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Component-based software development technologies have been advocated for years [31]. 
Recent developments in the software industry are posing to make it as easy to develop a 
distributable software component as it is to code a traditional software module [21, 23]. An 
abundance of standard-binding inexpensive software components is about to emerge. It will soon 
be possible to use .redundant software components to enhance application reliability or to improve 
system performance without doubling or tripling component costs. Component integration cost, 
however, remains high. Before average software developers can take advantage of the coming 
abundance of low-cost software components, component integration techniques must be improved 
so that the benefits of adopting redundant components outweigh component integration cost. 

Redundant Arrays of Independent Components (RAIC) is a technology that uses groups of 
similar or identical distributed software components to provide reliable services to software 
applications. The RAIC architectural style is a special architectural style designed to take 
advantage of redundant independent components in a systematic way. The types and relations of 
components in a RAIC is the basis of how they should be integrated. After component types and 
various component relations are determined, an appropriate RAIC level and an invocation model 
can be adopted. The RAIC level and the invocation model dictate how a RAIC controller 
functions. 

RAIC controllers use the just-in-time component testing technique to check component status 
and detect component failures. RAIC feelers provide other status information to assist decisions in 
component selection. RAIC allows components in a redundant array to be added or removed 
dynamically at run-time. Component state recovery techniques are used to bring replacement 
components or newly added components up-to-date. 

Together, these systematic strategies and supporting technologies enable software developers 
to integrate redundant software components in an array with no or little coding. They can then use 
the array as a single component. Thus, by following the guidance of the RAIC architectural style, 
component integration cost can be lowered. 

This technical report describes of RAIC and the RAIC architectural style. It presents 
categorizations and definitions of component types, component relations, RAIC levels, and 
invocation models. It also discusses the just-in-time testing and component state recovery 
techniques used in RAIC. A number of examples and scenarios are given to illustrate different 
types of RAIC. Future research directions in RAIC are also outlined. 
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1 .. INTRODUCTION 
Component-based software development technologies [18, 31] have been advocated for years. Various 

component services have also been available in commercial software for several years [ 16, 17, 36]. With 
the introduction of Microsoft .NET platform [21, 28] and the release of tools such as Visual Studio .NET 
[23] that brings the creation of XML web services [10] to the masses, it is reasonable to expect distributed 
software components to boom just as the explosion of HML web pages fostered by industry standards and 
tools a few years ago [3]. More application will be built on top of third-party software components or 
XML web services, which will likely be free or very inexpensive to use, just as today's HTML web pages. 
Unlike in-house components or off-the-shelf ones, however, these third-party XML web services are not 
under the control of application developers. They can be upgraded without notice even when applications 
are running. Such uncontrollable upgrades would undoubtedly increase the chance of component failures, 
in which case it becomes necessary to seek alternatives. In addition, the upcoming abundance of these 
inexpensive components will probably make alternatives available at very low cost. Using redundant 
components to enhance application reliability becomes a natural solution. 

Reliability-through-redundancy is not new. From redundant cooling systems of space shuttles in the 
non-computer world, to redundant hard disks of RAID in the hardware world, to redundant voting aircraft 
control systems in the software world, redundancy has been used to enhance reliability. Software 
redundancy has not been popular outside safety-critical systems mainly because of the high cost of both 
creating redundant systems or components and integrating them. The coming abundance of XML web 
services can solve the former problem, but not the latter one. When the cost of integration exceeds the 
benefits of using redundant components, few will adopt redundancy even when all the components are 
free. 

Redundant Arrays of Independent Components (RAIC) is a technology that attempts to achieve higher 
software reliability by using more than one identical or similar software components redundantly. The 
basic idea is that when one software component fails for whatever reason, another one can be used in 
place of it so that software applications that use the components remain operational. As discussed above, 
RAIC could potentially come with high component integration cost. The RAIC architectural style is a way 
to address this problem [13]. It attempts to lower integration cost by using a clearly defined systematic 
approach. The RAIC architectural style describes the assumptions and constraints that various 
fundamental RAIC supporting technologies impose on the architecture of systems [2, 30]. These RAIC­
supporting technologies include component selection strategies, the just-in-time component testing 
technique, and component state recovery techniques. The RAIC architectural style enables system 
designers to perform preliminary analyses on whatever components they intend to use and decide on the 
best way to integrate them. The RAIC-supporting technologies enable system developers to implement a 
RAIC style system with ease. 

In this technical report, RAIC is defined and explained. Various aspects of RAIC, such as component 
types, component relations, RAIC levels, and invocation models, are described. Two techniques behind 
RAIC controllers, just-in-time component testing and component state recovery, are presented. Finally, 
future research directions in RAIC are discussed. 

Through this report, a Light example is used. There is a Light component that provides a simple 
software light service, which simulates an adjustable light. The light can be turned on and turned off. The 
intensity of the light can be adjusted through another method call. Several Light applications use the Light 
components in various fashions. 

Table 1 lists a skeleton code in C# that defines the /Light interface and the Light component [5]. The 
Light component was used in [35]. 
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Table 1. /Light and Light in C#. 
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2. THE RAIC ARCHITECTURAL STYLE 
Under the RAIC architectural style, redundant software components are grouped into an array. A 

redundant component array (also referred to as RAIC) is a group of similar or identical components. The 
group uses the services from one or more components inside the group to provide services to applications. 
On the other hand, applications under the RAIC architectural style connect to the RAIC and use it as a 
single component, as shown in Figure 2, instead of using individual components directly, as illustrated in 
Figure 1. RAIC applications typically do not have any knowledge of the underlying individual 
components with RAIC. 

Compcment1 
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1--~~~~ I 
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(~---.J 
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Figure 1. An application uses individual components directly. 
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Figure 2. An application interfaces with a RAIC instead of individual components. 

2.1 Component Types 

Depending on the types and relations of components in a RAIC, it can be used for many different 
purposes under different types of RAIC controllers. A RAIC controller contains software code that 
coordinates individual software components in a RAIC. In ad hoc implementations of component 
integration, code for similar purposes is sometimes called "glue code". Connectors, as defined in software 
architecture literatures, usually take the responsibilities of RAIC controllers, among other things. RAIC 
controllers can be regarded as a special form of connectors. Not all types of RAIC controllers apply to all 
combinations of component types and relations. It is essential to determine component types and relations 
prior to configuring a RAIC. 

There are mainly two types of components in terms of whether or not they maintain internal states: 
stateless components, denoted by" ()",and stateful components, denoted by" [ J ". 

A RAIC can be either static, denoted by"-", or dynamic, denoted by"~". As an example, expression 
"RAIC~ ()"represents a dynamic array of stateless components. 
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Components in a static RAIC are explicitly assigned by mechanisms outside the RAIC, whereas 
components in a dynamic RAIC may be discovered and incorporated by the RAIC controller during run­
time. Dynamic RAIC controllers may use directories such as UDDI to locate new components [32]. Either 
way, RAIC controllers allow addition or removal of components during run-time and take care of 
component state recovery when necessary as new stateful components are added. 

2.2 Component Relations 

There are many aspects of relationships between components. Nearly universally applicable are 
aspects such as interlaces, functionalities, domains, and snapshots. Not applicable to all components, but 
important nonetheless, are aspects such as security, invocation price, performance, and others. Relations 
of multiple components can be derived from binary relations among components. 

2.2.1 Inteiface Relations 

Interfaces of two components can have the following relations: identical (=), equivalent(=), similar 
(;:::;), inclusionary (C), or incomparable (f:.). 

Table 2. Interface specifications, in IDL[9]. 
[uuid(54444504-8F80-4COB-9BAD-7E3EA83E2DD1)] 
interface Interfacel 
{ 

HRESULT Functionl(); 
} i 

[uuid(54444504-8F80-4COB-9BAD-7E3EA83E2DD2)] 
interface Interface2 
{ 

HRESULT Functionl(); 
} i 

[uuid(54444504-8F80-4COB-9BAD-7E3EA83E2DD3)] 
interface Interface3 
{ 

HRESULT Functionl(char parameterl); 
HRESULT Function2(float parameterl, char parameter2); 

} i 

[uuid(54444504-8F80-4COB-9BAD-7E3EA83E2DD4)] 
interface Interface4 
{ 

} i 

HRESULT Function3(char parameterl); 
HRESULT Function4(double argumentl, char argument2); 
HRESULT Function5(); 

[uuid(54444504-8F80-4COB-9BAD-7E3EA83E2DD4)] 
interface Interfaces 
{ 

HRESULT Function3(char parameterl); 
HRESULT Function4(char argument_A, float argument_B); 

} i 

Identical(=): Two components have identical interfaces if and only if both components implement the 
exact same interface. When components are compiled separately without reference to the same source 
definition of the interface, which is a common situation because components are often produced by 
different developers, a globally unique identifier such as a GUID1 is usually used to identify the interface 
definition. In this case, two components have identical interfaces only when both implement an interface 

1 Globally Unique Identifier (GUID) is a 128-bit unique identification string. When printed, it typically looks like this: 
12345678-1234-1234-1234-123456789ABC. Also known as a Universally Unique Identifier (UUID). 
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with the same unique interface identifier. In UDDI, a tModel key2 is used to identify type specifications 
[32]. 

Equivalent ( =): Component A and component B have equivalent interfaces if and only if both A and B 
implements same interfaces. These interfaces may be identified by different identifiers. For example, if 
component A implements Inteifacel and component B implements Inteiface2, as shown in Table 2, since 
Inteifacel and Inteiface2 are the same except for the different identifiers, A and B have equivalent 
interfaces. 

Inclusionary ( ~ ): An interface of component A is a subset of the corresponding interface of 
component B if and only if every possible call to each function in the interface that A implements can be 
converted to a call to a corresponding function in B's interface without any lose of information. In this 
case, component A and component B have inclusionary interfaces. For example, if A implements 
Inteiface3 and B implements Inteiface4 in Table 1, since Function3() in Inteiface4 has the same signature 
as Function] () in Inteiface3, each call to Function] () can be mapped to Function3() without change. 
Similarly, because conversion from type float to type double does not cause any lose of accuracy, all calls 
to Function2() in lnteiface3 can be mapped to calls to Function4() in Inteiface4 with out any lose of 
accuracy. Therefore, the interface of A is a subset of the interface of B 

Similar (;=:::): Component A and component B have similar interfaces if and only if the interfaces of A 
and B have mutually inclusionary relations. For example, if A implements lnteiface3 and B implements 
Interface5, A and B have similar interfaces because all calls to Function4() in Inteiface5 can be mapped to 
calls to Function2() in Inteif ace3 by simply exchanging the positions of two parameters, and vice versa. 

Incomparable (:~:): When the interfaces of two components have none of the above relations, these two 
have incomparable interfaces. 

From these definitions, it is trivial to infer that all identical interfaces also have equivalent, similar, 
and inclusionary relations. All equivalent interfaces also have similar and inclusionary relations. 

When there are more than two components in a RAIC, the relation of all components in terms of 
interfaces is determined by all binary relations among interfaces of all components using the following 
relation combination rules: 

•!• Rule 1: If all binary relations among all components are the same, then that binary relation 
represents the relation of all components in the RAIC. 

•!• Rule 2: Otherwise, the least strict binary relation represents the relation of all components in the 
RAIC. 

The order of strictness of all binary interface relations is listed in Table 3. 

Table 3. Order of strictness of binary interface relations. 

Strictness From highest to lowest 

Interfaces - = ~ ~ # 

2.2.2 Functionality Relations 

Functionalities of two components can have the following relations: identical (=), equivalent (=), 
similar(;=:::), inclusionary (C ), or incomparable (i.). 

2 A tModel key is a GUID-based number that identifies tModels. See the API Specification of the UDDI specification. 
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Identical (=): Two components have identical functionalities if and only if they are compiled from the 
same piece of source code. 

Considering that different compilers may cause slightly different behaviors, either due to different 
features or defects, it may be enticing to define the identical relation as having the exact same binary code. 
But the fact is that different platforms may cause even the exact same binary code to behave differently. 
To make the identical relation a practical one that helps in component integration, we decide to treat all 
components that are implemented by the same source code as identical. 

Equivalent ( = ):· Two components have equivalent functionalities when they are implemented 
according to the same specification. In the real world, different implementations of any realistic 
component are very likely to behave slightly differently under some conditions even if they are 
implemented according to the same specification. The essence of the equivalent relation here is to capture 
the intention behind component implementations. If two components are designed to be interchangeable, 
we should treat them as such in component selection. 

Similar(~): Two components have similar functionalities when they are implemented to perform the 
same tasks but with different requirements. For example, suppose there are two TerraService components 
that provide a map when given a U.S. zip code. The former component provides maps in 400 pixels by 
300 pixels size, while the latter provides maps in 800 pixels by 600 pixels size. These two components are 
not equivalent or identical since the return values are different intentionally. They are similar because they 
accomplish the same tasks. 

Inclusionary ( c ): Two components A and B have inclusionary relations, i.e. the functionalities of 
component A is a subset of the functionalities of component B, if every possible task that A performs can 
be done by B, maybe with different accuracy, but nonetheless accomplishable by B. 

Incomparable (:;t): When two components' functionalities have none of the above relations, these two 
have incomparable functionalities. 

It can be inferred that all components with identical functionalities also have equivalent, similar, and 
inclusionary functionalities. All components with equivalent functionalities also have similar and 
inclusionary functionalities. 

When there are more than two components in a RAIC, the relation of all components in terms of 
functionalities is determined by all binary relations among the functionalities of all components in the 
RAIC using the relation combination rules. The order of strictness of all binary functionality relations is 
listed in Table 4. The less strict a binary relation is, the more representative. 

Table 4. Order of strictness of binary functionality relations. 

Strictness From highest to lowest 

Functionalities - = ::::::: ~ -::/= 

2.2.3 Domain Relations 

Domains of two components can have the following relations: identical (=), inclusionary ( ~ ), 
exclusionary (II), or incomparable(-:/.). 

For components with similar interfaces, it may be possible to further compare their input domains. 
Domains of two components can have the following relations: 
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Identical (=): Two components have identical domains if and only if they respond meaningfully to any 
possible inputs that are the same, i.e. both return results are useful to caller applications, not an error 
message or an exception. 

Inclusionary ( c ): The domain of component A is a subset of the domain of component B when each 
input in A's valid input domain is also in B's valid input domain. In this case, A and B are said to have 
inclusionary domains. For example, suppose two StockQuote components both provide real-time quote 
information. One component only provides quote of NASDAQ stocks. The other component provides 
quote of both NASDAQ and NYSE stocks3

• In this case, the first component's domain is a subset of that 
of the second component. 

Exclusionary (II): The domain of component A is exclusionary to the domain of component B when 
none of the valid input in A's domain is in B's domain, nor vice versa. For example, suppose there is a 
third StockQuote component that provides quote information only to NYSE stocks. This component has a 
parallel domain if compared to the first StockQuote component above that only provides NASDAQ stock 
quotes. 

Incomparable(~): When two components' domains have none of the above relations, these two have 
incomparable domains. 

Note that even components with incomparable functionalities may possibly have comparable domains. 

It can be inferred that all components with identical domains also have inclusionary domains. Also, 
obviously, inclusionary domains are not exclusionary. In addition, mutually inclusionary domains are 
identical domains. 

When there are more than two components in a RAIC, the relation of all components in terms of 
domains is determined by all binary relations among domains of all components using the relation 
combination rules introduced above and one additional rule. The third rule is added because in the case of 
domain binary relations, exclusionary (II) cannot be compared with identical (=) or inclusionary ( ~) in 
terms of strictness. 

•!• Rule 3: If two binary relations that cannot be compared for strictness exist among binary relations of all 
components in the RAIC, the relation of all components in the RAIC is incomparable (f-). 

The order of strictness of all binary domain relations is listed in Table 5. 

Table 5. Order of strictness of binary domain relations. 

Strictness From highest to lowest 

- ~ 
Domains 

II 
i-

For example, suppose a RAIC has three components A, B, and C. In terms of domains, these binary 
relations exist: 

A=B, B=C, c II A. 
The domain relation of this RAIC is incomparable(#-). 

2.2.4 Discussions on Interface, Functionality, and Domain Relations 

The relations of two interfaces can be determined solely from interface specifications. Since formal 
interface specifications usually exist as parts of the source code or separate pieces of formal documents, 
this process may be fully automated. Functionality specification, however, are not usually formally 

3 NYSE and NASDAQ are two U.S. stock exchange markets. 
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specified, even though formal specification technologies do exist. Existing code understanding 
technologies are not mature enough to be used to compare two pieces of arbitrary code. Therefore, either 
application programmers or component developers have to determine functionality relations manually. 
The same is true for domain relations. Testing may provide assistance in functionality and domain relation 
analysis. 

Interface relations alone do not shed much light on the relations of two components, except for the 
identical interface relation. Only when combined with the functionality relation and the domain relation 
can interface relations give meaningful insights about the relations of two components. 

Not all combinations of different binary relations are useful. For example, it is obvious that RAIC­

[ =i, i=t] is not an interesting type of RAIC. By using the same interface to provide unrelated 
functionalities, the sole purpose of interface identifier is violated. The result is not meaning at all. On the 
other hand, RAICs such as RAIC- [=i, ~£] and RAIC- [ ~i, ~£] are common in the real world. 

While it is possible to programmatically determine interface relations by analyzing interface 
specifications, other relations, such as functionality relations, sometimes can only be manually 
determined. 

2.2.5 Snapshot Relations 

A snapshot is a collection of the values of all data members of a component at a particular moment. It 
could be created through runtime mechanisms provided by an OS or a platform, serialization mechanisms 
provided by languages, or component-customized mechanisms. A component restored from its snapshot 
should be exactly the same in memory as when the snapshot was taken. This, however, does not 
necessarily mean that the component is in the same state from component users' perspective before a 
component may store part of its state information in some external storage. 

Snapshots of two components can have these two relations: Identical (=) and Incomparable (#). 

Identical (=): Two components have identical snapshots if and only if one component can use a 
snapshot of the other component and vice versa. Identical snapshots mean every all fields in the snapshot 
have the same order, same size, same structure, and same semantics. Typically, two components with 
identical snapshot relation have the exact same data members and only differ in program logic. 

Incomparable(~): When two components' snapshots are not identical, they are incomparable. 

The identical relation is stricter than the incomparable one. 

2.2.6 Notations 

The following notation, known as a RAIC expression, is used hereafter to refer to a RAIC with 
identical interfaces, similar functions, exclusionary domains, and incomparable snapshots. 

I RAIC- [=i, ~£, ,,d, :fs] 

This RAIC expression also specifies that the RAIC is a static array containing stateful components. 

2.2. 7 Security, Invocation Price, and Other Aspects 

Other sometimes-comparable aspects of components may also be relevant in component integration 
and selection. One example is security. For example, in C#, some components can be signed; some can be 
delay-signed; while others can be unsigned at all [5, 20]. They offer different security options. When 
using several components with same functionalities but different security strengths, an application may 
choose not to use the less secure ones unless the more secure ones become unavailable. In this case, there 
is a need to compare the security aspect. Similarly, when component invocations are not free, an 
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application may choose to invoke cheaper ones whenever possible and keep the more expensive ones as 
backups. Performance, communication bandwidth, and other aspects may also be relevant. Some of these 
are domain-specific; some are application-specific. There may not be a universal comparison model that 
fits well with all of them. We feel that it is better to leave the detailed categorization of relations of these 
aspects until the need arises in a specific context. In general, the following relations usually apply. 

Identical (=): Two components are identical in term of a certain aspect if these two components are 
indistinguishable as far as this particular aspect is concerned. 

Equivalent(=): Two components are equivalent in term of a certain aspect if these two components 
are exchangeable as far as this particular aspect is concerned. The difference between the identical 
relation and the equivalent relation is that, from an application's point of view, components with the latter 
relation may have tolerable differences while components with the former relation have no perceivable 
difference at all. 

Comparable (-): A component is comparable with another component in terms of a certain aspect if it 
is always possible to determine which component is more desirable to applications as far as this particular 
aspect is concerned. 

The comparable relation can be either static or dynamic. If a component is statically comparable with 
another one in terms of a certain aspect, one of the components is better at all time. If a component is 
dynamically comparable with another one, either component could be a better choice depending on 
occasions. 

Incomparable (:;l:): Two components are incomparable in terms of a certain aspect if no other relation 
applies to these two components with respect to this particular aspect. Note that the so-called "other 
relations" here may include aspect-specific relations other than the general "identical", "equivalent", and 
"better" relations described above. 

When there are more than two components in a RAIC, the relation of all components in terms of a 
certain aspect is determined by all binary relations among all components of that particular aspect using 
the relation combination rules. The strictness of four general binary relations is listed in Table 6. Note that 
for a specific aspect, additional binary relations may be defined and their strictness as compared to other 
relations may be added to this table. 

Table 6. Order of strictness of four general binary relations. 

Strictness From highest to lowest 

Other Aspects - = - * 
Component relations are the basis of integration strategies that decide how the components are used 

together. For example, RAIC controllers can partition components inside a RAIC into equivalent classes 
and use only components inside the same class to replace each other until they run out. 

2.3 RAIC Levels 

Most of these RAIC strategies and policies are configurable. RAIC levels describe the level and the 
purpose of the integration of components in a redundant array: 

• RAIC-1: Exact mirror redundancy 

• RAIC-2: Approximate mirror redundancy 

• RAIC-3: Shifting lopsided redundancy 
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• RAIC-4: Fixed lopsided redundancy 

• RAIC-5: Reciprocal redundancy 

• RAIC-6: Reciprocal domain redundancy 

• RAIC-0: No redundancy 

RAIC-0: No redundancy. There is no redundancy among components. Components in the array have 
such relations: RAIC- [=Ff] . In this case, it is just plain component integration. There is no redundancy at 
all. · 

Traditional in-house component-based software development approaches usually cannot afford 
developing duplicate components for the same purpose. Therefore, traditional component integration can 
usually be regarded as RAIC-0. 

RAIC-1: Exact Mirror redundancy. Components in the array typically have such relations: RAIC-

[=i, =f, =d, =sJ. In exact mirror redundancy, since all components are exactly the same, there is no 
gain in accuracy or flexibility. The goal is to improve reliability. Required service can be delivered, as 
long as at least one component in the array does not fail. Thus, reliability of the RAIC is better than any of 
the individual components in the array, assuming the RAIC controller itself does not introduce failures. 

RAIC-2: Approximate Mirror redundancy. Components in the array typically have such relations: 
RAIC-[=h =f, =dl· In approximate mirror redundancy, since none of components is any better than any 
other components, the intention is not to gain in accuracy or flexibility. The main goal is to improve 
reliability, the same as the goal of RAIC-1. 

RAIC-3: Shifting lopsided redundancy. Components in the array typically have such relations: RAIC­
[=h ~f, =d]. One component might provide more desirable result than another. However, which one is 
better is unknown before results are received and compared. In addition, one component might be more 
desirable for some inputs or under some situations; others might be more desirable for other inputs or 
under other situations. One such example is two StockQuote components that both provide real-time quote 
for stocks listed on NASDAQ. How up-to-date the quote information is depends on the network 
conditions between the component provider and NASDAQ and between the component user and the 
component provider. Since network conditions vary from time to time, each component may provide more 
up-to-date quote information than the other one at some time, but not always. 

RAIC-4: Fixed lopsided redundancy. Components in the array typically have such relations: RAIC-[=b 
~f, =d]. It is known ahead of time that one component is more desirable than another. One such example is 
the TerraService components mentioned above. RAIC-4 can be used to provided "graceful downgrades" 
when more desirable components fail. 

RAIC-5: Reciprocal redundancy. Components in the array typically have such relations: RAIC-[~b 
=d]. The sum of all results is usually better than any single result. For example, suppose there are several 
search engine components that provide search results according to a list of key words. Assuming search 
results from each search engine are incomplete, but in different ways. In this case, simple mergence of all 
search results is better than any individual results. 

RAIC-6: Reciprocal domain redundancy. Components in the array typically have such relations: 
RAIC-[~i, ~f, II dl· All components provide satisfactory results. But not all components provide results for 
all inputs. For example, suppose several wireless phone service providers each provide a text-messaging 
component that can deliver a short text message to a subscriber's wireless phone. Each provider's service 
delivers messages only to its own subscribers' phone, not others'. In this case, the combination of all 
components provides a more complete service than any of those individual components. 
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Table 7 shows the appropriate RAIC levels for various types of RAICs. 

Table 7. Typical RAIC Types for different RAIC Levels. 

RAIC Levels Typical RAIC Types 

RAIC-0 RAIC- [i=f] 

RAIC-1 RAIC- [=:i, =f, =a, =sJ 

RAIC-2 RAIC- [=:i, = f1 =a] 

RAIC-3 RAIC- [=:i, ::,;f I =a] 

RAIC-4 RAIC- [=:i, ::,:f I =a] 

RAIC-5 RAIC-[::::: 1 , =a] 

RAIC-6 RAIC- [:::::i, ::,:f I II aJ 

2.4 RAIC Invocation Models 

RAIC controllers can also use different invocation models, including: 

• RAIC-a: Sequential invocation 

• RAIC-b: Synchronous parallel invocation 

• RAIC-c: Asynchronous parallel invocation 

RAIC-a uses components in a one-by-one fashion. At any given time, at most one component is 
invoked. 

Figure 3. A UML sequence diagram of a sequential invocation scenario (RAIC-a) [6, 25]. 

Figure 3 shows a scenario of the sequential invocation model, where two similar components 
Component] and Component2 are used sequentially by the RAIC controller. The RAIC controller only 
invokes Component2 after detecting that Component] throws an exception during the second invocation. 
The exception is masked from the application by the RAIC controller. A good result for the second 
invocation from Component2 is returned to the application. Note that in this diagram, possible component 
state recovery, which is discussed later, was omitted. 
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Both RAIC-b and RAIC-c invoke components simultaneously. The difference is that RAIC-b wa~ts 
until all calls return or time-out, whereas RAIC-c goes ahead as long as satisfactory results are returned. 

Figure 4. A UML sequence diagram of a synchronous parallel invocation scenario (RAIC-b ). 

Figure 5. A UML sequence diagram of an asynchronous invocation scenario (RAIC-c). 

Figure 4 shows a scenario of the synchronous parallel invocation model. Note that the RAIC 
controller is free to invoke the components in any order. In this case, the RAIC controller calls 
Component] first for the first invocation. for the second invocation, it calls Component2 first instead. 
Since the RAIC controller can use multiple threads4 to place invocations without having to wait for 
anything, the delay between invocations can be considered insignificant. In RAIC-b, all parallel 

4 Other technologies such as built-in support for asynchronous calls in the underlying component model make it 
possible to do this in a single thread. 
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invocations have to either complete or time-out before the RAIC controller returns values or an exception 
to the application. 

Figure 5 shows a scenario of the asynchronous parallel invocation model. Notice that in this scenario, 
Component2 is still working on the first invocation when Component] is already working on the second 
one. In fact, in our proof-of-concept implementation of a RAIC controller, the RAIC controller maintains 
an invocation queue for every single component in the array. It is possible for one component to work on 
the Nth call while another is already working on the (N+M)th call, where N and M can be any arbitrary 
natural numbers. In addition, when combined with component method properties [14], it is possible to 
trim items in the queues of slower components so that they don't have to go through all of them and can 
catch up sooner. To the application, the RAIC always behaves as if it were the fastest component. 

RAIC levels have direct effects on invocation models. Some RAIC levels are best implemented by 
certain invocation model but not others. Some RAIC levels cannot be implemented by certain invocation 
model. Table 8 shows the correspondence between invocation models and RAIC levels. Table 9 shows 
examples mentioned above. More examples can be found in the RAIC cheat sheet on [11]. 

Table 8. Invocation Models and RAIC levels. 

RAIC 

a 

b 

c 

Legends: best. Works. Does not work. 

Table 9. RAIC examples. 

RAIC Examples 

RAIC-lc (=:i, =f, =d) StockQuote, with identical components running on different computers as backups. 
RAIC-2c (=:i, =f, =d) StockQuote, with identical racing components running on different computers. 

RAIC-3c (=:i, =f, ~d) StockQuote, with similar components from different providers. 
RAIC-6c (=:i, =f, lid) StockQuote, with one NASDAQ component and one NYSE component. 

RAIC-6c (=i, =f, lld) Cell phone text messaging. 

RAIC-4a (=:i, ~f, =d) TerraService. 
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3 .. JUST-IN-TIME COMPONENT TESTING 
RAIC controllers need to make judgment about the return values from individual components in the 

array to determine whether or not to invoke another component, which result to pick, or how to merge 
return values. To do that, the RAIC needs to evaluate return values at run-time. Just-in-time component 
testing is designed for this purpose [12]. 

Just-in-time component testing uses heuristics or component specifications to evaluate return values. 
It is different from traditional software testing. Traditional software testing techniques use various 
methods to determine, through test execution, if a software application, a software component, or an even 
smaller unit of software code behaves as expected. Usually this is done by feeding the software-code­
under-test with some pre-determined data, or test input, and comparing the result with pre-determined 
expected output, or test oracle. Traditional software testing happens in the development phase, when 
software is still under development and has not been deployed to the end user. Code that is used for 
testing purposes, or test harnesses, are usually removed or filtered out through conditional compilation or 
by other means before the final software product is deployed. Just-in-time component testing differs from 
traditional testing in the following aspects: 

1. JIT testing happens even after application deployment. Code responsible for JIT testing is an 
integral part of the final software product and is shipped as such. 

2. JIT testing mostly uses live input data that are unknown ahead of time. Thus it is difficult, 
sometimes impossible, to know if the result value is correct. Therefore, heuristics and other means 
must be used in place of traditional test oracles. 

3. When in rare cases that predetermined test inputs are used in JIT testing, it is extremely important 
to ensure that test runs on these test inputs are very efficiently, because any test execution on 
predetermined data is pure overhead during run-time and will directly place a negative impact on 
application performance. In comparison, test case efficiency weighs much less in traditional 
software testing. 

JIT component testing happens in run-time. This is very similar to another type of testing - perpetual 
testing [26]. Perpetual testing is a class of software testing techniques that seeks seamless, perpetual 
analysis and testing of software products through development, deployment, and evolution. The difference 
between JIT testing and perpetual testing is that perpetual testing is optional and removable, whereas JIT 
testing is an integral part of the final product. The purpose of perpetual testing is to obtain more insight of 
the software-product-under-test, which is usually under full control of testers, through monitoring in the 
real environment and thus gain data that are not available from laboratories. JIT testing, on the other hand, 
tries to determine on-the-fly if the result from a foreign software component is trustworthy. The foreign 
software component is usually not under control of the application programmer. Even their availabilities 
are not guaranteed. 

The RAIC controllers need to know certain status information in addition to the component status 
information that is monitored by just-in-time testing. For example, during component selection, it may be 
desirable to know CPU workload, available memory, or free network bandwidth of the computers on 
which components reside. RAIC feelers are designed for this purpose. A RAIC feeler is an entity inside a 
RAIC controller that retrieves desirable status information. In our proof-of-concept implementation, we 
use performance counters provided by the .NET platform to implement RAIC feelers. 
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Figure 6. Status information reported by RAIC feelers. 

Figure 6 shows that in the Light example, a RAIC feeler detects that there are 793MB free memory on 
computer Tiger and only 25MB on computer Oriole. At the moment, the policy of the RAIC controller is 
to select the component on the computer with the most memory. Therefore, the RAIC controller switched 
to a LightBlue component on Tiger. 
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4. COMPONENTSTATERECOVERY 
When JIT component testing detects a failure in a component and asks for a replacement component, 

or when a newly added component needs to be invoked, component state recovery is needed to bring the 
new component up-to-date. Component types help RAIC controllers to decide what to do in the event of 
component state recovery. For stateless components, no state recovery is necessary. A newly created 
component can be used in place of another component right away. For stateful components, their states 
must be restored before they are used in lieu of other components. 

There are primarily two ways to perform state recovery: snapshot-based recovery and invocation­
history-based recovery. The snapshot-based approach assumes that the state of a component is represented 
by its snapshot, which is a copy of all of its internal variables. Component snapshot relations help 
determine whether a snapshot can be used. The invocation-history-based approach assumes that placing an 
exact same invocation sequence to equivalent components results in the same component state. 

lmtocatton1 

Invocation 1 

I nvocatfon2 
ln'lfO(;ation2 

Exception 

Figure 7. A UML sequence diagram of a scenario that involves component state recovery. 

Figure 7 shows an invocation-history-based component state recovery scenario of a RAIC-a. Note that 
component creation, initialization, and all other component lifetime management issues are omitted in this 
diagram. 

Both approaches have their own advantages and limitations. The advantage of the snapshot-based 
approach is that it requires limited storage, which is about the size of a component's in-memory foot print, 
and limited recovery time, which is about the time to copy a memory block of that size, possibly over 
network in the case of distributed systems. The disadvantage, however, is that this approach does not 
always work. If a component connects to a piece of external persistent storage such as a database and 
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stores part or all of its state there, the snapshot would fail to preserve a component's full state. For 
example, consider the following code in C#, where the state of the component is saved in a system 
performance counter: 

Using a snapshot of this component, the correct reference to the performance counter can be 
recovered, but not the value itself because the value is stored in system registry, not in the component. 

In addition, if the replacement component is not identical to the failed component and does not have a 
comparable snapshot, it is not possible to recover component state at all. 

The invocation-history-based recovery approach overcomes these shortcoming by storing past 
invocations instead of component snapshots. During component recovery, the replacement component is 
initialized and invoked with all the calls in the invocation history. After this, under most circumstances, 
the state of the new component should be the same as the failed component right before its failure. Since 
the RAIC controller knows how to translate calls between components with slightly different interfaces5

, 

it is now possible to perform component state recovery on a different component with different interfaces 
and incomparable snapshots. This undoubtedly broadens the applicability of the component state recovery 
technique. The disadvantage of this approach is that it takes space to record each invocation and time to 
re-invoke it. If a component is invoked repeatedly in an application, the invocation history could grow 
very long. It would take a large storage space to store the ever growing invocation history. And in the 
event of a component failure, it would take very long to re-invoke all the method calls. 

4.1 Method Properties 

For stateless components, since there is no need for component state recovery, it is not necessary to 
specify method properties. 

For stateful components, method properties help reduce the amount of invocation histories that are 
need for state recovery purposes. Each public method of a component can have two types of properties. 
The first type specifies the relationship between this method and its effect on component states, which can 
be either state-preserving, state-changing, or state-defining. The second type specifies the relationship 
between the return value and its dependency on component states, which can be either state-dependent or 
state-independent. 

5 For example, RAIC controllers know how to translate calls to Setlntensity( int intensity) into a similar call with 
different parameter type: Setlntensity( string intensity). 
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State-preserving methods do not change the state of a component at all. Thus, it is not necessary to re­
invoke calls to methods of this type. All state-preserving invocations can be safely trimmed off. An 
example of this is the Getlntensity() method of the Light component. 

State-changing methods may change the state of a component. Invocations of state-changing methods 
must be stored for future state recovery, unless invocations to state-defining methods are placed later. 
Adjustlntensity() is a state-changing method. 

State-defining methods change the state of a component to specific states regardless of the previous 
state of the component. Different method parameters may bring the same components to different states. 
But same method parameters always bring components to the same states even though their previous state 
may be different. TurnOn( ), TurnOff( ), and Setlntensity() are all state-defining methods. 

Methods with state-dependent return values may return different values if the previous states of the 
component-under-invocation are different, even when all the parameters are the same. 

Methods with state-independent return values always return the same value as long as the parameters 
are the same. 

Both properties are optional. When property attributes are absent, the RAIC controller assumes the 
worst case scenario and treats the method as state-changing and its return value as state-dependent. 
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With method properties, one can significantly trim component invocation history without damaging 
the ability for component state recovery. For example, a call history of these eleven calls on the left can be 
trimmed into the three calls on the right: 
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In general, the rules for invocation history trimming are: 

1. All invocations prior to the last call to a state-defining method can be trimmed. 

2. All state-preserving calls can be trimmed. 

As a result, a trimmed invocation history is always an invocation of a state-defining method followed 
by a sequence of invocations to state-changing methods. 

When component state recovery is performed when a new invocation is made to the RAIC, it is 
possible to further optimize the recovery process in one special situation: 

If the current call is placed to a state-defining method with a state-independent return value, there 
is no need for any re-invocation of past calls. Simply place the current call. 

4.2 The Light Example 

Now let us use a concrete example to illustrate the process of component state recovery. A Light 
application uses the Light component. It simply invokes TurnOn( ), Setlntensity( ), and TurnOff() 
repeatedly. The main logic of the Light application is shown below: 
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The actual code has a few more lines of instrumented code that display various types of status 
information on the GUI. 

Two components are added to the RAIC, one is the Light component on computer Oriole, the other is 
the LightBlue component on computer Tiger. The LightBlue component does not have identical snapshot 
relation with Light. Thus, it is not possible to perform snapshot-based recovery in this case. Invocation­
history-based recovery is the only choice. Note that while all methods of Light have their properties 
properly defined, no method properties have been defined for LightBlue. Therefore, by default, all 
methods of LightBlue are state-changing with state-dependent return values. Figure 8 shows the status of 
the Light application and the RAIC controller after the third method call. On the top-right comer, it shows 
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"History[2/3]" for the Light component on Oriole. The second number "3" represents the total number of 
invocations placed to this component. The first number "2" represents trimmed invocation history plus 
one (the current call)6

• So we know that only one invocation is left after trimming. 

Figure 8. The Light application, before switching. 

6 The RAIC controller is implemented as a generic one. It supports asynchronous invocation model, which is not used 
in this example. To allow asynchronous calls to retrieve return results, the latest invocation, regardless of its method 
property, is always added to the invocation history array list. This is why the number shown here is the length of 
trimmed history plus one (the current call). 
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Figure 9. The Light application, after component state recovery. 

The policy of the RAIC controller is changed to "Memory" after the seventh call. Because the RAIC 
feelers report that computer Tiger has about 793MB free memory (also shown in the top-right RAIC 
controller status area), more than the approximately 25MB free memory on computer Oriole, the RAIC 
controller decides to place the next call to the LightBlue component on Tiger. Since both components are 
stateful and LightBlue is a fresh component at this point, component state recovery is forced to happen. 
This change of policy has the same effect as a failure on the Light component. 

During component state recovery, the RAIC controller uses the one invocation item in the trimmed 
invocation history to restore the state of LightBlue and place subsequent calls to LightBlue. Figure 9 
shows the status after the 10th calls. Note that it shows "History[2/7]" for the Light component. Apparently 
no call is placed to Light after the seventh call. "History[4/10]" is shown for the LightBlue component. It 
means the total number of invocations is ten. The number of invocations in the trimmed history is three 
plus the current call. Since all methods of LightBlue are treated as state-changing by default, none of the 
calls placed to LightBlue is trimmed. So, the current trimmed invocation history consists of the three most 
recent calls to LightBlue and one call in Light's trimmed history that was used to restore LightBlue's state. 
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4.3 Limitations 

The effectiveness of invocation history trimming according to method properties largely depends on 
the frequency of invocations to state-defining methods as these invocations trims the length of invocation 
history to one. Therefore, it depends on the type of the component and its usage pattern. In the best case 
scenario, if all invocations are placed to state-defining methods or state-preserving methods; only one 
method call is needed to fully restore component states. In the worst case scenario, however, all 
invocations are placed to state-changing methods; no invocation can be trimmed off. The invocation 
history could grow .to an arbitrary length. In practice, developers can either adjust component design to 
allow more state-defining calls to appear, or use components with identical snapshots and no external state 
storage to adopt snapshot-based recovery technique. 

Currently, all method properties are manually specified. While it may not be possible to 
programmatically determine all method properties for all sorts of methods, because component states may 
be partially stored in non-standard locations such as a system performance counter, source code analysis 
or even machine code or binary code analysis may help determine or verify method properties. 

In some situations, neither the snapshot-based nor the invocation-history-based approach can fully 
restore component state. For example, suppose a component connects to a database table that does not 
allow duplicate items. This component has a Add/tern() method that allows an item to be added to the 
database. If the component fails after Add/tern(" something") is called, it is not possible to recover it state 
via a new component by re-invoke past invocations. Because when Add/tern(" something") is called for the 
second time during the recovery, the database would return an exception "Cannot add item: item exists" 
instead of a insertion success message. The component would go through total different path. Therefore, 
in this case, even the exact same invocation sequence may bring the same component to a different state. 
Phoenix addresses some of the problems mentioned here [1]. 
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5 .. APPLYING RAIC IN QN .. LINE UPGRADING 
Several problems arise when performing on-line upgrading of distributed component-based software 

systems. First, how to keep the overall system functional while individual components are being 
upgraded? Second, if a newly upgraded component causes problems in the system, how to detect the 
failures and revert to the original component without disrupting system operation? Third, if a newly 
upgraded component causes problems in a part of the system, how to allow that part of the system to 
revert to the original component while the rest of the system uses the upgraded one? 

While certain technologies such as late-binding, server-side component lifetime management, and 
side-by-side execution of different versions of the same component make it possible to switch components 
or perform on-line upgrading during run-time, significant knowledge and preparation are required for 
systems and applications to be enabled for on-line upgrading. By putting different versions of a 
component-under-upgrade in a redundant array and routing all connections in the system to that 
component via a RAIC controller, it is possible to leverage on the RAIC technology and address the three 
problems of on-line upgrading listed above without complicating application or system logic. 

Let us use the same Light example. Suppose there are two versions of the Light component. The first 
version allows arbitrary method calls. An upgrade to the Light component, however, requires TumOn() to 
be called before Setlntensity() or TumO!f() can be called. Similarly, TumOff() cannot be called if the light 
is already off. An exception would be thrown if these requirements are not met. 

There are also two applications that use the Light component. The first application, LightAppl, simply 
calls TurnOn(), Setlntensity(), and TumO!f() repeatedly. 
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The second application, LightApp2, is similar to LightAppl. The difference is that LightApp2 does not 
call TurnOn() at all. 
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Apparently, both Light applications work well with the first version of the Light component. The 
upgrade of the Light component would break LightApp2 but would not affect LightApp 1. 

In a distributed system where LightAppl and LightApp2 run side-by-side, if an on-line upgrading of 
the Light component is attempted, LightApp2 will undoubtedly be interrupted. An attempt to revert the 
Light component to its original version would fix LightApp2, but would deny LightAppl's access to 
upgraded features of the Light component. By using RAIC, these problems can be avoided. Here is what 
happens with RAIC: 

Light 

+Turnoff ( ) 
+ Setlntansity ( ) 
+ Turnon ( ) 

Q1Light 

QIRAIC 

LightRAIC 

+ AddComponent ( ) LightAppl 
+ Invoke ( ) - lightRAIC ~--~ 
+ Turnon ( ) 
+ Setintansity ( ) LightApp2 
+ Turnoff ( ) - lightRAIC 
- FindBestcandidata ( ) 

Figure 10. With RAIC, the Light applications uses component LightRAIC instead of component Light. 

First, instead of using the concrete Light component directly, the light applications use a new 
component LightRAIC, which has the same interface !Light as Light, as shown in Figure 10. 

public class Lig'Q.tRAIC 

: Marsha.lByRefObject, IRAIC, ILigb.t 

11.,. 
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Second, in a system-wide configuration, LightRAIC is defined as "RAIC-2a[]", which means it uses 
the sequential invocation model and treats all components inside as stateful. Its policy is set to "latest 
version first". Then, the first version of the Light component is added to the RAIC as its only member 
component. After that, both LightAppl and LightApp2 can run smoothly using their own instances of 
LightRAIC. 
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Figure 11. The UML sequence diagram of LightAppl during on-line component upgrade. 

Third, during the on-line upgrading, the upgraded version of the Light component is added to 
LightRAIC. In LightAppl, the RAIC controller switches to the new component because its policy asks it to 
always try to use the component with the latest version. It first brings the status of the new component up­
to-date by placing all calls in its trimmed call history to the new component. Then it places the current call 
to the new component and thus switches the application to the new component, as shown in Figure 11. 
LightAppl only experiences a brief delay during the switch. The operation of LightAppl continues without 
any disruption. The length of the delay depends on the number of items in the trimmed call history. In this 
case, since all three method calls are state-defining, there is only one item in the trimmed call history no 
matter how long the call history is. 
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Figure 12. The UML sequence diagram of LightApp2 during on-line component upgrade. 

In LightApp2, the RAIC controller also tries to switch to the new component because of the same 
"latest version first" invocation policy, as shown in Figure 12. Its just-in-time component testing 
mechanism detects an exception when the first Setlntensity() method call is placed without a preceding 
TurnOn() call. JIT testing treats the exception as a failure. The RAIC controller then tries the next 
available component in the RAIC, which is the original Light component. Since the state of that 
component is already up-to-date, the RAIC controller goes ahead and places the current method call and 
returns the result to LightApp2. During the on-line upgrading, LightApp2 does not experiment any failure 
at all. The exception in the upgraded component was masked by the RAIC controller. LightApp2 notices 
only a brief delay, the length of which is approximately one method call to the upgraded component. After 
that, all subsequent calls go to the original component without delay. To LightApp2, the on-line upgrading 
never happened. 
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Note that in this scenario, there is no application-or component-specific configuration definition that 
specifies which application works with which component. 

In the pre-.NET era, two versions of the same component (DLL) cannot appear on one system on 
Windows platforms, which means it would be impossible to have LightAppl using the upgraded version of 
the Light component and LightApp2 using the original one on the same system, let alone upgrading the 
component at run-time. 

On .NET platforms, with the support for side-by-side execution of different versions of the same 
component, it is now possible to do so. To achieve this, however, extra efforts are required from 
component developers, application developers, or system administrators to explicitly specify which 
application should use which version of the component. In addition, to avoid problems that may be created 
by over-paranoid component developers, application developers, or system administrators, .NET platform 
allows them to override decisions made by each other, which undoubtedly could further require more 
efforts from all of them. In short, even on the currently state-of-art .NET platforms, this is achievable but 
not pain-free. 

With RAIC, this scenario is not just achievable, it is trivial with the help of just-in-time testing and 
component state recovery. 
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6 .. RESEARCH DIRECTIONS 

6.1 Further Researches in Supporting Technologies 

To further enhance RAIC, improvements are needed in the area of just-in-time component testing, 
component state recovery, component cooperation model, and component relation analysis. 

For just-in-time component testing without specification, better heuristics are needed to evaluate test 
results. For specification-based just-in-time testing, performance needs to be improved. 

Both snapshot-based and invocation-history-based component state recovery techniques have 
drawbacks. More work needed to be done to enable make component state recovery feasible in a broader 
range of situations. We are currently working on using component dependency information to enhance 
snapshot-based recovery approach. More works are needed to able to both provide and utilize more 
accurate and detailed component dependency information [33, 34]. 

Currently, RAIC assumes that individual components only support the most basic call-and-return 
invocation model. Some component framework may support more invocation methods, such as queued 
invocations in queued components, built-in asynchronous invocation [27], or event-based invocation [29]. 
The coordination model of RAIC needs to be expanded to allow and take advantage of these advanced 
invocation methods. 

In addition, invocation of remote components can take the form of physically retrieving the remote 
component or its container, such as an assembly [28], to the local machine and then invoking it locally [4, 
7, 8]. Migration of code in the form of mobile agents has been possible for a long time. This is now 
possible using commercially available technology [22, 28]. To incorporate this, the current RAIC 
invocation model would also need to be expanded. 

Component composition languages or architectural description languages enable formalization and 
analysis of software architectures and architectural styles [19, 24]. For RAIC, instead of a language that 
describes overall system architecture, a special one focusing on the composition and relations of a 
redundant component array would be helpful. 

Various component relations are the basis for component selection. The key is to obtain accurate and 
up-to-date component relations with as little human effort as possible. More work needed to be done on 
component relation analysis to, for example, automate interface relation analysis, or perform computer­
aided functionality relation analysis. More relation types may also be needed to provide a more thorough 
view of component relations. 

6.2 Further Researches in RAIC Applications 

RAIC can used in many situations. First and foremost, RAIC can be used to group identical software 
components running on different computer systems to provide higher reliability and availability. But 
RAIC can also be applied for purposes beyond reliability-through-redundancy. To name just a few, RAIC 
can be used in performance enhancement, rollbacks in dependable on-line upgrading [15], result 
refinement, client-side-based distributed load balancing, multi-source file downloading or sharing, or 
cluster- or grid-based computing, each of which is an interesting and useful area. 

To give just one example, if several identical StockQuote components are provided by different 
providers, a RAI C-1 c ( =r , =f, =d) of these component can be used to offer the most up-to-date quote, 
better than any of the individual components. A preliminary demonstration of stock quotes can be found at 
[11]. 

In general, RAIC is a way to manage access to computing and data resources. These resources can be 
software components. They can also be other things such as hard drives, CPUs, or computer files. 
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Although the RAIC technology was developed for software components, the underlying principles can be 
applied to a broader range of components. In fact, RAID, a hardware technology that inspires RAIC, was 
the application of the same principles on hard drives. When we consider CPUs as components, RAIC can 
be applied to cluster- or grid-based computing. When we consider computer files as components, RAIC 
can be used in multi-source file downloading and sharing. Multi-source file downloading and sharing 
allows the same file to be downloaded from multiple sources and thus increases download efficiency. In 
peer-to-peer file sharing networks where file availabilities are not guaranteed, RAIC can even potentially 
help increase file availabilities. 
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7 .. CONCLUSIONS 
In summary, the RAIC architectural style is a special architectural style designed to take advantage of 

redundant independent software components to provide reliable services. Component types and relations 
are analyzed and categorized so that given a particular group of components, developers can follow a 
systematic approach to determine what the best way is to integrate them. Several RAIC levels and 
invocation models are defined and explained. Examples are also given on which RAIC level and 
invocation model are best suited for which component types and relations. In usual cases, developers can 
simply choose an appropriate pre-defined RAIC level and invocation model to apply to their own RAICs. 
Computer aided analysis of certain component relations is possible to alleviate developers' workload. 

To coordinate components in a RAIC, the RAIC controller needs to know about the status of a 
component, the status of the computer on which the component is residing, as well as other status 
information. The just-in-time component testing technique is developed to feed the RAIC controller with 
component status information. RAIC feelers are designed to feed the RAIC controller with other status 
information such as CPU workload, available memory, or free network bandwidth. With this information, 
the RAIC controller can optimize its component selection dynamically. When necessary, a RAIC 
controller also needs to bring in fresh components to work with applications that have interacted with the 
RAIC for a while. The component state recovery technique is developed to make this process transparent 
to applications. 

The advent of XML web services and tools that brings XML web services to the masses has made the 
abundance of free or inexpensive software components an inevitable phenomenon. The goal of RAIC is to 
make it possible for developers to take advantage of this abundance of software components without full 
exposure to the complexity of distributed component integration. No matter how inexpensive those third­
party remote components will become, more reliable or better performing applications using redundant 
software components will stay as exceptions instead of norms unless the benefit of adopting them far 
outweighs the cost of component integration. The RAIC architectural style is a way to lower component 
integration cost with a clearly defined architectural style, a systematic approach to follow it, and pre­
developed techniques or even code templates and modules that supports the style. 

Our work on RAIC has merely uncovered a tip of the tremendous potentials of RAIC. As the Research 
Directions chapter points out, more works are needed in both fundamental supporting technologies and 
application areas. 
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