. 10 (lower) shows, for 1.8 < |y| < 2.4,
RAA as a function of Npart, for two pT intervals. Hints of
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Fig. 9 Nuclear modification factor of J/ψ mesons from b hadrons (non-
prompt J/ψ) as a function of dimuon pT (upper) and Npart (lower) and
in the mid- and most forward rapidity intervals. For the results as a func-
tion of Npart the most central bin corresponds to 0–10%, and the most
peripheral one to 50–100%. The bars (boxes) represent statistical (sys-
tematic) point-by-point uncertainties. The boxes plotted at RAA = 1
indicate the size of the global relative uncertainties

a stronger suppression are seen for pT > 6.5 GeV/c at all
centralities.

8 Conclusions

Prompt and nonprompt J/ψ meson production has been stud-
ied in pp and PbPb collisions at

√
sNN = 5.02 TeV, as a

function of rapidity, transverse momentum (pT), and colli-
sion centrality, in different kinematic and centrality ranges.
Three observables were measured: nonprompt J/ψ fractions,
prompt and nonprompt J/ψ cross sections for each colli-
sion system, and nuclear modification factors RAA. The RAA
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Fig. 10 Nuclear modification factor of J/ψ mesons from b hadrons
(nonprompt J/ψ). Upper: as a function of dimuon pT in three centrality
bins. Lower: as a function of Npart at moderate and high pT, in the
forward 1.8 < |y| < 2.4 range. For the results as a function of Npart the
most central bin corresponds to 0–10%, and the most peripheral one to
50–100%. The bars (boxes) represent statistical (systematic) point-by-
point uncertainties. The boxes plotted at RAA = 1 indicate the size of
the global relative uncertainties

results show a strong centrality dependence, with an increas-
ing suppression for increasing centrality. For both prompt and
nonprompt J/ψ mesons no significant dependence on rapidity
is observed. An indication of less suppression in the lowest
pT range at forward rapidity is seen for both J/ψ components.
Double-differential measurements show the same trend, and
also suggest a stronger pT dependence in peripheral events.
An indication of less suppression of the prompt J/ψ meson at
high pT is seen with respect to that observed at intermediate
pT. The measurements are consistent with previous results
at

√
sNN = 2.76 TeV.

Combined with previous results for the double ratio
(Nψ(2S)/NJ/ψ)PbPb/(Nψ(2S)/NJ/ψ)pp, the current RAA values
for J/ψ mesons are used to derive the prompt ψ(2S) meson
RAA in PbPb collisions at

√
sNN = 5.02 TeV, as a function of

pT and collision centrality, in two different rapidity ranges.
The results show that the ψ(2S) is more suppressed than
the J/ψ meson for all the kinematical ranges studied. No
pT dependence is observed within the current uncertainties.
Hints of an increase in suppression with increasing collision
centrality are also observed.
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