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ABSTRACT

Grid generation is concerned with discretizing surfaces and volumes in 3D
space. The original surfaces defining a geometry might be given as a linite set
of triangles/quadrilaterals (discrete form) or as parametrically defined surfaces
{unalytical form). A new interactive technique is presented for computing a B-
spline approximation for geometries given in either form. The method requires
user interaction for the selection of subsets of the given surfaces Lo be approxi-
mated. Once all subsets of surfaces have been approximated by B-spline surfaces,
these are united yielding an overall C* continuous approximation.

1. INTRODUCTICON

Grid generation is mm:crnedt“wiLh discretizing surfaces and volumes for
computational field simulation (CFS). A 3D geometry might be given in dis-
crete form (e.g., triangles and/or quadrilaterals) or parametric form (eg.,
Bézier, B-spline, and Non-Uniform Rational B-spline (NURDBS) surfaces).
Grid generation methods construct grid points lying on the surfaces as well
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as i volumes surrounding the surfaces defining a geometry. Unfortunately,
the original surface description often contains anomalies, such as discon-
tinuities between surface patches (“gaps") or intersections among surface
patches. This paper presents an interactive technique for the correction of
such anomalies. The grid generation system ( “National Grid Project”) cur-
rently being developed at the NSF Engineering Research Center for CFS
ut Mississippi State University uses the method presented.

The fundamental issues in grid generation are described in [1, 2. Recent
advances in grid generation are presented in [3]. The numerical methods re-
guired for the technigue presented are primarily discussed in the geometric
modeling and spline literature. References for these two areas include [4-9).
Must of the notations aod agorithons wsed, i particolsr when dealing with
[B-splinees, cnne b fowd in |41, G

Uhier overall approach for creating o B-spline approximation of an arbi-
trary 3D geometry can be divided into these steps:

(1) Place a block in space,

(i) Determine the subset of surfaces lyiog partly inside che block.

(i) Compute a surface triangulation fur this subset.

(iv) Clip the triangulation against the six faces of the block.

(v) Derive approximation conditions by intersecting the triangulation

with a family of lines.
(vi) Map these intersections onto the parametric surfaces if the parametric
definition is known.

(vii) If intersections can not be found for some lines, compute “artifi-
cial" conditions.

(viii) Use the points derived in (v), (vi), and (vii) to compute a local ap-
proximant.

(ix) Compute the error of the approximation.

(x) If the error is too large, increase the number of lines and go to (v).
(xi) If multiple surfaces must be approximated, repeat the steps (1)-(x).
(xii) Adjust all B-spline approximants in order to achieve an overall C*

approximation.

These steps are deseribied in detadl in the following sections.

2. SURFACE SELECTION

The selection of subsets of all given surfaces is based on interactively
plucing blocks (hexahedra with “curved faces” ) around parts of a given ge-
ometry. These hexahedra are constructed as follows: First, the user spec-
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ifies four points on the geometry. These four points define a quadrilateral
in space. Second, two offset quadrilaterals are computed, one above and
one below the user-defined quadrilateral, The offset distunce is related to
the edge lengths of the user-defined quadrilateral. The two offset surfaces
define a block in space whose four side faces are obtained by connecting
corresponding point pairs on the upper and lower olfset surface. Such a
block can be defined formally as follows:

DEFvTION 2.1, A block consists of eight vertices

Vi = (Riga g tige)y. Hike€ {01}, (2.1)

andd twelve wdges

Vo, k1.0 ke {01}, (2.2)
Viok¥ilk, 1.k € {U, ”-. and

Vi 0¥z 14 i,7 € {01}

The six faces of the block are given by the six quadrilaterals defined by the
six ordered (indicated by “<"} point sets

{0,000 V0,01, Y011, Yo,1.0 | Yo,0,0 < Yoo < Vo110 < Vo,10),
{vi00,Vi,0. Y0, V00 | Vieo < Vige < Viag < Yioah
{v0,0,00 ¥1,0,00 V1.0,0: Yo.0,1 | Yo0.0 < V00 < Vi1 < Voea)
{vo,1,00 Vo,1,1 Y1100 Y100 | Yo,0 < Vo < Viaa < Vi),
{vu,0,0, Vo,1.00 ¥1,1,0, V1,00 |1V"-"u.n,u < Vg0 < Ve < Vies) and

{vo,0,0, V1,010 V1,00, Vo, 1,0 Vo0 < Viod < Vi < Vo) (2.3)

The coordinate extrema of the 3D bounding box containing the block are
denoted by Xumin = min{zi i} Xuax = max{z, ;x}, Yiuin = min{yi i},
Yiax = "131{!.{!,.4.1;}- Lypin = mi"{zi.,;.k}- L = "1u{zl.1.k}'

The local approximation procedure is restricted to the interior of a
block. Therefore, it must be defined when a point lies in the interior of
a block, If the original surfaces are Bézier, B-spline, or NURDBS surfaces,
one can take advantage of their eonvex hull properties. These three surface
types can contain points lying in the interior of o block only if the bounding
box of their contral nets and the bounding box of the block have a nonempty
intersection. Let {d;; = Mf.pdr._i-df.,::l |i=0,...,m,j=0,...,n} denote
the set of control points of a particular parametric surface satisfying the
convex hull property, and let the coordinate extrema of a 3D bounding box

containing all these control points be denoted by ., = min{df ; }, Tuax
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= 1"“{1;',:.11..”.““, = min{d:j},ym“ = max{d], }, tmin = mind{dy }, and
Zinax = mﬂ.?l'.{ri'.‘lj}-

A necessary condition for a surface to lie (partly) in the interior of a
bluck is o noncpty intersection of the bounding box of the block and the
bounding box of the surfuce's control points. This can be tested before
any clipping of surfaces against the faces of a block is performed. Having
determined the set of parametric surfaces that might lie (partly) in the in-
terior of a block, these surfuces are evaluated for the generation of a surface
triangulation. A criterion is defined next to decide whether a triangle in
this triangulation has & nonempty intersection with the interior of a block.

DeFNrroN 2.2, Let x,,¢ = 1,...,4, be the (ordered) set of points
dedining w block face as defined in Delinition 2.1, A point xy = {5, Yo, 20)
is o the negutooe side of the fuce,

(1) (mas(ro.vo,2) <0 and  pyaa{ze,pu.20) S0) or

(i1} (pzalzo.v0,20) €0 and  pasa(zo, vo, 20) < 0) (2.4)

holds. The plane equation for the (oriented) plane containing the three
points x;, x;, and X is pi el p 2) = a; jalE =)+ b jaly—1) Heige(z—
z,), and 0y jx = (@556, b k0 € 5%) 18 the outward normal vector defined as
Mgk = (%5 = %) % (X — x;). If o point xg is on the negative sides of all
six block faces, it is called an interor block point,

THEOREM 2.1. A triangle with vertices vy, vz, and v cannol contain
an interior block point of all its vertices are on the negative side of one
block face (all three vertices satisfying (i) or all the three vertices satisfying
(ii) in Definition £.2) and are on the nonnegubive side of the opposite block
face (all three vertices violating (i) and all three vertices wolating (il) in
Definition £2.8).

Proor. Each poiut x u the interior (or on one of the edges) of a
Liiangle can be written as a convex combination x = Z‘L, U, Vy, Where
E;:_,, u, = 1l,up 2 0,r =1,2,3, and the intersection of the two half-spaces
implied by the pairs of plane equations is convex, Therefore, x lies on the
negative side of the sane block face and on the nonnegative gide of the

opposite block face, (!

Theorem 2.1 uses a generaligation of a 3D bounding box (“cuboid”)
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to a hexaledron having quadrilaterals as its faces. This theorem is used
for the reduction of the number of triangles potentially containing interior
block points. All triangles violating the condition stated in Theorem 2.1
are kept and are used for the creation of the local surface approximation.

3. CONDITIONS FOR THE APPROXIMATION

Onee the set of all surface triangles lying (partly) in the interior of a
block is known, the associated surfaces are locally approximated using a
single B-spline surface. In order to determine the control points for this
B-spline approximant, one computes a finite point set on the surfaces lying
[portly) in the interior of the block aod ases these points as approximation
conditions. ‘'liese points wre obtained by lotersecting hocs with the surface
triangulation in the interior of a block. The lines themselves are defined in
terms of pairs of points lying on the “bottom"” and “top” face of the block.
This procedure is described next.

T'wo bilinearly blended surfdces are implied by the two sets of four block
face vertices {v, o0 | 1,7 € {0j1}} ("bottom") and {v;;i]4,7 € {0,1}}
("top”). The two bilinearly blended surfaces are

sp(uw,v) = (1 =u){l —v)veor +ull = v)vigr + (1 — u)uvoy i
+uvvy g w,ve |01}, ke {01} (3.1)

Evaluating sg and s, at parameter values (us,vy), uy = /M, I = 0,
vooyM, and vy = J/N, J =0,..., N, yields point pairs defining the lines

10 = si{up,vy) + tselur,vy) = si(ug, vr))
CERT =00 MY T= . TN )

These lines sre used to obtain approximation conditions.
The set of triangles lying (partly) in the interior of a block is denoted by

T = {(vi = (i 2)ovi = (#2.0,2),
vi={zh ol 8))li=1,.... %) (3.3)

Each triangle is contained in a plane given by
ple,y,2)=a'(z—)) + b (y—ul) + (2 - 2}) =0, (4.4)

where n' = (a*, ', ¢') is the plane normal vector n* = (vi—vi) x (vi—vi).
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Eanch line b g s interseeted with each plane p'. When an interseetion is
found, it is determined whether the intersection points y' is in the interior
(or on the boundary ) of some triangle {(contained in plane p') by computing
the value

(u:-r.'h)_l_ (I.u:a-:c)+ (c:-‘.a) (3.5)
W = wrecos | ——— Weeos | ——— ) 4 arceos | —— |, ;
lall b I b]lflel| IIEEY

wherea=vj—y' b=vi—y' c = vi-y' audl ||| indicates the Euclidean
norm. If w = 27 the intersection point y* is a point in the interior (or on
the boundary) of this particular triangle, otherwise, it is outside. Special
care is required when the line 1y is parallel to or contained in a plane.

A line 1y y might not intersect any triangle at all, might intersect several
trinngles, or might be contained in the plane containing « trinngle. Among
all intersections in the interior (or on the boundary) of triangles, one selects
the intersection that is closest to sy(u;,vy), closest o the “top" face of
the Block. IF a line is contadned o the plane defined by o triangle, one
computes where Cae line 1 interseets the triangle's eilges and selects the
point closest to s;{uy,vy). The sclected mtersection point is denoted by
X, s in Figure 1.

Some lines mwight not intersect any triangles. o this case, “artificial®
approximation conditions are derived using the fullowing approach: Each
intersection polat %y that has been found can be written as o linear
combination of the two points sgluy, vy) and sy (uy,vy), e

xp. 0= (1=t g)s(up, vy} + ty asgluy, vy, ty s ER. (3.6)

A bivariate approximation technigque can be used to compute parameter
vilues ty y for lines without intersection points.

Hardy's reciprocal multiquadric is used to solve this problem (see [10]).
The bivariate interpolation conditions are

trg = tlupvy) = Y Y e (R4 —w) + (0= yy)?) 7,
JE[O,.. N} i€(0,..., M)
re{o,....M}, Je{o,.. N}, (3.7)

where one uses values ty y,uy, u,, vy, and v, for which an intersection point
x; 4 is known. For an equidistant parametrization (i.e., w4 —u, = 6, and
vig1 — vy = &), the value R = 0.5(4, + 4,) generally yields good results.
Using the value v = 0.001 in Hardy's reciprocal multiquadric works well in
most practical cases tested.

The coefficients ¢; ; appearing in (3.7) are computed by solving the im-
plied linear system of equations. Additional parameter values t; » can be
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Fig. 1. Obtaining approximation conditions.

computed by simply evaluating (3.7) for (u,v) = (u;,v;). The bivariate
interpolation problem can be made more efficient and localized by consid-
ering only a certain number of known ¢; ; values “around” a line without
intersection points. The final approximation condition for a line 1y is
obtained by evaluating (3.6) for the additionally computed values t; s. By
following this sequence for deriving approximation conditions, one U a-
tees (M + 1)(N + 1) approximation conditions. They are used to determine
the B-spline approximation for all the surfaces lying (partly) in a block.

Each intersection point x; s lying in the interior (or on the boundary)
of some triangle formed by three surface vertices is mapped onto the associ-
ated surfoce, provided its parametric definition is known. This is achieved
by expressing the intersection point in terms of barycentric coordinates, us-
ing these barycentric coordinates to get a parameter tuple in the surface's
domain, and computing a point on the surface. Writing the intersection
point x; y as

XiJ0=uv) +Ugvy + Wavy, (3.8)

where vy, va, and vy are the vertices of the trisngle containing x; g, one
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computes the parameter taple
(7, 8) = T (g, vy) + Tyluy, 0a) + Talug, va), (3.9)

where (e, v, & = 1,2,3, is the parameter tuple of vertex vy ‘The surface
s containing ve, k = 1,2,3, is evaluated at (6,7), and x4 is replaced
by s(i,7) using it as the final approximation condition, This principle is
illustrated in Figure 2.

Obviously, the set of surface points generated in this process depends on
the orientation of the black. This is due to the fact that the surface points
are obtained by intersecting line segments defined by corresponding point
pairs on the “top” and “hottom” face of the block with the given geometry.
changing the orientation of the block leads to different line segments and
therefore to a different set of intersections with the geometry.

4. B-SPLINE APPROXIMATION

The approximation conditions derived in the previous steps are used
Lo construct a locally approximating B-spline surface. The definition of a
I-spline surface is as follows:
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DeeiNerion 4.1, A B-spline surfoce s(u, v) is a piecewise polynomial
surface, denoted by i

s(u,v) = DD di;Noa(u)N;(v),

j=0 1=0
ue Iul.'—hum-i-lli uE [T"II— i1 T-"r|.+I.I- {411

and defined by

two orders k and [,

a set of 3D control points, {dog, .- dwnlts

n set of real u knots, {ug, ... ek [ € Uipr, 0 =0, (m+k=1)},
i osel of real v knots, (v, g |9 S0 =00 S+l =1)},
B-spline basis functions Ny g(u), u € |ug, i)t = 0,...,m, where

W= i ik =W o
N. {1 g e AL ) e N I.L‘-l[u.}l
okl iph-1 — 1y (1) Uk — Hitd -
1. i < u < 4,
M =g s i=0,...m  (42)

e and B-spline basis functions N, (v),v € [v;,v544),7 = 0,...,n, de
fined analogously to N, x(u).

The curves cg(v) = s{ug-,v),c1{v) = s(Uy41,0),V € [vg-1, Uns1), and
Eolu) = s(u,v-1) and E(u) = s(u,vup1)iu € [uk—y, ], are called
boundary curves, and the points Xop = s(ug—1,v-1), X1,0 = (W1, -1},
Xg1 = S(Uk—1,Un41), 80d Xy 1 = S{Um 41, Uns1) ar€ called corner points of
the B-spline surface s(u, v).

Using this definition, one easily derives the system of linear equations
for interpolating the set of points {x; 4 | =0,... M, J=0,..., N}. The
system is given by

Xl d = 5':'-‘]'11-".1] zzzdl.JN:.kEﬂI}NJ.iEqul
=l a=0
[=0,....M, J=0,...,N. (4.3)

Using o piecewise bicubic approach (k = | = 4), and interpolating at
the knots, Le., @iy = Uk—14t = a4t d =0,... . M, and 9y = w45 =
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Uapd, o =00, N, the system of equations becoimes
NS M2
Kid = 5[“]-&!:1-';.11-;]' = z Z l-:IL,JJ‘iF._.l[u;;_l_;j,J\-'J_.i{t.'“._r_],
Jul =0
Fo . i J =0 N (4.4)

Chie can use an equidistant koot L[imnilnlliuu hey, u, =1f(M +6),i=0,

(M 4G6), snd v, = 3 /(N +06), 3 = {“-"+LJ or a knot distribution
mnultlurmg the Euclidean distanees ul' tlu.: poiuts to be nterpolated as in
Figure 3.

According to [6], oue solves the (underdetermined) system (4.4) by
first mtvrpul.lr.lt:lg (N + 1) rows of points given by the sets {x; = x5 |
[l MY using coertain end eomditions (g, mtueal, clhuupad, or
Buessel ), llu resuls of this step e (Y + 1) rows of “intermediate” control
points, denoted by {d, y |i=0,... (M In-:!']]j}"z,,. Second, one interpolates
the (M + 3) columns of “iatermedion:” control points, given by the sets

I'l; =t 17=0,... Nfﬂ.‘ﬁ- This vesults i the set of the desired control
puints for a tensor product Bespline surface, fdi, |ist. .. (M+2),5=
AN+ 2))

5. REPRESENTING THE TOPOLOGY OF
THE OVERALL APPROXIMATION

During the process of constructing the approximating B-spline surfaces,
one must deternnine their topological connectivities and store them, For all
fullowing processing steps, it is essential to know which boundary curves of
a particular B-spline surface are shared by which other B-spline surfaces.
Since all the surfaces created are topologically four-sided eutities, they
cin have o maximum of four neighbors, Our application is restricted to
particular geometries, which are defined next.

Deriverion 5.0 A connected, knot-to-knot B-spline surface geome-
fry is a hnite set of at least two B-spline surfoces satisfying the fullowing
conditions:

(1) Each boundary curve of a Bespline surface is shared by at most two
surfuces (no bifurcations).

(i) A corner point of u B-spline surfiuce can be shared by any number of
surluces.
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(iii) Each surfiuce in the set of all B-spline surfaces has at least one point
along one of its boundary curves in common with another surface
(connectivity).

(iv) If & corner point of o B-spline surface is shared by a second B-spline
surface, this point is alse o corner point of the second surfice (knot-
to-knol propurty).

I grid generation, such geometries are referred to as “full-face inter-
face” geometries,

DerNrrion 5.2, Let s(u,v) be a B-spline surface in a connected,
knot-to-knot B-spline surfuce goometry.  The left newghbor of s{u,v) is
the B-spline surface shuring the curve s{ug-,v), the right neghbor is the
B-spline surfuce sharing the curve s(uy,4,v) the bottom neighbor is the
B-spline surface sharing the curve s{u,vy-;), and the top neighbor is the
B-spline surface sharing the curve s{u, v,4).

For each local B-spline approximant, at most four neighbors are identi-
fied and stored.

6. ERROR ESTIMATION

In order to evaluate the quality of the approximation, one needs an error
measure deterinining the difference between the subset of approximated
surfaces and a single approximating B-spline surface. A discrete measure
is used for the computation of the difference between surfaces. Assuming
that one knows the exact definition (order, knots, and control points) of
the subset of surfaces being approximated, one can compute their distances
to the approximating B-spline surface.

First, points on the approximating B-spline surface s*""(u, v) are gen-
erated. More specifically, one computes a finite point set P = {x; =
s""P(u;,u5) = {:i:“y‘rl z;)|7=1,...,K}. Since one knows the triangula-
tion of the subset of surfaces being approximated, one can Jdeterming the
shortest distance between a point x; and the triangles in the triangulation.
The distance between x; and a triangle with vertices v}, vi, and vj is de-
fined as Ei___l l|x; = vi|l. The triangle for which this expression is minimal
is identified. Its vertices are denoted by a, b, and ¢. The plane containing
this triangle is given by

Az + By +Cz+ D =0, (6.1)
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where (A, B, C) is the unit normal vector n of the triangle,

(b—a)x (c—a)
(b~ a) x (¢ —a)j|’

n=(A48C)= (6.2)

and D = —(n-a). The (signed) perpendicular distance d; between the
plane (G.1) and the point x; is given by

d;y =nx x;+ D. (6.3)

Since d; is the distance of the point y; in a plane (6.1) having shortest
distance to x;, this point is given by

)!, =x; —d,n. (6.4)
The point y, is expressed in terms of barycentric coordinates,

y; =ta+ figh + dc, {ﬁ.-ﬁ_}
and the triple (&;, iy, ug) is used to compute a point on the corresponding
parametric surface. Knowing the parameter tuples (uy, ), (us, vg), and
(u3, v3) associated with the vertices a, b, and ¢, one computes the tuple

|:1_|I.|T:F_]'Zﬁltullﬂ'l}+1:I1EH3|L’2}+1_13|:_H3|U‘3_} EEE}
and uses it for the generation of the point 5; = s(ii, ) lying on the same

original surface as the vertices a, b, and ¢. Therefore, the (approximate)
distance [); between the point x, and s;, is given by

D.I' E \/{xj i EJH":_: o HJ}' {E.TJ

The root-mean-sguare (RMS) error £ is defined as

(6.8)

and it is used as a measure for the distance between the approximating
B-spline surface and the subset of approximated surfaces.

If the error £ exceeds a prescribed tolerance, the number of approxi-
mation conditions used in the approximation is increased until the error
Is smaller than the tolerance. It is necessary to use the same number of
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approkimation conditions fur the computiation ol nelghburing B-spline sur-
fnces. It is essentiol that cach pair of neighbors has (M 4+ 3)(V +3) control
puints (see (4.4)). This is required for the adjustment of the approximating
B-spline surfaces’ control puints to define an overall C* approximation.

7. UNITING B-SPLINE SURFACES

The process of approximating u subset of surfaces by a single B-spline
surface has been explained in the previous seetions. o the context of
approximating an entire aircraft, car body, or ship hull, it is necessary
o compute several local B-spline approximits. Once computed, they
st be adjusted such that cach pair of neighbor B-spline surfaces satisfies
continuity conditions along the shared boundary curve. Furthenmore, it
st be taken care of coutinuity conditions at surfuce corner points where
midtiple B-spline surfaces come togetler.

Considering only connected, knot-to-knot B-spline surlive geotetries
(Delinition 5.1), a geometry is constracted such thit g libor B-spline
surfuces satisly certain continuity conditions along their conmon boundary
curve. Tn the following, it is described how to adjust the control information
(control points and knots) of piccewise bicubic B-spline surfaces (k = [ = 4)
in order to achieve C* continuity. The principle can easily be generalized
to higher-order continuity and surfaces of arbitrary order.

Tnegorem 7.1, Two O-spline surfaces s{u,v) = E o i di N4
(u)Nja(v), u € [ug, upmpr], v € [va, Unsi], and 3(a, 7) = E Y
N,q ()N 4(0), i € [fg, Tysr], T € |, Bu g 1], are £ cunhﬂuaus u.E:.-ny
U= Umsy (@ = iiy), if their control points and knots satisfy the follow-
g condifions:

dnl—i-l-]'_j = I-]--f._,lu F=0p -4, 1=0....n,
A1+ = Allg, I=0....5 el
Av; = Ay, j=0,...,({n43), (7.1)

where Auy = w4y — w; and Avy = v,4, — ;.
Proor. Se: [5, 6]. 0
This theorem is the basis for adjusting the control points and knots

for pairs of B-spline surfaces that must be C* continuous along a conr
mon boundary curve. Considering connected, knot-to-knot B-spline sur-
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face geometries implies that any munber of B-spline surfaces can share a
comtnon surface corner point. It is necessary to ensure continuity at such
commmon surface corner points as well. It turns out that it is possible to sat-
isfy this additional condition during the process of enforcing C? continuity
along common boundary curves. It is also possible to enforce continuity
along all shared surface boundary curves in a first and continuity at all
shared surface corner points in a second processing step.

The algorithm for the adjustment of control information is straight-
forward. Each control point d,; of each B-spline surface is assigned an
“adjustment counter” ¢, ; indicating how many control points have been
averaged for its computation. Initially, these counters are set to “1" for
all contral points of all B-spline surfaces. The following pseudo-code rep-
resents the algorithm used for adjusting control points and knots in order
to obtain a pair of surfaces that is C* continuous along a shared bound-
ary curve. [t must be mentioned that all surfaces must be cubic B-spline
surfaces having at least six rows and six colunns of control points,

ALcowrrrusm 1. Adpusting control pounts and knots.

Input: Two cubic B-spline surfaces (control points and knots),
s{u,v) and §(u, v)

Output: Two adjusted cubic B-spline surfaces (control points and
knots),

C* continuous along common boundary curve
c(v) = €a(2) (see Definition 4.1)

/* Adjusting control points */

dmu'.!-rf._p = '|.r':m—'.!+.l‘.,1dm—2+!.,|' + f‘I.;dI.Jl}ll"l[‘-"m 2413 + Ef._‘f}i

<. (I=0,1,2, i=0,...,n)
d; ; zdm-dhl'.,;; (=012 j=0, ceuyTH)
Con—-2+1,3 = Cm=2413 t ﬂ{.ﬁ ff =0,1,2, J — My ru:'
€1, = Cim—2414 ! (I=0,1,2, 3=0,...,n)
/* Adjusting knots */

O = (Bug—g41 + Aily)/2; ({ =0,...,5)
Up=-241 = um—ﬂ"‘Z::; i (= g ey )
iy =fg+ 50206, (I =1,...,8)
n={ﬁv;+&v,h’i’ (7=0,...,(n+3))
“j=lr”u+l’u.'|.-'r2+z,-nfn (7=0,....[n+4))
U; =y, {j=ll1.-.,{n+d]_}
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REMARK. In the implementation, du,~24¢,, and d;, represent point-
@rs to the corresponding control point coordinate vectors, These pointers
must be updated throughout the algorithm to ensure C? continuity at com-
LELEHL HUIFH.EE corner Pﬂil][..ﬂ.

This algorithm averages control points along boundary curves and the
lengths of knot intervals at the ends of parameter domains. In order to
be applicable to all four boundary curves of a surface, the control points
and knots used in the adjustment must be selected in accordance with the
particular boundary curve. The scheme applies to any number of surfaces
sharing a common corner point. Figure 4, shows the case of three surfaces
sharing a common corner point. The control point of surface s;, ure denoted
by df ;.

"I'he sdjustiment algorithm ensures C continuity at each surfuce corner
point. B-spline control points “around” a common surfiuce corner point
are the average of the contrel points of all the B-spline surfaces coming
together ot the comumon corner point.

8 EXAMPLES

Figure 5 shows an approximation for two intersecting surfaces. The
original surfaces are shaded darker than the approximating surface.

Figure 6 shows a real-world car body configuration containing both
“gaps” and intersecting surfaces. The original geometry is shown in the
top portion of the figure and the continuous approximation is shown in the
bottom portion.

9. CONCLUSIONS

An interactive technique for approximating surfaces by a set of B-spline
surfaces has been described. The approximation process is semi-automatic
in the sense that the user still has to specify subsets of surfaces by picking
four appropriate surface points. Once these subsets have been determined,
they are approximated without any further user interaction. Having cre-
ated all approximating B-spline surfaces, €% continuity is automatically
enforced along all surface boundary curves and at all surface corner points.

This approximation strategy has been designed for the particular needs
of grid generation. Given the CAD definition of a 3D geometry, the set of
surfaces defining the geometry might contain anomalies, such as discontinu-
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Thanks o Lo ill the members on Be Notional (e .|""J|l__||'r|I tearin, in _|'.I||!.'I|!|.-
ular to the people whe huve vmplemented and tested the algerithm, Ming
Laing Chen, J. Adam Gasther, Brian A, Jean, Sheklur Moluodevan, |r'l.--|'.'ll!ll.l
L. Parmley, and Po-Yu Tsai. John F. Dannenhoffer 111, €. Wayne Mastin,
Bharat K. Somi, Joe F. Thompson, and Nigel P. Weatherill have con-
iributed siynificantly to thas paper. This s gratefully acknowlediged.
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ities adong boundary curves of two patches or surface-surtace intersections
L opder to ereate oo valud 30 grid around saeli srlaees, 11 15 Becessary
Lo remove these anomalies from the geometry definition. The approach
il llhhl'll il |_|:|j1. |r.|.|r|'| ||.L"-. PTG l|l".| ||.-||| I| feal 'ill.l:-l e

Further rescarch will be concerned with automatically wlentiiyving the
stibmots of surfaces too e agagarox it i, b e user will o longe Liave
tu interactively specify these subsets. Another issue that will be addressed
is the problem of dealing with nonconvex surfuces which might not be
ppproximated properly when using the current techngue This s due to
e Fuct that many hne-sorface intersections can be found in the process of
deriving the approximation conditions (see Section 3). "L'he approxunating
B-spline surfaces are internally stored as NURDBS surfaces. 1t will be inves-
tigated whether the weights i the NURRDBS representation can Iz used lor
the reduction of the approximation error (See Section b)

'!IJIII:.‘l |'n'_':H'.-ZH'l'.|I.' (FRfFES :'||j||r||||'_l_l'|l|'_.:Jl f.l.-l.' .I'."|:' ,-.'l-r||||£|.|.'H].I! L.Ir"n:u[ |“I'.'|_|'."||' consortium
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