# **Lawrence Berkeley National Laboratory** ## **Lawrence Berkeley National Laboratory** ## **Title** STUDIES OF THE HYDROXYBOROHYDRIDE AND TRIBOROHYDRIDE IONS ## **Permalink** https://escholarship.org/uc/item/5nm526bg ## **Author** Reed, J. ## **Publication Date** 1977-10-01 # STUDIES OF THE HYDROXYBOROHYDRIDE AND TRIBOROHYDRIDE IONS Contents | Abstı | ract | ٧ | |-------|----------------------------------------------------|----| | I. | Part I-A: Chemical Syntheses with a Quenched Flow | | | | Reactor. Hydroxytrihydroborate and Peroxynitrite . | 1 | | | Abstract | 1 | | | Introduction | 1 | | | Experimental | 2 | | | Results and Discussion | 3 | | | References (Part I-A) | 8 | | II. | Part I-B: The Reduction of Organic Compounds with | | | | the Hydroxyborohydride Ion | 9 | | | Abstract | 9. | | | Introduction | 9 | | | Results and Discussion | 10 | | | Experimental | 13 | | | Acknowledgements | 17 | | | Tables | 18 | | | References (Part I-B) | 20 | | III. | Part II: A Kinetic Study of the Hydrolysis of the | | | | Octahydrotriborate Ion | 21 | | | Abstract | 21 | | | Introduction | 21 | | | Experimental | 22 | | | Results and Discussion | 26 | | | Figure Captions | 63 | | | Figures | 65 | | | References (Part II) | 77 | | | Ark now ledgements | 70 | ## STUDIES OF THE HYDROXYBOROHYDRIDE AND TRIBOROHYDRIDE IONS #### Janice Reed Materials and Molecular Research Division Lawrence Berkeley Laboratory and Department of Chemistry University of California Berkeley, California 94720 #### Abstract Employing a quenching flow reactor, we have prepared large quantities of alkaline solutions containing two different compounds in high yield, sodium hydroxytrihydroborate and sodium peroxynitrite. The percent yield of the hydroxyborohydride ion and the peroxynitrite ion is dependent on the reaction time as well as the concentration of the starting reagents. Compounds containing functional groups not reduced by or sluggishly reduced by the borohydride ion were treated with the hydroxyborohydride ion, BH3OH\*, to evaluate the latter as a reducing agent and to allow comparison of its reducing power with that of the borohydride ion. In aqueous solution at pH 11.9 and 0°, ethyl benzoate was reduced to benzyl alcohol in 89% yield. Benzonitrile was reduced to benzylamine at pH 12.5 and 25° in 89% yield. Nitrobenzene was reduced to aniline at pH 11.7 and 6° in 76% yield. The following ketones were reduced by BH3OH\* to alcohols in greater than 70% yield: benzophenone, cyclopentanone, cyclohexanone, 2-methylcyclohexanone, d-camphor, and 4-tert-butylcyclophexanone. Octyl chloride and benzhydril choloride were not reduced by BH3OH\*. The hydrolysis of the octahydrotriborate ("triborohydride") ion has been studied in cold methanol-water-hydrochloric acid solutions in which the methanol concentration ranged from 0 to 88 percent by volume and the hydrogen ion concentration ranged from 0.25 to 8 $\underline{\text{M}}$ . At -78°, in 88% methanol solutions (0.25 to 8 $\underline{\text{M}}$ H<sup>+</sup>), one mole of hydrogen is evolved per mole of B<sub>3</sub>H<sub>8</sub>°, indicating the formation of B<sub>3</sub>H<sub>7</sub>OH<sub>2</sub>. However in 8 $\underline{\text{M}}$ HCl solutions with 0 to 70% methanol, 4.5 moles of hydrogen per B<sub>3</sub>H<sub>8</sub>° were obtained at -78°. Upon warming any of the solutions to room temperature, complete hydrolysis took place, giving additional hydrogen to make a total of 9 moles of hydrogen per mole of B<sub>3</sub>H<sub>8</sub>°. The B<sub>3</sub>H<sub>7</sub>OH<sub>2</sub> was converted to B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> by the addition of hydroxide. However, B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> was found to be unstable, decomposing to give BH $\bar{4}$ and B(OH) $\bar{4}$ at temperatures above -41°. In strong base (2 to 16 M OH<sup>-</sup>), and at elevated temperatures, B<sub>3</sub>H<sub>8</sub> solutions also decompose to hydrogen, BH $\bar{4}$ and B(OH) $\bar{4}$ . The boron-11 nmr spectrum of B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> consists of two bands with an intensity ratio of 1:2, centered 10.22 ppm downfield and 39.29 ppm upfield from the borate signal, respectively. PART 1-A: CHEMICAL SYNTHESES WITH A QUENCHED FLOW REACTOR. HYDROXYTRIHYDROBORATE AND PEROXYNITRITE.\* #### Abstract Employing a quenching flow reactor, we have prepared large quantities of alkaline solutions containing two different compounds in high yield, sodium hydroxytrihydroborate and sodium peroxynitrite. The percent yield of the hydroxyborohydride ion and the peroxynitrite ion is dependent on the reaction time as well as the concentration of the starting reagents. #### Introduction The technique of mixing two streams of reactant solutions in a reaction tube with downstream injection of a solution containing a quenching reagent has been used for studying the kinetics of fast reactions but does not seem to have been applied to laboratory synthesis. The method is ideal for a synthesis involving the formation of an intermediate species which (1) must be prepared under conditions such that its half-life is in the range between a millisecond and several seconds and (2) can be stabilized by rapid reaction with a quenching reagent. We now report the successful use of this method for preparing solutions of two different compounds in high yield, sodium hydroxytrihydroborate and sodium peroxynitrite. <sup>\*</sup>This work by J.W. Reed, H. H. Hp, and W. L. Jolly was published in J. Am. Chem. Soc. 96, 1248 (1974). #### Experimental Materials. The NaBH4 (Alfa), HCl (J. T. Baker) and NaOH (Mallinckrodt) used to prepare the BH3OH- solutions were reagent grade and used as purchased. Synthesis. The apparatus consists of a Lucite rod bored to a depth of 10 cm with a 3-mm hole. Two 1.5-mm holes for the introduction of the reactants enter from the side of the rod, joining the 3-mm tube tangentially at its inner end. A third 1.5-mm hole, for the quenching solution, enters the tube at a point 5 cm from the two reactant holes. The holes are connected to glass tubes on the outside of the rod; these are connected through glass and Teflon needle valves to siphon tubes inserted into three separate bottles. The bottles can be simultaneously pressurized with nitrogen gas at a regulated pressure from a cylinder. Before each run, the needle valves are adjusted so that the flow rates of the three solutions are equal. The reaction tube is mounted vertically, and the quenched product is collected in a beaker placed beneath the open end of the tube. Precipitation Attempts. In all the precipitation attempts cold, 0°, solutions containing the cations were mixed (first on test tube scale, later on a large scale if seemed promising) with BH<sub>3</sub>OH<sup>-</sup> solutions at 0°. The mixtures were maintained at 0° for at least 3 hours and if precipitation occurred, the precipitate was filtered, dried and analyzed for hydrogen and boron. <u>Kinetic Studies</u>. The apparatus for the kinetic study was similar to that of Figure 1, only the small 5 ml bulb was replaced with a 100-ml round-bottomed flask. Ninety ml of NaOH solution of the desired concentration, along with sufficient NaCl to make the final ionic strength $0.35 \, \underline{M}$ , was added to the round-bottomed flask and allowed to equilibrate in the thermostated bath $(\pm 0.1^{\circ})$ . Approximately 2 ml of cold $(0^{\circ})$ BH<sub>3</sub>OH<sup>-</sup> solution was added to the round bottomed flask which was then connected to a gas buret by way of a 19/38 joint. After the entire system had equilibrated, stopcock C was closed to the air, the timer was turned on and a zero volume in the gas buret recorded. The rate of H<sub>2</sub> evolution was then followed as a function of time by monitoring the change in volume of H<sub>2</sub>O in the buret. At the end of each run the ionic strength was verified with ion exchange. ## Results and Discussion Wang and Jolly have shown that, in methanol - water solution at -780, the borohydride ion reacts very rapidly with strong acid to form HoOBHs. This species hydrolyzes under these conditions with a half-life of about 300 sec, but it can be deprotonated to form the relatively stable BH3OH- ion, which has a half-life of several hours at room temperature. An estimated effective activation energy for the HoOBH2 hydrolysis of 12 kcal/mol<sup>3</sup> corresponds to half-life about 20 msec at 0°. Thus, it seemed reasonable to attempt the synthesis of BH3OH- using the quenched flow reactor with aqueous solutions initially at 00 and with a reaction time (time between the initial mixing of H+ and BHa and the quenching with OHT) of the order of 20 msec or less. Our experimental data are given in Table I. The change in the percentage yield of BH2OHT with change in reaction time was qualitatively as expected. Relatively high yields, essentially independent of reaction time. were obtained for reaction times of 10-21 msec: the yield dropped off for a reaction time of 26 msec. The decrease in the percentage yield with increasing concentration of the solutions may be due to the corresponding increase in the reaction temperature caused by the increased heat of reaction. Evidence for the BH30H- ion was obtained from the boron-11 mmr spectrum of the most concentrated solutions. The spectrum consisted of a 1:3:3:1 quartet centered 13.5 ppm upfield from the borate singlet, with a B-H coupling constant of 92 Hz. The spectrum obtained is in excellent agreement with those recorded by previous workers.2,4b Unsuccessful attempts were made to precipitate the BH<sub>3</sub>OH-ion out of solution. Very concentrated or saturated solutions containing the cations $C_S^+$ , $A_g^+$ , $(\phi)_3 CH_3 P^+$ , $(\phi)_4 AS^+$ , $(\phi)_4 P^+$ , Tl+, $(\phi_3 P)_2 N^+$ and $C_6 H_5 CH_2 (\phi)_3 P^+$ were employed. The inability to precipitate the BH<sub>3</sub>OH- ion was probably due to that fact that it is not a discrete ion in solution, but is instead hydrogen bonded to the water in the system. Kinetic study. In kinetic studies by Gardiner and Collat4(a),(c) and Wang and Jolly, 2 the hydrolysis of the BH3OH ion was found to be acid catalyzed. Our kinetic study was limited to determining the stability of the BHaOH- ion solutions as prepared in this Taboratory and was carried out at 200 and pH > 12.5. In our systems, the hydroxide concentration was always in such a large excess that any changes in hydroxide concentration during the runs were negligible. Thus, the rate data could be interpreted in terms of pseudo-first-order reactions. As did Wang and Jolly, 2 we found the rate of hydrolysis of the BH3OH- ion to be pH independent between pH 12.5 and 13.5. However, we found the observed rate constant in this pH range to be $4.93 \times 10^{-5} \text{ sec}^{-1}$ as opposed to 1.8 $\times$ 10-4 sec-1; that observed by Wang and Jolly.<sup>2</sup> This difference in rate constant is in the expected direction considering the differences in solvents, 88% methanol - water in their study and 100% aqueous in this study. Davis and $\operatorname{Gottbrath}^5$ found the methanolysis of BH $_4$ to be 10 times faster than the hydrolysis. The rate constant for the hydrolysis of the BH $_3$ OH $^-$ ion was also measured at different temperatures to obtain the activation energy of the faction. The rate constants at various pH and temperature are listed in Table II. From a plot of log kobs vs 1/T for the rate constants at 200, 350 and 500 (pH 13.5), the activation energy was calculated to be 17.4 $\pm$ 4.7 kcal/mol. Gardiner and Collat $^4$ C reported the activation energy for the reaction between BH $_3$ OH $^-$ and H $_3$ O $^+$ to be 12 $\pm$ 9 kcal/mol. The reaction of nitrous acid with hydrogen peroxide in acidic solution yields peroxynitrous acid. $$HNO_2 + H_2O_2 \longrightarrow HOONO + H_2O$$ This acid decomposes to nitric acid with a half-time of 7 sec at 0°, but the conjugate base, peroxynitrite ion, is relatively stable in alkaline solutions. The literature procedure for the synthesis of peroxynitrite involves the mixing of an acidic peroxide solution with a nitrite solution, immediately followed by treatment with excess base. Yields of 45-50% have been reported. We have carried out this synthesis with our quenched flow reactor, using equal flow rates of the following solutions at 0°: 0.6 M KNG2, a solution 0.6 M in HCl and 0.7 M in H202, and 3 M NaOH. The product solution was analyzed spectrophotometrically. The reaction times (msec) and corresponding percentage yields follow: 44, 44%; 88, 67%; 88, 68%; 230, 77%; 280, 72%; 450, 82%. The relatively low yield obtained for the shortest reaction time (44 msec) was probably a consequence of incomplete reaction of the nitrous acid with the hydrogen peroxide. Table I. Data for BH3OH- Syntheses. | Reaction<br>time. | Reagent concn, M | | | Product<br>temp, <sup>a</sup> | Yield of<br>BH <sub>3</sub> OH-,b | |-------------------|------------------|------|-----|-------------------------------|-----------------------------------| | msec | BH4- | H+ | OH- | oC, | % | | 26 | 0.3 | 0.45 | 0.6 | 6 | 75 | | 21 | 0.3 | 0.45 | 0.6 | 6 | 87 | | 16 | 0.3 | 0.45 | 0.6 | 6 | 94 | | 10 | 0.3 | 0.45 | 0.6 | 6 | 86 | | 16 | 1.0 | 2.5 | 3.0 | 4 | 72 | | 20 | 3.0 | 4.5 | 6.0 | 45 | 51 | aTemperature of BH3OH- solution. Reagent solutions cooled at 0°. $<sup>^{\</sup>mbox{\scriptsize bDetermined}}$ from amount of $\mbox{\scriptsize H}_2$ evolved upon complete hydrolysis and boron analysis. Table II. kobs for hydrolysis of BH30H-. | Temp,°C | OH- | рΗ | T <sub>1/2</sub> , min | 10 <sup>+5</sup> kobs, sec <sup>-1</sup> | |---------|-------|------|------------------------|------------------------------------------| | 20 | 0.032 | 12.5 | 233 | 4.93 | | 20 | 0.10 | 13,0 | 231 | 4.98 | | 20 | 0.35 | 13.5 | 233 | 4,96 | | 35 | 0.35 | 13.5 | 68 | 16.83 | | 50 | 0.35 | 13.5 | 21 | 80.00 | ## References (Part I-A) - F. J. W. Roughton, "Technique of Organic Chemistry," Vol. VIII, S. L. Friess and A. Weissberger, Ed., Interscience, New York, N.Y., 1953, Chapter 10, Parts 1 and 4. - 2. F. T. Wang and W. L. Jolly, Inorg. Chem., 11, 1933 (1972). - 3. This is admittedly an optimistically low estimate of the activation energy. At -78° the acid-independent hydrolysis of H2OBH3 has a rate comparable to that of the acid-dependent hydrolysis. The former reaction would be expected to have an activation energy near 20 kcal/mol, thus making the hydrolysis too rapid for a quenched flow reactor operated near room temperature. We have no explanation for the discrepancy. - (a) J. A. Gardiner and J. W. Collar, Inorg. Chem., 4, 1208 (1965); (b) J. A. Gardiner and J. W. Collat, J. Am. Chem. Soc. 86, 3165 (1964); (c) J. A. Gardiner and J. W. Collat, J. Am. Chem. Soc., 87, 1692 (1965). - R. E. Davis and J. A. Gottbrath, J. Amer. Chem. Soc., <u>84</u>, 895 (1962). - H. M. Papee and G. L. Petriconi, Nature (London), <u>204</u>, 142 (1964). - 7. M. N. Hughes and H. G. Nicklin, J. Chem. Soc. A, 450 (1968). - 8. W. G. Keith and R. E. Powell, J. Chem. Soc. A, 90 (1969). - 9. D. J. Benton and P. Moore, J. Chem. Soc. A, 3179 (1970). PART I-B: THE REDUCTION OF ORGANIC COMPOUNDS WITH THE HYDROXYBOROHYDRIDE ION #### Abstract Compounds containing functional groups not reduced by or sluggishly reduced by the borohydride ion were treated with the hydroxyborohydride ion, BH30H<sup>-</sup>, to evaluate the latter as a reducing agent and to allow comparison of its reducing power with that of the borohydride ion. In aqueous solution at pH 11.9 and 0°, ethyl benzoate was reduced to benzylamine at pH 11.7 and 6° in 78% yield. The following ketones were reduced by BH30H<sup>-</sup> at 0° to alcohols in greater than 70% yield: benzophenone, cyclopentanone, cyclohexanone, 2-methylcyclohexanone, d-camphor, and 4-tert- butylcyclohexanone. Octyl chloride and benzhydril chloride were not reduced by BH30H<sup>-</sup>. #### Introduction Gardiner and Collat<sup>1</sup> and Wang and Jolly<sup>2</sup> have shown that the hydroxyboroydride ion, BH<sub>3</sub>OH<sup>-</sup>, is formed during the hydrolysis of the borohydride ion, BH<sub>4</sub><sup>-</sup>. In the reduction of esters by aqueous borohydride solutions, Kirsch and Lee<sup>3</sup> observed an increase in the rate of reduction when the borohydride solutions were allowed to age before adding the esters. Using hydrolysis rate constants reported by Gardiner and Collat, <sup>1c</sup> they were able to show that the increased reducing power of the aged borohydride solutions could be explained by the formation of the BH<sub>3</sub>OH<sup>-</sup> ion, assuming that BH<sub>3</sub>OH<sup>-</sup> has an effective reducing power greater than that of BH<sub>4</sub>. This assumption is consistent with the fact that BH<sub>3</sub>OH<sup>-</sup> is less stable toward hydrolysis than BH<sub>4</sub><sup>-</sup>. Employing a quenching flow reactor described in a previous publication we have prepared large quantities of alkaline solutions containing the BH3OH- ion in concentrations as high as 0.35 M. The half-life of BH<sub>3</sub>OH<sup>-</sup> solutions prepared with our reactor is 3.9 hours at 20° and pH $\geq$ 12.5. These alkaline BH<sub>3</sub>OH<sup>-</sup> solutions contain only small concentrations of unreacted BH $\bar{4}$ and none of the other intermediate species formed during the hydrolysis of BH $\bar{4}$ . To determine the utility of the BH<sub>3</sub>OH<sup>-</sup> ion as a reducing agent, we have in this study examined the reduction of esters, nitriles, nitro compounds, ketones, and alkyl halides. ## Results and Discussion Esters. Esters in which the carbonyl groups are not activated by electron-withdrawing groups are not readily reduced by NaBH4 in organic solvents at ordinary temperatures. However, Brown and Rapoport<sup>5</sup> found that various heterocyclic, aromatic and aliphatic esters are reduced by large excesses of NaBH4 in refluxing methanol. We wished to determine whether a typical unactivated ester, ethyl benzoate, can be reduced by aqueous BH30H- at low temperatures. The pH of the BH<sub>3</sub>OH<sup>-</sup> solutions prepared with our quenching flow reactor is 12.5 or above. Initial attempts to reduce methyl and ethyl benzoate with these strongly alkaline solutions at 00 and 250 yielded no reduction products, although the esters were completely consumed, presumably by saponification. We therefore lowered the pH of the BH<sub>3</sub>OH<sup>-</sup> solutions, hoping to minimize saponification while possibly favoring the conditions for reduction. The pH was adjusted by adding to a vigorously stirred BH<sub>3</sub>OH<sup>-</sup> solution at 00 sufficient diethylamine-diethylammonium chloride solution (pH 8.5-9.0) to obtain a pH in the range 11-12. The resulting solutions were not well buffered; however the pH changed less than 0.05 unit during the course of the reactions. We concentrated our efforts on optimizing the reduction of ethyl benzoate. Because ethyl benzoate is essentially insoluble in water, in some experiments we combined it with water-miscible organic solvents to increase the solubility of the ethyl benzoate in the reaction solutions. Experiments were carried out to determine the effectiveness of several water-miscible solvents, hereafter referred to as cosolvents. All the experiments were carried out for 17 hours at 00. The molar ratio of BH3OH- to ethyl benzoate was 10:1, and the concentration of BHaOH- ranged from 0.214 to 0.225 M. When other conditions were held constant, the yield of benzyl alcohol was found to vary somewhat with pH; the yield reached a maximum somewhere in the range pH 11-13. These optimum pH values were determined for several sets of conditions, and the results are summarized in Table I. It can be seen that a good yield (89%) was obtained either using 6% acetonitrile as a cosolvent at pH 11.9 or using no cosolvent at pH 12.6, with an emulsifying agent present. Reaction times longer than 17 hours were explored, but did not result in higher yields of benzyl alcohol. However, more ethyl benzoate was consumed during these longer reaction times because of saponification. To determine whether hydroxyborohydride gives significantly better yields of benzyl alcohol than borohydride under similar conditions, we carried out a series of experiments to otpimize the yield of benzyl alcohol using aqueous borohydride solutions with a $BH_4^-$ to ethyl benzoate ratio of 10:1. The best yield (11%) was obtained at $0^0$ and pH 9.8 with a reaction time of 72 hrs. Clearly this yield is much lower than those shown in Table I. Nitriles. Nitrile groups which have not been activated by electron-withdrawing groups are generally inert to NaBH4. However reduction of nitriles has been achieved at 25° by using diglyme solutions of NaBH4 and Lewis acids such as AlCl3.6 We found that benzonitrile is readily reduced to benzylamine by BH3OH<sup>-</sup> solutions at pH 12.5. With a reaction time of either 16 hrs. at 25° or 48 hrs. at 0°, the yield was 89% (based on the benzonitrile consumed), and 51-60 percent of the benzonitrile was consumed. The yield was reduced to 83% by going to pH 11.5. Nitro compounds. Nitro compounds are not reduced to amines by NaBH4. Weill and Panson<sup>7</sup> reported that nitrobenzene is reduced to azoxybenzene by NaBH4 in diglyme at 90°-100°, giving only a 55% yield in six hours. We have found that nitrobenzene is reduced to aniline by BH30H<sup>-</sup>. Four experiments carried out at pH 11.7 and 6° for five hours, with a BH30H<sup>-</sup>: nitrobenzene ratio of 10:1, resulted in an average yield of aniline, based on the nitrobenzene consumed, of 78%. The reaction was rather slow; after five hours all the BH30H<sup>-</sup>, but only 40-47% of the nitrobenzene, had been consumed. Ketones. Ketones are readily reduced by borohydride at 25° in hydroxylic solvents. 8 Although hydroxyborohydride would probably seldom be preferred over borohydride for such reductions, we studied the reduction of some ketones with BH30H- solutions at 0° mainly to verify that BH30H- solutions give good yields of the same reduction products that are obtained with borohydride. Using a molar ratio of BH30H- to ketone of 2:1, an 84% yield of diphenylmethanol was obtained from benzophenone in 15 minutes and an 86% yield of cyclopentanol was obtained from cyclopentanone in 15 minutes. Similar reductions of cyclohexanone, 2-methylcycolohexanone, 4-tert-butylcyclohexanone, and camphor gave 73-74% yields of the corresponding alcohols. Alkyl Halides. Alkyl halides are inert to NaBH4 in non-aqueous solvents. In aqueous solvents, NaBH4 converts secondary and tertiary alkyl halides to the corresponding hydrocarbons. We attempted the reduction of 1-chloroctane, 1-iodoctane, and benzyhydryl chloride with BH3OH-, but were unsuccessful. No hydrocarbons were isolated. ## Experimental Materials and Techniques. The NaBH4 (Alfa), HCl (J. T. Baker), and NaOH (Mallinckrodt) used to prepare the BH3OH- solutions were reagent grade and used as purchased. Most of the organic reagents and solvents were used as received from commercial suppliers; tetrahydrofuran, diglyme, octyl chloride, octyl iodide, ethyl benzoate, benzontrile, nitrobenzene and d-camphor were purified by distillation before use. During the reduction attempts, no precautions were taken to exclude air, however the reaction mixtures were covered to prevent evaporation. Unless otherwise stated, special beakers, approximately 5 inches tall and 2 1/2 inches in diameter were used as the reaction vessels; thus vigorous stirring was possible without loss of solution from splashing. All glc analyses were carried out on a Varian 1200 gas chromotograph equipped with a flame ionizing detector. The yields were determined from the glc areas by means of calibration curves constructed with internal standards. The method has an accuracy of £5%. Preparation of BH30H- Solutions. The BH30H- solutions were prepared with the quenching flow reactor described in Part I-A. The technique involves the mixing of two streams of reactant solutions (8H4 and H+) in a reaction tube with downstream injection of the solution containing an excess of the quenching reagent, OH-. The yield of BH<sub>3</sub>OH- is dependent upon the reaction time, i.e., the time between the intial mixing of H<sup>+</sup> and BH<sub>4</sub>- and the quenching with the OH-. To permit accurate calculation of this time, we introduced calibrated flow meters between the reagent vessels and the reactor. The reagent solutions were precooled to $0^{\circ}$ to $-5^{\circ}$ and were contained in glass-lined stainless steel vessels capable of withstanding pressures of at least 100 psi. The solutions were forced into the reactor by applying pressure from a nitrogen gas cylinder; the flow rates of the three solutions were approximately equal. By suitable adjustment of the reagent concentrations, and using a reaction time of approximately 16 ms (calculated from the flow rates), we were able to prepare BH30H- solutions containing only small percentages of unreacted BH\(\bar{q}\). Evidence for the BH30H- ion was obtained from the boron-11 nmr spectrum, which consisted of a 1:3:3:1 quartet, upfield from a borate singlet, with a B-H coupling constant of 92 Hz. The spectrum is in excellent agreement with those recorded by previous workers.\(^{1}\text{b}\text{,}^{2}\) The ratio of BH\(\bar{q}\) to BH30H- and other data for representative syntheses are given in Table II. The BH30H- concentration of a solution was determined by measurement of the hydrogen evolved upon heating at 60° for 30 minutes or longer. The BH\(\bar{q}\) content of the solution was then determined from the hydrogen evolved upon addition of excess HC1. The percent yield of BH30H- was calculated from the BH30H- analysis and the boron analysis of a completely hydrolyzed sample. A 0.35 $\underline{M}$ solution of BH<sub>3</sub>OH<sup>-</sup> was used for the boron-11 nmr study. The spectrum was recorded at 0° on a Varian HA-100 spectrometer using a carbon-13 probe and by lowering the magnetic field to resonate for boron-11 at 25.15 MHz. Esters. The following procedure is representative. An ice-cold solution (35 ml) containing 10 mmol of BH<sub>3</sub>OH<sup>-</sup> was adjusted to pH 11.9 by the addition of approximately 10 ml of a diethylamine-diethylammonium chloride solution. A solution of 1 mmol of ethyl benzoate in 3 ml of cold acetonitrile was added, and the reaction mixture was stirred at $0^{\circ}$ for 17 hours before quenching the reaction by adding excess 1 M HCl. After quenching the reaction, 1 mmol of octyl alcohol (internal standard) was added; the mixture was extracted with three 15-ml portions of diethyl ether, and the combined extracts were analyzed by glc. A 10 ft. long, 1/8 in. o.d. column, packed with 5% Carbowax 20M on acid-washed Chromosorb W support was used. Benzonitrile. The pH of an ice-cold solution containing 20 mmol of BHaOH- was adjusted to 12.5 with ice-cold diethylaminediethylammonium chloride solution, and a solution of 1.96 mmol of benzonitrile in 5 ml of methanol was added. The reaction mixture was held at 250 and stirred for 16 hours. The mixture was then quenched with 1 M HCl; 1 mmol of valeronitrile was added as an internal standard, and the solution was again made alkaline with NaOH before extracting with three 15-ml portions of diethyl ether. The ether extracts were washed with a known amount of acid to remove the benzylamine as benzylammonium chloride, and the yield of benzylamine was determined by titration of the acidic solution with standard NaOH solution. To check the titration results, the solution was made approximately 1 M in OH-, a small excess of benzoyl chloride was added, and the precipitated benzyl benzamide was filtered, dried and weighed. Yields of benzylamine determined by these methods agreed within 2%. Unconsumed benzonitrile was determined by glc of the ether extracts using a column of 5% FFAP on Chromosorb G. Nitrobenzene. Two mmol of nitrobenzene in 5 ml of methanol was added to an ice-cold solution containing 20 mmol of BH3OH<sup>-</sup>. The pH of the solution was adjusted to 11.7, and the reaction mixture was stirred for 5 hours at 6°. Then the pH was adjusted to approximately 7 by adding a solution of oxalic acid. One mmol of valeronitrile (internal standard) was added; the mixture was extracted with three 15-ml portions of diethyl ether, and the extracts were analyzed by glc utilizing the same column used to analyze for benzylamine. Ketones. The following procedure for the reduction of benzophenone is representative. An ice-cold solution (25 ml) containing 10 mmol of BH<sub>3</sub>OH<sup>-</sup> was added to an ice-cold solution of 5 mmol of benzophenone in 35 ml of methanol, and the mixture was stirred. After 15 minutes a white precipitate of diphenylmethanol had formed and the reaction was stopped by adding 1 MHCl. The product was filtered, dried, and weighed: yield, 0.924 g, 84% of theory. After recrystallization from ligroin, the melting point was 67-690 (lit.9 690). Diglyme and tetrahydrofuran were used as cosolvents for some of the ketones, with no significant changes in the yields. In the case of cyclopentanone and 2-methyl cyclohexanone, the products were liquids and yields were determined by glc using a column packed with 5% SE-30 on acid-washed Chromasorb W support. Alkyl Halides. The following procedure is representative of the attempts to reduce alkyl halides. A solution of the halide and decane (internal standard) in ice-cold methanol was mixed with ice-cold BH3OH- solution. After 5 hrs. or 48 hrs. (depending on whether the pH was ca. 12.6 or ca. 11.6, resp.) an aliquot of the reaction mixture was quenched with 1 $\underline{M}$ HCl and extracted with three 15-ml portions of diethyl ether. No octane was found in the extracts, using a glc apparatus and procedure similar to that used in the ketone studies. ## Acknowledgements We wish to thank Drs. Richard M. Milberg and John D. Illige for recording the boron-11 spectra, Professor Frederick R. Jensen for the use of the Varian 1200 gas chromotograph, and Professor Donald S. Noyce for many helpful discussions. This work was supported by the U.S. Energy Research and Development Administration. Table I. The reduction of ethyl benzoate at optimum pH values | pH . | Cosolvent<br>(% v/v) | % yield<br>benzyl alcohol <sup>a</sup> | % consumption<br>ethyl benzoate | |------|------------------------------|----------------------------------------|---------------------------------| | 11.9 | 6% CH3CN | 89 | 97 | | 11.7 | 4.2% CH3CN | 80 | 97 | | 11.7 | 6% t-BuOH | 69 | 99 | | 11.6 | 4.2% CH <sub>3</sub> OH | 62 | 73 | | 11.6 | 4.2% THF | 51 | 86 | | 12.3 | None | 89 | 100 | | 2.6 | None; SLS added <sup>b</sup> | 89 | 100 | <sup>&</sup>lt;sup>a</sup>Averaged of several experiments, +5%. $<sup>^</sup>bSolution~3.4~x~10^{-4}~\underline{\textrm{M}}$ in sodium lauryl sulfate. Table II. Data for BH3OH- Syntheses | вн4 м | н+, <u>м</u> | он-, <u>м</u> | Product<br>Temp, <sup>o</sup> C | ВН <sub>3</sub> ОН⁻,<br><u>М</u> | BH30fi <sup>-</sup> ,<br>% Yield | ВН4-/ВН <sub>3</sub> ОН- | |-------|--------------|---------------|---------------------------------|----------------------------------|----------------------------------|--------------------------| | 0.3 | 0.45 | 0.6 | 6 | 0.091 | 94 | <0.005 | | 1.0 | 2.5 | 3.0 | 4 | 0.218 | 72 | 0.036 | | 1.5 | 3.0 | 3.0 | 6 | 0.396 | 86 | 0.056 | | 1.5 | 3.0 | 4.0 | 6 | 0.367 | 68 | 0.072 | | 3.D | 4.5 | 6.0 | 45 | 0.398 | 51 | 0.025 | | | | | | | | | ## References (Part I-B) - (a) J. A. Gardiner and J. W. Collat, Inorg. Chem., 4, 1208 (1965); (b) J. A. Gardiner and J. W. Collat, J. Am. Soc., 86, 3165 (1964); (c) J. A. Gardiner and J. W. Collat, J. Am. Chem. Soc., 87, 1692 (1965). - 2. F. T. Wang and W. L. Jolly, Inorg. Chem., 11, 1933 (1972). - J. F. Kirsch and W. N. Lee, Paper presented at the 154th meeting of the American Chemical Society, Chicago, Illinois 1967, S64. - J. W. Reed, H. H. Ho and W. L. Jolly, J. Am. Chm. Soc., 96, 1248 (1974). - 5. M. S. Brown and H. Rapoport, J. Org. Chem., 28, 3261 (1963). - H. C. Brown and B. C. Subba Rao, J. Am. Chem. Soc., <u>78</u>, 2582 (1956). - 7. C. E. Weill and G. S. Panson, J. Org. Chem., 21, 803 (1956). - H. C. Brown, "Boranes in Organic Chemistry," Cornell University Press, Ithaca, N. Y. 1972, p. 213. - "The Merck Index," 7th ed., Merck and Co., Rahway, N.J., 1960, p. 132. PART 11: A KINETIC STUDY OF THE HYDROLYSIS OF THE OCTAHYDROTRIBORATE ION #### Abstract The hydrolysis of the octahydrotriborate ("triborohydride") ion has been studied in cold methanol-water-hydrochloric acid solutions in which the methanol concentration ranged from 0 to 88 percent by volume and the hydrogen ion concentration ranged from 0.25 to 8 M. At -78°, in 88% methanol solutions (0.25 to 8 M. H<sup>+</sup>), one mole of hydrogen is evolved per mole of 83Hg<sup>-</sup>, indicating the formation of B3H70H2. However in 8 M. HCl solutions with 0 to 70% methanol, 4.5 moles of hydrogen per B3Hg<sup>-</sup> were obtained at -78°. Upon warming any of the solutions to room temperature, complete hydrolysis took place, giving additional hydrogen to make a total of 9 moles of hydrogen per mole of B3Hg<sup>-</sup>. The $B_3H_70H_2$ was converted to $B_3H_70H^-$ by the addition of hydroxide. However, $B_3H_70H^-$ was found to be unstable, decomposing to give $BH_4^-$ and $B_10H_2^-$ at temperatures above $-41^\circ$ . In strong base (2 to $16 \ M$ $OH^-$ ), and an elevated temperatures, $B_3H_8^-$ solutions also decompose to hydrogen, $BH_4^-$ and $B_10H_2^-$ . The boron-11 nmr spectrum of $B_3H_70H^-$ consists of two bands with an intensity ratio of 1:2, centered 10.22 ppm downfield and 39.29 ppm upfield from the borate signal, respectively. ## Introduction The hydrolysis of the octahydrotriborate ion, $B_3H_8^-$ , in cold-methanol-water solution was studied by Wang and Jolly. They reported that at -780, the hydrolysis in 1.0-3.5 $\underline{M}$ HC1 yielded one mole of hydrogen per mole of $B_3H_8^-$ , corresponding to the formation of $B_3H70H_2$ . However, in aqueous 8 $\underline{M}$ MC1, hydrolysis produced 4.5 moles of hydrogen per mole of $B_3H_8^-$ at -780. The purpose of this work was to study the hydrolysis over an expanded range of hydrogen ion concentration and try to determine the sequential mechanism of the hydrolysis in cold acid solutions. ## Experimental General. Sodium borohydride (Ventron) and iodine (Mallinckrodt) were used as received without further purification. Absolute methanol, hydrochloric acid, potassium hydroxide and sodium hydroxide were all reagent grade. Tetrahydrofuran and p-dioxane were dried by refluxing with and distilling from sodium benzophenonate, and diglyme was dried by distilling from LiAlH4.2 Raman spectra were recorded on a JOBIN YVON Ramanor HG,2S Raman Spectrophotometer, and infrared spectra were obtained with a Perkin-Elmer spectrometer (Model 337). The boron-11 spectra were recorded at 57.78 Mg Synthesis of KB3H8. Sodium octhydroborate was prepared by the reaction of iodine with sodium borohydride. The dioxanate of NaB3H8 was precipitated from diglyme along with NaI and any unreacted NaBH4. The mixture of salts was dissolved in a minimum amount of water, and the potassium octahydroborate was precipitated and isolated as described by Wang. After purification, hydrogen analysis showed the salt to be 99.7% pure and potassium analysis (precipitation of potassium tetraphenylborate) indicated 99.4% purity. Boron analysis by the mannitol method (a relatively inaccurate method) gave a purity of only 98%. ## Kinetic Studies Acidic Solutions. A fragile bulb containing 0.5-2 mmol of KB<sub>3</sub>H<sub>8</sub> dissolved in 2 ml of 88% methanol-water, was lowered into the reaction vessel<sup>3</sup> which was pre-cooled to -780. The reaction vessel contained a known amount of HC1 dissolved in the same solvent, always maintaining a volume of 30 ml, so that the final volume of the reaction mixture would not exceed 32 ml upon addition of the 2 ml of KB3H8 solution. After about 25 minutes it was assumed that the solution in the fragile bulb had cooled to $-78^{\circ}$ and the system was evcacuated. Then the system including a manometer, was closed to the vacuum pump; the fragile bulb was broken, and a timer was turned on. The rate of reaction was obtained as a function of time by momentarily closing a stopcock between the manometer and the reaction vessel, and recording the mercury level of the manometer. When the rate of reaction was relatively great, the reaction was followed to completion and the total hydrogen was measured by Toeplering it into a calibrated volume. In some of the runs, with $[H^+] = .25, 1.0$ , 1.25, 3.0, 4.0, and 8.0 M, after hydrogen evolution had ceased at -780, the -780 bath was replaced with a chlorobenzene slush, -450, and the rate of hydrogen evolution was followed as a function of time as described above. <u>Basic Solutions</u>. In the kinetic run carried out to determine the rate of reaction of KB3H8 with strong base as a function of KB3H8 concentration, a known amount of the salt was added to a Kel-F-lined reaction vessel containing 5 ml of either 10 or $15 \, \underline{\text{M}}$ NaOH. The vessel was connected to a gas buret and placed in a $50^{\circ}$ thermostated bath. After the temperature of the system had equilibrated, the system was closed and a timer was turned on. The reaction mixture was stirred vigorously with a magnetic strirrer and a Teflon-covered magnetic stir bar. The change in the water level of the gas buret was recorded at measured intervals until at least 3/4 of the expected hydrogen had been evolved. In initial-rate studies, designed to determine the dependence of the rate of reaction on $\,$ OH- , 3 ml of NaOH of the desired concentration was placed in Section A of the reaction vessel shown in Figure 1, 1 mmol of KB3HB was added along with a special Teflon coated magnetic bar, and Section A was connected to Section B with an o-ring joint and the assemblage was placed in a $60^{\circ}$ thermostated bath as illustrated in Figure 1. The initial rate of reaction was determined by measuring the rate of movement of the drop of water. Synthesis of B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup>. A fragile bulb containing 1 mmol of KB<sub>3</sub>H<sub>8</sub> in 2 ml of 88% methanol-water was lowered into a reaction vessel<sup>3</sup> containing 3 ml of the same solvent which was 2 M in HCl. The reaction vessel was cooled to -78° and then evacuated. The fragile bulb was broken, and the reaction was allowed to processed for 30 hours. At this time, 35 ml of 0.5 M NaOH (in 88% methanol-water), pre-cooled to -78°, was added. In the reactions designed to determine if any hydrogen was evolved upon addition of NaOH, the reaction was carried out in a reaction vessel designed to accomodate 2 fragile bulbs.<sup>3</sup> After 30 hours, the hydrogen produced was removed and the fragile bulb containing 15 ml of 0.5 M NaOH was broken. The reaction vessel was opened to the Toepler pump and checked for hydrogen. The B $_3$ H $_7$ OH $^-$ was characterized by boron-11 nmr and by the amount of hydrogen evolved upon the addition of excess acid. Because the boron-11 nmr analysis required locking on a deuterium signal, the above mentioned experiments were also carried out in 88%-12% methanol D $_2$ O mixtures. <u>Determination of Boric Acid</u>. The reaction vessels used are shown in Figure 2. Six ml of 10 M HCl ( 20% methanol by volume) was added to Section A of reaction vessle I along with a Teflon-coated magnetic stir bar. One ml of 88% methanol-water containing a known amount of KBaHg was then added to Section B of reaction vessel I and the vessel was placed in a Styrofoam box. The Styrofoam box was filled with pulverized dry ice and a lid was taped on top of the box to prevent rapid evaporation of the dry ice and to prevent spillage of the dry ice upon tilting. A hole in the lid allowed the 24-40 joint of vessel I to protrude and be connected to an oil bubbler. After 30-45 minutes, the cold solutions were mixed by tilting the box, forcing the contents of Section B into Section A. The box was swirled while tilting allowing the motion of the stir bar to aid the mixing of the 2 solutions. After approximately 12 hours, the lid was removed from the Styrofoam box and vessel I was connected to vessel II by way of 24/40 joints. Another Styrofoam box was taped to the first box containing vessel I and additioinal pulverized dry ice was added. The Styrofoam box was inverted (see insert of Figure 2) and the solution filtered by suction through the frit into reaction vessel II. The boxes were then separated, the dry ice carefully removed and the reaction vessels were separated. The solid and solution adhering to the sides of vessel I were carefully washed into a 100-ml round-bottomed flask, and the washings were titrated for hydrogen ion concentration using paranitrophenol as the indicator. Excess base was then added to make sure that all the boric acid present was converted to borate. The solution was then analyzed for boron according to the procedures for analysis of boron in the presence of methanol. 4 The solution in reaction vessel II was washed into a 100-ml round-bottomed flask and also was analyzed for HCl and boron. In order to determine the solubility of boric acid in the methanolic solvents used, saturated solutions of boric acid were prepared using solvents with methanol-water ratios identical to those in the afore-mentioned experiments. These saturated solutions were cooled to and filtered at -78° (the solubility was considerably less at -78°) and after the clear solutions had been warmed to room temperature, aliquots were taken and analyzed for boron according to the procedures of reference 4. Low Temperature Raman and NMR Studies. The reaction of KB3H8 with 10 M HC1 solutions was allowed to proceed for approximately 12 hours at -78° before collecting the samples for the spectra. Collection of the Raman sample was accomplished by connecting a special low temperature cell, via the 14/35 ground joint, to vessel II of Figure 2 while the dry ice box was still intact. Dry ice was packed around the cell, secured with aluminum foil, and the solution poured into the cell by appropriately tilting the dry ice box. For the low temperature nmr studies, the cold, -78°, solutions were pipetted with a dry ice-jacketed pipet and transferred to a previously cooled, 10-mm quartz nmr tube. The nmr tubes and the special Raman cells were stored in dry ice-acetone baths until they were ready to be placed into the respective spectrometers. ## Results and Discussion Acidic Solutions. In cold (-78°) 88% methanol solutions, with the hydrogen ion concentration in the range 0.20-8 M, the hydrolysis of KB3H8 yields one mole of hydrogen per mole of B3H8°. Ratios of hydrogen produced per mole of B3H8° consumed are listed in Table I. The total amount of hydrogen evolved was determined experimentally, when the rate of reaction permitted it, by following the rate of hydrogen evolution as a function of time until the hydrogen evolution ceased. The hydrogen was then Toeplered into a known volume and measured, with the yield being based on the amount of KB3H8 consumed. The KB3H8 salt used in this study was always at least 99.7 percent pure. In the runs where $H^+ = 1.0$ , 1.50 and $2.95 \, \underline{M}$ , the total amount of hydrogen produced per B3H8- consumed was verified to be 1.0 by using Eq. (1). $$\frac{H_2}{B_3 H_8} = \frac{9P_1}{P_1 + P_2} \tag{1}$$ where $P_2$ is the computer-calculated P obtained upon fitting the rate data from the hydrolysis of $B_3H_70H_2$ at $-45^\circ$ to a least squares program, assuming first-order reactions and $P_1$ is the calculated P obtained in the same manner from the rate data for the hydrolysis of $B_3H_8$ at $-78^\circ$ . Since complete hydrolysis of $B_3H_70H_2$ yields eight moles of hydrogen, (see reaction (6)), $(P_1 + P_2)$ , the total amount of hydrogen evolved in the reactions at $-45^\circ$ and $-78^\circ$ , should be nine times the total amount, $P_1$ , produced in the reaction at $-45^\circ$ . This being the case, the right hand side of Equation (1) should always be 1. The ratio of $H_2$ to $B_3H_8$ was calculated to be 1.04, 1.05 and 1.04 for the runs where $H^+ = 1.0$ , 1.5 and 2.95 M respectively. One mole of hydrogen per mole of $B_3H_8$ consumed corresponds to the formation of $B_3H_70H_2$ , according to reaction (2). $$B_3 H_8^- + H^+ + H_2 O \frac{k_1}{-78} B_3 H_7 O H_2 + H_2$$ (2) The B<sub>3</sub>H<sub>7</sub>OH<sub>2</sub> formed is very stable at $-78^{\circ}$ in 88% methanol-water solutions at [H<sup>+</sup>] $\leq$ 8 M. However, in 8 M HC1 solutions containing methanol concentrations in the range of 0-70 percent by volume, the reaction proceeds further at $-78^{\circ}$ to give a total of 4.5 moles of hydrogen per mole of B<sub>3</sub>H<sub>8</sub>- consumed. The data in Table II show that one-half the total amount of hydrogen evolved upon warming the solutions to room temperature is evolved at $-78^{\circ}$ . The rate of reaction at $-78^{\circ}$ varied with changes in the methanol concentration (% v/v). The reaction half-time (time required for one-half the total mount hydrogen produced at $-78^{\circ}$ ), as a function of percent methanol used is also listed in Table II. We studied the rate of reaction (2) as a function of hydrogen ion concentration in solutions with and without the addition of LiCl. Appropriate amounts of LiCl were added to solutions that were 0.20-1.5 M HCl in order to maintain a constant ionic strength of 1.5. The runs where no LiC1 was added in order to maintain constant ionic strength were carried out in solutions where the hydrogen ion concentration ranged from 0.25-1.25 M. In all the runs, with the exception of those in 0.20 and 0.25 M HCl, the hydrogen ion concentration was at least ten times the B3H8- ion concentration allowing the rate data to be interpreted in terms of pseudo-first-order reactions. A typical set of pressure data is listed in Table III, and a semi-logarithmic plot of (P - P) versus time for the data is shown in Figure 3. The fact that $log(P_m - P)$ versus time is linear indicates that reaction (1) is first order with respect to BaHg- ion concentration: The observed rate constants, $k_1$ , were obtained at $[H^+]$ = 0.25, 0.60, 1.0, and 1.25 M and are listed along with the concentration of B3Hg in Table IV. Since the hydrogen ion concentration did not remain constant during the course of the run, the rate constant at $[H^+]$ = 0.25 $\underline{M}$ were calculated, using Eq. (3) which was arrived at by integration of the rate expression $$k_{1}t = \frac{1}{[H^{+}]_{0} - [B_{3}H_{8}^{-}]_{0}} \ln \frac{[B_{3}H_{8}^{-}]_{0}([H^{+}]_{0} - x)}{[H^{+}]_{0}([B_{3}H_{8}^{-}]_{0} - x)}$$ (3) In Eq. (3) $[B_3H_8^-]_o$ and $[H^+]_o$ correspond to the initial concentrations of the reagents, and $([B_3H_8^-]_o - x)$ and $([H^+]_o - x)$ correspond to the concentration of the reagents at time t. The quantity x, corresponds to the amount of hydrogen produced at time t, and as is seen from reaction (1) is equal to the amount of $B_3H_8^-$ consumed at time t. In order to determine the amount of $B_3H_8^-$ present at any time t, computer-calculated values of $P_o$ were obtained by assuming that the reaction was first-order in $B_3H_8^-$ concentration and by assuming that the hydrogen ion concentration did remain constant during the course of the runs. $P_o$ is proportional to the total amount of $B_3H_8^-$ used. Therefore, the value of x, in units of concentration was calculated using Eq. (4). $$x = \frac{P(\text{mmol B}_3H_8^-)}{P_{\infty}(\text{vol. of reaction mixture})}$$ (4) The rate constant $k_1$ obtained from plotting the right hand side of Eq. (3) versus time is a second-order rate constant with a value of 1.6B x $10^{-3}$ $\underline{\text{M}}^{-1}$ min<sup>-1</sup>. Multiplying by the hydrogen ion concentration, 0.25 $\underline{\text{M}}$ , gives the first-order rate constant listed in Table IV, $4.20 \times 10^{-4} \, \text{min}^{-1}$ . A plot of $k_1$ versus hydrogen ion concentration (see Figure 4) is linear with a zero intercept at $[H^+]$ = 0 and indicates the following rate law for reaction (2), $$-\frac{d[B_3H_8^-]}{dt} = k_{1a}[B_3H_8^-][H^+]$$ (4) where the value of $k_{1a} = 2.88 \times 10^{-3} \text{ M}^{-1} \text{ min}^{-1}$ . Thus, the hydrolysis of the triborohydride ion in 88% methanol-water solutions where $[H^+]$ < 1.25 M at -780 is first-order in triborohydride ion and hydrogen ion concentration. An atte t to determine the value of kla of Eq. (4) at constant ionic strength resulted in observed rate constants, k1' that when plotted versus hydrogen ion concentration gives a straight line but the intercept at $[H^+] = 0$ , is a somewhat large negative number. This relatively large negative intercept at [H+] = 0 indicates that the hydrogen ion concentration of the solutions are actually lower than the calculated values. A close examination of the preparation of solutions identical to those used for the kinetic study revealed that a gas was evolved upon the additional of methanol to a mixture of aqueous hydrochloric acid and LiCl. Also attempts to prepare hydrochloric acid solutions with hydrogen ion concentrations in excess of 8.3 M in 88% methanolwater failed, presumably because of the formation of methyl chloride.6 Since the formation of alkyl halides are catalyzed by Lewis acids, it is likely that the LiCl acted as a catalysis, aiding the production of CH3Cl. Since CH3Cl boils at 240, it is possible that it would have vaporized out of solution when the solutions were prepared at room temperature, or it could have been pumped out of solution when the systems were evacuated, while being stirred at -780. Therefore, we were unable to determine the dependence of reaction (2) on hydrogen ion concentration at constant ionic strength. The values of k<sub>1</sub>' are also listed in Table IV as a function of hydrogen ion concentration. Extrapolation of the data in Table IV to [H<sup>+</sup>] = $3.0 \ \underline{M}$ , should give a rate constant with a half-life of not less than one-half hour. However, we found the rate of hydrogen evolution in 3 $\underline{M}$ HCl to be too fast to measure accurately; the half-life of the reaction was approximately two minutes. The rate increased even more upon increasing the hydrogen ion concentration to 4 and $\underline{B}$ $\underline{M}$ HCl; the half-life of the reaction in 4 M HCl was less than one minute. This tremendous increase in the reaction rate implies that the rate of hydrolysis for reaction (2) in solutions were $[\underline{H}^+] > 3 \ \underline{M}$ is far more complex than first-order. However, the reaction, even though more complicated, did not proceed beyond the formation of $\underline{B}_3H_7OH_2$ (see Table I for the ratio of hydrogen produced as a function of $\underline{B}_3H_7Ch_2$ consumed). The fact that we were able to measure the rate of hydrolysis of $B_3H_8^-$ to $B_3H_70H_2$ indicates that $B_3H_8^-$ is more stable toward hydrolysis than $BH_4^-$ . Wang and $Jolly^5$ found that the first step of the hydrolysis of $BH_4^-$ to $BH_30H_2$ is too fast to measure in cold (-780) 88% methanol-water hydrochloric acid solutions at hydrogen ion concentrations as low as 0.11 M. When the $B_3H_7OH_2$ solutions were warmed to $-45^{\circ}$ , complete hydrolysis was observed: $$B_3H_7OH_2 + 8 H_2O \xrightarrow{k_2} 3B(OH)_3 + 8 H_2$$ (5) We studied the rate of reaction (5) as a function of hydrogen ion concentration. In all the runs the hydrogen ion concentration was in excess, permitting the interpretation of the data as pseudo-first-order reactions. We obtained observed rate constants for reaction (5) for hydrogen ion concentrations from 0.25 to 8 M. Semi-logarithmic plots of $(P_{\infty} - P)$ vs time for the data obtained in solutions were $[H^+] \le 3 \text{ M}$ are linear. Such a plot for the run at $-45^{\circ}$ and $[H^{+}] = 1.5 \text{ M}$ is shown in Figure 5. The fact that log (P\_ - P) versus time is linear, implies that reaction (5) is first-order with respect to the concentration of B3H7OH2. Computer-calculated values of k2 were obtained by using a least squares program capable of solving the first-order reaction function, $X = [A]_0(1 - e^{-k_2t})$ , where $[A]_0$ is the initial concentration of B3H8- which is proportional to the total amount of hydrogen evolved, P,, and X is the amount of B3Hg- consumed at time t, or P, the pressure of hydrogen at time t. The observed rate constants, k2, are listed as a function of hydrogen ion concentration in Table V. The values of k2 indicate that reaction (5) is independent of hydrogen ion concentration in acidic solutions where $[H^+] \leq 1.5$ M, and is effected by hydrogen ion concentration in solutions where [H+] ≥ 1.5 M. Semi-logarithmic plots of (Pm - P) vs time for the data obtained in 3.5, 4, and 8 M HC1 at -450 are not linear. We attempted to interpret the rate data in these runs in terms of pseudo-second-order reactions and found that 1/(P\_ - P) is a linear function of time for the 4 and 8 M HC1 rate data but was non-linear for the 3.5 M HC1 data. A plot of 1/(P\_ - P) for the 4 M HCI rate data is shown in Figure 6. The change in reaction order upon going from 3 to 4 M HCl, plus the fact that the observed rate constants, ko is, within experimental error, independent of hydrogen ion concentration in dilute acid ۸. solutions, $[H^+] \ge 1.5 \,\underline{M}$ , suggest that the rate law for reaction (5) can be expressed by Eq. (6). $$\frac{-d[B_3H_70H_2]}{dt} = k_{2e}[B_3H_70H_2] + 2k_{2b}[B_3H_70H_2]^2[H^+]$$ (6) Since the hydrogen ion concentration remained constant during the course of the runs, this rate law implies that the hydrolysis of BaH70H2 proceeds according to the following general reactions. $$A \xrightarrow{k_2} Products$$ $$A + A \xrightarrow{k_3} Products$$ where $A = B_3H_7OH_2$ , $k_2 = k_{2a}$ , and $k_3 = k_{2b}$ . The rate of disappearance of A, B<sub>3</sub>H<sub>7</sub>OH<sub>2</sub>, is described by the following equation, where the amount of reactant present at zero time is $[A]_0$ and at time t is $([A]_0 - X)$ : $$-\frac{d([A]_0 - X)}{dt} = k_2([A]_0 - X) + 2 k_3([A]_0 - X)^2$$ (7) rearrangement leads to: $$\frac{dx}{([A]_0 - X)[k_2 + 2 k_3([A]_0 - X)]} = dt$$ (8) The intergrated rate expression 7 can be written as $$\ln \left[ \frac{[A]_0 [k_2 + 2 k_3 ([A]_0 - X)]}{([A]_0 - X)[k_2 + 2 k_3 [A]_0)]} \right] = k_2 t$$ (9) $$X = [A]_{0} - \left\{ \frac{[A]_{0} k_{2}}{k_{2} + 2 k_{3}[A]_{0}} \left[ e^{k_{2}t} - \frac{2 k_{3}[A]_{0}}{k_{2} + 2 k_{3}[A]_{0}} \right]^{-1} \right\}$$ (10) During the runs, the extent of the reaction was following by monitoring the increase in hydrogen pressure as a function of time. Therefore, in Eqs. (7)-(10), $[A]_0 = P_{\infty}$ , the pressure at time t = infinity, and X = P, the pressure at time t. Rewriting Eq. (11) gives: $$P = P_{\infty} - \left\{ \frac{P_{\infty} k_2}{k_2 + 2 k_3 P_{\infty}} \left[ e^{k_2 t} - \frac{2 k_3 P_{\infty}}{k_2 + 2 k_3 P_{\infty}} \right]^{-1} \right\}$$ (11) The parameters $P_{\infty}$ , $k_2$ and $k_3$ were evaluated from the data in Table VI using a least-squares program. The computer-calculated values were 32.20 cm Hg, $6.89 \times 10^{-3} \, \text{min}^{-1}$ , and $6.99 \times 10^{-3} \, \text{M}^{-1} \, \text{min}^{-1}$ for $P_{\infty}$ , $k_2$ , and $k_3$ respectively. We also evaluated $P_{\infty}$ , $k_2$ and $k_3$ from the rate data as a function of hydrogen ion concentration and obtained the values listed in Table VII. The negative values of $k_3$ in the dilute acid runs, $[H^+] \leq 1.5 \, \text{M}$ are, within experimental error, equal to zero or a small positive number. We calculated the $k_2$ values listed in Table VII for the runs where $[H^+] < 2.95 \, \text{M}$ using Eq. (11) by setting $k_3 = 0$ . These values are also listed in Table VII, and as expected are exactly equal to the $k_2$ values listed in Table V. As can be seen from the $k_2$ values, the small positive number $(1.04 \times 10^{-1} \, \text{M}^{-4} \, \text{min}^{-1})$ of $k_3$ for the 2.95 $\, \text{M}$ run did not change the value of $k_2$ for that run, supporting the hypothesis that kg in the dilute acid solutions, $[H^+] \le 1.50 \text{ M}$ , is, within experimental error, equal to zero. The values of k2 for the 3.5, 4.02 and 8.03 M HCl runs indicate that in this region, the hydrolysis of B3H7OH2 at -450 is approximately first-order in hydrogen ion concentration. The values of k3 in this hydrogen ion concentration region is difficult to rationalize on the basis of the rate law of Eq. (6). These ky values, along with the tremendous increase in the first-order rate constant k2, on going from 1.5 to 3 M, could be due to the activity of the hydrogen ion. In all our calculations, we are assuming that the activity of the hydrogen ion in 88% methanolwater is the same as the activity in 100% water. We were only able to find acidity functions for dilute acid solutions in various methanol concentrations, however, in methanol-water mixtures above 60% methanol, the effect of the methanol increased the acidity, the proton donating ability, of the hydrochloric acid solutions, indicating that the activity in 88% methanol-water is not at all the same as it is in 100% water. Salomaa8 reported that as the concentration of acid increased the effect of the methanol became more pronounced. He found that the acidity function $H_0$ , for 0.08 M HC1 was 1.86 in 65% methanol and 1.80 in 88% methanol, and that the acidity function for 0.80 M HC1 was 0.85 in 65% methanol and 0.75 in 88% methanol, (Ho decreases with increases acidity). If the acidity of the solutions in our study follow the same trend, this could attribute to the observed increase in the rate of hydrolysis for both reaction (2) and (5) upon increasing the hydrogen ion concentration above 1.5 M. At $-78^\circ$ in 8 MHC1 solutions containing from 0 to 70% methanol by volume, 1 mole of hydrogen per mole of KB3H8 is evolved in approximately 2 minutes, corresponding to the formation of B3H70H2. This species further hydrolyzes at $-78^\circ$ to give a total of 4.5 moles of hydrogen and an unknown boron-hydrogen intermediate which, when warmed to room temperature, gives another 4.5 moles of hydrogen corresponding to complete hydrolysis of B3H8 $^-$ . $$B_3H_8^- + H^+ + 9 H_20 \longrightarrow 3 B(OH)_3 + 9 H_2$$ (12) The rate of hydrolysis is essentially equal in 8 $\underline{M}$ HCl solutions containing various percentages of methanol up to 65% methanol by volume. The reaction half-time, that is, the time required for evolution of one-half of the total amount of hydrogen evolved at -780 as a function of methanol is listed in Table II. Close examination of the 8 M HCl solutions at -78° revealed that, in addition to the formation of the unknown poron-hydrogen intermediate, an appreciable amount of solid collected in the reaction flask during the course of the reaction. Using the apparatus shown in Figure 2, we filtered the reaction mixture at -78°, collected the solid, and dried it at room temperature over KOH in a vacuum dessicator. Infrared spectra of the solid were identical to spectra taken of reagent grade B(OH)3 with fundamentals at 3200, 1195, and 645 cm<sup>-1</sup> corresponding to OH vibrations and fundamentals at 1450, 880, and 545 cm<sup>-1</sup> corresponding to various BO vibrations. 9 Knowing that the hydrolysis produced both boric acid and 4.5 moles of hydrogen, we attempted to determine the stoichiometry of the unknown boron-hydrogen intermediate by determining X in the following equation: $$B_3H_8^{-} \frac{8 \text{ HCl}}{-78^{\circ}} \times B(0H)_3 + "B-H" + 4.5 H_2$$ (13) Using Schreinemakers $^{10}$ wet residue method of analysis, we determined the amount of B(OH) $_3$ produced in Eq. (13) as a function of the "dryness" of the solid collected at -78°. Here "dryness" is defined as the fraction of the solution sucked through the frit of vessel I into vessel II (Figure 2). Because in all the runs the acid concentration was several hundred times the concentration of KB $_3$ HB $_6$ , and therefore remained constant during the course of the runs, the "dryness" was calculated by titrimetric analysis of the hydrogen ion in vessel I, H $_a$ +, and the hydrogen ion in vessel II, H $_b$ +, using Eq. (14). "dryness" = D = $$\frac{H_b^+}{H_a^+ + H_b^+}$$ (14) The amount of $B(OH)_3$ produced was determined by titrating the solution from vessel I for boron using the mannitol procedure of reference 4. The amount of $B(OH)_3$ produced was corrected for the solubility of boric acid in the solvent used. The ratio of the amount of boric acid produced to the amount of KB<sub>3</sub>H<sub>8</sub> consumed is summarized in Table VIII and is plotted versus "dryness" in Figure 7. Extrapolation of the line of Figure 7 to complete "dryness", D=1, indicates that $0.96 \pm 5\%$ mole of $B(OH)_3$ are produced per mole of $B_3$ H<sub>8</sub>. Setting X = 1, the reaction of equation (13) can be balanced and rewritten as shown in equation (15). $$B_3H_8^+ + H^+ + 3H_2O \xrightarrow{\frac{8 \text{ M}}{-78^{\circ}}} B(OH)_3 + "B_2H_3" + 45 H_2$$ (15) Raman spectra of the solution containing the "BoHa" species were recorded at -780 in hopes of obtaining structural information concerning the species. Since the solvent used in the boric acid determinations contained ~ 20% methanol, we compared the spectra of the solvent saturated in boric acid, and the spectrum of the solution shown in Figure 8 to literature spectra of aqueous solutions of boric acid and methyl borate. 11,12 In Figure 8. the signal at 2430 is the only absorption band other than those found in a sample of the solvent saturated with boric acid. This is in the region, 2400-2500, common to B-H stretching frequencies in boron-hydride compounds containing terminal hydrogens such as (CH<sub>3</sub>)<sub>3</sub>NBH<sub>2</sub>NCCH<sub>3</sub>+13 or (CH<sub>3</sub>)<sub>3</sub>NBH<sub>2</sub>ON(CH<sub>3</sub>)<sub>3</sub>+PF<sub>6</sub>-.14 However. the very intense absorption usually observed at 1150 cm<sup>-1</sup> which corresponds to BH2+ deformation was not observed in our spectra. The bands in the spectrum of Figure 8 are assigned as summarized in Table IX. Low temperature 11B nmr spectra of the solution containing the "BoHa" species contained no apparent peaks. However, there appeared to be a very broad signal present, unresolvable from the base line, which was on the order of several thousand Hz wide. We followed the rate of hydrolysis of B3H8° in 8 $\underline{M}$ HCl solutions of various methanol concentrations and found that a semi-logarithmitic plot of ( $P_{\infty}$ – P) for data such as that in Table X versus time were curved rather than linear. Assuming that the first step of the hydrolysis corresponds to the formation of B3H70H2, we postulated that further hydrolysis of B3H70H2 proceeded through an unknown intermediate to give 3.5 moles of hydrogen and, according to the results of the boric acid determination, one mole of B(OH)<sub>3</sub> per mole of B<sub>3</sub>H<sub>7</sub>OH<sub>2</sub>. Assuming that the hydrolysis of B<sub>3</sub>H<sub>7</sub>OH<sub>2</sub> in these solutions proceed by way of two consentive first-order reactions, we can write the following general equations, $$A \xrightarrow{k_4} B + nH_2$$ $k_5 C + mH_3$ where k4 and kr are pseudo-first-order rate constants and n and m are proportional to the total number of moles of hydrogen, 3.5, produced in each step. Since the rate of hydrolysis was monitored by following the hydrogen pressure as a function of time, the factor C is used to convert pressure of hydrogen into the corresponding solution concentration and the following equations are obtained. $$(P_{\infty} - P_{0}) C = n[A]_{0} + m[B]_{0}$$ $(P - P_{0}) C = n[A]_{0} - n[A] + m[B]_{0} - m[B]$ The integrated rate expressions for two consecutive first-order reactions lead to: $$[A] = [A]_{o} e^{-k_{4}t}$$ $$[B] = [B]_{o} + \frac{k_{4}[A]_{o}}{k_{4} - k_{5}} e^{-k_{5}t}$$ $$- \frac{k_{4}[A]_{o} e^{-k_{4}t}}{k_{4} - k_{5}}$$ If at time t = 0, $[R]_0/[A]_0 = x$ , the four preceding equations can be combined with the relation $[B]_0 = x[A]_0$ to give, $$P = P_{0} - \left[ \frac{(P_{0} - P_{0})}{n + mx} \right] \left( \frac{n(\frac{k_{4} - k_{5}) - mk_{4}}{k_{4} - k_{5}}) e^{-k_{4}t} + \left( mx + \frac{mk_{4}}{k_{4} - k_{5}} \right) e^{-k_{2}t} \right]$$ (16) Using the rate data where the difference in k4 and k5 is greatest, the 70% CH30H rate data of Table X was used to calculate the parameters, n, m, x, k4 and kg by using a least squares program capable of solving non-linear functions. In order to calculate the above mention parameters, some assumptions had to be made and the rate data appropriately adjusted. First, since during the kinetic runs, it was always observed that within two minutes after the fragile bulb containing the BaHg- ion was broken and the triborohydride mixed with the HCl solutions, a sudden surge of hydrogen was produced which corresponded to one mmo) of gas per mmol of BaHa consumed, the pressure at time t = 0 Po, was taken to be Pm/4.5. Pm was obtained experimently by waiting 12 to 18 hours after evolution of the hydrogen became immeasurable. The pressures and time were adjusted by subtracting $P_0$ and $t_0$ from the values listed in Table X and these calculated values of P and t were used to solve the ...ction of equation (16). The best fit of the data to the function was achieved when n = 3.0. m = 0.5, x = 0.081, $k_A = 6.62 \times 10^{-3} \text{ min}^{-1}$ and $k_S = 2.86 \times 10^{-3}$ This ratio of n to m does not shed any light on the composition of the unknown boron-hydride species produced along with one mole of B(OH)3 and 4.5 moles hydrogen per mole of BaHgconsumed. When these solutions containing the unknown boron-hydride species are warmed to -360, another 4.5 moles of hydrogen per mole of BaHo- are evolved in approximately 12 hours. The rate data in Table XI were obtained after warming the same solution which gave the 70% CH<sub>3</sub>OH data in Table X to ~360. We again assumed that the hydrolysis of the unknown species proceeded by way to two consecutive first-order reactions and used the same function in equation (17) to splve for the rate constants. k6, and k7, the ratio of the two unknown species at t time t = 0, x, and the values of n and m assuming n + m = 4.5. The values of the parameters were 0.038, 3.5, 1.0, 2.3, $10^{-2}/\text{min}^{-1}$ , and $3.98 \times 10^{-3}$ for x, n, m, k<sub>b</sub>, and k<sub>7</sub>, respectively. The calculated value of 1.0 for m agrees with the observations of Wang, 1 namely; he compared the rates of hydrolysis of the unknown boron-hydrogen intermediates at $-49.4^{\circ}$ , $-43.5^{\circ}$ , $-38.4^{\circ}$ and $-35.6^{\circ}$ with those of a BH2(H20)2+ solution, by plotting $log(P_{\infty} \not= P)$ versus time for both cases. Since the $BH_2(H_2O)_2^+$ species hydrolyzes through the $H_2OBH(OH)_2$ species, a plot of $log(P_m - P)$ versus time is non-linear where the initial slope of the/curved line is proportional to the hydrolysis of BH2(H2O)2+ to H2OBH(OH)2 and the final slope of the curved line in proportional to the hydrolysis of H2OBH(OH)2 to boric acid. Wang found that the initial slopes of the two plots indicate that if the unknown mixture contains BH2(OH2)2+. it is not the only species present. However, the final slopes of the plots indicate that the hydrolysis involves H2OBH(OH)2 immediately before the formation of boric acid. Therefore, from this study by Wang, and the results of this present work, we can say that the final step of the hydrolysis of BaHg in 8 M HCl solutions containing from 0 to 70% methanol by volume, proceeds through a boron-hydrogen species capable of evolving only one mole of hydrogen and this species is most likely H2OBH(OH)2. Because of the complexity of the hydrolysis, which may be due to the activity of the relatively concentrated hydrochloric acid solutions in 88% methanol-water solutions at -78, we are unable to propose a mechanism for the hydrolysis of the triborohydride ion, B3Hg-, in these cold methanolic acidic solutions. Alkaline Solutions. Since HoOBHa is deprotonated by the addition of strong base, forming BH30H-, we postulated that B3H70H2 could likewise be deprotonated. We added excess base to a solution containing B3H7OH2 at -780, and observed no decomposition due to hydrolysis (evidenced by no hydrogen evolution). A boron-11 nmr spectrum of such a solution recorded at -780 showed only 2 broad peaks in a ratio of 1:2 centered ~10.1 ppm downfield and ~39.2 ppm upfield, respectively, from the peak due to the trace of borate present. The spectrum remained unchanged up to -650, and a spectrum recorded at -650 is shown in Figure 9. The split signal at approximately zero Hz (illustrated in the insert of Figure 11), is that of the methoxyborate derivatives expected to exist in alkaline methanol solutions. We observed that in aqueous base, the spectrum of borate consist of one sharp peak (set to zero for reference purposes); however, upon addition of methano! to the aqueous solutions, the signal at approximately zero ppm is split, presumably because of the formation of methoxyborate species corresponding to the general formula $B(OH)_{4-x}(OCH_3)_x^-$ . The two broad peaks at -10.1 and +39.2 ppm can be assigned to the two different types of boron in 83H70H2 if the structure of 83H70H2 is represented as I. Two different types of borons were observed by Dolan et al $^{15}$ in B3H7NCCH3; however the relative positions of the two peaks was the opposite of what we observed, i.e., the weaker peak was upfield from the stronger the peak. We compared $^{11}$ B nmr spectra of BH3OH- with that of H3BNH3 $^{16}$ and found that the same trend existed. In other words, the quartet of the hydroxyborohydride ion was at lower field than the quartet of amine borane. This shift in peak position is due to the fact that the boron with the oxygen attached to it is more positive than the boron with the nitrogen attached to it. As the sample containing the B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> was warmed above -65° it became apparent that the B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> was decomposing, giving borate and borohydride. Figure 10 shows a series of spectra recorded approximately two minutes, one-half hour, two hours, and three hours after the sample had been gradually warmed to -28°. Again using the signal due to B(OH)<sub>4-x</sub>(OCH<sub>3</sub>)<sub>x</sub> as the reference, the broad signals at ~-10 and +39 ppm are due to the two different kinds of boron in B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> and the quintet at approximately 45 ppm is the signal of the BH<sub>4</sub><sup>-</sup> ion. The very broad signal apparent in the background is the signal due to the boron present in the Pyrex probe insert. We integrated the spectra of Figure 10 over a constant area sufficient to count the nuclei present in the B(OH)<sub>4-x</sub>(OCH<sub>3</sub>)<sub>x</sub>- signal and the signal of B(1) of (I), in order to determine the stoichiometry of the decomposition of B3H7OH<sup>-</sup>. The results of the integration are summarized in Table XII. From Table XII it is seen that the ratio of the change in the area of the $B(OH)_{4-x}\{OCH_3\}_x$ signal to the change in the area of B(1) of (I) is 1.07. Keeping in mind that B(1) of I is only one-third of the total boron in $B_3H_7OH^-$ , the results of the integration indicates that one mole of $B(OH)_4^-$ is produced per mole of $B_3H_7OH^-$ during the decomposition of $B_3H_7OH^-$ . The reaction of equation (17) supports this prediction and also agrees with the observation that no hydrogen is produced during the decomposition. Several experiments carried out in vacuo at $-30^\circ$ , revealed that no hydrogen was evolved as $B_3H_7OH^-$ decomposed to $BH_4^-$ and $B(OH)_4^-$ . $$B_3H_7OH^- + 2^{\circ}OH^- + H_2O \rightarrow 2^{\circ}BH_4^- + B(OH)_4^-$$ (17) To further prove or disprove that reaction (17) represents the decomposition of B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup>, we integrated the area of the BH<sub>4</sub><sup>-</sup> and the B(OH)<sub>4-X</sub>(OCH<sub>3</sub>)<sub>x</sub><sup>-</sup> signals in spectrum (d) of Figure 10 and found that the ratio of the area of BH<sub>4</sub><sup>-</sup> to that of the borate complex was only 1.44 instead of 2.00. This discrepancy is to be expected when the experimental conditions are considered, and the fact that the relaxation time, $T_1$ , of BH<sub>4</sub><sup>-</sup> is much longer than $T_1$ of B(OH)<sub>4</sub><sup>-</sup> is taken into account.† terrors in integration of data obtained in the pulse Fourier Transform mode can be caused by insufficient spin relaxation (insufficient recovery time between pulses) 17,18 and insufficient acquisition time (the time associated with truncation of the free induction decay, FID). Any manipulation of the data to increase the signal to noise ratio (exponential multiplication of the FID) will introduce further errors if lines of different widths are to be integrated, as is the case with $BH_4^-$ and $B(OH)_{4-K}(OCH_3)_{X^-}$ or $B(OH)_{4^-}$ . I.. the experiments where the spectra of Figure 10 were recorded. we were interested in following the decomposition of B3H7OH~ as a function of time, and aimed for usable signal to noise ratio on the B(OH)4" signal, which caused sacrifice of accuracies in the integration, because of the above mentioned reasons.† In a control experiment, a mixture containing an accurately known ratio of BHA- to B(OH)A- was run under more ideal conditions: the FID was not exponentially multiplied, and both the acquisition and the delay time were increased. The accuracy of the integration determined from the ratio of the areas of the BH4- and B(OH)4-. was consistently better than 2%. Running the same sample under the conditions used while following the decomposition, resulted in integrated areas consistently 30% below the areas expected for BHA-. Corrections of the ratio of the integrated areas of BH4" and B(OH)4" in spectrum (d) of Figure 10 by 30% gives a calculated ratio of 2.06 for the BH4- to B(OH)4- ratio, which is also consistent with reaction (17). The following scheme illustrates a possible mechanism of the decomposition of B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> to two moles of BH<sub>4</sub><sup>-</sup> and one mole of B(OH) $_4$ <sup>-</sup>. In order to determine if the decomposition was base-catalyzed, we added the same volume of a solution containing B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> ion to nmr tubes containing NaOH solutions of different concentrations at 0°. The $^{11}$ B nmr spectra of the mixtures were recorded at 0° in five minute intervals. The spectra are shown in Figure 11. The hydroxide concentration of the various spectra are: (a) and (b), 0.4 M; (c) and (i), 1 M; (e), 2 M and (f), 5 M. As can be seen from Figure 11, no B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> ion remained in the 5 M NaOH solution, (f), after five minutes at 0°, where as the solution ~0.4 M in hydroxide ion still had an appreciable amount of B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> after ten minutes. The spectra of Figure 11 indicate that the decomposition of B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> is base catalyzed. Since $B_3H_7OH^-$ decomposes in strong base to give $BH_4^-$ and $B(OH)_4^-$ we postulated that its parent compound, $B_3H_8^-$ , would undergo a similar decomposition process, also producing $BH_4^-$ and $B(OH)_4^-$ . Potassium octahydrotriborate, $KB_3H_8$ , was added to a test tube containing $15 \, \underline{M}$ NaOH, and the tube was placed in an $BO^0$ oil bath. As the salt dissolved in the hot NaOH solution, hydrogen was evolved, (evidenced by rapid bubbling of the solution). After approximately 10 minutes at $80^{\circ}$ , the reaction was stopped by placing the test tube in a room temperature water bath. Some of the solution was transferred to an nmr tube and the proton spectrum was recorded. The spectrum was identical to that expected for borohydride, showing four sharp very intense lines with a coupling constant of 27.5 cps and seven less intense with a coupling constant of approximately 80 cps. The reaction was carried out in vacuo in order to determine the amount of hydrogen evolved. In three separate experiments, two at $80^{\circ}$ and one at $40^{\circ}$ the amount of hydrogen evolved corresponded to 4.12, 4.18, and 4.24 moles of hydrogen per mole of $83H8^{\circ}$ , respectively. If the decomposition of $83H9^{\circ}$ follows the same scheme as that suggested for the decomposition of $83H70H^{\circ}$ , the following reaction can be written: $$B_3H_8^- + 2 OH^- + 2 H_2O \longrightarrow 2 BH_4^- + B(OH)_4^- + 5 H_2.$$ (18) If initial attack of hydroxide leads to the formation of B3H70H-, reaction (17) could enter into competition with reaction (18), causing the amount of hydrogen to be less than five moles per $B_3H_8^-$ . This being the case, $^{11}B$ nmr spectra should show that the ratio of the $BH_4^-$ quintet to the borate signal is greater than 0.5 in a completely decomposed $B_3H_8^-$ sample. To check this hypothesis, some KB3H8 was placed in an nmr tube with 16 M NaOD and the mixture heated at 75 to 80°. After approximately one hour, the tube was removed from the hot bath and cooled to room temperature, and the $^{11}B$ nmr spectrum of the solution recorded. The solution contained signals attributable to only $BH_4^-$ and $B(OH)_4^-$ but in the ratio of 0.7:1 rather than 0.5:1, indicating that after the formation of $B_3H_7OH^-$ , reactions (17) and (18) took place with reaction (18) being dominant. The rate of hydrogen evolution was followed as a function of time at 500 in 15 and 10 M NaOH. The hydroxide concentration was at least 50 times that of the B3Hg- ion, allowing the rate data to be interpreted as those of a pseudo-first-order reaction. The observed rate constant was $2.81 \times 10^{-3} \, \mathrm{min}^{-1}$ and $9.70 \times 10^{-4}$ $\min^{-1}$ in 15 and 10 M NaOH respectively. The dependence of the observed rate constants on hydroxide ion concentration, prompted us to do an initial-rate study at various concentrations of hydroxide ion at 600, in order to determine the order of the reaction with respect to hydroxide ion concentration. The results are listed in Table XIII, $X = B_3H_8^-$ . A plot of log $\frac{dx}{dt}$ vs. H<sub>-</sub> (See Figure 12) is linear but has a slope of only 0.52. The fact that we are using H\_ values determined at 25019 for studies done at 600 could account for the slope being less than 1. The effect of increasing the temperature becomes more pronounced as the concentration increases, i.e., the acidity function decreases by as much as 0.6 in concentrated H2SO4 upon going from 15 to 550, but remains unchanged in dilute (≤24% by weight) sulfuric acid solutions over the same temperature range. If the effect of temperature on H\_ follows the same trend, the slope of the line in Figure 11 would be closer to 1, indicating that the decomposition of BaHg in strong base is first-order in hydroxide concentration. Attempts were made to precipitate the B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> ion by adding to the cold (-78°) solutions a cold (-78°) methanol solution containing tetrabutylammonium iodide. The solutions containing the B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> ion were checked by <sup>11</sup>B nmr before and after adding the (Bu)<sub>4</sub>NI solution, and the intensity and the position of the B<sub>3</sub>H<sub>7</sub>OH<sup>-</sup> peaks remained unchanged. Also, the salt that did precipitate out of solution was filtered at -78° and washed with cold 89% methanol-water. After warming to room temperature the salt was found to be inert to 6 $\underline{M}$ HCl, indicating that it was probably only (Bu)<sub>4</sub>NCl or (Bu)<sub>4</sub>NI that precipitated at -780 rather than a boron-hydride species. Table I. Ratio of hydrogen produced per mole $B_3Hg^-$ at $-78^{\rm O}$ in 88% methanol solutions as a function of hydrogen ion concentration. | Total amount | | | | |----------------|-------------|-----------------------------|-------------------------------------------------| | [H+], <u>M</u> | B3H8-, mmol | of<br>H <sub>2</sub> , mmol | H <sub>2</sub> /B <sub>3</sub> H <sub>8</sub> - | | 0.25 | 2.01 | 1.94ª | 0.97 | | 1.00 | 1.10 | 1.13 | 1.03 | | 1.25 | 1.00 | 0.99 | 0.99 | | 1.50 | 1.02 | 1.05 | 1.03 | | 2.95 | 0.70 | 0.73 | 1.04 | | 4.02 | 0.97 | 1.00 | 1.03 | | 8.03 | 1.02 | 1.10 | 1.08 | <sup>&</sup>lt;sup>a</sup>Calculated using P value, obtained from a least squares fit of the change in pressure as a function of time, and the ideal gas law, PY = NRT, where $\mathbf{v}$ , the volume of the system was known, and T = ambient temperature of the room. Table II. Ratio of hydrogen produced, in 8 $\underline{M}$ HC1 solutions at -780 during the hydrolysis of B<sub>3</sub>Hg<sup>-</sup> as a function of percent CH<sub>3</sub>OH used. | %v/v<br>CH3OH | Reaction<br>half-time, hours <sup>a</sup> | H <sub>2</sub> prodyced <sup>b</sup><br>at -78 | Total H <sub>2</sub> C<br>produced | H <sub>2</sub> at<br>H <sub>2</sub> (tot | | |---------------|-------------------------------------------|------------------------------------------------|------------------------------------|------------------------------------------|------| | 0 | - 0.50 | 3.01 <sup>d</sup> | 6.06 <sup>d</sup> | 0.50 <sup>d</sup> | 0.01 | | 20 | 0.60 | 2.83 | 5.63 | 0.50 | | | 36 | 0.60 | 3.07 | 6.05 | 0.51 | | | 60 | 0.50 | 3.76 | 7.57 | 0.50 | | | 65 | 0.42 | 3.51 | 6.71 | 0.52 | | | 70 | 1.67 | 2.45 | 5.43 | 0.45 | | aReaction half-time, defined as time required for evolution of half the total amount of hydrogen evolved at -780. bDetermined by measuring the 1.stal amount of hydrogen evolved after waiting 8-12 hours after rate of hydrogen evolution had stopped or become immeasurable. CDetermined after warming solutions to room temperature allowing for complete hyrolysis. dAverage of nine runs. Table III. Change in pressure as a function of time for the hydrolysis of B<sub>3</sub>H<sub>8</sub> at [H<sup>+</sup>] = 1.25 $\underline{\text{M}}$ and at -78°, in 88% methanol-water. | Time, | min Pressure, | cm | |-------------|---------------|----| | 5 | 0.17 | • | | 10 | 0.36 | | | 30 | 0.99 | | | 40 | 1.27 | | | 100 | 2.71 | | | 120 | 3.07 | | | 140 | 3.41 | | | 160 | 3.77 | | | 180 | 4.00 | ÷, | | 200 | <b>₽.2</b> 5 | | | 220 | 4.49 | | | 250 | 4.86 | 1 | | 280 | 5.04 | | | 300 | 5.15 | | | 320 | 5.27 | • | | <b>34</b> 0 | 5.34 | | | ∞ a | 6.30 | | | | | | $<sup>^{\</sup>mbox{\scriptsize a}}\mbox{\scriptsize The pressure at infinity was determined from a least squares fit of the data.$ Table IV. Effect of acid concentration on the value of the observed pseuo-first-order rate constant at $-78^{\circ}$ , for the hydrolysis of KB<sub>3</sub>H<sub>8</sub>. | 0.20 0.06 0.39a 0.25 0.06 0.42a 0.50 0.04 1.61 0.60 0.032 1.81 0.75 0.032 3.04 | 03 | |------------------------------------------------------------------------------------------------------------------------------------------------|----| | 0.50 0.04 1.61<br>0.60 0.032 1.81 | | | 0.60 0.032 1.81 | | | | | | 0.75 0.032 3.04 | | | | | | 1.00 0.034 2.90 3.85 | | | 1.25 0.031 3.60 5.62 | ,- | | 1.50 0.034 7.04 | | aCalculated using the rate expression, $$\frac{-d[B_3H_8^-]}{dt} = k_1[B_3H_8^-][H^+] .$$ Table V. The observed rate constants, $k_2$ , as a function of $[H^+]$ for the hydrolysis of $B_3H_70H_2$ at $-45^\circ$ . | н⁺ , <u>м</u> | k <sub>2</sub> , min <sup>-1</sup> x 10 <sup>3</sup> | |---------------|------------------------------------------------------| | 3.00 | 7.01 | | 1.50 | 2.94 | | 1.25 | 3.28ª | | 1.00 | 3.22 | | 0.25 | 2.72 | $<sup>^{\</sup>rm a}\text{Calculated}$ from the rate constant obtained experimentally at $-40^{\rm 0}$ and H $^+$ = 1.25 M, i.e., 4.38 x $10^{-3}$ min $^{-1}$ , by assuming that the reaction rate increases by a factor of two for each ten degree rise in temperature. Table VI. Hydrogen pressure as a function of time for the hydrolysis of $B_3H_70H_2$ in 3.5 M HCl at $-45^\circ$ . | Time, | min Pressure, | стт . | |-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | Time, 5 15 20 30 40 50 60 70 80 90 100 120 140 160 180 200 220 240 260 285 300 330 330 330 360 390 420 450 | min Pressure, 1.77 3 27 4.31 6.42 8.81 9.96 11.46 12.91 14.24 15.44 16.47 18.36 20.27 21.67 23.01 23.90 24.96 25.88 26.71 27.54 27.99 29.04 29.42 30.10 30.45 31.05 | | | | | | Table VII. The calculated rate constants, $k_2$ and $k_3$ as a function of hydrogen ion concentration. | k <sub>2</sub> , min-1 | k <sub>2</sub> ', min <sup>-1</sup> | kg, min-1 <u>M</u> -1 | |-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2.92 x 10 <sup>-3</sup> | 2.72 x 10 <sup>-3</sup> | -1.48 x 10 <sup>-</sup> 3 | | 3.50/x 10 <sup>-3</sup> | 3.22 x 10 <sup>-3</sup> | -1.72 x 10 <sup>-3</sup> | | 3.69 x 10 <sup>-3</sup> | $3.28 \times 10^{-3}$ | -1.68 x 10-3 | | $3.64 \times 10^{-3}$ | $2.94 \times 10^{-3}$ | -2.53 x 10 <sup>-3</sup> | | $7.02 \times 10^{-3}$ | 7.01 x 10 <sup>-3</sup> | $1.04 \times 10^{-5}$ | | 6.89 x 10 <sup>-3</sup> | | 6.99 x 10 <sup>-3</sup> | | 6.94 x 10-3 | | 6.31 x 10 <sup>-3</sup> | | 1.28 x 10 <sup>-2</sup> | 1 | $2.16 \times 10^{-1}$ | | | 2.92 x 10 <sup>-3</sup> 3.50 x 10 <sup>-3</sup> 3.69 x 10 <sup>-3</sup> 3.64 x 10 <sup>-3</sup> 7.02 x 10 <sup>-3</sup> 6.89 x 10 <sup>-3</sup> 6.94 x 10 <sup>-3</sup> | 2.92 x 10 <sup>-3</sup> 2.72 x 10 <sup>-3</sup><br>3.50/x 10 <sup>-3</sup> 3.22 x 10 <sup>-3</sup><br>3.69 x 10 <sup>-3</sup> 3.28 x 10 <sup>-3</sup><br>3.64 x 10 <sup>-3</sup> 2.94 x 10 <sup>-3</sup><br>7.02 x 10 <sup>-3</sup> 7.01 x 10 <sup>-3</sup><br>6.89 x 10 <sup>-3</sup><br>6.94 x 10 <sup>-3</sup> | Table VIII. Amount of boric acid produced during the hydrolysis of KB $_3$ Hg in 8 M HCl at -780, as a function of "dryness". | $\frac{H_a^+}{H_a^+ + H_b^+} = D$ | mmo1 B(OH) <sub>3</sub> | |-----------------------------------|-------------------------| | .88 | 1.45 | | .90 | 1.38 | | .91 | 1.31 | | .92 | 1.29 5% <sup>a</sup> | | .93 | 1.25 3% <sub>b</sub> | <sup>&</sup>lt;sup>a</sup>Average of 3 experiments. bAverage of 5 experiments. Table IX. Raman Frequency Assignments for the "B2H3" solution. $^{a} \label{eq:B2H3}$ Recorded at -780-800. | Frequency, cm <sup>-1</sup> | Assigment | |-----------------------------|------------------------------------------------------------------------------------| | 705 | BO <sub>3</sub> bending (B(OH) <sub>3</sub> or B(OCH <sub>3</sub> ) <sub>3</sub> ) | | 800-820 | BOC bending | | 1010 | BOH bending and CO stretching | | 1100-1112 | CH <sub>3</sub> rocking | | 1150 | CH <sub>3</sub> bending, symmetric | | 1460 | CH <sub>3</sub> bending. asymmetric | | 2430 | ВН | | 2870-3000 (not shown) | CH stretching, symmetric and asymmetric | | 3200 (not shown) | OH stretching | | 3001 | | aSolvent - 20% methanol - water. Table X. Hydrogen Pressure as a Function of time for $[H^+] = 8 \text{ M}$ at -78°, for the hydrolysis of BgHg<sup>-</sup>. | [B3H87] = 0.015, 0% CH3OH | | $[B_3H_8^-] = 0.0$ | $[B_3H_8^-] = 0.013, 70\% CH_3OH$ | | |---------------------------|----------------|--------------------|-----------------------------------|--| | Time, min | Pressure, cm | Time, min | Pressure,cm | | | 4 | 6.81 | 3 | 6.39 | | | 10 | 8.85 | .8 | 6.57 | | | 15 | 9.12 | 13 | 7.15 | | | 20 | 10.27 | 20 | 7.78 | | | 25 | 11.26<br>12.19 | 25<br>30 | 8.14 | | | 30 | 13.13 | 30<br>40 | 8.61<br>9.39 | | | 35<br>40 | 13.19 | 50 | 10.23 | | | 50 | 15.48 | 60 | 10.98 | | | 60 | 16.99 | 80 | 12.52 | | | 80 | 19.37 | 100 | 13,85 | | | 100 | 21.07 | 120 | 14.90 | | | 120 | 22.44 | 140 | 15.89 | | | 140 | 23.28 | 160 | 16.86 | | | 160 | 23.96<br>24.52 | 180 | 17.61 | | | 180<br>220 | 25.31 | 200<br>220 | 18.55<br>19.31 | | | 240 | 25.55 | 240 | 19.85 | | | 260 | 25.77 | 270 | 20.65 | | | 280 | 25.91 | 300 | 20.85 | | | 300 | 26.03 | 330 | 21.56 | | | 330 | 26.19 | 360 | 22.11 | | | | | 390 | 22.58 | | | | | 420 | 22.96 | | | | | 480 | 23.53 | | | | | 510 | 23.77 | | | | | 600<br>630 | 23.98<br>24.11 | | | | | <b>66</b> 0 | 24.76 | | | | | 690 | 24.37 | | | | | 720 | 24.48 | | | | | 840 | 24.57 | | | | | 900 | 24.66 | | | | | 1012 | 24.87 | | | | | 1115 | 25.01 | | | | | 1280 | 25.04 | | | | | 1400 | 25.17 | | Table XI. Hydrogen Pressure as a Function of time for [H+] = 8 $\underline{M}$ , [CH30H] = 70% v/v -360, hydrolysis of unknown species. | | Pressure, cm | Time, min | | |---|------------------------|------------|--| | - | 2.01 | 0<br>5 | | | | 3.77 | 5 | | | | 5.62 | 10 | | | | 7.30 | 15 | | | | 8 <b>.9</b> 4 | 20 | | | | 10.34 | 25 | | | | 13.06 | 35 | | | | 15.10 | 45 | | | | 16.68 | 55 | | | | 19.25 | 75 | | | | 20.59 | 95 | | | | 22.10 | 115 | | | | 22.98 | 135 | | | | 23.76 | 155 | | | | 24.24 | 195 | | | | 25.08 | 215 | | | | 25.70 | 235 | | | | 26.01 | 255 | | | | 26.27 | 275 | | | | 26.70 | 295 | | | | 27.50 | 375 | | | | 27.60 | 405<br>440 | | | | 27.90<br>28. <b>39</b> | 440<br>480 | | | | 28.48 | 510 | | Table XII. The integrated area $^{\rm a}$ of the spectra of Figure 10. | SPECTRUM | Integrated<br>area of<br>B(1) | Integrated<br>area of<br>B(OH)4-x(OCH3)x | |----------|-------------------------------|------------------------------------------| | (a) | 86.76 | 13.24 | | (b) | 43.28 | 56.72 | | (c) | 14.39 | 85.61 | <sup>a</sup>The constant integral integrated was from -17.23 to +2.28 ppm $(B(OH^*)_{-x}(OCH_3)_x = 0)$ . Table XIII. Initial rates,dx/dt, of the decomposition of KB3Hg^a at $60^D$ as a function of [OH-]. $x = KB_3H_8$ | OH- , M | $dx/dt,sec^{-1} \times 10^3$ | H- | |---------|------------------------------|-------| | · 5 | 0.88 | 15.20 | | 6 . | 1.21 | 15.40 | | 7 | 1.43 | 15.62 | | 8 | 1.94 | 15.75 | | 9 | 2.50 | 15.97 | | 10 | 3.31 | 16.20 | | 11 | 4.00 | 16.42 | | 12 | 5.52 | 16.58 | | 13 | 6.37 | 16.76 | | 14 | 7.70 | 16.93 | | 16 | 12.50 | 17.30 | ## Figure Captions - 1. Reaction set up used for initial rate studies. - Reaction vessels used to determine stoichiometry of B(OH)<sub>3</sub> produced during the reaction of KB<sub>3</sub>H<sub>8</sub> with 8 MHCl at -78. - 3. Semi-logarithmic plot of ( $P_{\infty}$ P) versus time for the hydrolysis of KB3H8 in [H<sup>+</sup>] = 1.25 $\underline{M}$ at -78°, in 88% methanol-water. - Plot of observed rate constants versus hydrogen ion concentration for the hydrolysis of KB3HB at -780. - 5. Semi-logarithmetic plot of $(P_{\infty} P)$ versus time for the hydrolysis of $B_3H_70H_2^-$ in $[H^+] = 1.25$ M and at $-45^\circ$ . - 6. Plot of $1/(P_{\infty}-P_{t})$ versus time for the hydrolysis of $B_{3}H_{7}OH_{2}$ ion 4 M HCl at $-45^{\circ}$ . - 7. Plot of B(OH)3/KB3Hg versus "dryness". - Raman Spectrum of a solution containing the unknown boronhydride species produced during the hydrolysis of B3Hg<sup>-</sup> at -78° in B M HCl containing 20% methanol by volume. - 9. $^{11}$ B nmr spectrum of B<sub>3</sub>H<sub>7</sub>OH- solution recorded at -550. - 10. IlB nmr spectra showing the decomposition of B3H7OH- as a function of time at -28°. (a), t = 2 minutes; (b), t = 30 minutes; (c), t = 2 hours; (d), t = 3 hours. - 11B nmr spectra recorded at 0°, illustrating the base catalized decomposition of B3H7OH\*. - (a) Spectrum of B3H7OH<sup>-</sup> as prepared, [OH<sup>-</sup>] = 0.4 M, after being at 00 for five minutes; - (b) Same as (a), five minutes later. - (c) B3H7OH- in 1 M NaOH after being at 00 for five minutes. - (d) Same as (c), five minutes later. - (e) B3H7OH- in 2 M NaOH after being at 00 for five minutes. - (f) $B_3H_7OH^-$ in 5 M NaOH after being at $O^0$ for five minutes. - (g) The $B(OH)_{4-X}(OCH_3)_{X}^-$ signal expanded (in order to show splitting) is shown in the insert of (a). - 12. Plot of log(dx/dt) versus H- for the decomposition of B3Hg<sup>-</sup> in strong base at $60^{\circ}$ , where X = B3Hg<sup>-</sup>. Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 7 XBL 7710-6195 Fig. 8 Fig. 9 Fig. 12 ## References - F. T. Wang, Ph.D. Thesis, University of California, Berkeley, California, 1972. - 2 G. W. Parshall, "Inorganic Syntheses," 15, 111 (1974). - K. C. Nainan and G. E. Ryschkewitsch, Inorg. Nucl. Chem. Lett., 6, 767 (1970). - G. E. F. Lundell, H. A. Bright and J. 1. Hoffman, "Applied Inorganic Analysis," John Wiley and Sons, Inc. New York, N.Y., 1963, p. 753. - 5. F. T. Wang and W. i. Jolly, Inorg. Chem., 11, 1933 (1972). - J. D. Roberts and M. C. Caserio, "Modern Organic Chemistry," W. A. Benjamin, Inc., 1967, p. 291. - C. Capellos and B. H. J. Bielski, "Kinetic Systems," John Wiley and Sons, Inc., New York, N. Y., 1972, p. 85. - 8. P. Salomaa, Acta. Chem. Scand. 11, 125, (1957). - D. E. Bethall and N. Sheppard, Trans. Faraday Soc., <u>51</u>, 9 (1955). - F. A. H. Schreinemakers, Z. Phyzikal Chem., <u>11</u>, 75 (1893). - R. R. Servoss and H. M. Clark, J. Chem. Phys., <u>26</u>, 1175 (1957). - R. R. Servoss and H. M. Clark, J. Chem., Phys., <u>26</u>, 1179 (1957). - 13. G. E. Ryschkewitsch and K. Zutshi, Inor. Chem., 9, 411 (1970). - N. E. Miller, D. L. Reznicek, R. J. Rowatt, and K. K. Lundberg, Inorg. Chem., <u>8</u>, 862 (1969). - P. J. Dolan, J. H. Kindsrater, D. G. Peters, Inorg. Chem., 15, 2170 (1976). - 16. T. S. Briggs and W. L. Jolly, unpublished work. - 17. G. C. Levy and I. R. Peat, J. Magn. Res., 18, 500 (1975). - T. C. Farrar and E. D. Becker, "Pulse and Fourier Transform NMR," Academic Press, New York 1971, Chapter 7. - 19. P. Tickle, A. G. Briggs, and J. M. Wilson, J. Chem. Soc. $\underline{B}$ , 65 (1970). ## Acknowledgements The author would like to thank Professor W. L. Jolly for his advise and guidance during the course of this research. I would also like to thank Professors R. E. Powell and Jack Kirsch for the many helpful discussions concerning the kinetics of this study. A special thanks to Rudi Nunlist for the tremendous amount of time and effort that he put into recording and discursing the boron-11 nmr spectra. Thanks to Richard Biagioni and Lionell Graham for helping me obtain the low temperature Raman spectra and to Al Bakke for his assistance in the computer analysis of the kinetic data. To my husband, Ray, thank you for the courage and strength that you gave me, without it this degree would not have been possible. Thank you for being a full time father and a part time mother to our precious son, Kwame, and for helping him to understand the much used statement "soon mommy will have time". This work was supported by the U.S. Energy and Development Administration.