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Drug-gene interactions and the search for missing heritability: a 
cross-sectional pharmacogenomics study of the QT interval

A full list of authors and affiliations appears at the end of the article.

Abstract

Variability in response to drug use is common and heritable, suggesting that genome-wide 

pharmacogenomics studies may help explain the “missing heritability” of complex traits. Here, we 

describe four independent analyses in 33,781 participants of European ancestry from ten cohorts 

that were designed to identify genetic variants modifying the effects of drugs on QT interval 

duration (QT). Each analysis cross-sectionally examined four therapeutic classes: thiazide 

diuretics (prevalence of use=13.0%), tri/tetracyclic antidepressants (2.6%), sulfonylurea 

hypoglycemic agents (2.9%), and QT prolonging drugs as classified by the University of Arizona 

Center for Education and Research on Therapeutics (4.4%). Drug-gene interactions were 

estimated using covariable adjusted linear regression and results were combined with fixed-effects 

meta-analysis. Although drug-SNP interactions were biologically plausible and variables were 

well-measured, findings from the four cross-sectional meta-analyses were null 

(Pinteraction>5.0×10−8). Simulations suggested that additional efforts, including longitudinal 

modeling to increase statistical power, are likely needed to identify potentially important 

pharmacogenomic effects.
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INTRODUCTION

The role of inheritance in response to drug exposure has long been appreciated, dating to as 

early as 1932 when the inability to taste phenylthiocarbamide was demonstrated to follow an 

autosomal recessive inheritance pattern.1 Today, the promise of pharmacogenomics lies in 

its potential to tailor drug prescription and dosing to individual patients,2–4 a practice 

exemplified by the use of a patient’s genotype to inform warfarin dosing,5, 6 to avoid anemia 

during hepatitis C treatment,7 or to predict benefit from and therefore guide chemotherapy in 

breast cancer.8 Documented heterogeneity of drug response has also prompted the 
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suggestion that examining drug-gene interactions may help explain a notable proportion of 

the heritability for complex traits that remains unexplained by genome wide association 

(GWA) studies.9, 10 Yet to date, large scale pharmacogenomics studies are few in number.11

The duration of the QT interval (QT), a non-invasive measure of the ventricular action 

potential estimated from the resting, standard twelve-lead electrocardiogram (ECG), offers a 

good model for examining the value of pharmacogenomics. In addition to being well-

measured,12 heritable,13, 14 and heterogeneous among those exposed to what are now called 

“QT-prolonging drugs”,15 QT prolongation is the most common cause of withdrawal or 

restricted marketing of pharmaceuticals16 largely because of its established association with 

ventricular tachyarrhythmia,17 sudden cardiac death, and all-cause mortality.18, 19, 20 

However, prospectively identifying subpopulations at risk for drug-induced QT prolongation 

and its sequelae remains a challenge.16

Although heritability estimates suggest a substantial genetic component underlying QT, 

genetic variation at the 26 single nucleotide polymorphisms (SNPs) identified to date by 

GWA studies together explain approximately 5–8% of the variance in QT.21–27 Popular 

explanations for this missing heritability include rare variants that are poorly represented on 

commercial genotyping arrays as well as gene-gene and gene-environment interactions.10 In 

search of this missing heritability, we assessed pharmacogenomic influences on QT by 

conducting four cross-sectional GWA analyses in ten populations of European ancestry. The 

goal of the studies was to identify genetic variants modifying the association between drugs 

in four therapeutic classes previously associated with QT prolongation or sudden death28–32 

and the duration of QT.

METHODS

Study populations

A meta-analysis of ten cohorts with GWA data that included 33,781 participants of 

European descent was performed to investigate cross-sectional drug-SNP interactions in QT. 

Five cohorts were from the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) consortium:33 the Age, Gene/Environment Susceptibility – 

Reykjavik Study (AGES), the Atherosclerosis Risk in Communities study (ARIC), the 

Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS), and the Rotterdam 

Study (RS). Since the inception of CHARGE, five additional cohorts have joined the effort: 

the Erasmus Rucphen Family study (ERF), Health 2000, the Health Aging, Body and 

Composition (Health ABC) study, the Multi-Ethnic Study of Atherosclerosis (MESA), and 

the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER). At baseline for all 

cohorts, drug exposure was queried and participants underwent standardized ECGs, which 

were read for QT duration. Each cohort followed a pre-specified analysis protocol and 

findings from the within-cohort analyses were then combined by meta-analysis. All studies 

were approved by local ethics committees and all participants provided written informed 

consent. Additional information on the participating studies is provided in the 

Supplementary Material.
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Study design; inclusion and exclusion criteria

Within each cohort, we performed four separate cross-sectional analyses using drug, 

covariate, and ECG data collected at the baseline examination. Participants with the 

following characteristics were excluded from the analysis: poor quality ECG, extreme QRS 

duration prolongation including that due to bundle branch block (QRS > 120 ms), atrial 

fibrillation/flutter on ECG, paced rhythm, or second or third degree atrioventricular block. 

Heart failure at study baseline was an additional exclusion for the thiazide diuretic, 

sulfonylurea hypoglycemic agent, and tri/tetracyclic antidepressant analyses. Users of loop 

diuretics, regardless of thiazide use, also were excluded from analyses examining thiazide 

diuretics.

Definition of drug exposure

Drug use was assessed by method of medication inventory or pharmacy database 

(Supplemental Table 1). Six of the nine cohorts using the medication inventory method 

captured medications used within one to two weeks preceding ECG assessment. The 

remaining three cohorts currently using medication inventory methods assessed medications 

used on the day of ECG recording. The Rotterdam Study was the only cohort that assessed 

drug exposure via pharmacy databases; investigators classified a participant as exposed if 

he/she filled a prescription for a drug class of interest within 30 days preceding the ECG 

recording.

Four classes of therapeutic drugs previously associated with QT prolongation were 

examined: thiazide diuretics,30, 32 tri/tetracyclic antidepressants,31 sulfonylurea 

hypoglycemic agents,29 and University of Arizona Center for Education and Research on 

Therapeutics (UAZ CERT)-classified QT prolonging drugs.28 Participants were classified: 

as thiazide users if they took a thiazide or thiazide-like diuretic in a single or combination 

preparation, with or without potassium sparing diuretic or potassium supplements; as 

sulfonylurea users if they took a first or second generation sulfonylurea anti-diabetic; and as 

tri/tetracyclic users if they took a tricyclic or tetracyclic antidepressant, ignoring 

concomitant use of other therapeutic drug classes.

The UAZ CERT classification was used to group medications into four classes based on the 

likelihood of QT-prolongation: definite, possible, conditional, or no/unknown. Participants 

using two or more drugs classified as conditional were reclassified as possible. When 

participants took drugs from more than one UAZ CERT class, the highest class was 

assigned. For the UAZ CERT analyses, participants classified as users of definite or possible 

QT prolonging drugs were classified as exposed; participants classified as no/unknown were 

classified as unexposed; and those reporting use of one conditional QT prolonging agent 

were excluded.

QT measurement

For each study, technicians digitally recorded resting, supine (or semi-recumbent), standard 

twelve-lead ECGs for each participant (Supplementary Table 2) on the same day drug 

exposure was recorded. Studies used comparable procedures for preparing participants, 

placing electrodes, recording, transmitting, processing and controlling quality of the ECGs, 
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although QT in the various studies was measured by different automated systems and 

therefore will be subject to a small variation equivalent to inter observer error. The ECG 

from the baseline visit was selected when multiple ECGs were available.

Genotype arrays and imputation

Genome-wide SNP genotyping was performed within each cohort using either the 

Affymetrix or Illumina genotyping arrays (Supplemental Table 3). Gender mismatches and 

duplicate samples were excluded. First-degree relatives were excluded in all cohorts except 

the family-based FHS and ERF, which accounted for relatedness in the association analysis. 

DNA samples with genotyping success rates between <95% and <99%, depending on the 

cohort, were excluded. SNPs also were excluded when genotyping call rate thresholds were 

between 95% and 99%, and minor allele frequencies (MAF) ≤ 1%, the determination of 

which was cohort-specific.

To increase coverage and facilitate evaluation of the same SNPs across cohorts, genotypes 

were imputed using BIMBAM,34 MACH35 or BEAGLE,36 which applied algorithms that 

inferred unobserved genotypes in a probabilistic manner. Imputation was performed for ~2.5 

million autosomal SNPs based on the HapMap Phase 2 (build 36) CEU reference population 

(Supplemental Table 3).

Statistical analysis

Each cohort performed four GWA analyses of QT across approximately 2.5 million SNPs 

comparing drug users to non-users. Study designs that restricted to those on treatment were 

not chosen because of the large potential for type I error due to the inseparability of the SNP 

main effect and interaction effect estimates.37 Each drug-genotype interaction was estimated 

using linear regression, under an additive genetic model, and using robust standard errors 

except in the family-based FHS and ERF cohorts, which used linear mixed-effects models as 

implemented in the GWAF package for R (FHS)38 and GenABEL/ProbABEL (ERF).39, 40 

All regressions adjusted for the following covariates: age (year), sex, RR interval (ms), 

recruitment site when appropriate, and principal components summarizing participants’ 

global genetic ancestry to account for confounding by race/ethnicity. Additionally, the four-

category UAZ CERT drug categorization was included as a nominal covariate in the 

thiazides, sulfonylureas, and tri/tetracyclic analyses.

For some SNPs, the numbers of genetic variants among participants on drug therapy were 

too small to permit use of standard asymptotic results. Therefore, cohort-specific inference 

used a (Student’s) t as the reference distribution. The degrees of freedom for the t reference 

distribution were calculated as the cohort- and SNP-specific product of: the number of drug-

exposed participants, the SNP imputation quality (range: 0, 1), and the MAF (range: 0, 

0.50). For each SNP, cohort-specific P-values were calculated by comparing β/standard 

error estimates to this reference, with the resulting P-values then meta-analyzed using the 

standard weighted Z-statistic method,41 with weights based on the number exposed to the 

drug multiplied by the SNP imputation quality.
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Cohort-specific results were corrected by their respective genomic inflation factors (λs).42 

The genome-wide threshold for significant drug-SNP interaction was P < 5.0 × 10−8. The 

software packages R, ProbABEL, GenABEL, PLINK, and GRIMP were used to estimate 

cohort-specific results (Supplemental Table 3) and METAL41 was used to generate 

summary meta-analytic estimates of the drug-SNP interaction parameters. Quantile-quantile 

(Q-Q) plots were used to identify systematic miscalibration of the test statistic for the drug-

genotype interactions.

Statistical power simulations

Power to detect drug-SNP interactions using cross-sectional and longitudinal modeling 

approaches was estimated via simulation studies. Assumptions, which were informed by 

study data, included: (1) 20,000–30,000 participants, (2) a two-sided, per-SNP α = 5.0 × 

10−8, (3) a mean heart-rate corrected QT (standard deviation) = 426 (20) ms, (4) a 

prevalence of drug exposure = 0.10 for the longitudinal simulations and 0.03 – 0.14 for the 

cross-sectional simulations, (5) a mean drug effect for those with zero copies of the minor 

allele = 1 ms, (6) a mean SNP effect for those not exposed to drug = 1, (7) a MAF = 0.20 for 

the longitudinal simulations and MAF 0.05–0.30 for the cross-sectional simulations, and (8) 

an additive model of inheritance. The drug-SNP interaction effect was varied in size. To 

evaluate the power that could be gained by incorporating repeated measures over time, the 

simulation incorporated up to 2–6 measurements of QT duration and drug exposure for each 

participant, and the within-person correlation in QT was set at 0.5 based on unpublished 

observations. Drug use was either temporally constant or variable. When variable, drug 

exposure was assumed to be completely random at each time. An attrition rate of 5% per 

visit, plus random missingness of 5% of remaining measurements, was assumed. Linear 

models with robust standard errors were used for cross-sectional analyses, and generalized 

estimating equations (GEE) with exchangeable working correlation were used for 

longitudinal analyses.

RESULTS

GWA analyses were performed to examine whether common genetic variants modified the 

effects of exposure to drugs in four therapeutic classes on QT. The ten participating cohorts 

of European descent varied in size (range: 1,435 – 8,132, Table 1). On average, participants 

were predominantly female (percent female range: 49.4%–62.5%) and middle-aged to 

elderly (mean age range = 40–75 years). The estimated prevalence of drug exposure at study 

baseline was highest for thiazides (13.6%), lowest for the tri/tetracyclics (2.6%), and 

intermediate for the sulfonylurea hypoglycemic agents (2.9%) and UAZ CERT-classified 

QT-prolonging drugs (4.4%). After applying genotyping and imputation quality control 

measures, a total of approximately 2.5 million autosomal SNPs were available for analysis.

Quantile-quantile plots based on meta-analyses of the cohort-specific, drug-SNP interaction 

test statistics revealed moderately conservative distributions, as demonstrated by λ < 1.0 

(range: 0.89–0.99) and slightly earlier departure of P-values in the direction of conservatism, 

compared to what would have been expected by chance alone (Figure 1). In line with 

statistical theory, overstated significance due to miscalibration, which was common using 
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standard asymptotic methods, was not observed using the t-reference approach. These 

patterns did not differ by the prevalence of medication use at study baseline.

No genome-wide significant cross-sectional interactions (P < 5.0 × 10−8) were detected for 

any of the four drug classes (Figure 2). The top five loci (Supplemental Table 4) also were 

inconsistent across drug classes. Cross-sectional meta-analyses restricted to the 26 SNPs 

reported by previously published GWA studies of QT main effects were similarly null 

(interaction P ≥ 0.01, Table 2), as were results for SNPs reported by recent 

pharmacogenomic studies of QT and drug-induced QT prolongation (Supplemental Table 

5).43–47

Statistical power

Given the robustly null results and because four cohorts (52.2% of total sample size) had 

repeated ECG recordings and drug exposure assessments (range: 2, 10; Supplemental Table 

2), we examined statistical power for the cross-sectional analysis and the degree to which 

analyses incorporating repeated measures would increase statistical power. Simulations 

demonstrated that all cross-sectional analyses were underpowered, especially for drug 

categories with 3% prevalence (Supplemental Figure 1). However, when the prevalence of 

drug use increased to 14% (e.g. thiazides) and the SNP was common, we achieved 80% 

power to detect an effect of 3.25 ms. Incorporating repeat ECG measures with constant drug 

exposure yielded a moderate increase in statistical power, although the greatest increase was 

associated with a time-varying drug exposure, i.e. observed QT measurement on and off 

drug within an individual (Figure 3). For example, we had > 80% power to detect interactive 

drug-SNP effects less than 2 ms when a time-varying drug exposure was examined at least 

four different times.

DISCUSSION

In this study composed of approximately 35,000 participants of European descent from ten 

cohorts, we examined cross-sectional evidence for drug-SNP interactions influencing QT. 

We did not identify any variants that significantly modified the association between QT and 

drugs in four therapeutic classes previously associated with QT prolongation. An analysis 

limited to SNPs with previously identified genome-wide significant main effects yielded 

similarly null results, as did one restricted to recent pharmacogenomic studies of QT and 

drug-induced QT prolongation.43–47

It remains unclear how much “missing heritability” future gene-environment interaction 

studies will explain, as GWA studies of interaction effects are only beginning to emerge. 

Drug exposure likely represents a good candidate for gene-environment interrogation, as 

medication use is highly prevalent48, 49 and pharmacogenomics is one of the few fields in 

which gene-environment interactions have been consistently replicated across studies.50–54 

It is also biologically plausible that the human genome contains variants that modify the 

association between drug exposure and phenotype, as such common variant alleles would 

have emerged long before the appearance of modern pharmacotherapies.55
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We chose a well-measured phenotype12 with biologically plausible pharmacogenomic 

effects15 and our drug assessment methods were sensitive and reliable,56, 57 yet were unable 

to detect any genome-wide significant interactions. One possible explanation is statistical 

power. Using stringent genome-wide significance thresholds, we remained underpowered to 

detect cross-sectional interactions below six ms for low prevalence drugs (e.g. the 

sulfonylurea hypoglycemic agents, UAZ CERT, and tri/tetracyclic antidepressants analyses). 

Although 80% power is achieved when a more common drug exposure is examined (e.g. 

thiazides), three ms is outside the range of typical genetic effects observed for QT.

Statistical power remains a challenge in gene-environment interaction studies, although the 

potential utility of longitudinal models to increase power has been shown here and described 

previously.58 Increases in power from longitudinal models are due in part to increased 

precision in outcome measurement; but when exposure varies over time, power increases are 

also due to within-person comparisons of the outcome under each drug status. Therefore, 

longitudinal analyses increase power more than expanding sample sizes when there is 

variability in exposure over time and minimal concern about time-dependent confounding 

that would complicate the interpretation of longitudinal estimates. Analyses of drug-gene 

interaction effects on QT satisfy both conditions. However, longitudinal models remain rare 

in GWA studies examining both main and interactive effects and likely reflect the 

considerable computational complexities associated with implementing a longitudinal model 

that accommodates the scale of a typical GWA study. We are currently developing methods 

to implement longitudinal analyses on a genome-wide scale and future work will include re-

evaluation of gene-drug interactions on QT interval using available longitudinal data.

In addition to performing a GWA study of QT-prolonging drug use and QT, as a sensitivity 

analysis we separately evaluated 26 SNPs previously associated with QT main effects. 

Restricting interaction analyses to SNPs with replicated main effects is not uncommon in 

GWA interaction studies,59 and likely reflects statistical power concerns given the stringent 

GWA study significance thresholds. Here, we demonstrated that none of the previously 

identified QT SNPs modified the association between QT prolonging drug use and QT. This 

is not surprising, as SNPs selected on the basis of an extreme P-value for a single main 

effect may be less likely to harbor heterogeneity across population subgroups.

Several limitations of the present study warrant consideration to inform future efforts 

examining pharmacogenomic influences on QT. First, we did not address the potential for 

bias related to duration of use. It is difficult to gauge the overall influence of duration of use 

effects, in which participants taking the drugs for years or decades are those least likely to 

have experienced side effects, as they likely differ by drug class. For example, intraclass 

correlation coefficients (ICC) estimated in the ARIC study suggest intermittent patterns of 

use for the UAZ CERT class (ICC =0.39), but long-term usage patterns for thiazide diuretics 

(ICC = 0.69). Although we can suppose that drugs with intermittent patterns of use are less 

influenced by selection bias related to duration of use than those characterized by long-term 

usage patterns, further studies examining the robustness of pharmacogenomic findings to 

such biases are clearly warranted. Second, confounding by contraindication also could result 

from the comorbidities that influence drug use and QT. However, previous simulations 

indicated that confounding by contraindication has very modest effects on estimates of 
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interaction in pharmacogenomic studies.37 Third, our results are statistically conservative, 

given the evidence of under-statement of significance for the drug-SNP interaction estimates 

suggested by QQ plots. However, it is unlikely that the bias would be so large as to cause 

truly genome-significant loci to be reclassified as non-significant. Fourth, we relied on 

medication inventory and pharmacy data to ascertain medication usage. Although neither 

source of information guarantees exposure, validation studies suggest good agreement 

between serum drug concentrations and several (e.g. thiazide diuretic) exposures ascertained 

by medication inventory.56 Pharmacy data appear to be even more accurate in this regard.60

Finally, the drug classes considered herein, particularly the UAZ CERT class, combine QT-

prolonging drugs that may have heterogeneous mechanisms of action, thereby reducing the 

sensitivity for detecting SNPs possessing important, population-level interactive effects. 

However, disagreement among classifications is much lower in the highest ventricular 

arrhythmia risk category16 and for older drugs, including the majority of those taken by 

participants at the time of their past examinations. Relatively systematic attempts to 

exhaustively identify, classify, and update current lists of QT-prolonging medications in 

pharmacologically more meaningful ways are also unavailable. Moreover, nearly all drugs 

that prolong QT and cause ventricular arrhythmias inhibit the rapidly activating delayed 

rectifier potassium current.16, 61

In conclusion, our findings suggest that additional efforts are required to realize the potential 

of pharmacogenomics. In addition to careful selection of the phenotype of interest, 

researchers interested in pharmacogenomics should increase the number of measures per 

participant and invest in longitudinal modeling infrastructure scalable to GWA studies to 

help increase statistical power. Although these cross-sectional analyses do not support 

strong drug-gene interactions for QT, future efforts incorporating longitudinal modeling are 

needed to determine whether the reported associations are underpowered or genuinely null.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Quantile-quantile (Q-Q) plots of drug-SNP interaction estimates after meta-analysis of 

summary results from ten cohorts of European descent. Drug classes are as follows: panel A, 

thiazide diuretics; panel B, sulfonylurea hypoglycemic agents; panel C, University of 

Arizona Center for Education and Research on Therapeutics (UAZ CERT)-classified QT 

prolonging drugs; panel D, tri/tetracyclic antidepressants.
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FIGURE 2. 
Manhattan plots of drug-SNP interaction estimates after meta-analysis of summary results 

from ten cohorts of European descent. Drug classes are as follows: panel A, thiazide 

diuretics; panel B, sulfonylurea hypoglycemic agents; panel C, University of Arizona Center 

for Education and Research on Therapeutics (UAZ CERT)-classified QT prolonging drugs; 

panel D, tri/tetracyclic antidepressants.
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FIGURE 3. 
Statistical power of a simulated pharmacogenomics study of QT. The following assumptions 

were used for the calculations; 2–6 serial visits measuring ECGs and drug exposure, 

n=20,000–30,000 participants, a SNP minor allele frequency of 0.20, and the prevalence of 

drug exposure at any one visit of 10%. The solid black lines represent a cross-sectional 

analysis, the red lines a longitudinal model evaluating drug exposure measured at baseline 

and repeated ECG measures, and the blue lines a longitudinal model with drug exposure and 

ECG assessed at all visits. Figure 3A assumes 20,000 participants, with variable number of 

visits. Figure 3B assumes four visits, with a variable number of participants.
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