UC Irvine UC Irvine Previously Published Works

Title

Unusual magnetic behavior of TmIr2 and YbIr2

Permalink

<https://escholarship.org/uc/item/5nm246dj>

Journal

Journal of Magnetism and Magnetic Materials, 47(FEB)

ISSN 0304-8853

Authors

Willis, JO Smith, JL Fisk, Z

Publication Date

1985-02-01

DOI

10.1016/0304-8853(85)90500-1

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at <https://creativecommons.org/licenses/by/4.0/>

Peer reviewed

UNUSUAL MAGNETIC BEHAVIOR OF TmIr₂ and YbIr₂

J.O. WILLIS, J.L. SMITH and Z. FISK

Materials Science and Technolow Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

In contrast to the other magnetic Rare Earth (RE) ions for which the cubic Laves $REIr₂$ compound is ferromagnetic, YbIr₂ and $Tmlr₂$ are antiferromagnetic below 0.40 and 0.05 K, respectively. Both are trivalent above 4 K, with a possible reduced moment for TmIr₂below 0.3 K. In addition, CeIr₂ and LuIr₂ are superconductive below 0.20 and 0.23 K, respectively.

The predominant behavior of the magnetic Rare Earth $(RE)Ir₂$ (C15, cubic Laves phase) intermetallic compounds is local moment paramagnetism at high temperature and ferromagnetic order at low temperature, as reported by Bozorth et al. [1]. Curie points T_c were found to vary roughly as $(g-1)^2J(J+1)$, the De Gennes factor [2], and ordered moment values to fall between $2S$ and gJ . Here S is the spin and J is the total quantum number, and g is the Landé g factor. The data for Eu-, Tm- and $YbIr_2$ were questionable as pointed out by the authors of ref. [l] because of unusual magnetic behavior for $Eulr₂$ and sample preparation difficulties for the other two compounds. The behavior of EuIr, was resolved when Matthias, Fisk and Smith [3] reported superconductivity at 0.2 K, proving that here Eu is in its purely trivalent, nonmagnetic state.

To reexamine the properties of the often mixed-valent elements Yb and Tm in the $REIr₂$ system, we have prepared single crystals by the flux growth technique using a Cu solvent. The crystals were all cubic Laves phase; lattice parameters of 0.74638(l) nm for YbIr, and $0.74736(2)$ nm for TmIr₂ were measured. Susceptibility measurements were made in a Faraday magnetometer over the range 230-4 K. A Curie-Weiss fit to the susceptibility $\chi = (p_{\text{eff}}^2/8)/(T - \Theta)$ yields $p_{\text{eff}} =$ 7.57 μ_B and $\Theta = -4$ K for TmIr₂ and $p_{eff} = 4.49 \mu_B$ and $\Theta = -4$ K for YbIr₂, in good agreement with the trivalent free-ion values for the effective moments. The ac susceptibilities were measured from 4 to 0.012 K with arbitrary sensitivity, and therefore no low temperature effective moment values could be obtained. A constant was subtracted from the ac susceptibility to correct for a temperature-independent paramagnetic background. The constant χ_{ac} (less than about 30% of the peak susceptibility) which gave the best straight line fit to $1/\chi$ was employed in the analysis. For YbIr₂ this

0304-8853/85/\$03.30 0 Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

resulted in a Θ of -0.3 K, much smaller than the high temperature extrapolated data. In addition, YbIr, has a cusp in the ac susceptibility at 0.42 K, indicating antiferromagnetic ordering; see fig. 1. Helping to confirm this assertion, we find that the cusp moves to lower temperatures in an applied magnetic field at the rate of -1.5 K/T. The situation for TmIr₂ is more complex. Below 4 K, a linear fit to $1/\chi_{ac}$ extrapolates to $\Theta \approx -1.4$ K, compared to $\Theta = -4$ K from the high temperature data. In addition, at 0.3 K, χ_{ac} has a discontinuity in the slope (steeper at lower temperature) followed by a cusp at 0.05 K, seen in fig. 2. The cusp moves to lower temperatures in a field at the rate of -2.5 K/T. We have also grown single-crystal CeIr₂ and LuIr₂; these compounds are superconductive below 0.20 and 0.23 K with upper critical fields of 0.11 and 0.10 T, respectively.

The cubic Laves C15 structure with $REIr₂$ appears

Fig. 1. Inverse ac susceptibility vs. temperature for $YbIr_2$. The line is only a guide to the eye.

Fig. 2. Inverse ac susceptibility vs. temperature for TmIr,. The solid lines are only a guide to the eye.

unfavorable for mixed valence formation, with the usual exception of $Celr₂$ which is reported to have a valence of 3.21 from L_{III} X-ray absorption measurements [4]. EuIr, is superconducting at *0.2* K and thus must be in its trivalent $J = 0$ configuration. In contrast, EuRh, is not trivalent; rather it is mixed valent as determined from 151 Eu Mössbauer effect measurements [5] and is strongly paramagnetic at low temperatures, indicating a probable divalent state. Generally then, the nonmagnetic RE ions form superconductors in the $REIr₂$ series; the magnetic RE ions order magnetically. Ferromagnetic order is the rule except for Yb- and TmIr₂ which are antiferromagnetic with Neél temperatures much lower than the Θ values; this may be due to crystal field effects. $Tmlr₂$ has an additional susceptibility feature below 0.3 K which may be interpreted as a moment reduction. This may be due to crystal-field effects, the onset of mixed valency or quadrupolar ordering as seen in TmZn slightly above a magnetic ordering temperature [6]. The very low temperatures at which these effects occur make further investigation most difficult; they also indicate that extremely small energies are responsible for this unusual behavior.

As a further note on the unusual properties of these materials, we comment on arc melted $\text{Im}_{0.2}\text{Ir}_{0.8}$. This composition forms a eutectic of Ir and $Tmlr₂$ as determined by X-ray diffraction. Susceptibility measurements on as-cast material yield $p_{\text{eff}} = 7.44 \mu_{\text{B}}$ and $\Theta =$ -2.6 K, consistent with a full, trivalent moment on the Tm ion. Superconductivity is observed by ac susceptibility techniques at 1.5-1.8 K. Annealing this sample (16 days, 1000° C) destroys superconductivity above 0.1 K, the transition temperature of pure Ir. We speculate that one of two phenomena may be occurring: enhanced superconductivity [7] in Ir due to lattice mismatch with TmIr, giving rise to a lattice expansion and softening in Ir, which has been shown to lack credibility [8]; or the first case of superconductivity in a binary compound of undetermined crystal structure containing a rare earth element carrying its full local moment at low temperatures. At present, more experimental work needs to be done to confirm either of these hypotheses.

Acknowledgements

We would like to thank R.B. Roof for the X-ray diffraction measurements and B.R. Cooper for discussions. This work was performed under the auspices of the USDOE.

References

- **[l]** R.M. Bozorth, B.T. Matthias, H. Suhl. E. Corenzwit and D.D. Davis, Phys. Rev. 115 (1959) 1595.
- [2] P.G. de Gennes, Comp. Rend. 247 (1958).
- [3] B.T. Matthias, Z. Fisk and J.L. Smith, Phys. Lett. 72A (1979) 257.
- [4] D. Wohlleben and J. Röhler, J. Appl. Phys. 55 (1984) 1904.
- [5] E.R. Bauminger, I. Felner, D. Froindlich, D. Levron, I. Nowik, S. Ofer and R. Yanovsky, J. de Phys. Colloq. 35 (1974) C6-61.
- [6] P.M. Levy, P. Morin and D. Schmitt, Phys. Rev. Lett. 42 (1979) 1417.
- [7] B.T. Matthias. G.R. Stewart, A.L. Giorgi, J.L. Smith, Z. Fisk and H. Barz, Science 208 (1980) 401.
- [S] M.L. Cohen and T.H. Geballe, in: Proc. 4th Conf. on Superconductivity in d- and f.Band Metals, eds. W. Buckel and W. Weber (KfK GmbH, Karlsruhe, 1982) p. 619.