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ABSTRACT OF THE DISSERTATION

Random Inscribed Polytopes

by

Lei Wu

Doctor of Philosophy in Mathematics

University of California San Diego, 2006

Professor Fan Chung Graham, Chair

Professor Van H. Vu, Co-Chair

For convex bodies K with C2 boundary and everywhere positive Gauß-Kronecker

curvature in Rd, we explore random polytopes Kn with the n vertices chosen uniformly

along the boundary of K. In particular, we determine the asymptotic properties of

the volume of these random polytopes when n is large.

We provide results concerning the variance and higher moments of this func-

tional. Previously, these results are considered very difficult to obtain due to the high

technicalities in the existing integral methods. We will demonstrate here a different

method for obtaining such estimates, namely the so-called divide-and-conquer martin-

gale technique. We first give a concentration result for Vold(Kn) which indicates the

behavior of exponential decay of the deviation of volume from its mean. This result

not only implies the upper bound on the variance of Vold(Kn) previously obtained by

Reitzner [54] via refinement of integral methods, it also gives us an upper bound on

any k-th moments of the volume for k ≥ 2 expressed in terms of the variance. Then

we give a matching lower bound on the variance, which is tight up to a multiplicative

constant factor that depends only on the fixed dimension d and the convex body K.

Lastly, we show that central limit theorem holds asymptotically for the volume

functional of our inscribing model provided that the random polytopes are constructed

x



with vertices chosen on the boundary of K according to the Poisson Process.
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1

History of Random Polytopes

We letK be the set of convex bodies in Rd, i.e. compact convex sets with nonempty

interior in Rd. Assume K ∈ K and let t1, . . . , tn be independent random points chosen

according to some distribution µ in K. Here “independent” means that the joint

distribution P of t1, . . . , tn is given by the product measure P t1 ⊗ . . . ⊗ P tn of the

distribution P ti of ti. The convex hull of the ti’s is called a random polytope.

Random polytope find its applications in many scientific areas, including math-

ematical programming [19, 42], and algorithm research [31, 53], etc. In particular,

random polytope has long been widely used in computational geometry and its re-

lated fields, e.g. image processing [58] and pattern recognition [4]. Many algorithms

that run on polytopes have bad worst-case running time. Hence, one is interested in

running them on random polytopes in hope that the average running time is better

than the worst-case scenario.

The study of random polytopes has been an active area of research which links

together combinatorics, geometry and probability since the middle of the nineteenth

century. It traces its root to Sylvester’s famous “four-point question” [67] (also see

Bárány [11] and [12] for recent results). This question asked for the probability of four

random points in the plane forming a convex quadrangle. It has been generalized to

many forms in the following centuries. Another milestone was established by Rényi

1



2

and Sulanke in [59, 60] in 1960’s, where they studied the asymptotic behavior of

random polytopes, which has become a mainstream research area ever since. Out of

the large number of contributions, we only mention the work of Blaschke [18], Dalla

and Larman [30], Giannopoulos [35], Buchta [20], and Buchta and Reitzner [26] where

the expectations of different functionals of random polytopes are dealt with in the

case d = 2, and for d ≥ 3, Groemer [36, 37], Kingman [46], Affentranger [1], and

Buchta and Reitzner [27].

Throughout this paper, we always assume n is sufficiently large. We use the

usual asymptotic notations Ω, O, Θ, o etc. with respect to n →∞. All constants are

assumed to depend on at most the dimension d, the body K, and the probability

measure we use. We also write f ≈ g when f = (1 + o(1))g.

One popular model for random polytopes is the following. Let K ∈ K be fixed and

we choose random points t1, . . . , tn independently, uniformly in K. “Uniformly” here

means the random points all have the same distribution P ti = Φd(K, ·) where Φd(K, ·)
is the Lebesgue measure restricted to K. This coincides with the d-dimensional

Hausdorff measure on K as well as the “uniform” measure in the usual sense. We

denote this random polytope by Pn, then Pn = [t1, . . . , tn] where [S] stands for the

convex hull of the set S.

Most of the work done in random polytopes since 1960’s has been focused on

the expectation of various functionals associated with Pn. These functionals are,

for instance, the number of vertices, f0(Pn), or more generally, the number of i-

dimensional faces, fi(Pn); the i-th intrinsic volume of Pn, Voli(Pn), in particular, the

d-dimensional volume Vold(Pn), the surface area 2Vold−1(Pn), and the mean width,

which is a multiple of Vol1(Pn). In most cases, the explicit calculation of E g is

complicated, where g is any functional mentioned above, even for simple convex

bodies K. In fact, these calculations all follow from Rényi and Sulanke [59, 60] (and

its extensions): since Pn is simplicial with probability one, each facet is of the form

[ti1 , . . . , tid ], we let F be the collection of these facets. Let 1{A} (sometimes also



3

written as 1A) be the indicator of event A, then

E g(Pn) =

(
n

d

) ∫

K

· · ·
∫

K

1{[t1, . . . , td] ∈ F}g([t1, . . . , td])dt1 . . . dtd (1.1)

This formula alone is not easy to evaluate in most instances. In the case of volume

functional, Rényi and Sulanke’s gave an estimate of Vold(K)−EVold(Pn) in the case

of d = 2 and smooth K. This was extended to all d-dimensional Euclidean ball by

Wieacker [71]. Bárány [10] generalized this to all convex bodies with C3-boundary

and everywhere positive curvature, which is then further extended to arbitrary convex

bodies by Schütt [65]:

Theorem 1.1. Let K be a convex body in Rd. Then

EVold(Pn) = Vold(K)− (c + o(1))n−
2

d+1 ,

where the constant c here only depends on K and d.

For analogous results in the case of polytope K, we refer to, e.g. [14, 16]. Concern-

ing expectation of key functionals, we would also like to point out a few related results

including Bárány [6, 9], Buchta [21, 24], Efron [32], Groeneboom [38], Gruber [39],

Müller [24, 50], Schneider [64]. We also refer readers to the excellent surveys [6], [22],

[40], [63], and [70]. These surveys encompass the subjects of random polytopes and

stochastic geometry and provide a complete history and comprehensive background

of these exciting fields.

Given the difficulties in computing the first-order estimates of these functionals,

it is perhaps not surprising that the higher-order information remained open for a

long time, as coined by Weil and Wieacker’s survey from the Handbook of Convex

Geometry (see the concluding paragraph of [70]):

“We finally emphasize that the results described so far give mean values
hence first-order information on random sets and point processes. This is
due to the geometric nature of the underlying integral geometric results.
There are also some less geometric methods to obtain higher-order infor-
mation or distributions, but generally the determination of variance, e.g.,
is a major open problem.”
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Already to establish limit laws seems highly nontrivial and out of reach in many

cases. In the planar case, Schneider [62] proved a strong law of large numbers for

Vold(Pn) if K is smooth, and Cabo and Groeneboom [28] determined the asymptotic

behavior of Var Vold(Pn) for convex polygons and proved a central limit theorem, but

the stated asymptotic value of the variance appears incorrect (see [44],p.111) and a

corrected version is given by Buchta [23]. Only in the special case that K is the unit

ball further results are available: for all d ≥ 1 Kuefer [47] gave an upper bound on

Var Vold(Pn). And Hsing [43] used an analogous estimate to prove a central limit

theorem in the case d = 2.

The last few years have seen several developments in this direction, thanks to

new methods and tools from modern probability. In a series of remarkable papers,

Reitzner [56, 54, 55] established bounds on the variance of the volume and number

of vertices in the case of smooth convex bodies K:

Var Vold(Pn) = O
(
n−

d+3
d+1

)
,

Var fi(Pn) = O
(
n

d−1
d+1

)
.

Relating to martingale techniques, Vu [68] proved the following tail estimate

P
(
|Vold(Pn)− EVold(Pn)| ≥

√
λn−

d+3
d+1

)
≤ exp(−cλ)

for any 0 < λ < nα, where c, c′ and α are positive constants for smooth K. A similar

bound also holds for fi with the same proof. Vu [69] also confirmed that the volume

of random polytope Pn with vertices chosen inside a smooth convex body K satisfies

central limit theorem asymptotically, improving Reitzner [56].

The results mentioned in this section together provide a fairly comprehensive

picture about Pn when we choose points randomly inside K. Another model that is

of great interest, in fact, the main object of study in this dissertation, is the inscribing

model of random polytopes, which we will discuss in the rest of the paper.



2

Random Inscribed Polytopes

The main goal of this dissertation is to provide a comprehensive picture for the

asymptotic behavior of random inscribed polytopes.

Approximating a fixed convex body is a basic question in computational geometry

that generates interest in many scientific areas. Heuristically, the advantage of choos-

ing points only on the boundary of the convex body is that the resulting polytope

approximates the convex body better than choosing points inside. Moreover, every

point we choose now is forced to be a vertex, which is useful in many instances.

2.1 Introduction

Throughout this paper, we fix a smooth convex body K ∈ K2
+, where K2

+ is

the set of compact, convex bodies in Rd which have non-empty interior and whose

boundaries belong to differentiability class C2 and have everywhere positive Gauß-

Kronecker curvature. (Note: the reader who is interested in the case of general K,

e.g. when K is a polytope, is referred to [6, 17, 68, 69]. It is noteworthy that it is not

clear how this case should be dealt with given the methods known today.) Without

loss of generality, we also assume K has volume 1. As before, we will choose n random

points to construct a random polytope, except that we will restrict the points to be

5
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chosen only on the boundary of K.

Before we may speak about selecting points on the boundary ∂K, we need to

specify the probability measure on ∂K. One wants the random polytope to approx-

imate the original convex body K in the sense that the symmetric difference of the

volume of K and Kn is as small as possible. Hence, intuitively, a measure that puts

more weight on regions of higher curvature is desired. A good discussion on this can

be found in [66]. Let µd−1 be the (d− 1)-dimensional Hausdorff measure restricted

to ∂K. We let µρ be a probability measure on ∂K such that

dµρ = ρdµd−1, (2.1)

where ρ : ∂K → R+ is a positive, continuous function with
∫

∂K
ρdµd−1 = 1.

Note that the assumption ρ > 0 is essential, as otherwise we might have a measure

that causes Kn to always lie in at most half (or any portion) of K with probability 1.

With the boundary measure properly defined, we can choose n random points on

the boundary of K independently according to µρ on ∂K. Denote the convex hull

of these n points by Kn and we call it random inscribed polytope. For this model,

the volume is perhaps the most interesting functional (as the number of vertices is

always n), and it will be the focus of the present work. For notational convenience,

we denote Z for Vold(Kn) throughout this paper.

2.2 Expectation of volume

The inscribing model is somewhat more difficult to analyze than the model where

points are chosen inside K. Buchta, Müller and Tichy [25] and Müller [51] determined

the asymptotic behavior of Vol1(Kn), later generalized by Gruber [41] to all K ∈ Kk
+

for all k ≥ 2. In the special case that K is a ball and ρ = 1, Müller [50] determined

Voli(Kn) for all i = d−1, d and Affentranger [2] for all i. For the case d = 2, Schneider

gave the rate of convergence for the expectation of Vold(Kn) in [62]. For the general

case, sharp estimates of the expectation were obtained only a few years ago, thanks
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to the tremendous effort of Schütt and Werner, in a long (over one hundred pages)

and highly technical paper [66]:

Theorem 2.1. Let K ∈ K2
+ and Z = Vold(Kn) when Kn is a random inscribed

polytope with vertices chosen on the boundary ∂K of K. Also, let ρ : ∂K → R+ be a

positive, continuous function with
∫

∂K
ρdµd−1 = 1. then

Eρ Z = Vold(K)− (cK + o(1))n−
2

d−1 , (2.2)

where cK is a constant depending on K and ρ. Moreover, the constant is minimized

when the normalized affine surface area measure is used.

Here we write Eρ for the expectation to emphasize the dependence on ρ. In fact,

Schütt and Werner [66] proved that any probability measure µρ defined as in (2.1)

yields the same asymptotics in the estimate of expectation up to a constant factor.

Hence, in the rest of the paper, we will simply write E and µ instead of Eρ and µρ.

If we normalize the volume of K, then we have

EZ = 1− (cK + o(1))n−
2

d−1 .

Remark 2.2. It is worth recalling from Theorem 1.1 that in the model where points

are chosen uniformly inside K we have EVold(K\Pn) = O
(
n−

2
d+1

)
. Observe that

by inserting n
d+1
d−1 for n in this result we obtain a function O

(
n−

2
d−1

)
, which is the

correct growth rate found in (2.2). We can explain this (at least intuitively) by noting

that in the uniform model, the expected number of vertices is E f0(Pn) = Θ
(
n

d−1
d+1

)
.

However, in the inscribing model all points are vertices. Thus we may view the

uniform model on n points as yielding the same type of behavior as the inscribing

model on n
d−1
d+1 points. Further evidence for this behavior is given by Reitzner in [57]

where he obtains estimates of expectation (which are sharp up to a constant factor)

for all intrinsic volumes.
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2.3 Results

Reitzner [54] gave an upper bound on the variance of the d-dimensional volume:

Var Z = O
(
n−

d+3
d−1

)
.

The first result we show in this paper is that the variance estimate is sharp, up

to a constant factor.

Theorem 2.3 (Variance). Given K ∈ K2
+,

Var Z = Ω
(
n−

d+3
d−1

)
,

where the implicit constant depends on dimension d and the convex body K only.

The argument for this theorem is similar to the approach of that of Reitzner

[56] which analyzes the volume change near the boundary induced by the change of

position of a random point in a small region.

On the other hand, Reitzner obtained the upper bound on variance via Efron-Stein

jackknife inequality (see [34]) which implies

Var g(Kn) ≤ (n + 1)E (g(Kn)− g(Kn+1))
2 ,

for any functional g of the random polytope. This suggests that deviation can be

estimated through a “one-point-at-a-time” approach. This process reminds us of the

martingale technique which has gained much attention in recent years due to heavy

use of probabilistic methods in combinatorics. In fact, we use this technique to obtain

the following concentration result, which can be considered an alternative to integral

methods for obtaining higher moment estimates of functionals of random polytopes.

We show that the deviation of volume from its mean has exponential tail.

Theorem 2.4 (Concentration). For a given convex body K ∈ K2
+, there are constants

α and c such that the following holds. For any constant 0 < η < d−1
3d+1

and 0 < λ ≤
α
4
n

d−1
3d+1

+
2(d+1)η

d−1 < α
4
n, we have

P
(
|Z − EZ| ≥

√
λV0

)
≤ 2 exp(−λ/4) + exp(−cn

d−1
3d+1

−η), (2.3)
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where V0 = αn−
d+3
d−1 .

From this tail estimate, one can not only deduce the upper bound on variance

bound given by Reitzner but also obtain bounds for any fixed moments:

Corollary 2.5 (Moments). For any given convex body K and k ≥ 2, the k-th mo-

ments of Z satisfies

Mk = O

((
n−

d+3
d−1

)k/2
)

.

To emphasize the dependence of Z = Vold Kn on n, we write Zn instead of Z in

the following result. Equipped with the concentration result, we not only confirm

limit law of the form

lim
n→∞

Zn

EZn

= 1,

but also determine the rate of convergence:

Corollary 2.6 (Rate of Convergence). There is a constant α such that the following

holds.

lim
n→∞

∣∣∣∣
(

Zn

EZn

− 1

)
f(n)

∣∣∣∣ = 0

almost surely, for

f(n) = δ(n)
(
n−

d+3
d−1 ln n

)−1/2

where δ(n) is a function tending to zero arbitrarily slowly as n →∞.

Since we determine the upper bounds on all moments, the next natural question

to ask is what the asymptotic distribution of the functionals are. The concentration

result suggests distribution of exponential tail, hence we ask whether the tail is the

same as normal tail asymptotically. This is another topic that has gained signifi-

cant development in recent years: the central limit theorem. We have the following

conjecture:

Conjecture. (Central Limit Theorem Conjecture) Fix a K ∈ K2
+ with volume

one. Let Kn be the random polytope determined by n random points chosen on the
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boundary of K. Further, we write Z = Vold(Kn). Then there is a function ε(n)

tending to zero with n such that for every x

∣∣∣∣P
(

Z − EZ√
Var Z

≤ x

)
− Φ(x)

∣∣∣∣ ≤ ε(n),

where Φ denotes the distribution function of the standard normal distribution.

Although we were unable to prove the complete result, we obtain the central limit

theorem for the so-called Poisson model as follows. We let Pois(n) be a Poisson point

process with intensity n. Then the intersection of Pois(n) and ∂K consists of random

points {t1, . . . , tN} where the number of points N is Poisson distributed with mean

nµ(∂K) = n. We write Πn = [t1, . . . , tN ]. We show that the distribution of Vold(Πn)

converges to normal distribution asymptotically.

Theorem 2.7. Given K ∈ K2
+, we have

∣∣∣∣∣P
(

Vold(Πn)− EVold(Πn)√
Var Vold(Πn)

≤ x

)
− Φ(x)

∣∣∣∣∣ = o(1),

where the o(1) term is of order O
(
n−

1
4 ln

d+2
d−1 n

)
as n →∞.

We hope this result will infer central limit theorem for Kn. This is the case for

Pn, random polytope where the points are chosen inside K, as confirmed by Vu [69].

However, for random inscribed polytopes, some difficulties remain. Our computations

show that the two models are very close in the sense that the expectations of volume

for the two models are asymptotically equivalent, and the variances are only off by

constant multiplicative factor (see Theorem 6.1).



3

Boundary Structure

3.1 Notations

Before we go on further with our discussion, it is necessary to introduce the no-

tations in this paper.

The vectors e1, . . . , ed always represent a fixed orthonormal basis of Rd. The

discussions in this paper, unless otherwise specified, are all based on this basis. For

a vector x, we denote its coordinate by x1, . . . , xd, i.e. x = (x1, . . . , xd). By Bi(x, r)

we indicate the i-dimensional Euclidean closed ball of radius r centered at x, i.e.

Bi(x, r) =
{
y ∈ Ri | ||x− y|| = r

}
.

The norm || · || is the Euclidean norm. When the dimension is d, we sometimes simply

write B(x, r).

For points t1, . . . , tn ∈ Rd, the convex hull of them is defined by

[t1, . . . , tn] = {λ1t1 + · · ·+ λntn|0 ≤ λi ≤ 1, 1 ≤ i ≤ n,

n∑
i=1

λi = 1}.

In particular, the closed line segment between two points x and y is

[x, y] = {λx + (1− λ)y|0 ≤ λ ≤ 1}.

11
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To analyze the geometry, it is necessary to introduce the following. For any

y ∈ Rd write y = (y1, . . . , yd) for the coordinates with respect to some fixed basis

e1, . . . , ed. For unit vector u ∈ Rd, let H(u, h) =
{
x ∈ Rd | 〈x, u〉 = h

}
, where here

〈, 〉 denotes the standard inner product on Rd. Further, the halfspace associated to

this hyperplane we denote by H+(u, h) =
{
x ∈ Rd | 〈x, u〉 ≥ h

}
. Since K is smooth,

for each point y ∈ ∂K, there is some unique outward normal uy. We thus may define

the cap C = C(y, h) of K to be H+(uy, hK(y)− h) ∩K, where hK(y) is the support

function such that H+(uy, hK(y)) intersects K in the point y only. In general, one

should think of a cap as K∩H+ where H+ is some closed half space. Throughout this

paper, we also use the notion of ε-cap to emphasize that Vold(C) = Vold(K∩H+) = ε.

Similarly, we call C = K∩H+ an ε-boundary cap to emphasize that µ(∂K∩H+) = ε.

We define the ε-wet part of K to be the union of all caps that are ε-boundary

caps of K and we denote it by F c
ε . The complement of the ε-wet part in K is said

to be the ε-floating body of K, which we denote by Fε. This notion comes from the

mental picture that when K is a three dimensional convex body containing ε units

of water, the floating body is the part that floats above water (see [16] and [52]).

Finally, consider the floating body Fε and a point x ∈ F c
ε . We say that x sees y if

the chord [x, y] does not intersect Fε. Set Sx,ε to be the set of those y seen by x. We

then define

g(ε) = sup
x∈F c

ε

Vold(Sx,ε).

In particular, we note that Sx,ε is the union of all ε-boundary caps containing x.

Since K is smooth, it is well known that g(ε) = Θ(Vold(ε − boundary cap)) (see

[16]).

3.2 Cap-covering

In 1963, Rényi and Sulanke [59, 60] found that even in the planar case, surprisingly,

the expectation of the number of vertices, f0(Pn), of random polytopes with points
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chosen inside K depends heavily on the boundary structure of K. It is of order

ln n when K is a convex polygon, and of order n1/3 when K is a circle (or more

generally, any smooth enough bodies). Extensions of Rényi and Sulanke revealed

that for smooth bodies, the vertices of Pn are distributed evenly near boundary of K,

while for polygons, they are concentrated near the vertices of the original polygon.

This somewhat explains the different behavior of E f0(Pn). Bárány and Larman [16]

(also see [6]) proved that the same kind of extreme behaviors hold for the volume

functionals for these two extreme classes of convex bodies, namely smooth convex

bodies and polytopes. They showed this through two steps; first, they give an estimate

of the expectation through floating body:

Theorem 3.1. For any convex body K ∈ Rd with volume one, there are constants c1

and c2, such that

c1 Vold((F
I
1/n)c) ≤ 1− EVold(Pn) ≤ c2 Vold((F

I
1/n)c).

where the F I
1/n is the floating body constructed through (1/n)-caps, instead of

(1/n)-boundary caps according to our definitions in the previous section. But we note

that these are essentially the same construction except that the related parameter 1/n

stand for different volumes (see Lemma 3.12 for their relations).

Then they showed

Theorem 3.2. Let K be a polytope. There is a constant c3 such that

Vold((F
I
1/n)c) ≈ c3

1

n
(ln n)d−1.

And,

Theorem 3.3. Let K be a convex body in K2
+. There is a constant c4 such that

Vold((F
I
1/n)c) ≈ c4n

−2/(d+1).

Moreover, they discovered that for a convex body K in between these two cases,

the expectation of volume fluctuates with n between the two extreme estimates:
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Theorem 3.4. Assume ω(n) → 0 and Ω(n) → ∞. Then for most (in the Baire

category sense) convex bodies with volume one, we have, for infinitely many n,

1− EPn ≥ ω(n)n−
2

d+1 ,

and for infinitely many n,

1− EPn ≤ Ω(n)
(ln n)d−1

n
.

The key idea in Bárány and Larman [16] is that one can cover the boundary of K

with a series of caps which capture all actions of random polytopes approximating a

convex body, this is known as the Cap-covering Lemma. The proof of this lemma is

given in slightly different forms in [33], [6], [16], [56], and [68]. For the case of smooth

convex body, the main idea of the proof is that its boundary locally looks like that of

a ball (after certain affine transformation) in the sense that one can find paraboloids

which approximate ∂K uniformly for all x ∈ ∂K (see Section 3.3 for details). This

enables one to find a minimal covering of the boundary with balls that are “uniform”

in size. These results are very well known, hence we do not provide complete proofs

here. The formulation we present mostly follow Reitzner [56], [57] and Vu [68].

In the following, we assume ε is sufficiently small whenever necessary.

Lemma 3.5. Given K ∈ K2
+, there exist constants d1, d2 such that for each cap

C(x, h) with h ≤ h0, we have

∂K ∩B(x, d1h
1
2 ) ⊂ C(x, h) ⊂ B(x, d2h

1
2 ).

Lemma 3.6. Given K ∈ K2
+, there exists constants d3 and d4 such that for each cap

C(x, h) with h ≤ h0, we have

d3h
d+1
2 ≤ Vold(C(x, h)) ≤ d4h

d+1
2 .

That is, for sufficiently small ε, an ε-cap has height 1
d4

ε
2

d+1 ≤ h ≤ 1
d3

ε
2

d+1 .
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Lemma 3.7 (Cap Covering). Let m be sufficiently large, i.e. m ≥ m0 for some

constant m0. Given K ∈ K2
+, there are points y1, . . . , ym ∈ ∂K, and caps Ci =

C(yi, hm) and Ci = C(yi, (2d2/d1)
2hm) with

Ci ⊂ B(yi, d2h
1/2
m ) ⊂ Vor(yi)

Vor(yi) ∩ ∂K ⊂ B(yi, 2d2h
1/2
m ) ∩ ∂K ⊂ Ci,

and

hm = Θ(m− 2
d−1 ).

Here Vor(yi) is the Voronoi cell of yi in K defined by:

Vor(yi) = {x ∈ K :‖ x− yi ‖≤‖ x− yk ‖ for all k 6= i},

and we have

Vold(Ci) = Θ(m− d+1
d−1 ),

for all i = 1, . . . , m.

Proof. The proof follows from the fact that given m > m0, for a suitable rm, we

can find balls B(yi, rm), i = 1, . . . , m such that they form a maximal packing of

∂K, hence B(yi, 2rm) form a covering of ∂K. By Lemma 3.5, we can find Ci’s

such that Ci ⊆ B(yi, rm), and Ci’s such that ∂K ∩ B(yi, 2rm) ⊆ Ci. Also note

that
∑

m κd−1r
d−1
m is approximately the surface area of K where κd−1 is the (d − 1)-

volume of the (d − 1)-dimensional unit ball. Obviously B(yi, rm) ⊆ Vor(yi) and

Vor(yi) ∩ ∂K ⊆ ∂K ∩ B(yi, 2rm). Thus, use Lemma 3.5, one can convert among the

parameter m, the height of cap hm and radius of the ball rm to obtain the estimates

above.

Corollary 3.8. Given K, there are constants d6, d7, d8, d9 and a system of pairwise

disjoint d6ε-caps Ci, i = 1, . . . , m with m ≤ d7ε
− d−1

d+1 , such that any ε-cap contains at

least one of the Ci’s. Also, there are d8ε-caps C ′
i, i = 1, . . . , m′ with m′ ≤ d9ε

− d−1
d+1

such that any cap with volume at most ε is contained in at least one of the C ′
i.
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Lemma 3.9. Let K, m be given, and yi, i = 1, . . . , m be chosen as in Lemma 3.7. The

number of Voronoi cells Vor(yj) intersecting a cap C(yi, h) is O((h
1
2 m

1
d−1 + 1)d+1),

i = 1, . . . , m.

Lemma 3.10. Let m,K and yi, Ci, i = 1, . . . , m be chosen as in Lemma 3.7. Choose

on the boundary within each cap Ci an arbitrary point xi (i.e. xi ∈ Ci ∩ ∂K), then

δH(K, [x1, . . . , xm]) = O(m− 2
d−1 ),

where δ(K,K ′) stands for the Hausdorff distance between convex bodies K and K ′.

And there is a constant c such that for any y ∈ ∂K with y /∈ C(yi, cm
− 2

d−1 ), the line

segment [y, xi] intersects the interior of the convex hull [x1, . . . , xm].

In what follows, we always assume the parameters are sufficiently small or large

whenever needed for the lemmas to hold. This can be achieved without exceptions.

3.3 Boundary approximation

In order to carry out detailed calculation of the variance of volume, we need to

know what the boundary of K is like. In fact, for K ∈ K2
+, at each point x ∈ ∂K

there is a unique paraboloid Qx, given by a quadratic form bx, osculating ∂K at x.

We may describe Qx and bx by identifying the tangent hyperplane of ∂K at x with

Rd−1 and x with the origin. This is a well known fact, see e.g.[56]. In a neighborhood

of x, we can represent ∂K as the graph of a C2, convex function f : Rd−1 → R, i.e.

each point in ∂K near x can be written in the form (y, fx(y)), where y ∈ Rd−1 the

form (y1, . . . , yd−1). Thus, we may write

bx(y) =
1

2

∑

1≤i,j≤d−1

∂fx

∂yi∂yj
(0)yiyj,

and

Qx =
{
(y, z) | z ≥ bx(y), y ∈ Rd−1, z ∈ R}

,
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here ∂fx

∂yi∂yj (0) denote the second partial derivative of fx at the origin with respect to

yi and yj. The main thrust of the above is that these paraboloids approximate the

boundary structure. The formulation given here is due to Reitzner, who provides a

proof in [57].

Lemma 3.11. Let K ∈ K2
+ and choose δ > 0 sufficiently small. Then there exists

a λ > 0, depending only on δ and K, such that for each point x ∈ ∂K the following

holds: If we identify the tangent hyperplane to ∂K at x with Rd−1 and x with the ori-

gin, then we may define the λ−neighborhood Uλ of x ∈ ∂K by proj Uλ = Bd−1(0, λ).

Uλ can be represented by a convex function fx(y) ∈ C2, for y ∈ Bd−1(0, λ). Further-

more,

(1 + δ)−1bx(y) ≤ fx(y) ≤ (1 + δ)bx(y), (3.1)

and √
1 + |∇fx(y)|2 ≤ (1 + δ). (3.2)

for y ∈ Bd−1(0, λ), where bx is defined as above and ∇fx(y) stands for the gradient

of fx(y).

This lemma proves that at each point x ∈ ∂K, the deviation of the boundary of

the approximating paraboloid ∂Qx from ∂K is uniformly bounded in a small neigh-

borhood of x.

We use this lemma to show how one can relate ε-caps to ε-boundary caps. This

relationship is used repeatedly throughout the paper as it allows us to work with

volumes of different dimensions.

Lemma 3.12. For a given K ∈ K2
+, there exists constants ε0, c, c

′ > 0 such that for

all 0 < ε < ε0 we have that for any ε-cap C of K,

c−1ε(d−1)/(d+1) ≤ µ(C ∩ ∂K) ≤ cε(d−1)/(d+1)

and for any ε-boundary cap C ′ of K,

c′−1ε(d+1)/(d−1) ≤ Vold(C
′) ≤ c′ε(d+1)/(d−1).
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Proof. We shall prove the first statement. Fix some δ > 0 for lemma 3.11.

Consider in Rd the paraboloid given by the equation

zd ≥ (z1)2 + (z2)2 + . . . + (zd−1)2.

Intersecting this paraboloid with the halfspace defined by the equation zd ≤ 1

gives an object which we shall call the standard cap, E. We form (1 + δ)−1E and

(1 + δ)E similarly by the equations zd ≥ (1 + δ)−1((z1)2 + (z2)2 + . . . , (zd−1)2) and

zd ≥ (1+ δ)((z1)2 +(z2)2 + . . . , (zd−1)2), using the same halfspace as before. We note

the inclusions

(1 + δ)−1E ⊃ E ⊃ (1 + δ)E.

Let c1 = Vold((1+δ)−1E) and c2 = Vold((1+δ)E), and further set c3 = µ(proj((1+

δ)−1E)) and c4 = µ(proj((1+ δ)E)) where here proj is the orthogonal projection onto

the hyperplane spanned by the first (d− 1) coordinates.

Now, let C be our ε-cap. Let x be the unique point in ∂K whose tangent hyper-

plane is parallel to the hyperplane defining C. Assuming that Lemma 3.11 applies,

we may equate the tangent hyperplane of ∂K at x with Rd−1, and view C ∩ ∂K as

being given by some convex function f : Rd−1 → R. Further, let Qx be the unique

paraboloid osculating ∂K at x. Let A be a linear transform that takes E to Qx. We

observe that Qx is the paraboloid defined by the set zd ≥ bx(z
1, . . . , zd−1) intersected

with the halfspace zd ≤ h, for some h > 0. We can define (1+δ)−1Qx (resp. (1+δ)Qx)

to be the set defined by the intersection of this same half space and the points given

by zd ≥ (1 + δ)−1bx(z
1, . . . , zd−1) (resp. zd ≥ (1 + δ)bx(z

1, . . . , zd−1)). Observe that

A((1 + δ)−1E) = (1 + δ)−1Qx and A((1 + δ)E) = (1 + δ)Qx.

Appealing to Lemma 3.11, we see that

(1 + δ)−1Qx ⊃ C ⊃ (1 + δ)Qx.

This gives

c1| det A| ≥ ε ≥ c2| det A|. (3.3)

Let f̃ : Rd−1 → ∂K be the function induced by f , i.e. f̃(y) = (y, fx(y)).
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Using the inclusion

f̃(proj((1 + δ)−1Qx)) ⊃ C ∩ ∂K ⊃ f̃(proj((1 + δ)Qx))

and the bound

(1 + δ) ≥
√

1 + |∇f |2 ≥ 1

furnished by Lemma 3.11, if A′ represents the restriction of A to the first (d − 1)

coordinates, we obtain

c3| det A′|(1 + δ) ≥ µ(C ∩ ∂K) ≥ c4| det A′|. (3.4)

A simple computation shows | det A| = 2(d−1)/2κ−1/2h(d+1)/2 and | det A′| = 2(d−1)/2

κ−1/2h(d−1)/2, where κ is the Gauß-Kronecker curvature of ∂K at x. Using this and

(3.3) gives upper and lower bounds on h, and this bound with (3.4) gives

c5ε
(d−1)/(d+1) ≥ µ(C ∩ ∂K) ≥ c6ε

(d−1)/(d+1),

where here c5, c6 are constants depending only on κ. As K is compact and κ is always

positive we can assume we can change c5 and c6 to be independent of κ, and hence x.

Finally, we return to the issue of values of ε (hence h) for which Lemma 3.11

applies. We note that in general every quadratic form bx can be given by

bx(y) =
1

2

∑
i

ki(y
i)2,

where ki are the principal curvatures. We observe that as the Gauß-Kronecker curva-

ture is positive then there are positive constants k′ and k′′ depending only on K such

that 0 < k′ < ki < k′′. This bounds the possible geometry of Qx, and implies the

existence of an ε0 such that for 0 < ε < ε0, such that proj((1 + δ)−1Qx) ⊂ B(0, λ) (λ

as given in Lemma 3.11), allowing us to apply Lemma 3.11. This completes the proof

of the first statement. The second statement is similar. Relaxing constants allows

the statement as given.
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Remark 3.13. It is important to note that the above is not true for general convex

bodies. In particular, any polytope P provides an example of a convex body with

caps C such that the quantities Vold(C) and µ(C ∩ ∂P ) are unrelated.

Acknowledgement: This chapter is an adaptation of materials from An Inscribing

Model for Random Polytopes, Ross Richardson, Van Vu and Lei Wu, to appear in

special issue of Discrete and Computational Geometry. The dissertation author was
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Variance

In this section, we provide a proof of Theorem 2.3. It follows an argument first

used by Reitzner in [56], which has also been utilized by Bárány and Reitzner [8] to

prove a lower bound of the variance in the case where the convex body is a polytope.

Essentially, we condition on arrangements of our polytope where vertices can be

perturbed in such a way that the resulting change in volume is independent for each

vertex in question.

Choosing the vertices along the boundary according to a given distribution, as

opposed to uniformly in the body adds technical complication and requires greater

use of the boundary structure. The key to the study is the boundary approximation

mentioned in the previous section.

4.1 Small local perturbations

We begin by establishing some notation. Define the standard paraboloid E to be

E =
{
z ∈ Rd | zd ≥ (z1)2 + . . . + (zd−1)2

}
.

We similarly define 2E =
{
z ∈ Rd | zd ≥ 1

2
((z1)2 + . . . + (zd−1)2)

}
and observe that

we have the inclusion

E ⊂ 2E.

21
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We now choose a simplex S in the cap C(0, 1) of E. Choose the base of the

simplex to be a regular simplex with vertices in ∂E ∩H(ed, hd) and the origin (hd to

be determined later). We shall denote by v0, v1, . . . , vd the vertices of this simplex,

singling out v0 to be the apex of S (i.e. the origin). The important point here is that

for sufficiently small hd, the cone
{
λx ∈ Rd | λ ≥ 0, x ∈ S

}
contains 2E ∩ H(ed, 1).

Indeed, as the radius of E ∩H(ed, hd) is
√

hd, the inradius of base of the simplex is√
hd/d2, hence for hd < 1/2d2 our above inclusion holds.

Now, look at the orthogonal projection of the vertices of the simplex to the plane

spanned by {e1, . . . , ed−1}, which we think of as Rd−1 and denote the relevant operator

as

proj : Rd → Rd−1.

Around the origin we center a ball B0 of radius r, and around each projected point

(except the origin) we can center a ball in Rd−1 of radius r′, both to be chosen later.

We label these balls B1, . . . , Bd, where Bi is the ball about proj(vi). We can form the

corresponding sets B′
i to be the inverse image of these sets on ∂E under the projection

operator. In other words, if b : Rd−1 → R is the quadratic form whose graph defines

E, b̃ : Rd−1 → ∂E the map induced by b, then

B′
i = b̃(Bi), i = 0, . . . , d.

We note that if we choose r sufficiently small, then for any choice of random points

Y ∈ B′
0 and xi ∈ B′

i, i = 1, . . . , d the cone on these points is close to the cone on the

simplex in the sense that

{λx | x ∈ [Y, x1, . . . , xd], λ ≥ 0} ⊃ 2E ∩H(ed, 1).

We may also think of Y being chosen randomly, according to the distribution induced

from the (d−1)-dimensional Hausdorff measure on E, say. Then, passing to a smaller

r if necessary, we see that for any choice of xi ∈ B′
i, i = 1, . . . , d, we have

VarY (Vold([Y, x1, . . . , xd])) ≥ c0 > 0.
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All the above follows from continuity. We hope results of this type to be true for

arbitrary caps of ∂K, and indeed our current construction will serve both model and

computational tool for similar constructions on arbitrary caps.

We now consider the general paraboloid

Q =

{
z ∈ Rd | zd ≥ 1

2
(k1(z

1)2 + . . . , +kd−1(z
d−1)2)

}
,

where here ki > 0 for all i and let the curvature be κ =
∏

ki. We now transform the

cap C(0, 1) of E to the cap C(0, h) of Q by the (unique) linear map A which preserves

the coordinate axis. Let Di be the image of Bi under this affinity. We find that the

volume of the Di scales to give

µ(Di) = c1h
d−1
2 , i = 1, . . . , d, (4.1)

where here c1 is some positive constant only depending on the curvature κ =
∏

ki

and our choice of r and r′.

Next, for each point x ∈ ∂K we identify our general paraboloid Q with the

approximating paraboloid Qx of K at x (in particular, we identify Rd−1 with the

tangent hyperplane at x and the origin with x). We thus write Di(x) to indicate the

set Di, i = 1, . . . , d, corresponding to Qx. Analogously to the construction of the {B′
i}

we can construct the {D′
i(x)} as follows. Let fx : Rd−1 → R be the function whose

graph locally defines ∂K at x (this exists for h sufficiently small, see Lemma 3.11),

f̃ : Rd−1 → ∂K the induced function. Let

D′
i(x) = f̃(Di(x)).

We note here that in general the sets D′
i(x) are not the images of B′

i under A as A(B′
i)

may not lie on the boundary ∂K in general.

Because the curvature is bounded above and below by positive constants, as is ρ,

we see that the volume of Di(x) is given by

c3h
d−1
2 ≤ µ(Di(x)) ≤ c4h

d−1
2 , (4.2)
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where c3, c4 are constants depending only on K.

We now wish to get bounds for VarY (Vold([Y, x1, . . . , xd])) where xi ∈ D′
i(x), i =

1, . . . , d and we choose Y randomly in D′
0(x) according to the distribution on the

boundary. To begin with, we’ll need the following technical lemma.

Lemma 4.1. There exists a r0 > 0 and r′0 such that for all r0 > r > 0 and r′0 > r′ > 0

we have an hr > 0 such that for any choice of xi ∈ D′
i(x), i = 1, . . . , d, and hr > h > 0:

c5h
d+1 ≤ VarY ([Y, x1, . . . , xd]) ≤ c6h

d+1, (4.3)

where c5, c6 are positive constants depending only on K and r.

The proof of this lemma is given in Section 4.3. Assuming this lemma is true, we

proceed with our analysis as follows.

Fix some choice for hd < 1/2d2. Let v0, . . . , vd denote the vertices of the simplex

S. Then by continuity we know that there is some η > 0 such that choosing xi in

η-balls B(vi, η) centered at the vertices preserves our desired inclusion, namely

{λx | x ∈ [x0, x1, . . . , xd], λ ≥ 0} ⊃ 2E ∩H(ed, 1). (4.4)

We now desire to set r′ > 0 such that D′
i(x) ⊂ A(B(vi, η)) for all x ∈ ∂K. As a

consequence, we will obtain the inclusion, for xi ∈ D′
i(x),

{λx | x ∈ [x0, x1, . . . , xd], λ ≥ 0} ⊃ 2Qx ∩H(ux, h) ⊃ K ∩H(ux, h).

Choose ε > 0 such that

Ui =
{
(x, y) ∈ Rd | x ∈ B(proj vi, η/2) ⊂ Rd−1 and (1 + ε)−1bE(x) ≤ y ≤ (1 + ε)bE(x)

}

⊂ B(vi, η) (4.5)

for each i, where bE is the quadratic form defining our standard paraboloid E. Ap-

pealing to Lemma 3.11 we take h sufficiently small such that for all x ∈ ∂K,

(1 + ε)−1bx(y) ≤ fx(y) ≤ (1 + ε)bx(y).
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Choosing r′ < η/2 forces the Bi to be balls of radius r′ about proj vi, which by the

above causes D′
i(x) ⊂ A(Ui) ⊂ A(B(vi, η)).

With these choices for r, r′ and some constant h0 > 0 to enforce the condition that

h is sufficiently small above, we now proceed to the body of our argument.

4.2 Proof of lower bound on variance

Choose n points t1, . . . , tn randomly in ∂K according to the probability induced

by the distribution. Choose n points y1, . . . , yn ∈ ∂K and corresponding disjoint caps

according to Lemma 3.7. In each cap C(yj, hn) (of K) establish sets {Di(yj)} and

{D′
i(yj)} for i = 0, . . . , d and j = 1, . . . , n as in the above discussion.

We let Aj, j = 1, . . . , n be the event that exactly one random point is contained

in each of the Di(yj), i = 0, . . . , d and every other point is outside C(yj, hn) ∩ ∂K.

We calculate the probability as

P (Aj) = n(n− 1) · · · (n− d)P(ti ∈ D′
i(yj), i = 0, . . . , d)

· P(ti /∈ C(yj, hn) ∩ ∂K, i ≥ d + 1)

= n(n− 1) · · · (n− d)
d∏

i=0

µ(D′
i(yj))

n∏

k=d+1

(1− µ(C(yj, hn) ∩ ∂K))

We can give a lower bound for this quantity with (4.2) and Lemma 3.7 , and

noting specifically that hn = Θ(n−2/(d−1)):

P(Aj) ≥ c7n
d+1n−d−1(1− c8n

−1)n−d−1 ≥ c9 > 0, (4.6)

where c7, c8, c9 are positive constants. In particular, denoting by 1A the indicator

function of event A. We obtain that

E(
n∑

j=1

1Aj
) =

n∑
j=1

P(Aj) ≥ c9n. (4.7)

Now we denote by F the position of all points of {t1, . . . , tn} except those which are

contained in D′
0(yj) with 1Aj

= 1. We then use the conditional variance formula to



26

obtain a lower bound:

Var Z = EVar(Z|F) + VarE(Z|F)

≥ EVar(Z|F).

Now we look at the case where 1Aj
and 1Ak

are both 1 for some j, k ∈ {1, . . . , n}.
Assume without loss of generality that tj and tk are the points in D′

0(yj) and D′
0(yk),

respectively. We note that by construction there can be no edge between tj and

tk, so the volume change affected by moving tj within D′
0(yj) is independent of the

volume change of moving tk within D′
0(yk). This independence allows us to write the

conditional variance as the sum

Var(Z|F) =
n∑

j=1

Vartj(Z)1Aj
,

where here each variance is taken over tj ∈ D′
0(yj). We now invoke Lemma 4.1,

equation (4.7), and the bound hn ≈ n−2/(d−1) to compute

EVar(Z|F) = E

(
n∑

j=1

Vartj(Z)1Aj

)

≥ c5h
d+1 E

(
n∑

j=1

1Aj

)

≥ c10(n
−2/(d−1))d+1c6n

= c11n
−(d+3)/(d−1).

Thus, the above provides the promised lower bound on Var Z.

4.3 Proof of Lemma 4.1

We first prove the following claim. The notation follows that found in Section 4.1

Claim 4.2. Let x ∈ ∂K. There is some h(K) > 0 such that for h(K) > h > 0 there

exists a constant c(r) > 0 depending only on r and K such that

1

2
| det A|2c(r) ≤ VarY (Vold([Y, Av1, . . . , Avd])) ≤ 2| det A|2c(r),
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and Y is a random point chosen in D′
0(x) according to the distribution on ∂K.

Proof of Claim. To prove this claim, we compute. Recall that A is the linear map

which takes E to the paraboloid Qx. We shall denote by A′ the map A restricted to

Rd−1. We shall denote by f : Tx(∂K) ≈ Rd−1 → R the function whose graph defines

∂K locally, and f̃ : Rd−1 → ∂K the function induced by f .Thus, we have:

EY (Vold([Y, Av1, . . . , Avd]))

=

∫
D0

Vold([f̃(Y ), Av1, . . . , Avd])ρ(f̃(Y ))
√

1 + f 2
Y 1 + . . . f 2

Y d−1dY

∫
A′(C0)

ρ(f ′(Y ))
√

1 + f 2
Y 1 + . . . f 2

Y d−1dY

=
| det A′| ∫

C0
Vold([f̃(AX), Av1, . . . , Avd])ρ(f̃(AX))

√
1 + f 2

Y 1 + . . . f 2
Y d−1(AX)dX

| det A′| ∫
C0

ρ(f ′(AX))
√

1 + f 2
Y 1 + . . . f 2

Y d−1(AX)dY
.

(4.8)

Observe that if we set A−1 ◦ f̃(AX) = f ∗ to be the pullback of f̃ under A then

Vold([f̃(AX), Av1, . . . , Avd]) = | det A| · Vold([f
∗(X), v1, . . . , vd]). Letting b : Rd−1 →

R denote the quadratic form defining E, b̃ : Rd−1 → ∂E the induced function, we

then use Lemma 3.11 to get the bound

2−1b ≤ f ◦ A′ ≤ 2b, (4.9)

when h is sufficiently small. Thus, we get the bound

Vold([2
−1b(X), v1, . . . , vd]) ≥ Vold([f

∗(X), v1, . . . , vd]) ≥ Vold([2b(X), v1, . . . , vd]),

which follows from the geometry. Now, since v1, . . . , vd form a (d−1) simplex parallel

to the plane Rd−1 we can write Vold([b(X), v1, . . . , vd]) = cd(1 − b(X)), where cd is

some positive constant depending only on dimension. We may write b(X) = |X|2,



28

and this allows us to see that

Vold([2
−1b̃(X), v1, . . . , vd])

= Vold([b̃(X), v1, . . . , vd])(1− 2−1|X|2)/(1− |X|2)
= Vold([b̃(X), v1, . . . , vd])(1− 2−1|X|2)(1 + |X|2 + |X|4 + . . .)

= Vold([b̃(X), v1, . . . , vd])(1 + or(1)),

Here, or(1) indicates a function which goes to 0 as r goes to 0. Similarly, we have

Vold([2b̃(X), v1, . . . , vd]) = Vold([b̃(X), v1, . . . , vd])(1 + or(1)).

Thus, we may write

∫
C0

Vold([f
∗(X), v1, . . . , vd])ρ(f̃(AX))

√
1 + f 2

Y 1 + . . . f 2
Y d−1(AX)dX

∫
C0

ρ(f̃(AX))
√

1 + f 2
Y 1 + . . . f 2

Y d−1(AX)dY

≥ (1 + or(1)) ·
∫

C0
Vold([b̃(X), v1, . . . , vd])ρ(f̃(AX))

√
1 + f 2

Y 1 + . . . f 2
Y d−1(AX)dX

∫
C0

ρ(f̃(AX))
√

1 + f 2
Y 1 + . . . f 2

Y d−1(AX)dY
.

(4.10)

Setting F (X) = ρ(f̃(AX))
√

1 + f 2
Y 1 + . . . f 2

Y d−1(AX) the above is thus

≥ (1 + or(1)) · minC0 F (X)

maxC0 F (X)
·
∫

C0
Vold([b(X), v1, . . . , vd])dX∫

C0
dX

.

Now, if we can show that the term
minC0

F (X)

maxC0
F (X)

≥ (1 + or,h(1)), only depending on r

and h, then from our earlier observation we can conclude that (4.8) is bounded below

by

| det A| · (1 + or,h(1)) ·
∫

C0
Vold([b(X), v1, . . . , vd])dX∫

C0
dX

.

Note or,h(1) denotes a function which goes to 0 as both r and h go to 0.

Invoking Lemma 3.11, we observe that we may make the term

√
1 + f 2

Y 1 + . . . f 2
Y d−1(AX)
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sufficiently less than (1 + δ), for any δ > 0, by choosing r, h both sufficiently small

(independent of f). Thus, we may write
√

1 + f 2
Y 1 + . . . f 2

Y d−1(AX) = (1 + or,h(1)).

Next, we note that ρ is a uniformly continuous function on K. It is not too

hard to see that the function minC0 ρ(f ′(AX))/ maxC0 ρ(f ′(AX)) = (1 + or,h(1)),

where again the o(1) function is independent of the basepoint. Using the fact that

min ρ(f ′(AX))
√

1 + f 2
Y 1 + . . . f 2

Y d−1(AX) ≥ (min ρ(f ′(AX))) ·(
min

√
1 + f 2

Y 1 + . . . f 2
Y d−1(AX)

)
(similarly for max) we thus find that

(1 + or,h(1)) ≥ minC0 F (X)

maxC0 F (X)
≥ (1 + or,h(1)),

where the functions in question are independent of basepoint.

If we let φ1(r) =
R

C0
Vold([b̃(X),v1,...,vd])dXR

C0
dX

then we can summarize our findings as,

independent of basepoint,

lim
h→0

EY (Vold([Y, Av1, . . . , Avd]))

| det A|φ1(r)
= (1 + or(1)). (4.11)

By an identical argument, if we set φ2(r) =
R

C0
Vold

2([b̃(X),v1,...,vd])dXR
C0

dX
then we have

lim
h→0

EY (Vold
2([Y,Av1, . . . , Avd]))

| det A|2φ2(r)
= (1 + or(1)). (4.12)

Using (4.11) and (4.12) we can compute:

lim
h→0

VarY ([Y,Av1, . . . , Avd])/| det A|2 = lim
h→0

EY (Vold
2([Y,Av1, . . . , Avd]))/| det A|2

− lim
h→0

E2
Y (Vold([Y,Av1, . . . , Avd]))/| det A|2

= φ2(r)(1 + or(1))− φ2
1(r)(1 + or(1))2

= (φ2(r)− φ2
1(r))(1 + or(1)). (4.13)

Thus, by letting r become sufficiently small so that the final (1 + or(1)) > 0 we

note that (4.13) is positive, since this quantity φ2(r) − φ2
1(r) is just the variance of

Vold([b(X), v1, . . . , vd]) where X is taken over C0, thus always positive. This proves

there exists c1 > 0 such that for h sufficiently small,

VarY ([Y, Av1, . . . , Avd]) ≥ c1| det A|2.
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By the same arguments we also get

VarY ([Y, Av1, . . . , Avd]) ≤ c2| det A|2.

So the claim is proved.

With the preceding claim, we now prove Lemma 4.1. Instead of the convex hull of

[Y,Av1, . . . , Avd] we shall study the convex hull [Y, x1, . . . , xd], where xi ∈ D′
i, using

the fact that the xi are close to the Avi when h is small. To do this, we’ll need a

second claim.

Claim 4.3. There exists a δ > 0 such that If for each i, xi ∈ B(vi, d), then

Vold([2
−1b(X), x1, . . . , xd]) = Vold([b(X), x1, . . . , xd])(1 + or(1))

and

Vold([2b(X), x1, . . . , xd]) = Vold([b(X), x1, . . . , xd])(1 + or(1)),

where the hidden functions depend only on r (i.e. they are not functions of the xi).

Proof. We simply note that there exists a δ > 0 such that for any fixed choice of xi,

Vold([2
−1b(X), x1, . . . , xd])

Vold([b(X), x1, . . . , xd])
→ 1 as X → 0.

We also note that X, x1, . . . , xd lie in C0×B(v1, δ)×· · ·×B(vd, δ), a compact set. These

two conditions guarantee that the maximum of the ratio, taken over all x1, . . . , xd,

converges to 1 as X → 0. Thus, the ratio converges to 1 independently of the choice

of x1, . . . , xd, and hence the claimed result.

The statement for Vold([2b(X), x1, . . . , xd]) is analogous.
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With this claim, we can adapt claim 4.2 to work for any xi ∈ B(vi, δ), by using

the above claim in place of (4.10). With this we can show that for h sufficiently small

we can choose r sufficiently small such that

1

2
| det A|2 VarX(Vold([b(X), x1, . . . , xd])) ≤ VarY (Vold([Y, Ax1, . . . , Axd]))

≤ 2| det A|2 VarX(Vold([b(X), x1, . . . , xd])), (4.14)

where here the quantity VarX(Vold([b(X), x1, . . . , xd])) is the variance taken over C0.

But as VarX(Vold([b(X), v1, . . . , vd])) is positive, continuity guarantees that

c′ > VarX(Vold([b(X), x1, . . . , xd])) > c > 0

if the xi are sufficiently close to the vi, say xi ∈ B(vi, η) for all i, for some η > 0.

Then,
1

2
| det A|2c′ ≤ VarY (Vold([Y,Ax1, . . . , Axd])) ≤ 2| det A|2c, (4.15)

if xi ∈ B(vi, η) for all i.

Now, we need to verify that we can choose Ci sufficiently small such that points

in D′
i always map into B(vi, η), which will complete the lemma. To do this, note that

if we set r′ < η/2, then we can choose ε > 0 such that

Ui =
{
(x, y) ∈ Rd | x ∈ B(proj vi, η/2) ⊂ Rd−1 and (1 + ε)−1b(x) ≤ y ≤ (1 + ε)b(x)

}

⊂ B(vi, η) (4.16)

for each i. By Lemma 3.11 we can take h to be sufficiently small such that for all

x ∈ ∂K

(1 + ε)−1bx(y) ≤ fx(y) ≤ (1 + ε)bx(y)

in all caps of height h. So if we thus choose Ci to be the η/2 ball about proj vi,

then we note that D′
i ⊂ A(Ui). Thus, any yi ∈ D′

i can be written as Axi for some

xi ∈ Ui ⊂ B(vi, η), and thus (4.15) holds. Hence, the lemma.
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5

Concentration

Our concentration result shows that Vold(Kn) is highly concentrated about its

mean. Namely, we obtain a bound of the form

P(|Z − EZ| ≥
√

λ Var Z) ≤ c1 exp(−c2λ) (5.1)

for positive constants c1, c2. Such an inequality indicates that Z has an exponential

tail, which proves sufficient to provide information about the higher moments of Z

and the rate of convergence of Z to its mean.

5.1 Discrete geometry

We now set up some basic geometry which will be the subject of our analysis. Let

L be a finite collection of points. For a point x ∈ K, define

∆x,L = Vold([L ∪ x])− Vold([L]).

A key property is the following observation.

Lemma 5.1. Let L be a set whose convex hull contains the floating body Fε. Then

for any x,

∆x,L ≤ g(ε).

33
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The major geometry result which allows for our analysis is the following lemma

quantifying the fact that Kn contains the floating body Fε with high probability.

Lemma 5.2. There are positive constants c and c′ such that the following holds for

every sufficiently large n. For any ε ≥ c′ ln n/n, the probability that Kn does not

contain Fε is at most exp(−cεn).

Bárány and Dala [15] proved a similar lemma to this in which the floating body

is defined slightly differently, namely, as the union of all ε-caps instead of ε-boundary

caps. They also assume that the distribution on K is uniform. Vu [68] used a surpris-

ingly different methods from discrete geometry, namely VC-dimension, to generalize

their result to any distribution on K. We will give a similar proof here to our lemma.

First, we need some definitions:

Definition 5.3. Let X be a set and F be a family of subset of X. For a subset

A ⊂ X, the restriction of F on A is

F |A = {S ∩ A|S ∈ F}.

We call a subset A is shattered by F if each subset of A can be obtained as the

intersection of some S ∈ F with A, i.e. if

2A = F |A.

We define the VC-dimension of F to be

dimVC(F) = sup
A⊆X

A is shattered by F

{|A|}

It is easy to observe the following fact:

Lemma 5.4. Let X and F as in Definition 5.3, if X ′ ⊆ X and F ′ = F |X′, then

dimVC(F ′) ≤ dimVC(F).
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Proof. For any A ⊆ X ′ ⊆ X such that A is shattered by F ′ and |A| = dimVC(F ′), we

have for any B ⊆ A, there exists some S ′ ∈ F ′ such that B = S ′ ∩ A. That is, there

exists S ∈ F such that S ′ = S ∩ X ′. But B = S ′ ∩ A = S ∩ A (otherwise, if there

is x ∈ S ∩ A such that x /∈ B, then x ∈ S\S ′, i.e. x /∈ X ′, a contradiction). So A is

shattered by F .

The following fact is well known in discrete geometry (see e.g. Lemma 10.3.1. in

[49]):

Lemma 5.5. The VC-dimension of the system of all (closed) half-spaces in Rd is

d + 1.

Immediately by Lemma 5.4, we have

Corollary 5.6. The VC-dimension of the family of all (closed) half-spaces restricted

to ∂K in Rd is at most d + 1.

Definition 5.7. If X is equipped with a probability measure µ and let F be a family

of measurable subsets of X, then we call a subset N ⊆ X an ε-net of F if N intersects

all “big” subsets of X in F . Precisely, this means

N ∩ S 6= ∅

for any S ∈ F with µ(S) ≥ ε.

Now by a famous theorem of Haussler and Welzl [45]:

Theorem 5.8. There is a constant c′′ such that the following holds. If X and F
are defined as in Definition 5.7 and dimVC(F) = d, then F has an ε-net of size

c′′dε−1 ln 1
ε
.

We refer readers to [45] or p.239-241 in [50] for a complete treatment of this

theorem and the following corollary. The proof of this theorem uses a probabilistic

argument. One shows that with positive probability, a random set of size c′′dε−1 ln 1
ε

intersect all elements S ∈ F with µ(S) ≥ ε. In fact, if one examines the proof closely,

one finds that this probability is fairly large:
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Corollary 5.9. There is a constant c′′ and α such that the following holds. If X is

a set with a probability measure mu, F is a family of measurable subsets of X, and

dimVC(F) = d, then the probability that a random set of size c′′dε−1 ln 1
ε

fails to hit

all S ∈ F such that µ(S) ≥ ε is at most

αd(εc′′/4 ln
1

ε
)d.

Now we are ready to prove Lemma 5.2:

Proof. Let N = c′′(d+1)ε−1 ln 1
ε

and l = n/N . Choose c′ such that ε ≥ c′ ln n/n, then

l ≥ 1. Without loss of generality, assume l is an integer. We will sample n random

points on ∂K in l rounds. In each round, we sample N points, and the probability

that these points fail to hit all the ε-boundary cap is at most

α(d+1)(εc′′/4 ln
1

ε
)(d+1) ≤ εβ = exp(−β ln

1

ε
),

for some positive constant β, since c′′, d are constants and ε is sufficiently small. Hence

in l rounds, the probability that the n points fail to hit all ε-boundary caps is at most

exp(−lβ ln
1

ε
) = exp(−c

n

ε−1 ln 1
ε

ln
1

ε
) = exp(−cεn),

for some constant c depending on d, c′, c′′ and α but not on ε or n. Note that repetition

of points in the sample will only increase the probability in concern, so the above

statement is valid.

5.2 A slightly weaker result

The proof of Theorem 2.4 is rather technical. So we will first attempt a simpler

one of a slightly weaker result, which represents one of the main methodology used

in this paper.

Put G0 = 3g(ε) and V0 = 36ng(ε)2, where g(ε) is as defined in the previous section.

We show:
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Theorem 5.10. For a given K ∈ K2
+ there are positive constants α, c, and ε0 such

that the following holds: for any α ln n/n < ε ≤ ε0 and 0 < λ ≤ V0/4G
2
0, we have

P(|Z − EZ| ≥
√

λV0) ≤ 2 exp(−λ/4) + exp(−cεn).

We note that the constants used in the definition of G0 and V0 are chosen for

convenience and can be optimized, though we make no effort to do so.

To compare Theorem 5.10 with Theorem 2.4, we first compute V0. Θ(ε(d+1)/(d−1)),

by Lemma 3.12. So, setting ε = α ln n/n for some positive constant c greater than α

from our theorem gives

V0 = 36ng(ε)2

= 36nΘ(ε(d+1)/(d−1))2

= Θ(nn−2(d+1)/(d−1)(ln n)(d+1)/(d−1))

= Θ(n−(d+3)/(d−1)(ln n)2(d+1)/(d−1)). (5.2)

So, up to a logarithmic factor V0 is comparable to Var Z.

To obtain Theorem 2.4 we utilize a martingale inequality (Lemma 5.11). This

inequality, which is a generalization of an earlier result of Kim and Vu [48], appears

to be a new and powerful tool in the study of random polytopes. It was first used

by Vu in [68], and seems to provide a very general framework for the study of key

functionals. The reader who is familiar with other martingale inequalities, most

notably that of Azuma [5], will be familiar with the general technique (see also [3]).

Letting ti, i = 1, . . . , n be independent random points in ∂K, the sample space

be Ω = {t|t = (t1, . . . , tn), ti ∈ ∂K}, and Z = Z(t1, . . . , tn) = Vold(Kn) a function of

these points, we may define the (absolute) martingale difference sequence

Gi(t) = |E(Z | t1, . . . , ti−1, ti)− E(Z | t1, . . . , ti−1)| .

Thus, Gi(t) is a function of t = (t1, . . . , tn) that only depends on the first i points.
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We then set

Vi(t) =

∫
G2

i (t)∂ti

V (t) =
n∑

i=1

Vi(t)

G′
i(t) = sup

ti

Gi(t)

and

G(t) = max
i

G′
i(t).

Note also that |Z − EZ| ≤ ∑
i Gi. The key to our proof is the following concen-

tration lemma, which was derived using the so-called divide-and-conquer martingale

technique (see [68]).

Lemma 5.11. For any positive λ,G0 and V0 satisfying λ ≤ V0/4G
2
0, we have

P(|Z − EZ| ≥
√

λV0) ≤ 2 exp(−λ/4) + P(V (t) ≥ V0 or G(t) ≥ G0). (5.3)

The proof of this lemma can be found in [68].

Comparing Lemma 5.11 to Theorem 5.10 we find that the technical difficulty

comes in bounding the term P(V (t) ≥ V0 or G(t) ≥ G0), which corresponds to the

error term pNT .

Set V ′ = n−1V0 = 36g(ε)2. We find that we can replace exp(−cεn) with n exp(−c′εn)

by adjusting the relevant constant c′ so that n exp(−c′εn) < exp(−cεn). Thus, we’re

going to prove that

P(G(t) ≥ G0 or V (t) ≥ V0) ≤ n exp(−cεn)

for some positive constant c.

To do this, we’ll prove the following claim.

Claim 5.12. There is a positive constant c such that for any 1 ≤ i ≤ n,

P(G′
i(t) ≥ G0 or Vi(t) ≥ V ′) ≤ exp(−cεn).
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From this claim the trivial union bound gives

P(G(t) ≥ G0 or V (t) ≥ V0) ≤ n exp(−cεn),

hence quoting Lemma 5.11 finishes our proof of Theorem 5.10.

5.3 Proof of Claim 5.12

Proof. Recall that Z = Z(t1, . . . , tn) = Vold(Kn) for points ti ∈ ∂K.

The triangle inequality gives us

Gi(t) = |E(Z|t1, . . . , ti−1, ti)− E(Z|t1, . . . , ti−1)|
≤ Ex |E(Z|t1, . . . , ti−1, ti)− E(Z|t1, . . . , ti−1, x)|,

where Ex denotes the expectation over a random point x. The analysis for the two

terms in the last inequality is similar, so we will estimate the first one. Let us fix

(arbitrarily) t1, . . . , ti−1. Let L be the union of {t1, . . . , ti−1} and the random set of

points {ti+1, . . . , tn}. Since

Vold([L ∪ ti]) = Vold([L]) + ∆ti,L,

we have

E(Z|t1, . . . , ti−1, ti) = E(Vold([L])|t1, . . . , ti−1) + E(∆ti,L|t1, . . . , ti−1).

The key inequality of the analysis is the following:

E(∆ti,L|t1, . . . , ti−1) ≤ P(Fε * [L]|t1, . . . , ti−1) + g(ε). (5.4)

The inequality (5.4) follows from two observations:

• If Fε * [L], ∆ti,L is at most 1.

• If [L] contains Fε, ∆ti,L ≤ g(ε) by the definition of g(ε).
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We denote by Ω(j) and Ω<j> the product spaces spanned by {t1, . . . , tj} and

{tj, . . . , tn}, respectively.

Set δ = n−4. We say that the set {t1, . . . , ti−1} is typical if

PΩ<i+1>(Fε ⊆ [L]|t1, . . . , ti−1) ≥ 1− δ.

The rest of the proof has two steps. In the first step, we show that if {t1, . . . , ti−1} is

typical then G′
i(t) ≤ G0 and Vi(t) ≤ V ′. In the second step, we bound the probability

that {t1, . . . , ti−1} is not typical.

First step. Assume that {t1, . . . , ti−1} is typical, so PΩ<i+1>(Fε * [L]|t1, . . . , ti−1) ≤
δ = n−4. We first bound G′

i(t). Observe that

Gi(t) ≤ Ex |E(Z|t1, . . . , ti−1, ti)− E(Z|t1, . . . , ti−1, x)|
≤ Ex |E(∆ti,L|t1, . . . , ti−1)− E(∆x,L|t1, . . . , ti−1)|
≤ E(∆ti,L|t1, . . . , ti−1) + Ex E(∆x,L|t1, . . . , ti−1)

(by (5.4)) ≤ 2g(ε) + 2n−4 ≤ 3g(ε) = G0

In the last inequality we use the fact that ε = Ω(ln n/n), g(ε) = Ω(ε(d+1)/(d−1)) À n−4.

Thus it follows that

G′
i(t) = max

ti
Gi(t) ≤ G0.

Calculating Vi(t) using the above bound on Gi(t) it follows that

Vi(t) =

∫
Gi(t)

2dµ(ti)

≤
∫

9g(ε)2dµ(ti)

= 9g(ε)2 < V ′.

Second step. In this step, we bound the probability that {t1, . . . , ti−1} is not

typical. First of all, we will need a technical lemma as follows. Let Ω′ and Ω′′ be

probability spaces and set Ω′′′ to be their product. Let A be an event in Ω′′′ which

occurs with probability at least 1− δ′, for some 0 < δ′ < 1.
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Lemma 5.13. For any 1 > δ > δ′

PΩ′ (PΩ′′(A | x) ≤ 1− δ) ≤ δ′/δ,

where x is a random point in Ω′ and PΩ′ and PΩ′′ are the probabilities over Ω′ and

Ω′′, respectively.

Proof. Recall that PΩ′′′(A) ≥ 1− δ′. However,

PΩ′′′(A) =

∫

Ω′
PΩ′′(A | x)∂x ≤ 1− δ PΩ′ (PΩ′′(A | x) ≤ 1− δ) .

The claim follows.

Recall that L = {t1, . . . , ti−1, ti+1, . . . , tn}. Lemma 5.2 yields

P(Fε * [L]) ≤ exp(−c0εn),

for some positive constant c0 depending only on K. Applying lemma 5.13 with

Ω′ = Ω(i−1), Ω
′′ = Ω<i+1>, δ′ = exp(−cεn) and δ = n−4, we have

PΩ(i−1)
({t1, . . . , ti−1} is not typical) = PΩ(i−1)

(PΩ<i+1>(Fε * [L]|t1, . . . , ti−1) ≤ 1− δ)

≤ δ′/δ

= n4 exp(−c0εn)

≤ exp(−cεn)

for c = c0/2, given c0εn ≥ 8 ln n. This final condition can be satisfied by setting

the α involved in the lower bound of ε to be sufficiently large. Thus, our proof is

complete.

5.4 A better bound on deviation

By using more of the smooth boundary structure, we can obtain a better result.

As we shall see at the end of the proof, this result implies Theorem 2.4.
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Theorem 5.14. For any smooth convex body K with distribution µ along the bound-

ary, there are constants c, c′, α, ε0 such that the following holds. For any V0 ≥
αn−(d+3)/(d−1), ε0 ≥ ε > α ln n/n, G0 ≥ 3ε(d+1)/(d−1), and 0 < λ ≤ V0/4G

2
0, we have

P(|Z − EZ| ≥
√

λV0) ≤ 2 exp(−λ/4) + pNT

where

pNT = exp(−cεn) + exp(−c′n
d−1
3d+1

−η),

and η is any small positive constant less than d−1
3d+1

.

The proof of Theorem 5.14 follows from more careful estimates concerning ∆x,L.

First, we will introduce a few technical lemmas: Let L be a finite set of points.

Lemma 5.15. For any cap ε-boundary cap C, the boundary measure of the inter-

section of ∂K with the union of all ε-boundary cap intersecting C is at most d5ε for

some constant d5, i.e.

µ(∂K ∩ (∪C′∩C 6=∅C
′)) ≤ d5ε.

Proof. By Lemma 3.12, Vold(C) = cε
d+1
d−1 , for some c. Suppose C = C(x, h) where x(∈

∂K) is the unique point where the tangent hyperplane is parallel to the hyperplane

defining C and h is the height, then ( c
d4

)2/(d+1)ε
2

d−1 ≤ h ≤ ( c
d3

)2/(d+1)ε
2

d−1 by Lemma

3.6. For any point y ∈ C ′, where C ′ is any ε-boundary cap intersecting C, we have

||y − x|| ≤ ||y − z|| + ||z − x||, where z ∈ C ∩ C ′. By Lemma 3.5, C ⊆ B(x, d2h
1/2),

and C ′ ⊆ B(x′, d2h
1/2) for some x′ ∈ C ′ ∩ ∂K. Hence, ||y − z|| ≤ 2d2h

1/2, and

||z − x|| ≤ 2d2h
1/2. So y ∈ B(x, 4d2h

1/2), i.e. ∪C′∩C 6=∅C ′ ⊆ B(x, 4d2h
1/2). Since ε is

sufficiently small, so is h, by Lemma 3.5 again, ∂K∩B(x, 4d2h
1/2) ⊆ C(x, c′h) for some

constant c′. Vold(C(x, c′h)) = Θ(h(d+1)/2) = Θ(ε(d+1)/(d−1)). Hence µ(C(x, c′h)) =

Θ(ε). Therefore, µ(∂K ∩ (∪C′∩C 6=∅C ′)) ≤ d5ε. for some constant d5.

Let L be a set of points on the boundary of K. If a cap does not intersect [L],

the convex hull of L, then we say that it avoids L. Let Eδ,L be the intersection of ∂K

and the union of all δ-boundary caps that avoid L. Then
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Lemma 5.16. There is a positive constants d10 such that for any set L, the set

Eδ,L contains the intersection of ∂K with at least bd10δ
−1µ(Eδ,L)c pairwise disjoint

δ-boundary caps.

Proof. Note that if Eδ,L = ∅, then the conclusion is trivial. Suppose Eδ,L contains at

least the intersection of one δ-boundary cap and ∂K. Let C1, . . . , Cl be a maximal

system of pairwise disjoint δ-boundary caps such that their intersections with ∂K lie

in Eδ,L. By maximality, we have

Eδ,L = ∪l
i=1 Ci ∩∂K,

where Ci is the union of all δ-boundary caps intersecting Ci whose intersection with

∂K is in Eδ,L , for i = 1, . . . , l. By Corollary 5.15, µ(Ci ∩∂K) ≤ d5δ. So

µ(Eδ,L) ≤
l∑

i=1

µ(Ci ∩∂K) = O(lδ),

which implies l = Ω(δ−1µ(Eδ,L)).

Lemma 5.17. Let x ∈ ∂K, L be a set of points on ∂K and assume that ∆x,L is

at least ε. There is a positive constant d11 such that the boundary measure of one

of the caps determined by the facets containing x is at least d11ε
(d−1)/(d+1) and so

x ∈ Ed11ε(d−1)/(d+1),L.

Proof. Suppose all the caps determined by the facets containing x has boundary

measure at most ε(d−1)/(d+1). Hence they have d-dimensional volume at most ε by

Lemma 3.12. Since all these caps intersect (at x), the convex hull of them has volume

at most cε for some constant c (a one-line proof can be deduced much the same way

as that of Lemma 5.15). But this convex hull contains [L ∪ x]\[L], so ∆x,L ≤ cε.

For a finite set L of points in ∂K, we call a point x ∈ ∂K δ-large with respect to

L if ∆x,L ≥ δ. And we let

Xδ,L = {x|x is δ-large with respect to L}.
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If there are n points in L, the following lemma states that with high probability,

there are not many points that are very “large” with respect to L.

Lemma 5.18. Let L be a set of n random points on the boundary. There are positive

constants c, c′, c′′ and c′′′ such that the following holds: For any δ > c′n−(d+1)/(d−1)

and any T ≥ max{c′′δ(d−1)/(d+1), exp(−c′′′δ(d−1)/(d+1)n)}, we have

P(µ(Xδ,L) ≥ T ) ≤ exp(−cnT )

Proof. Due to Lemma 5.17, µ(Xδ,L) ≤ µ(Ed11δ(d−1)/(d+1),L). So it suffices to give an

upper bound on P(µ(Ed11δ(d−1)/(d+1),L) ≥ T ).

Assume µ(Ed11δ(d−1)/(d+1),L) ≥ T , we will upper-bound the probability of the con-

sequent event hence give a bound of the above probability. By Lemma 5.16, there are

at least l = Ω(δ−(d−1)/(d+1)T ) many disjoint d11δ
(d−1)/(d+1)-boundary caps C ′

is whose

intersections with ∂K are contained in Eδ(d−1)/(d+1),L and each C ′
i avoids L. Note

that by the cap-conversion lemma, Vold(C
′
i) = Θ(δ). With the right choice of con-

stant, T ≥ c′′δ(d−1)/(d+1) guarantees that l is at least one. Now by Lemma 3.8, for

some small constant d12, there is a fixed system of disjoint d12δ-caps (hence they are

d13δ
(d−1)/(d+1)-boundary caps by Lemma 3.12 for some constant d13), Ci, i = 1, . . . , m

where m = O(δ−(d−1)/(d+1)), such that each C ′
i contains at least one of the Cj. These

Cj’s then must also avoid L, and there are at least l many of them.

Since L has n points on the boundary of K, the probability that a fixed d13δ
(d−1)/(d+1)-

boundary cap avoids L is at most

(1− d13δ
(d−1)/(d+1))n ≤ exp(−d13δ

(d−1)/(d+1)n).

The probability that the system C1, . . . , Cm contains a subsystem of l elements

avoiding L is at most

(
m

l

)
exp(−d13δ

(d−1)/(d+1)n)l ≤ (
em

l
)l exp(−d13δ

(d−1)/(d+1)nl)

≤ exp
(
(−d13δ

(d−1)/(d+1)n + ln
em

l
)l

)
. (5.5)
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Now m = O(δ−(d−1)/(d+1)) and l = Ω(δ−(d−1)/(d+1)T ). Thus,

ln
em

l
≤ ln d14T

−1

for some positive constant d14. Next, we note that choosing the right constants c′ and

c′′′ so that T ≥ exp(−c′′′δ(d−1)/(d+1)n) and δ ≥ c′n−(d+1)/(d−1) gives us

ln d14T
−1 ≤ 1

2
d13δ

(d−1)/(d+1)n.

Thus we obtain

exp
(
(−d13δ

(d−1)/(d+1)n + ln
em

l
)l

)
≤ exp(−d13

2
δ(d−1)/(d+1)nl) ≤ exp(−cnT ).

Recall the proof of Theorem 5.10, we see that to prove Theorem 5.14, we only need

to show that under the assumptions of Theorem 5.14, there are positive constants c, c′

such that for any 1 ≤ i ≤ n,

P(G′
i(t) ≥ G0 or Vi(t) ≥ n−1V0) ≤ exp(−cεn) + exp(−c′n

d−1
3d+1

−η).

We can show P(G′
i(t) ≥ G0) ≤ exp(−cεn) as before. The key to the improvement

here is the following claim:

Claim 5.19. There is constant c′ such that for any 1 ≤ i ≤ n and 0 < η < d−1
3d+1

,

P(Vi(t) ≥ n−1V0) ≤ exp(−c′n
d−1
3d+1

−η).

Proof. First, recall that

Gi(t) ≤ E(∆ti,L|t1, . . . , ti−1) + Ex E(∆x,L|t1, . . . , ti−1).

So

Vi(t) =

∫

∂K

G2
i (t)dti

≤
∫

∂K

(E(∆ti,L|t1, . . . , ti−1) + Ex E(∆x,L|t1, . . . , ti−1))
2dti

≤ 4

∫

∂K

E2(∆ti,L|t1, . . . , ti−1)dti.



46

Pick 0 < η < d−1
3d+1

, and set ε0 = n−
2d+2
3d+1

−η. Let δ0 = n−(d+1)/(d−1) and T0 = 1.

Also, set δj = δ02
j and Tj = (j + 1)−24−jT0. Since K is smooth, there is a constant

a such that g(ε0) ≤ aε
(d+1)/(d−1)
0 . Let j0 be the smallest positive integer such that

δj0 ≥ aε
(d+1)/(d−1)
0 . One can check that for j ≤ j0 the condition of Lemma 5.18 is

satisfied so we can apply it.

We say the point set L = {t1, . . . , ti−1, ti+1, . . . , tn} is nice if the followings hold:

• [L] contains Fε0

• µ(Xδj ,L) ≤ Tj for all j = 0, 1, 2, . . ..

Following the proof of Theorem 5.10, we call a set {t1, . . . , ti−1} typical if

PΩ<i+1>(L is not nice|t1, . . . , ti−1) ≤ n−6.

Similar to the proof of Theorem 5.10, we will show the claim in two steps. First, we

will show that if {t1, . . . , ti−1} is typical, then the claim holds. Then we give an upper

bound on the probability that the above point set is not typical.

First step. Assume {t1, . . . , ti−1} is typical, notice that

∫

∂K

E2(∆ti,L|t1, . . . , ti−1)dti =

∫

Ω<i+1>

(

∫

∂K

∆2
ti,L

dti)dt<i+1>

Let Ω<i+1>
1 be the set of those (ti+1, . . . , tn) such that the set L is nice and let Ω<i+1>

2

be the rest.

Note that
∫

∂K
∆2

ti,L
dti ≤ 1 since ∆ti,L ≤ 1. Hence

∫

Ω<i+1>
2

∫

∂K

∆2
ti,L

dtidt<i+1> ≤ PΩ<i+1>(L is not nice|t1, . . . , ti−1) ≤ n−6.
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Now, when L is nice i.e. in the space of Ω<i+1>
2 , we have

∫

∂K

∆2
ti,L

dti ≤ δ2
0 +

∞∑
j=0

δ2
j+1µ(Xδj ,L)

≤ δ2
0 +

j0∑
j=0

δ2
j+1µ(Xδj ,L)

≤ δ2
0 +

j0∑
j=0

δ2
j+1Tj

≤ O(n−2(d+1)/(d−1)).

Here, we use the fact that when j > j0, δj ≥ aε
(d+1)/(d−1)
0 = g(ε0) so Xδj ,L is empty.

Combining the analysis of Ω<i+1>
1 and Ω<i+1>

2 , we have the upper bound for Vi(t)

n−6 + O(n−2(d+1)/(d−1)) ≤ O(n−2(d+1)/(d−1)).

So one has

nO(n−2(d+1)/(d−1)) = O(n−(d+3)/(d−1)),

that is,

Vi ≤ n−1V0

for our choice of V0.

Second step. Now we analyze our error term. We will do this using Lemma

5.13. From our definition of “niceness”, we see that

P(L is not nice) ≤ P(Fε0 * [L]) +

j0∑
j=0

P(µ(Xδj ,L ≥ Tj))

≤ exp(−Ω(nε0)) +

j0∑
j=0

exp(−Ω(nTj)).

Note that

nTj ≥ nTj0 À nδ
(d−1)/(d+1)
j0

≥ aε0
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and there are at most j0 ≤ O(log2 n) many terms in the sum. So the first term in

(5.4) is dominating. Thus, we have the error term

exp(−cn
d−1
3d+1

−η), 0 < η <
d− 1

3d + 1
.

Now by Lemma 5.13,

PΩ(i−1)({t1, . . . , ti−1 is not typical })
= PΩ(i−1)(PΩ<i+1>(L is nice |t1, . . . , ti−1) ≥ 1− n−6)

≤ n6 exp(−cn
d−1
3d+1

−η)

= exp(−c′n
d−1
3d+1

−η),

for some constant c′.

The key difference between this result and Theorem 5.10 is that here V0 is indepen-

dent of ε, so we can set V0 = αn−(d+3)/(d−1) without affecting the tail estimate. If we

also set ε = n−
2d+2
3d+1

−η, then the two error terms in pNT are the same (up to a constant

factor). Since G0 = 3g(ε) = 3Θ(ε(d+1)/(d−1)), we have λ < V0/4G
2
0 ≤ c′′n

d−1
3d+1

+
2(d+1)η

d−1

for some constant c′′. Hence Theorem 2.4 is proved.

The key idea used in the proof of Theorem 5.14 can also be used to prove the

following important lemma, which we will use in Section 6.

Lemma 5.20. For large n,

EVold(Kn+1)− EVold(Kn) = O(n−(d+1)/(d−1)).

Proof. Set ε0, δj and Tj, j = 0, . . . , j0 just as in the proof of Claim 5.19.

Following the notations found in the concentration proof, we set

Ω′ = {t = (t1, . . . , tn) | ti ∈ ∂K}, and put L = {t1, . . . , tn}. Again, we call L “nice”

as before in the proof of Claim 5.19. Let Ω′
1 be the family of all “nice” L, and Ω′

2 the

rest.
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Observe that we can write

EVold(Kn+1)− EVold(Kn) =

∫

Ω′

∫

∂K

Vold([t1, . . . , tn, tn+1])− Vold([t1, . . . , tn])dtn+1dt

=

∫

Ω′

∫

∂K

∆tn+1,Ldtn+1dt

=

∫

Ω′1

∫

∂K

∆tn+1,Ldtn+1dt +

∫

Ω′2

∫

∂K

∆tn+1,Ldtn+1dt

(5.6)

The first integrand can be estimated by

∫

∂K

∆tn+1,Ldtn+1 ≤ δ0 +

j0∑
j=0

δj+1µ(Xδj ,L)

≤ δ0 +

j0∑
j=0

δj+1Tj

≤ O(n−(d+1)/(d−1)),

Now
∫

Ω′1
dt = 1, so the first term in (5.6) is bounded by O(n−(d+1)/(d−1)). Since

∫
∂K

∆tn+1,Ldtn+1 ≤ 1 and

P(L is not nice) ≤ exp(−cε0n) ¿ O(n−(d+1)/(d−1)),

with the appropriate constant c for sufficiently large n, we prove the lemma.

5.5 Higher moments and rate of convergence

Proof of Corollary 2.5: Let λ0 = α
4
n

d−1
3d+1

+
2(d+1)η

d−1 be the upper bound for λ given in

Theorem 2.4. So for λ > λ0, by (2.4)

P(|Z − EZ| ≥
√

λV0) ≤ P(|Z − EZ| ≥
√

λ0V0)

≤ 2 exp(−λ0/4) + exp(−cn
d−1
3d+1

−η).

Combining (2.4) and the above, we get for any λ > 0,

P(|Z − EZ| ≥
√

λV0) ≤ 2 exp(−λ/4) + 2 exp(−λ0/4) + exp(−cn
d−1
3d+1

−η). (5.7)
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We then compute the kth moment Mk of Z, beginning with the definition:

Mk =

∫ ∞

0

tkdP(|Z − EZ| < t).

If we set γ(t) = P(|Z − EZ| ≥ t) then we can write

Mk =

∫ ∞

0

tkdP(|Z − EZ| < t)

= −
∫ ∞

0

tkdγ(t)

=

(
(−tkγ(t))

∣∣∞
0

+

∫ ∞

0

ktk−1γ(t)dt

)

=

∫ 1

0

ktk−1γ(t)dt.

Note that the limits of integration can be limited to [0, 1] because we’ve assumed the

volume of K is normalized to 1.

Setting t =
√

λV0 we get
∫ 1

0

ktk−1γ(t)dt =

∫ 1/V0

0

k(
√

λV0)
k−1 P(|Z − EZ| ≥

√
λV0)

√
V0

2
√

λ
dλ

by (5.7) ≤ k

2
V

k/2
0

∫ 1/V0

0

λ
k
2
−12 exp(−λ/4) + 2 exp(−λ0/4) + exp(−cn

d−1
3d+1

−η)dλ.

We may now evaluate each term separately.

For the first term we observe that
∫ 1/V0

0

2λ
k
2
−1 exp(−λ/4)dλ ≤

∫ ∞

0

2λ
k
2
−1 exp(−λ/4)dλ = ck,

where ck is a constant depending only on k.

Since

V0 = αn−
d+3
d−1 À n−5,

we can compute the second term:
∫ 1/V0

0

λ
k
2
−12 exp(−λ0/4)dλ ≤ 2

k
2 exp(−λ0/4)V

− k
2

0

≤ 2

k
2 exp(− α

16
n

d−1
3d+1

+
2(d+1)η

d−1 )n
5k
2

= o(1).
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The last term can be computed similarly and gives o(1) again. Hence,

Mk ≤ (ck + o(1))kV
k/2
0 = O(V

k/2
0 ).

Proof of Corollary 2.6:

P
(∣∣∣∣

Zn

EZn

− 1

∣∣∣∣ f(n) ≥ δ(n)

)
≤ P(|Zn − EZn| ≥ EZn

√
32n−

d+3
d−1 ln n)

≤ P(|Zn − EZn| ≥
√

8 ln nV0)

≤ 2 exp(−8 ln n/4) + exp(−cn
d−1
3d+1

−η)

≤ 3 exp(−2 ln n)

≤ 3n−2,

by Theorem 2.4. The second inequality above is due to the fact that EZn =

1 − cKn−
2

d−1 > 1/2 when n is large. Since
∑

n−2 is convergent, by Borel-Cantelli,∣∣∣ Zn

EZn
− 1

∣∣∣ f(n) converges to 0 almost surely, hence the corollary.
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Central Limit Theorem

6.1 Approximating Kn by Πn

Before we prove the central limit theorem for Poisson model, we should first give

a brief review of the Poisson point process.

Let K ∈ K2
+, and let Pois(n) be a Poisson point process with intensity n. Then

the intersection of Pois(n) and ∂K consists of random points {x1, . . . , xN} where the

number of points N is Poisson distributed with mean nµ(∂K) = n. We write Πn =

[x1, . . . , xN ]. Conditioning on N , the points x1, . . . , xN are independently uniformly

distributed in ∂K. For two disjoint subsets A and B of ∂K, their intersections with

Pois(n), i.e. the point sets A∩Pois(n) = {x1, . . . , xN} and B∩Pois(n) = {y1, . . . , yM},
are independent. This means N and M are independently Poisson distributed with

intensity nµ(A) and nµ(B) respectively, and xi and yj are chosen independently.

The following standard estimates of the tail of Poisson distribution will be used

repeatedly throughout this section. Let X be a Poisson random variable with mean

52
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λ. Then

P(X ≤ λ

2
) =

λ/2∑

k=0

e−λ λk

k!
≤ e−λ +

λ/2∑

k=1

e−λ(
eλ

k
)k

≤ λ + 1

2
e−λ(2e)λ/2 ≤ λ + 1

2
(
e

2
)−λ/2

= Θ((
e

2
)−λ/2),

(6.1)

where the last equality holds when λ is large. Similarly,

P(X ≥ 3λ) ≤
∞∑

k=3λ

e−λ(
eλ

k
)k ≤

∞∑

k=0

e−λ(
e

3
)k = ce−λ, (6.2)

where c is a small constant.

As is pointed out in the introduction, Πn approximates Kn quite well, as one

might expect.

Theorem 6.1. Let Πn be the convex hull of points chosen on ∂K according to the

Poisson point process Pois(n). Then,

EVold(Πn) ≈ EVold(Kn) = 1− c(K, d)n−
2

d−1 ,

as n →∞, and

Var Vold(Πn) = Θ(Var Vold(Kn)) = Θ(n−
d+3
d−1 ).

Proof. Due to the conditioning property of Poisson point process, we have

EVold(Πn) =
∑

|k−n|≤n7/8

EVold(Kk)e
−n nk

k!
+

∑

|k−n|≥n7/8

EVold(Kk)e
−n nk

k!
.

For Poisson distribution, the Chebyschev’s inequality gives P(|k−n| ≥ n7/8) ≤ n−3/4.

Hence the second summand is bounded above by n−3/4 since EVold(Kk) is at most

1. By (2.2), EVold(Kk) = 1− k−
2

d−1 = 1− (1 + o(1))n−
2

d−1 , when |k − n| ≤ n7/8.

For the variance, we can rewrite Var Vold(Πn) as follows:

Var Vold(Πn) = EN Var(Vold(Πn)|N) + VarN E(Vold(Πn)|N).
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By (6.1), the second term in the above equation becomes:

VarE(Vold(Πn)|N) = EN E2 Vold(KN)− (EN EVold(KN))2

=
∞∑

j=n
2

∞∑

k=n
2

(E2 Vold(Kk)− EVold(Kk)EVold(Kj))e
−2n nk+j

k!j!

+ O((
e

2
)−n/2)

=
∞∑

j=n
2

∞∑

k=j

(EVold(Kk)− EVold(Kj))
2e−2n nk+j

k!j!
+ O((

e

2
)−n/2),

where the third equality is due to (6.1). By Lemma 5.20, EVold(Kj+1)−EVold(Kj) =

c(K, d)j−
d+1
d−1 when j →∞, hence

EVold(Kk)− EVold(Kj) =
k−1∑
i=j

EVold(Ki+1)− EVold(Ki) ≤ c(K, d)(k − j)j−
d+1
d−1 ,

and

VarE(Vold(Πn)|N) ≤ c(K, d)
∞∑

j=n
2

∞∑

k=j

(k − j)2j−
2d+2
d−1 e−2n nk+j

k!j!
+ O((

e

2
)−n/2)

≤ cn−
2d+2
d−1 Var N + O((

e

2
)−n/2)

= O(n−
d+3
d−1 ).

Now,Var Vold(Kn) = Θ(n−
d+3
d−1 ), so by (6.1) and (6.2), we have

EVar Vold(Πn|N) = E(Θ(N− d+3
d−1 ))

= O(P(N ≤ n

2
)) + E(N− d+3

d−11{n

2
< N ≤ 3n}) + O(P(3n < N))

= Θ(n−
d+3
d−1 ).
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6.2 Poisson Central Limit Theorem

The key ingredient of the proof is the following theorem:

Theorem 6.2 (Baldi-Rinott[7]). Let G be the dependency graph of random variables

Yi’s, i = 1, . . . , m, and let Y =
∑

i Yi. Suppose the maximal degree of G is D and

|Yi| ≤ B a.s., then
∣∣∣∣P

(
Y − EY√

Var Y
≤ x

)
− Φ(x)

∣∣∣∣ = O(
√

S),

where Φ(x) is the standard normal distribution and S = mD2B3

(
√

Var Y )3
.

Here the dependency graph of random variables Yi’s is a graph on m vertices such

that there is no edge between any two disjoint subsets, A1 and A2, of {Yi}m
i=1 if these

two sets of random variables are independent.

Because we can dissect the convex body K into Voronoi cells according to the cap

covering Lemma 3.7, we will study Vold(Πn) as a sum of random variables which are

volumes of the intersection of Πn with each of the Voronoi cell. And the theorem

above allows us to prove central limit theorem for sums of random variables that may

have small dependency on each other.

First we let

m =
⌊ n

4d ln n

⌋
.

By Lemma 3.7, given K ∈ K2
+, we can choose m points, namely y1, . . . , ym, on ∂K.

And the Voronoi Cells Vor(yi) of these points dissect K into m parts. Let

Yi = Vold(Vor(yi))− Vold(Vor(yi) ∩ Πn),

i = 1, . . . , m. So

Y =
∑

i

Yi = Vold(K)− Vold(Πn), (6.3)

Moreover, these Voronoi cells also dissect the boundary of K into m parts, and each

contains a cap Ci with d-dimensional volume

Vold(Ci) = Θ(m− d+1
d−1 ),
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by Lemma 3.7. Now by Lemma 3.12 it is a boundary cap with (d − 1)-dimensional

volume

µ(Ci ∩ ∂K) = Θ(m−1) = Θ(
4d ln n

n
).

Denote by Ai(i = 1, . . . , m) the number of points generated by the Poisson point

process of intensity n contained in Ci ∩ ∂K, hence Ai is Poisson distributed with

mean λ = nµ(Ci ∩ ∂K) = Θ(4d ln n). Then

P(Ai = 0) = e−λ = O(n−4d).

And by (6.1),

P(Ai ≥ 3λ) = P(Ai ≥ 12d ln n) = O(n−4d).

Now let Am be the event that there is at least one point and at most 12d ln n points

in every Ai for i = 1, . . . , m. Then

1 ≥ P(Am) = P(∩i{1 ≤ Ai ≤ 12d ln n}) ≥ 1− Ω(n−4d+1). (6.4)

The rest of the proof is organized as follows. We first prove the central limit

theorem for Vold(Πn) when we condition on Am, then we show removing the condi-

tion doesn’t affect the estimate much, as Am holds almost surely. Let P̃ denote the

conditional probability measure induced by the Poisson point process X(n) on ∂K

given Am, i.e.

P̃(Vold(Πn) ≤ x) = P(Vold(Πn) ≤ x|Am).

Similarly, we define the corresponding conditional expectation and variance to be Ẽ
and Ṽar, then

Lemma 6.3.

∣∣∣∣ P̃
(

Vold(Πn)− ẼVold(Πn)√
Ṽar Vold(Πn)

≤ x

)
− Φ(x)

∣∣∣∣ = O(n−
1
4 ln

d+2
d−1 n). (6.5)
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Proof. Note that by (6.3), Vold(Πn)−ẼVold(Πn) = ẼY−Y , and Ṽar Y = Ṽar Vold(Πn) =

Θ(n−
d+3
d−1 ), by Theorem 6.1. Hence it suffices to show Y satisfies the Central Limit

Theorem under P̃.

Given Am, we define the dependency graph on random variables Yi, i = 1, . . . , m

as follows: we connect Yi and Yj if Vor(yi) ∩ C(yj, cm
− 2

d−1 ) 6= ∅ for some constant

c which satisfies Lemma 3.10. To check dependency, we see that if Yi � Yj, then

Vor(yi)∩C(yj, cm
− 2

d−1 ) = ∅. Thus, for any point P1 ∈ Vor(yi)∩∂K, P2 ∈ Vor(yj)∩∂K

such that P1, P2 are vertices of Πn, the line segment [P1, P2] cannot be contained in the

boundary of Πn. Otherwise, it would be a contradiction to Lemma 3.10. Therefore,

there is no edge of Πn between vertices in Vor(yi) and Vor(yj), hence Yi and Yj are

independent given Am.

To apply Theorem 6.2 to Y , we are left to estimate parameters D and B.

By Lemma 3.9, C(yj, cm
− 2

d−1 ) (j = 1, . . . , m) can intersect at most O(1) many

Vor(yi)’s. Hence D = O(1).

By Lemma 3.10, for any point xi in Ci, i = 1, . . . , m,

δH(K, Πn) ≤ δH(K, [x1, . . . , xm]) = O(m− 2
d−1 ).

So

Vor(yi)\Πn ⊆ C(yi, h
′), (6.6)

where h′ = O(m− 2
d−1 ). By Lemma 3.6 and (6.6),

Yi ≤ Vold(C(yi, h
′)) = O(m− d+1

d−1 ) = O((
4d ln n

n
)

d+1
d−1 ) := B.

Hence by the Baldi-Rinott Theorem, the rate of convergence in (6.5) is Θ(n−
1
4 (ln n)

d+2
d−1 ),

and we finish the proof.

Now, we will remove the condition Am. First observe an easy fact

Proposition 6.4. For any events A and B,

|P(B|A)− P(B)| ≤ P(Ac).
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Proof. Since

P(B)− (1− P(A)) = P(B)− P(Ac) ≤ P(B\Ac) ≤ P(B),

we have |P(B|A)− P(B)| ≤ 1− P(A).

Hence we can deduce

Lemma 6.5.

∣∣∣P̃(Vold(Πn) ≤ x)− P(Vold(Πn) ≤ x)
∣∣∣ = O(n−4d+1), (6.7)

∣∣∣ẼVold
k(Πn)− EVold

k(Πn)
∣∣∣ = O(n−4d+1), (6.8)

for k = 1, 2, and

∣∣∣Ṽar Vold(Πn))− Var Vold(Πn)
∣∣∣ = O(n−4d+1). (6.9)

Proof. Equation (6.7) follows immediately from Proposition 6.4. Now when k = 1, 2,

since Vold(Πn) ≤ 1,

ẼVold
k(Πn)− EVold

k(Πn) ≤ EVold
k(Πn)

(
1

P(Am)
− 1

)
= O(n−4d+1),

and

EVold
k(Πn)− ẼVold

k(Πn) ≤ E (
Vold

k(Πn) (1− 1(Am))
)

= O(n−4d+1).

Hence the variance follows from the moments estimate above.

As a result of Lemma 6.5, we can remove the condition Am and obtain Theorem

2.7 as follows. For notational convenience, we denote Vold(Πn) by X temporarily.

For each x, let x̃ be such that

EX + x
√

Var X = ẼX + x̃
√

Ṽar X,



59

then

|x− x̃ | = O(n−4d+1+ d+3
2(d−1) ) + |x|O(n−4d+1+ d+3

d−1 ), (6.10)

by (6.7) and Lemma 6.3. We have

FX(x) = P(X ≤ EX + x
√

Var X) = P̃(X ≤ ẼX + x̃
√

Ṽar) + O(n−4d+1)

= Φ(x̃) + O(n−
1
4 ln

d+2
d−1 n) + O(n−4d+1).

But |Φ(x) − Φ(x̃)| = O(n−1), since |Φ(x) − Φ(x̃)| ≤ |x − x̃ | ≤ O(n−1) when |x| ≤ n

and by (6.10) | x̃ | ≥ cn when |x| ≥ n which implies |Φ(x)− Φ(x̃)| ≤ exp(−Ω(n)). So

|FX(x)− Φ(x)| = |P(X ≤ EX + x
√

Var X)− Φ(x)| = O(n−
1
4 ln

d+2
d−1 n).

Hence finishes the proof of Theorem 2.7.
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[17] I. Bárány and M. Reitzner, Central limit theorem for random polytopes in convex
polytopes, manuscript, 2005.
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