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QTL STUDY DESIGN FROM AN INFORMATION PERSPECTIVE

SAUNAK SEN !, JAYA M. SATAGOPAN?, AND GARY A. CHURCHILLS

February 2, 2005

ABSTRACT

We examine the efficiency of different genotyping and phenotyping strategies in inbred line crosses from
an information perspective. This provides a mathematical framework for the statistical aspects of QTL ex-
perimental design, while guiding our intuition. Our central result is a simple formula that quantifies the
fraction of missing information of any genotyping strategy in a backcross. It includes the special case of
selectively genotyping only the phenotypic extreme individuals. The formula is a function of the square
of the phenotype, and the uncertainty in our knowledge of the genotypes at a locus. This result is used to
answer a variety of questions. First, we examine the cost-information tradeoff varying the density of mark-
ers, and the proportion of extreme phenotypic individuals genotyped. Then we evaluate the information
content of selective phenotyping designs and the impact of measurement error in phenotyping. A simple
formula quantifies the information content of any combined phenotyping and genotyping design. We ex-
tend our results to cover multi-genotype crosses such as the F; intercross, and multiple QTL models. We
find that when the QTL effect is small, any contrast in a multi-genotype cross benefits from selective geno-
typing in the same manner as in a backcross. The benefit remains in the presence of a second unlinked QTL
with small effect (explaining less than 20% of the variance), but diminishes if the second QTL has a large
effect. Software for performing power calculations for backcross and F5 intercross incorporating selective
genotyping and marker spacing is available from ht t p: / / www. bi ost at . ucsf. edu/ sen.

INTRODUCTION

The goal of a genetic mapping experiment is to detect and localize the genetic elements
responsible for the variation in a phenotype of interest. The design of a mapping experi-
ment involves choosing the type of the cross, the parental strains involved, a method for
measuring the phenotype and a genotyping strategy. Traditionally, genotyping and phe-
notyping strategies have been evaluated in terms of their power to detect a genetic effect.
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This depends on the size of the genetic effect and the information in the experiment. The
experimenter has no control over the former, but phenotyping and genotyping strategies
can be designed to extract the most information subject to cost, or other constraints. In
this paper, we consider inbred line crosses from an information perspective.

Selective genotyping (LEBOWITZ ET AL., 1987; LANDER AND BOTSTEIN, 1989; DARVASI
AND SOLLER, 1992) is an effective strategy for reducing genotyping costs when there is
a single trait of interest. LANDER AND BOTSTEIN (1989) showed that the contribution of
an individual to the expected LOD score is approximately proportional to the squared
difference of the individual from the overall mean. DARVASI AND SOLLER (1992) showed
that by genotyping approximately one quarter of the individuals in each extreme (half
of the total individuals) one retains most of the power as compared to genotyping the
entire cross. DARVASI AND SOLLER (1994) considered genotyping strategies from a cost
perspective and showed that for lowering total experimental cost, it may be optimal to
genotype individuals at very wide spacings if the cost of rearing and trait evaluation is
low. A selective phenotyping design with a main trait and a correlated trait was con-
sidered by MEDUGORAC AND SOLLER (2001) who also analyzed it from a cost-power
perspective. JIN ET AL. (2004) have proposed a selective phenotyping strategy for crosses
where phenotyping is more expensive than genotyping using a criterion that maximizes
the genetic diversity of the phenotyped animals. BELKNAP (1998) considered the problem
of the number of replications of an Rl line to achieve power comparable to a backcross or
F, cross subject to heritability constraints. All of these design strategies can be considered
and unified by considering the information content of the resulting data.

We were motivated to investigate selective genotyping from an information perspective
by considering the genotyping strategy employed in SUGIYAMA ET AL. (2001). Figure
1 shows the genotype pattern in this cross. First, we note that half of the marker geno-
types are missing. The mice with extreme phenotypes were more heavily genotyped than
the intermediate ones and some chromosomes were more heavily genotyped than oth-
ers because an initial genome scan showed indications of QTLs on these chromosomes.
Finally, some markers were typed only if the flanking markers recombined (see closeup
Figure 2). This was done because if two reasonably close markers do not recombine, the
genotype of all loci in that interval are effectively known, but when flanking markers dif-
fer, additional genotyping can help to narrow the location of the recombination. RONIN
ET AL. (2003) investigated the properties of a similar genotyping strategy using simula-
tions. Two-stage genotyping strategies have been considered in the context of linkage
analysis in human studies by ELSTON (1994), and for genetic association studies by SA-
TAGOPAN ET AL. (2002) and SATAGOPAN AND ELSTON (2003). More generally, selective
genotyping can be considered to be a special case of outcome-dependent sampling.

Our goal in this paper is to formally investigate the information tradeoffs inherent in
different genotyping and phenotyping strategies. Although missing data methods have
long been employed to analyze QTL experiments (LANDER AND BOTSTEIN, 1989; XU AND
VOGL, 2000), they have not been employed in their design. We show that the concept



of missing information can be used to evaluate genotyping and phenotyping strategies.
This approach also provides insight into the bias of the Haley-Knott approximation to
LOD scores (KAO, 2000). The missing information perspective provides a unified view
of genotyping noting that information is inversely proportional to the variance of the
estimates of genetic model parameters. This suggests answers to the question: “Which
individuals and loci to genotype?”

In the next section, we develop the concept of information in a mapping design using
the backcross as the example. Next we present our results on the information content of
genotyping and phenotyping designs. Mathematical results are detailed in the appen-
dices.

THEORY

Information perspective on QTL mapping Let y, g, and m denote the trait, QTL genotype
and observed marker genotypes of a single individual. In a cross with n individuals, we
denote them by y = (y1,...,%), g = (91, .., 9x), and m = (my, ..., my,) respectively.

We develop our ideas in the context of a backcross segregating one QTL. Assume, without
loss of generality, that the QTL genotypes can take two values, 0 or 1, and the distribution
of the phenotype given the QTL genotypes is Gaussian with unit variance. The condi-
tional mean of the phenotype given the QTL is +¢ if g;=1 and —¢ if g;=0. If we know the
QTL genotypes, the LOD score for testing =0 against the alternative that §#0 is

LOD = log;, <g<§2> ,

where § = L3 1(2g,—1)y; is the maximum likelihood estimate of §. Under the null
hypothesis, 2 log, (10) LOD has a x?* distribution with 1 degree of freedom. Under the
alternative hypothesis, it has a non-central x? distribution with 1 degree of freedom and
non-centrality parameter né?. Thus, the power of the test to detect linkage depends on
the sample size n, and the square of QTL effect size §*>. More generally, when the QTL
genotypes are not known because of incomplete genotyping, the power is a function of
162, where I is the expected Fisher information of the experiment. This follows from the
general theory of statistical likelihoods (COX AND HINKLEY, 1974) as described below.
The expected Fisher information depends not only on the sample size, n, but also on the
design of the experiment — how we genotype the cross and how accurately we measure
the phenotype. Different phenotyping and genotyping strategies will lead to different
values of I. Thus, we can compare different strategies by comparing their expected infor-
mation. In the context of the QTL mapping problem we may think of information content
of an experiment as the “effective sample size”.



Power, LOD score, standard errors, and information Much of the QTL literature has fo-
cused on LOD scores which are equivalent to a log-likelihood ratio. The Fisher informa-
tion is the expected curvature of the log-likelihood function. Suppose 8 is the parameter
of interest, £(6) is the log-likelihood, and we want to test § = 6, against the alternative that
6 # 6. As outlined in the Appendix, the log-likelihood ratio for testing this hypothesis
is proportional to a non-central x? variable with s degrees of freedom and non-centrality
parameter (6 —6)” 1(6) (6—6,), where I(6) is the expected Fisher information matrix. Fur-
thermore, the variance of the maximum likelihood estimate, 8 is given by I(6)~'. Thus,
Fisher information, is a fundamental quantity that affects both the power of our test as
well as the standard errors of the estimates of QTL effect size. It is therefore, the focus of
this paper.

Before conducting an experiment, we use the expected information from the QTL study
design. After conducting the experiment, we can compute the observed information from
a design. The observed information is defined as the observed curvature of the log-
likelihood function which may vary from sample to sample (EFRON AND HINKLEY, 1978).
To see this, consider a cartoon example of a very disorganized laboratory which tends to
lose a quarter of its data at random (both phenotypes and genotypes). In the backcross
scenario considered in the previous subsection, assume that the lab plans to conduct an
experiment with n individuals. After the experiment is performed, we will have data
from n* individuals, where n* follows a binomial distribution with parameters n and 2.
Thus, the observed information from the experiment would be n*, which is the number
of individuals for whom we actually have data, and this will vary. On the average, data
from 22 individuals is collected, and so the expected Fisher information is 2. For n=100,
the expected information and realized sample size, n*, will vary from about 60 to about
90 with a mean of 75.

In a realistic QTL setting, note that at any locus in a short non-recombinant marker in-
terval, we have complete knowledge of the genotype, whereas in the middle of a recom-
binant marker interval, we have virtually no information about the genotype. Since the
distribution of marker genotypes is random, the information content of a specific marker
interval can only be known after conducting the experiment. Therefore, we make a dis-
tinction between observed and expected information.

By comparing the observed information to the expected information if all individuals
were genotyped, we can quantify the amount of missing information in a realized cross.
This can help us decide which individuals should be genotyped or phenotyped more
intensely after collecting preliminary data on the cross.

Missing data and information A key element in the statistical analysis of QTL data is
to adjust for the fact that the genotype of the individuals in the cross are known only at
typed markers. The genotypes at intermediate locations must be inferred from the ob-
served data. In other words, the individual QTL genotypes are “missing data”. Some



marker genotypes may also be missing. This may be intentional if we have used a selec-
tive genotyping strategy.

Missing data methods used in QTL analysis include the EM algorithm (LANDER AND
BOTSTEIN, 1989), MCMC (SATAGOPAN ET AL., 1996), and multiple imputation (SEN AND
CHURCHILL, 2001). In this paper, we focus on design (as opposed to the analysis) of QTL
experiments. We calculate the observed information content of genotyping strategy rela-
tive to a perfect complete data case using the “missing information principle” (ORCHARD
AND WOODBURY, 1972; MCLACHLAN AND KRISHNAN, 1996). This states that the com-
plete data information (I..) is the sum of the observed information (/,) and the missing
information (7,,,),
I.=1,+ Ip,.

This allows us to calculate the amount of missing information due to incomplete geno-
typing relative to the expected information under complete genotyping. This gives us
the expected information from a genotyping strategy. We use this to evaluate competing
approaches with different cost profiles.

Likelihood function To calculate the observed, missing, and expected information, we
need to write down the joint likelihood function of the observed as well as the missing
data structures. We consider the general case here. Let § denote the genetic model pa-
rameters, and A the QTL locations. When the phenotypes are observed, the likelihood
function

L(0,)) = p(y, m|6, \) o /p(ylgﬁ) p(g|m, A) dg

has the form of a mixture distribution (see Appendix). This leads us to consider the com-
plete data likelihood

Lc(6, ) = p(y, m, g0, \) « p(ylg,0) p(glm, )

which is the likelihood that would apply if the QTL genotypes, g, were actually observed.
Using this likelihood function, we can calculate the maximum possible information at-
tainable with complete genotype information.

Note, from the form of the likelihood function, that we assume that the distribution of the
phenotypes are independent of the marker genotypes conditional on the QTL genotypes.
It is important that the missing data pattern be “ignorable” (that is, all data that was
used to decide that other data would not be collected must be included in the likelihood
computation) which would ensure that likelihood-based inference gives asymptotically
unbiased estimates of the parameters. This is not guaranteed if the missing data pat-
tern is “non-ignorable” or if non-likelihood methods are used (LITTLE AND RUBIN, 1987;
SCHAFER, 1997). An example of non-ignorable missing data would be when selective
genotyping of individuals with extreme phenotypes is performed, and the phenotypes of
the intermediate individuals is discarded. It is well-known that in this case QTL effect
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estimates are biased. Fortunately, the most common forms of intentional missing data
such as selective genotyping, are ignorable, and hence appropriate likelihood methods
will give asymptotically unbiased results.

RESULTS

In this section we first consider genotyping strategies and present a formula for calcu-
lating the observed fraction of missing information. This serves as the building block
for subsequent subsections. We note that the observed fraction of missing information
is connected to the bias of the Haley-Knott method for approximating LOD scores. We
then calculate the expected information from genotyping strategies when a fraction of
the extreme phenotypic individuals are genotyped. Using these results, we analyze the
tradeoffs between the cost of genotyping and information content. We then analyze the
information content of phenotyping designs, and consider the situation when a pheno-
type measurement is replicated for greater accuracy. Next we present a formula for cal-
culating the missing information for a phenotyping design combined with a genotyping
design. This is followed by a subsection where we calculate the expected information
under selective genotyping for crosses with more than two genotype classes, such as the
F, intercross. We conclude the section by considering information content in the presence
of a second unlinked additive QTL.

Observed fraction of missing information As before, assume the conditional distribution
of the phenotype given the QTL genotype is Gaussian with unit variance. Conditional on
the observed phenotype and marker data, it can be shown (details in the Appendix) that
the observed fraction of missing information is

H(y,q,6 ZH Yir iy 0 Zyl ¢ (1-q}) (1)

where H(y;, q;,0) = 4y2q (1—g}) is the fraction of missing information from the i-th indi-
vidual, g; is the prior probability of the QTL genotype given the marker data alone, and
¢ = P(¢;=1ly;, m;, ) is the posterior probability of the QTL genotype of the i-th indi-
vidual given the observed data. This formula has two uses. Equation (1) can be used
to decide which loci will yield most information from additional genotyping. The miss-
ing information is greatest for individuals with extreme phenotypes (the y? term) and for
those with ambiguous genotypes. Thus, it is advantageous to genotype the individuals
with extreme phenotypes. On the other hand, if two flanking markers have been typed
and are not recombinant, the genotype at the location of interest is effectively known
since g;(1—g¢;)~0, and it will not be worthwhile to genotype intermediate positions. If the
flanking markers are recombinant and the putative location is in the middle of the marker
interval, ¢;(1—¢;) ~ }, it will be worthwhile genotyping an intermediate locus.
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Missing information and bias of Haley-Knott method The Haley-Knott(HK) method (HA-
LEY AND KNOTT, 1992) is a popular method for approximating LOD scores. KAO (2000)
showed that the bias of the HK method is a function of how close the prior genotype
probabilities ¢; were to the posterior genotype probabilities gf. Further insight into the
bias may be obtained by noting that the HK method is equivalent to a single step of the
EM algorithm when the starting values of the genotype means correspond to the null hy-
pothesis. DEMPSTER ET AL. (1977) showed that the EM algorithm is a linear iteration, and
its rate of convergence is given by

D = 1.} (6)In(9)

where 6 is the maximum likelihood estimate of the parameter of interest, 6, and I. and
I, are the complete and missing information matrices. Therefore the extent of the bias of
the HK method depends on the rate of convergence of the EM algorithm. Note the rate
of convergence D is just the observed fraction of missing information. Thus, equation (1)
helps us decide when using the HK approximation will have a large bias.

Missing information under selective genotyping What is the expected information from
a selective genotyping strategy? In this subsection we consider genotyping strategies
where we type an « fraction of the extreme phenotypic individuals at markers that are
spaced d cM apart. The expected information is a function of the effect size, 9, the selection
fraction, a, as well as marker spacing, d. To be conservative, we calculate the fraction of
missing information in the middle of a marker interval where it is greatest. Let w(c, §) be
the upper o point of the (marginal) distribution of the phenotype, that is

P(y > w(a, 0)]6) = a.

We assume that every individual with a phenotype greater than +w(c/2,d) or less than
—w(a/2,0) is genotyped at markers spaced d cM apart. Now consider a locus in the mid-
dle of this marker interval and thus is a distance d/2 cM away from each of the flanking
markers. Let r be the recombination fraction corresponding to d cM, and r’ be that corre-
sponding to d/2 cM. Then, if the phenotype |y| < w(a/2,d), no genotype information is
available, and hence g, the prior probability of the QTL genotype is 1/2. If the phenotype
ly| > w(a/2,0), the flanking markers are typed. In this case, with probability r the flank-
ing markers will recombine and ¢, is equal to 1/2. Complementarity, with probability 1—r,
the markers do not recombine, and the prior probability g is equal to r'2/(r"2 + (1—r")?), or
(1—7")2/(r" + (1-r")?) with equal probability depending on the genotype of the flanking
markers. Using these facts, we can can use numerical integration to calculate the expected
fraction of missing information,

H*(ayd,8) = / H(y, 4, 5) plaly, o 6) p(y, 8)dy, )



where ¢ is a function of y, a, and ¢, since the prior probabilities depend on them. Figure
3 plots the fraction of missing information as a function of the selection fraction (), the
size of the QTL effect (§) under four scenarios, corresponding to four different marker
densities. We note that the fraction of missing information decreases with increasing
selection fraction («), and increasing QTL effect size (). More interestingly, irrespective
of the QTL effect, less than one eighth of the information is missing if the selection fraction
is 50% or more. This is consistent with the finding of DARVASI AND SOLLER (1992) that
little power is lost if a quarter of each extreme is genotyped. However, if the extremes are
not densely genotyped, and the distance between markers is 10cM to 20cM, we may lose
between 17% and 25% of the information that would be available if all individuals were
genotyped.

Expected information for small QTL effect Missing information is greatest when the QTL
effect is small, so we consider the worst-case scenario when §=0. In this case it can be
shown (see Appendix) that the expected information from a cross with n individuals us-
ing the selective genotyping strategy described above is

In(av d) = nQd Jon

where
Ja = 2/woz/Z ¢(wa/2) + o,

is the expected information content per observation under dense typing of « fraction of
the extremes,

Qa = (1-4¢(1—q)) (1-7) 3)

is a deflation factor that depends on the density of markers (and the informativeness
of the markers), w,/» is the upper «/2 point of the standard normal distribution, ¢(-) is
the density function of the standard normal distribution, and g = r'2/(r”? + (1—r")?) is the
probability that the genotype of an individual in the middle of a non-recombinant marker
interval is different from the flanking markers.

Information-cost tradeoffs Now we evaluate the information content of an experiment
by explicitly considering the role of genotyping cost. Let c be the cost of genotyping an
individual densely (d~0) relative to the cost of rearing an individual. Then the ratio of
the information and cost of the experiment is,

I(a,0)  Ja
n+nac 1l+ac

The best selective genotyping strategy for a given cost, ¢, is one that minimizes this ratio
as a function of the selection fraction a. Figure 4 shows the optimal selection fraction
calculated by numerically maximizing the information-cost ratio as a function of the cost



of genotyping an individual, c. Predictably, when the cost of genotyping is low, it pays
to genotype a larger fraction of the cross. As costs increase, one should genotype a pro-
gressively smaller fraction. Interestingly, when the cost of genotyping is comparable to
the cost of rearing (c=1), then the optimal selection fraction is 43%, or just under half the
cross. This is roughly consistent with the finding of DARVASI AND SOLLER (1992) who
used a different analytic strategy. In practice, we never densely genotype an individual,
we just genotype at a set of markers spaced roughly regularly along the genome. We
consider the information in the middle of a d cM marker interval. Then we consider the
information-cost ratio, where the total cost of genotyping is a function of the per-marker
cost, ¢, and the genome size G, in cM. This leads us to the ratio

In(avd) _ QdJa
n+nacG/d 1+acG/d

In Figure 5 we plot this ratio for a genome size of 1450 cM (corresponding to the labo-
ratory mouse) as a function of the selection fraction, ¢, and marker spacing, d, for four
different marker genotyping costs, ¢, expressed in units of the cost of rearing a single
individual. When the cost of genotyping a single marker is comparable to rearing an in-
dividual, the optimal strategy is to genotype a small fraction (about 6%) of the extremes
at a wide spacing (about 46 cM, or recombination fraction of 30%). As the cost of geno-
typing decreases, the optimal strategy is to type more individuals more densely. When
the genotyping cost is one-tenth of the cost of rearing, one should genotype about 23% of
the cross at about 36 cM (recombination fraction 26%). When the genotyping cost is one-
hundredth of the cost of rearing, one should genotype about 49% of the cross at about
21 cM (recombination fraction 17%). When the genotyping cost is one-thousandth of the
cost of rearing, one should genotype about 71% of the cross at about 9 cM (recombination
fraction 8%).. These conclusions are broadly consistent with the findings of DARVASI AND
SOLLER (1994) who considered marker spacing strategies (without selective genotyping).
For well-characterized model organisms such as the mouse, the cost of genotyping is a
tiny fraction of the cost of rearing and phenotyping. For those organisms, genotyping
the whole cross every 10cM is reasonable. For organisms such as some plants without
well-developed markers, the cost of genotyping a marker is comparable to raising an in-
dividual and in those cases it suffices to genotype a small fraction of the cross at a few,
sparse set of markers. The exact tradeoffs depend on the particulars of the mapping prob-
lem, and we provide software (see below) to make the calculations for different scenarios.
To obtain the optimal selection fraction subject to a given marker spacing, we can mini-
mize the information-cost ratio above as a function of o given d and this is the solution of
the equation (see Appendix for proof)
J}, cG

J_a:d—i-acG’ ®)

where J!, = w? /2 1s the derivative of J, with respect to a. In Figure 6 we show the opti-
mum selection fraction as a function of marker spacing and cost of genotyping a single
marker for the laboratory mouse.

(4)



Selective phenotyping strategies If a phenotype is observed noisily, then although the
noisy version is observed, the “true” phenotype remains unobserved or missing. For
example, we may have to measure blood pressure several times, to achieve an accurate
phenotyping of an individual mouse, or we may have to phenotype multiple individu-
als from a recombinant inbred line. Another example of selective phenotyping would
be when a suite of related phenotypes are of interest (such as measuring body weight
weekly), but we phenotype selectively (weigh the heaviest and lightest animals at birth,
every week, but everyone else every four weeks). Yet another class of selective phenotyp-
ing strategies was considered by JIN ET AL. (2004). In their approach, which is based on
an individual’s genotype, some individuals are phenotyped accurately, or not at all.

When the phenotypes are not directly observed, but are observed with error through z,
the surrogate phenotype, the likelihood function has to be modified accordingly. We as-
sume that the surrogate phenotype depends on the true phenotype through the parameter
p, which gives the likelihood function

L(O,\, p) = pl(z,m|0, \) o / p(zly, p) P(ylg,6) p(glm, A) dy dg

In this case, the complete data likelihood would treat the phenotype as well as the QTL
genotypes as missing data and will be

Le(0, X, p) = p(z,y,m, 9|0, A, p) o< p(z|y, p) p(ylg,d) p(glm, ).

We also assume that the surrogate phenotype is independent of the marker data (and the
QTL genotypes) given the phenotypes.

The rationale behind selective phenotyping is the same as that of selective genotyping: we
want to maximize information while controlling cost. Suppose our true phenotype, y is
not completely observed and instead we observe a noisy version version z. Assume that
z; = y; + n; where 7, is the independent random measurement error with mean zero and
variance 7. When the phenotype is noiselessly observed 7;=0. The correlation between
z;and y; is (14+77) L.

Consider the case when the QTL genotype is completely observed. Then the information
from each individual is proportional to the inverse of the variance of the i-th observation,
1 + 72. Thus, the information from the whole experiment is

n

1
Z@-

=1

It is worthwhile considering the special case, when an investigator has the choice of either
replicating the measurement, or measuring multiple individuals. Let the measurement
error variance be 72, so that if a measurement is replicated ¢ times, the measurement
error variance 72=72/t. Thus the information content of an experiment with n individuals,
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when the phenotype measurement is replicated ¢ times is

I - n _ nt
mt 1+72/t  t+72

Now suppose, without loss of generality, that the cost of raising an individual is unity
and the cost of phenotyping is c. Then the cost of the experiment is

Crt =n+cnt.
and the information-cost ratio of this strategy is

In,t . nt % 1
Cot t+712 (n+ecnt

= [(1 +ct)(1+ T;)] B : (6)

The maximum of the information-cost ratio as a function of ¢, depends on the ratio 72/c.
In Figure 7 we show the optimal replication number ¢ as a function of the phenotyping
variance-cost (7%/c) ratio. It can be shown (see Appendix) that the optimal replication

number is )

sup {t (t>1; t(t+1) < %} (7)

Selective phenotyping and genotyping Consider selective genotyping and phenotyping
together. The fraction of missing information is

- 72 427
i i *(1—a* 8
> (1o + pymi - ®)

=1

where ¢ = P(g;=1|z;, m;,d) is the posterior probability of the QTL genotype given the ob-
served data. This formula allows us to evaluate any genotyping and phenotyping strat-
egy. The main message is that it is most profitable to phenotype and genotype the extreme
phenotypic individuals carefully, because they contribute the most information.

Multi-genotype crosses A backcross population can be parameterized using a single pa-
rameter; this simplifies the analysis of information. In this subsection we present the gen-
eralizations to multi-genotype crosses such as the F;. In this case, information is a matrix,
and therefore, to compare different scenarios we have to obtain one-dimensional sum-
maries. The two most common summaries correspond to D-optimality and c-optimality
criteria (COX AND REID, 2000). If I is the expected information matrix from an experi-
ment, for D-optimality, one compares the determinant, det(7), from different experiments.
This corresponds to comparing the volume of the confidence ellipsoid of the parame-
ter estimates. For c-optimality with the contrast vector u, one compares (inverse of) the
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asymptotic variance of the contrast, u” I=' u. This is equivalent to comparing the width
of the confidence intervals for the contrast.

Assume that there are K genotypes possible at a given locus and let ¢ be the probability
distribution of the genotypes at an unlinked locus. For the backcross, K=2, and g=(3, 3).
For the intercross, K=3 and ¢=(3, 3, ;)- In general, the QTL genotypes, g, can take K val-
ues, 1,..., K. We assume that the distribution of the phenotype given the QTL genotype
g=k is Gaussian with mean y; and unit variance. We calculate the information under the
worst-case scenario when all the QTL genotype means are equal, and when we genotype
densely an o fraction of the extreme phenotypic individuals. It is shown in the Appendix

that for the backcross, the expected value of the information matrix is

n 1+J, 1-J,
Te) =7 < 1-J, 1+J, >
Since the determinant of this matrix is equal to n? J,/4, using the D-optimality criterion,

we get the same conclusions as we did with the scalar parameterization of the problem in
previous sections. The inverse of the information matrix is

_ 4 1+J, Jo—1
1_ - a a
He)y™ =7 < Ja—1 1+J, )

Therefore the variance of the contrast of interest u=(+1,—1), is 4/(n J,). Since this is
inversely proportional to J,, we get the same conclusions with c-optimality criteria was
with the the D-optimality criterion. For the F;, the expected information matrix is (see
Appendix),
n 1+3Jy 2(1-Ja) (1-Ja)
(@)= — | 201=J.) 4(1+J.) 2(1-J.)

6\ (-7) 201=J)) 1437,
The determinant of this matrix is
n3 J2
16
The inverse of the variance of any contrast u = (uy, ug, us) is
n Jy

du? + 2u3 + 4ul’

and hence proportional to J,. Thus, judged by c-optimality criteria, the information con-
tent of an F; cross changes with the selection fraction in a similar manner as a backcross.
For a multi-genotype cross (such as a four-way cross), the expected information matrix is

I(a) = n (Jadiag(q) + (1-Ja) g¢")
with determinant

K
nX I [ @, 9)
j=1
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and inverse
1/1 J,—1

-1 _ (L. -1 T
Iy = & (- diag(o) "+ 22~ 1 1)

which implies that the inverse of the variance of any contrast u is

nJ,

u” diag(q)~'u’ (10)

which is proportional to J,. Thus our results for the backcross can be interpreted very
generally in the context of c-optimality.

Multiple-QTL models Thus far, we have developed our ideas in the context of single-
QTL models. For complex traits, it is generally understood that many QTL contribute to
the trait. In this subsection, we investigate the usefulness of selective genotyping in the
context of multiple-QTL models. If the effect of each QTL is small, then we can use the
results of the previous section on multi-genotype crosses to conclude that any contrast be-
tween QTL genotype combinations benefits from selective genotyping, in the same way
as in a backcross. In particular, linked and epistatic QTL, also benefit from selective geno-

typing.
When one or more QTL have strong effects, it is not obvious that selective genotyping is

still beneficial for detection of the smaller QTL. Consider two additive unlinked QTL in a
backcross following the model for phenotype of the ith individual

Yi = 01 (2g1,—1) + 02 (2g2i—1) + €,

where ¢; is the Gaussian residual error with zero mean and unit variance, g;; is the QTL
genotype of the ith individual for the jth QTL taking value either 0 or 1 with equal prob-
ability, j=1, 2. The least favorable condition for detecting a QTL is when its effect is small,
so we consider the case when §;=0, while varying the effect of the second QTL, d,=0, for
various values of 3. For an ungenotyped individual the missing information matrix for
(01,92)=(0, B) is shown in the Appendix to be equal to

(y*>+6%) + 20y tanh(By) 0
0 y*sech’(By) |-

Notice that the missing information content for §, is the same as in equation (1) for an
ungenotyped individual (when the prior probabilities of the QTL genotypes are equal to
half). This is consistent with intuition that the information for the second QTL should be
the same as that in a single-QTL model since the first QTL has a negligible effect. Using
this result we can calculate the expected information under selective genotyping (where
an extreme phenotypic individual is completely genotyped, and other not at all). From
Figure 8 we can judge the impact of the selection fraction in the presence of a linked
additive QTL of varying effect size. When the other QTL has small effect, the fraction
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of missing information with a selection fraction of 50% is about 10% as in the SE panel
of Figure 3. The loss of information due to selective genotyping with a fixed selection
fraction increases with the strength of the other QTL. However, the loss of information is
modest if the portion of variance explained by the second QTL is less than 20% (5=1/2).

In the limiting case case, when the strength of the second QTL is really big (8=00), the
information from the experiment is approximately 7.Ja, (see Appendix). It is easier to
understand the result by considering the case when a=1. In this situation, by genotyping
half of the extreme phenotypic individuals, we only get a half of the information relative
to complete genotyping. This result may appear surprising at first. Since the second QTL
has a huge effect, we essentially know its QTL genotypes, and we can get the residuals
adjusting for its effect. Half of the individuals with negative residuals are those whose
overall phenotype was in the lower quartile. Similarly, half of the individuals with pos-
itive residuals are those whose overall phenotype was in the upper quartile. In other
words, the distribution of the residuals of the genotyped population is the same as the
ungenotyped population, and in terms of the residual phenotype the genotyped popula-
tion was unselected. Since half the individuals were genotyped, the loss of information is
50%, and selective genotyping on the overall phenotype is the same as random selection.

DISCUSSION

The information perspective provides useful insight into phenotyping and genotyping
designs. Most information is provided by extreme phenotypic individuals. It is most
important to phenotype and genotype them well. Indeed, this is the rationale behind
case-control designs. In specific scenarios, we can use simple formulas to explicitly cal-
culate the tradeoffs between cost and information. Our conclusions are consistent with
previous work on selective genotyping. In particular, we show that genotyping 25% of
either extreme phenotypic individuals gives most of the information in the data when we
are genotyping densely. When individuals are not densely typed, the amount of infor-
mation lost depends additionally on the marker density. It is preferable to type markers
approximately 20cM apart (or closer) unless the cost of genotyping approaches the cost
of rearing.

In this paper we have focussed on the backcross for simplicity. However, as shown in
the subsection on multi-genotype crosses, the results for the backcross generalize to c-
optimality. Specifically, when the QTL effect is small, the dependence of the variance of
any contrast in any cross on the densely genotyped selection fraction is the same. When a
cross is not densely genotyped, the information will have to be discounted by a deflation
factor which depends on the informativeness of neighboring markers. In the backcross, it
is given by (3), but in general, it will depend not only on the cross, but also on the nature
of the markers (for example, in an F», whether the markers are dominant or co-dominant).
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Our results for multi-genotype crosses indicate that the information tradeoffs in inbred
line crosses are also relevant for other settings such as human association studies. In an
association study, the different haplotypes segregating in the population may be consid-
ered as different alleles. Therefore, if we are interested only in linear contrasts between
the haplotypes, we get the same information tradeoffs with the selection fraction as in
a backcross. These results were derived assuming that the genetic effect is very small,
which is realistic for studies of most complex traits. When the genetic effect is substantial,
the information will depend on the selection fraction in a more complex manner, but the
information expressions for the small genetic effect may be considered as lower bounds.
More generally, our technique of calculating the expected information of an experiment
may be relevant to outcome-dependent sampling where the correlation structure between
predictors is known.

Our results for the backcross are also applicable to recombinant inbred lines. Modifica-
tions are necessary for map expansion on Rl lines and in the cost functions. In a recom-
binant inbred line, one may be limited by the number of lines one can raise, whereas in a
backcross one is limited to a single replication of a phenotype measurement which entails
sacrificing the animal. Also, typically, in a set of RI lines there is essentially no cost of
genotyping, the only cost is in phenotyping. JIN ET AL. (2004) considered the selective
phenotyping problem by choosing individuals to phenotype who were as “dissimilar” as
possible. This may be interpreted as them trying to choose a design matrix as “large” as
possible, and hence increasing the information content of the experiment. For example,
note that the determinant of the information matrix in a multi-genotype cross, as given
by (9) depends not only on the selection fraction through J,, but also on the product of
the allele frequencies. Thus, in an F3, if we can undersample the heterozygotes so that
all three genotypes at a locus are equally frequent, we will get more information for the
same number of individuals phenotyped and genotyped at that locus.

The results of this paper have been developed in the context of phenotypes that have
a Gaussian distribution conditional on the QTL genotype. If this assumption is grossly
violated, we may need to modify our selective genotyping criteria. For example, for a
phenotype with a long tail, it may be more efficient to oversample individuals in the long
tail. An example of this setting would be when we have survival phenotypes. When
there are many traits to be analyzed, knowledge of the correlation structure between the
phenotypes may be necessary to employ selective phenotyping and genotyping.

If a cross were selectively genotyped and the phenotypes of the ungenotyped individuals
are discarded, the statistical analysis has to proceed with care. If we proceed with an anal-
ysis as if the discarded phenotypes were never collected, the effect estimates are biased.
The LOD scores are biased (inflated or deflated) relative to a fully genotyped popula-
tion. However, if we proceed with a likelihood that accounts for the ascertainment, the
effect estimates are unbiased, and the LOD scores are deflated relative to a fully geno-
typed population. If two or more linked QTL are present, then recombination fraction
estimates from the selectively genotyped individuals may be biased. For example, if the
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two QTL are linked in coupling, the recombination fractions are biased downward; if the
QTL are linked in repulsion, recombination fractions are biased upward (LIN AND RIT-
LAND, 1996). Unlinked loci may appear linked in the selected population. For example,
if two unlinked, additive loci both have similar effects on the phenotype, then individu-
als with the most extreme phenotypes will have similar genotypes for both loci. In other
words, the selection of individuals based on their phenotype will introduce linkage dis-
equilibrium between the unlinked loci. In general, if the data used to make the selective
genotyping decisions are not observed (violating the missing at random condition), pa-
rameter estimates may be biased.

If the QTL effects are small, the benefit derived from selective genotyping if multiple QTL
are segregating is the same as that if a single QTL is segregating. However, the benefit is
diminished if some QTLs have large effect. In the context of human association and link-
age studies, ALLISON ET AL. (1998) came to a similar conclusion by examining power us-
ing simulations and analytic calculations. Although our results quantify the information
content when two unlinked additive QTL are segregating, our approach can be extended
to cover linked and epistatic QTL. If the QTL effects are small, selective genotyping does
not adversely affect detection of epistasis; it is still beneficial. However, it is unclear to
what degree the benefit remains in the presence of some QTL main effects or epistatic
effects of moderate size, or when QTL are linked. This needs to be explored further.

Most of this paper is concerned with the efficiency of a genotyping design. We note that
there may be a concern for robustness of a genotyping design. From an efficiency perspec-
tive, it might seem that there is never a good reason to type more than half of the individ-
uals. From a robustness perspective (such as for checking recombination fractions, or for
segregation distortion), it may be desirable to genotype all individuals (or a subsample of
the intermediate individuals) at a few markers on each chromosome.

Our information analysis considers information for the detection of linkage. When link-
age has been established, one is interested in localizing the QTL. In this setting, different
notions of information should be considered (DARVASI, 1997). We also considered cost
functions which are linear in the sample size, and the number of markers. In practice,
there may be economies of scale in which case, the cost function will be a concave func-
tion. Our optimality results warrant modification in those settings.

The design of QTL experiments involve balancing many competing biological, practical,
and statistical priorities. The information perspective provides the experimenter with
conceptual, as well as quantitative tools to address the statistical aspects of experimental
design. The essence of this point of view is captured in the formula for the fraction of
missing information presented in equation (1).

Software note Software for performing power calculations, for generating the figures in
this paper, and for symbolic computation used for some proofs are available from
http://ww. bi ost at. ucsf. edu/ sen/ . The software for performing power and min-
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imum detectable effect size calculations for backcross and F; intercross populations ac-
count for marker spacing as well as selective genotyping of extremes. They are packaged
as R/ qt | Desi gn, an add-on package to the R programming language

(http://www r-project. org). Programs for numerical computation and for gener-
ating the figures in this paper were also written in R. Proofs which used symbolic com-
putation were performed using Maxima (ht t p: / / maxi ma. sour cef or ge. net). Both
R and Maxima are freely available under the GNU GPL.
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APPENDICES

Likelihood The likelihood function is
L(0,A) = p(y,m|6,A) = [ p(y,m,g|0,A)dg (A-1)
p(ylm,g,0, ) p(m, gl6, A) dg (A-2)
p(ylg,8) p(m,g|)) dg (A-3)
p(ylg,0) p(glm,A) p(m|A) dg (A-4)

p(ylg,0) p(glm, A) p(m) dg (A-5)

p(ylg,0) p(glm, \) dg (A-6)
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In equation (A-1) we introduce and integrate over the unobserved QTL genotypes, g.
Next we condition over m and g to get (A-2). Since the phenotype depends on the mark-
ers only through the QTL genotypes, p(y|m,g,0,\) = p(y|g,0). Furthermore, the joint
distribution of the marker and QTL genotypes does not depend on the genetic model
parameters 6 which gives us (A-3). Conditioning on the markers gives us (A-4). If we
assume no segregation distortion or marker-assisted selection, then the marginal distri-
bution of the markers does not depend on the QTL location, and so p(m|A) = p(m), which
gives us (A-5). In other words, the likelihood function has the form of a mixture distri-
bution with the probability of the QTL genotypes given the marker information as the
mixing probabilities. SEN AND CHURCHILL (2001) consider the Bayesian analog of this
likelihood function.

Formula for fraction of missing information Since the phenotype given the QTL geno-
types is normally distributed with variance 1, and means +4 for g;=1 and —¢ for ¢;=0.
Thus,

p(ylg=0) = ¢(y+0) and p(ylg=1) = ¢(y—9),
where ¢(-) is the standard normal density function.

In our context, the missing data are the unobserved QTL genotypes and the observed
data consist of the marker genotypes and the phenotypes. The parameter of interest is .
Thus the distribution of the missing data conditional on the observed data is

n

p(ymis |yobsa 0) = I_I(q;k)gqb (1_Q;'k)1_gi7

=1

where ¢ = P(¢g;=1ly,m,6), y = (Y1,%2,.-.,Yn) (the observed phenotypes) and m =
(m1,ma, ..., my) (the observed marker genotype data).

Let ¢; = P(g;i=1|m), that is the probability of the QTL genotype given the marker data
only (not including the phenotype information). Then by Bayes theorem and using the
functional form of the standard normal density function it is easy to see that

g = g P(yi—9) _ g exp(yid) (A-7)

g o(i—0) + (1—q) ¢(yi+6) i exp(yid) + (1—q;) exp(—yid)

Let,

= log(p(ymis|yobsa'9)

n

— Z (g,- log(qf) + (1—g;) log(l—q;“)>

=1
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Then,

a - 2 () 760

=1

i = 2 (a0) i~ o)

=1

oG\’ [ o  1-g
L (e |_e 1
06 ¢°  (1-g)?

Hence,

2 px
_E(ae

062

o= (og\'[1 1] &Ko 1
y’m’é) - ;(35> {q_3+1—qz‘} o« (35) [qz‘(l—q?)} (A5)

=1

Using (A-7) and differentiating,

9q;  _ < Yi ¢i exp(8y;) >
06 ¢; exp(0y;) + (1—¢;) exp(—dy;)
<Qi exp(6ys) (i ¢; exp(dyi) — yi (1—gqi) eXP(—5yi))) (A-9)
(g: exp(dyi) + (1—gs) exp(—y:))*
= vigi —q (vig; —vi(1-¢q)) (A-10)
= 2yiq;(1-¢q]) (A-11)

(A-9) follows from the rules of differentiation. Using the definition of ¢} as in (A-7), we
get (A-10). And algebraic simplification results in (A-11).

Thus, using (A-8),

ol
In=—F (W

y’m,(;) _ é <2yi g (1—q2‘)>2 {ﬁ}
_ iz:;élyf (@ (1-¢))),

which establishes (1).

Optimal selection fraction and marker spacing In this section we consider selecting the
optimal selection fraction and marker spacing when the QTL effect is small. We consider
the most conservative limiting scenario when =0 for which we can derive formulas. The
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expected information when the selection fraction is « is

+wa/2

Jo = 1= [ T HE 06 dy

W /2

= 2/oo .7ffb(y)dy=2/oo ((v* = 1) +1) ¢y) dy

We /2 We /2

= 2 (Wa2 d(Way2) + /2) = 2Was2 p(way2) +

The first line follows from equation (2) noting that there is no information loss for the
extreme individuals who are genotyped. Individuals with phenotype between —w, /s
and +w, 2 are not genotyped, and hence the prior probability of their genotype is 1. The
second line follows from the definition of the function H and algebraic simplification.
The final line follows from integration noting that [(y*—1)¢(y) = —yé(y). When the
location of the QTL is in the middle of a marker interval that is of length dcM, the expected
information is

I(a,d) =nJ,Qq

where Qs = (1—4¢(1—q)) (1 — r), r is the recombination fraction corresponding to the
genetic distance d, and ¢ is the conditional probability that the QTL has the same genotype
as its flanking marker genotypes given that the flanking markers are not recombinant.
Assuming the Haldane map function, we would have

(=)
9= r2 + (1_7,/)2’

where ' is the recombination fraction corresponding to a genetic distance of d/2. To
see this, note that only non-recombinant individuals contribute information. The con-
tribution from the non-recombinant intervals is 1—4¢(1—q) times the contribution of a
completely genotyped location.

The information-cost ratio given a marker spacing d is given by equation (4). Note that it

has the form
AlJ,

1+Ba’

for constants A=), and B=cG/d when d is fixed. Differentiating with respect to o we get
that the maximum must satisfy

J,  J.B
1+aB  (1+aB)?’

where J!, is the derivative of J, with respect to . Since the denominators are non-zero,
we get,
g, = 2B
1+aB
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Finally, note that
Jo = 2/ y*é(y)dy
Wa /2

and therefore using Leibniz’s theorem for differentiation of an integral

d
J; = (_2wi/2¢(wa/2)) @’wa/Z = wfx/?a
since
d 1
—Wq/g = —————.
da o2 2 p(Wa2)

Optimal replication number From equation (6) we get the information-cost ratio as a
function of ¢. Itis sufficient to minimize its reciprocal as a function of ¢, A; = (1+ct) (1+772).

7_2 ,7_2
AAt = At+1 — At = <C(t+1) + t—|—_1> - <Ct + ?)

7_2

t(t+1)

Hence, A; is minimum for the largest ¢ such that the difference above is positive. This
establishes the optimal replication number (7).

Information in multi-genotype crosses In this section we calculate the information con-
tent of multi-genotype crosses under selective genotyping. We calculate the observed
information matrix using the missing information principle. The complete information
matrix is calculated as the conditional expectation given the observed data of the curva-
ture of the complete data log-likelihood; the missing information matrix is calculated as
the conditional dispersion given the observed data of the score function of the missing
data log-likelihood (LOUIS, 1982; MCLACHLAN AND KRISHNAN, 1996). The complete
data log-likelihood is a Gaussian log-likelihood

n K

Uy, 9,1) = Y > [9i5log p(y—p;)]

i=1 j=1

where g;; is the indicator if g;=j. Hence the complete information matrix is

I.=  diag(g),
i=1
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where ¢; denotes the posterior probabilities of the K genotypes for the i-th individual
given the marker and phenotype data. For the F; this reduces to

> 0 0
0 >gp O
0 0 Xdh
The diagonal entries in this matrix are the number of individuals from each genotype cat-

egory given the observed data. The distribution of the missing data (the QTL genotypes)
given the observed data is multinomial and therefore the missing data log-likelihood is

(gly, p) ZZ 9ij log 5;

=1 j=1

This leads to the conditional score function

n

> (g — qf) diag(y; — ).

=1

It follows that the variance of the conditional score function is

Z diag(y; — p) (diag(q;) —¢f ¢;") diag(y: — )
which is
n (vi—1)?q5 (1—q;)  —(im ) Wi—p2)gi @ — (Y1) (Yi—113) 051 433
S| i) Wi—m)ah g i) ah(1—g5) (= 12) (4= p13)alr 43
=t \ —(yi—p)(Yi—p3)a @y —(Yi—p2) (Yi—13) a2 s (vi—p3)’ @3 (1—gj3)

for Fys. As with the backcross, we consider selective genotyping an « fraction of the ex-
treme phenotypic individuals, when the phenotype means in all QTL genotype classes
are approximately equal. Additionally, assume that when we genotype, we genotype
densely. In this special case, the posterior distribution of the QTL genotypes for ungeno-
typed individuals is the same as their prior distribution. Also, since the QTL effect is
negligible, all genotypes will be equally represented in each phenotype class. Therefore,
the complete information matrix, in expectation over all realizations of the data, is

I. = ndiag(q)

and for the Fj case is

3
O Ohi=
o= O
= O O
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For the missing information matrix, note that the only contributions come from individ-
uals who are not genotyped. For those individuals, the contribution is proportional to y?
multiplied by the variance matrix of the QTL genotypes in the cross. For the Fjs this is

3 _1 _1
O

2
Y -8 1 T8
i 1 1
16 8 4

Therefore, when we are only genotyping individuals a fraction a of the extreme pheno-
typic individuals, i.e. those exceeding w, 2 in absolute value, the expected value over all
realizations of the data of the missing information matrix becomes

[=

[y

W [ =00 | =0

n(l—J,)

|
S|"‘oo|>—l5;|°°

QO | = | =00 | =

where J, is the expectation of a squared normal variable, truncated above w, » in absolute
value. For more general crosses, the information matrix is

n(1—Jo) (diag(q) —qq”) .

Hence the expected value (under all realizations of the data) of the observed information
matrix is
I(a) = n (Jodiag(q) + (1—Ja) qq")

which is, for Fs,

1+3J, 2(1—J,) (1—Ja)
Ia)= 2| 20— J2) 401 +J,) 2(1—Jo)
6\ 1-7) 20-J)) 1+3J,

Algebraic computation reveals that

S
w
vy

det(l,) = 37

The variance of a contrast, u = (uy, ug, u3), is then

4u? + 2u3 + 4u?
nJ, '

The inverse of the information matrix is

34+Jy Ju—1 Juo—1
I(a)™' = Jo—1 14+J, Ju—1
Jo—1 Jy—1 3+ J,
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For the more general multi-genotype case, the determinant of the information matrix is
det(I,) = n*det(J,diag(q)+ (1-Ja)qq")

= det(J,diag(q)) det (1 + (1;Ja) q" diag(q)™* q)

K
— w5 Lo

j=1
The second line follows by noticing that

det (/o diag(q) + (1-Ja) ¢¢") = det( ; §ii1;;g)(qc;T) )

The inverse of the information matrix is

I(a)_l = l <idiag(q)_1 + Ja — 111T)

n \J,

Verify by multiplication.

Information in the presence of an unlinked QTL Let g;x; be the indicator that gi,=5 and
92:=k, j, k=0, 1. The complete data log-likelihood is

n

£(y,9,0) = Z [QOOi log(¢(y;+0614+02)) + go1: log(P(yi+91—62))

i=1

+g10: 10g(P(yi—61+92)) + g11s 10g(¢(yi—51—52))] .

This gives the complete information matrix

I, = Z < 1 Q00i T911i— %01 —L1os >
— 900iT911i—901:—10s 1 ’

where gj;; is the posterior expectation of gj; given the phenotype data. When §,=0 it
reduces to the sum of identity matrices. The missing information matrix is the second
derivative of the missing data (QTL genotypes) likelihood. Since the two loci are un-
linked, the prior distributions of the QTL genotypes of the two loci are independent. The
posterior distributions given the phenotype are found by Bayes theorem, and the missing
information matrix can be calculated using symbolic computation (see code on website).
When (61, 02) = (0, 8) it reduces to

& [ (42487 + 2By tanh(By;) 0
fm = Z ( 0 y2sech®(By;) > .
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We can calculate the expected value of the information matrix by numerical integration.
The special cases of =0 and =00 deserve special mention. Note that the missing in-
formation for d,, is y2sech®(By;) which is the same as H(y;, 1.8). For f=0 the observed
information matrix reduces to

- 1—3y2 0
_ 491
= ()

whose expected value, using the definition of J,, is

n Jo 0O
0 Jo /)~
For large f3 it is easy to see that the expected information for d, is approximately equal to

n. Using the definition of tanh(z)=(exp(—xz)— exp(x))/(exp(—x)+ exp(x)), we can see that
for large 3, the missing information for 4, for the ithe observation is equal to

(y7+6%) + 2By; tanh (By;) ~ (y7+5°) + 2By = (yi—sgn(By:)B)*.

Therefore the expected information per observation for §; with a selection fraction of « is
approximately

B+wa 5 1
U [ sen(809) 5 (Bu-) + olu+9) dy
1

—fB—wa
/ y2o(y)dy

—Weq

12

1 [fwe
1—= 20(y)dy — =
2/myﬂwy 5

= %/w y2¢(y)dy+%/ " 2(y)dy

o o0

= % <1 —/ ) y2¢(y)> dy = %Jza.

—Weq

The first step follows noting that the upper a/2 point of the marginal distribution of the
phenotype for large 3 is w,. The second step breaks the integral into sums and then uses
the fact that 3 is large. The final step follows from the definition of J,.

27



Figure 1: Genotype pattern in the hypertension mouse cross of SUGIYAMA ET AL. (2001).
Genotypes are colored red if they were from the hypertensive strain (A/]), blue if from
the non-hypertensive strain (BL/6), and yellow if missing. Each row represents geno-
types from a particular mouse; the mice have been sorted by their blood pressure, so the
mouse with the lowest blood pressure appears at the top while the one with the highest
blood pressure is at the bottom. The markers are sorted by their position on the genome
starting with chromosome 1 through chromosome 20. This figure was generated using
the Pseudomarker (SEN AND CHURCHILL, 2001).
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Figure 2: Closeup of genotype pattern of 50 individuals on Chromosome 4 from
SUGIYAMA ET AL. (2001). Genotypes are colored denoted by open circles if from the A/]
strain and by black circled if from the BL/6 strain. Each row represents genotypes from a
particular mouse. We selected every fifth mouse from the 250 in the cross sorted by blood
pressure. The mouse with the lowest blood pressure appears at the bottom while the one
with the highest blood pressure is at the top. The markers order and position is shown by
cM position. The figure was produced using R/qtl (BROMAN ET AL., 2003).
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Figure 3: Fraction of missing information in a backcross as a function of the fraction of
the extremes typed (a), the strength of the QTL (§), and recombination distance flanking
markers (61, 6;). The proportion of variance explained by the QTL is %. When there is
very little genotype information at a marker (NW panel, 6;=60,=0.2), there is very little
to be gained by selectively genotyping the faraway as it does not add much information.
When we have very densely spaced markers (SE panel, ;=0,=0.01), the fraction of miss-
ing information decreases with increased extreme genotyping. The intermediate cases
(NE panel, §;=0,=0.1; and SW panel, §;=0,=0.05) represent more realistic scenarios. We
find that by genotyping 60% of the extremes we lose less than 10% of the information

with markers approximately every 10cM.
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Figure 4: Optimal selection fraction (o) as a function of the cost of genotyping an individ-
ual completely, ¢, when the QTL effect, § is very small. The unit of cost is relative to the
cost of rearing an individual.
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Figure 5: The information per unit cost ratio plotted as a function of the selection fraction,
a and average spacing between markers, d. We calculate the information in the middle of
the marker interval. The information per unit cost figures are normalized to the maximum
possible information per unit cost. This way we can see what ranges of the selection
fraction and spacings give near-optimum returns. Each figure corresponds to a the cost,
¢, of genotyping a single marker relative to that of rearing an individual. The genome size
is assumed to be 14.5 Morgans (similar to that of the mouse). The NW corner corresponds
to c=1, the NE corner to ¢=0.1, the SW corner to ¢=0.01, and the SE corner to ¢=0.001.
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Figure 6: The optimal selection fraction («) plotted as a function of marker spacing d for
four cost scenarios. The lines are for when the cost of genotyping a single marker (c)
expressed as in the units of the cost of rearing.
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Figure 7: Optimal replication number (m) as a function of the variance-cost ratio (72/c).
Here 72 is the ratio of the variance of the measurement instrument to the environmental
variance in the phenotype, and c is the ratio of the cost of phenotyping to the cost of
raising an individual. We can see that when the variance of the phenotyping instrument
is low relative to the cost of phenotyping, there is no point replicating (m=1). It makes
more sense to replicate the measurement if the cost of phenotyping relative to raising an
individual is low, or if the phenotyping variance is high relative to the environmental
variance.
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Figure 8: Fraction of missing information for a QTL with small effect under selective geno-
typing, as a function of the selection fraction («), and the effect size of a second unlinked
additive QTL (). The difference between the genotype means is 23, and the proportion
of variance explained by the second QTL is 32/(1+3?%). The solid lines correspond to the
limiting cases of (a) when the second QTL also has a negligible effect (8=0), and (b) when
the second QTL has a really large, obvious effect (5=o00). The dotted lines correspond to
intermediate cases of 3=0.5 (variance explained 20%), 5=1 (variance explained 50%), and
B=1.5 (variance explained 69%).
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