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Eulerian simulation of complex suspensions and biolocomotion in three
dimensions

Yuexia L. Lina, Nicholas J. Derra, and Chris H. Rycroft*a,b

aJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138
bMathematics Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

Abstract

We present a numerical method specifically designed for simulating three-dimensional fluid–structure interaction (FSI)
problems based on the reference map technique (RMT). The RMT is a fully Eulerian FSI numerical method that allows fluids
and large-deformation elastic solids to be represented on a single fixed computational grid. This eliminates the need for meshing
complex geometries typical in other FSI approaches, and greatly simplifies the coupling between fluid and solids. We develop
the first three-dimensional implementation of the RMT, parallelized using the distributed memory paradigm, to simulate incom-
pressible FSI with neo-Hookean solids. As part of our new method, we develop a new field extrapolation scheme that works
efficiently in parallel. Through representative examples, we demonstrate the method’s accuracy and convergence, as well as its
suitability in investigating many-body and active systems. The examples include settling of a mixture of heavy and buoyant soft
ellipsoids, lid-driven cavity flow containing a soft sphere, and swimmers actuated via active stress.

Introduction

Fluid–structure interactions (FSI) are at the heart of many
important physical and biological problems, including flex-
ible structures in flow [1, 2], blood circulation in the heart
[3, 4], animal locomotion [5, 6], and cilia motion [7, 8].
The couplings between fluid and immersed solids give rise
to complex nonlinear dynamics dependent on geometry and
boundary conditions, material constitutive relations, and col-
lective interactions among the solid objects. Thus analytical
solutions are rare and limited to simplified settings in reduced
dimensions, and numerical methods for FSI have become in-
dispensable for understand these problems.

In designing numerical methods for fluids and solids, Eu-
lerian and Lagrangian perspectives are the more convenient
choices, respectively, due to the differences in constitutive
responses. Bridging between the two perspectives is a clas-
sic dilemma in developing numerical methods for FSI. Vari-
ous frameworks have been proposed to resolve this dilemma.
The immersed boundary method [3, 9] and the family of im-
mersed methods that it inspires [4, 10, 11] solve fluid on
a fixed mesh, use Lagrangian points to represent the solid,
and employ a coupling scheme between the two. Arbitrary
Lagrangian–Eulerian methods use moving nodes for both
phases, and reposition the nodes to maintain mesh quality
[12, 13].

There are also fully Eulerian methods, for which two
types of formulations exist. The hypoelasticity formulation
[14, 15, 16] uses linear elasticity, whereas the hyperelastic-
ity formulation employs a general large-deformation descrip-
tion in the solids. To compute solid stresses in hyperelastic-
ity, a variety of quantities have been used, such as level-set
functions defining the fluid–solid interface [17], the defor-
mation gradient tensor [18], the deformation tensors [19],
and the solid displacements in the undeformed configuration
[20, 21, 22].

The reference map technique (RMT) is a fully Eulerian
approach that uses the solid’s reference coordinates as the
primary simulation variables. The RMT has many favorable
properties, and can simulate compressible fluid and solids
[23, 24], handle contact between multiple solids [25], and
simulate incompressible fluid and solids with complex ge-
ometries and actuation [26]. The RMT makes use of the
level-set method [27, 28] for tracking the fluid–solid inter-
faces, and all prior versions have employed level-set reinitial-
ization using the fast marching method (FMM) [28, 16]. Fur-
thermore the FMM is used to extrapolate field values near the
fluid–solid interface, which is a necessary part of the RMT.

All prior papers have demonstrated the method in two di-
mensions, yet a major strength of the fully Eulerian approach
is the ability to avoid computational meshing of complex ge-
ometries, which becomes a compelling advantage in three
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dimensions (3D). Here, we provide the first 3D implementa-
tion of the RMT, and use it to simulate several scenarios that
would be difficult do with existing numerical approaches. In-
spired by recent work on fluid-filled soft granular packings
[29], we simulate a suspension of soft flexible particles, half
of which are lighter and half of which are heavier than the
fluid. There has also been substantial recent interest in swim-
ming and biolocomotion, yet reduced-dimension models of
the swimmer [30, 31, 32] are often the state of the art. We
demonstrate a model of a swimming organism using full vol-
umetric actuation, creating a simulation tool that can explore
a broader range of swimming modalities.

3D calculations are considerably more computationally
challenging than two-dimensional (2D) ones, and we there-
fore present the first complete parallel implementation of the
method using domain decomposition. Since the RMT uses a
single fixed regular grid for fluid and solid, it is well-suited
to parallelization, and different processors can each handle a
rectangular subdomain. In addition, the regular grid structure
makes contact among solid bodies easy to detect and allows
for efficient memory storage. One challenge that we faced is
that the FMM is not well-suited for parallelization, since it
updates field values sequentially. We therefore a developed
new method for extrapolation that can be done in parallel.
Our new method removes the need for level-set reinitializa-
tion and fast marching methods, and the RMT implementa-
tion is therefore simplified from all prior approaches.

Theory and numerical method

Hyperelastic formulation

In the hyperelasticity framework [33], a time-dependent
mapping function χ(X, t) is introduced to determine how
the undeformed configuration, X, is transformed to its cur-
rent physical configuration, x, i.e. x = χ(X, t) (Fig. 1(a, b)).
The deformation gradient is defined as F = ∂χ

∂X = ∂x
∂X .

A constitutive relation σs(F) defines the Cauchy stress re-
sponse in the solid material. The solid momentum balance
equation in rate form is

ρs

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · σs (1)

where ρs is the solid density and u is the solid velocity. For
an incompressible material detF = 1 and thus solid density
is unaffected by the deformation. To proceed, we assume that
χ is a sufficiently smooth function of X and t and define its
inverse as the reference map, X = ξ(x, t) = χ−1(x, t). The
deformation gradient tensor becomes

F =
(
∂ξ
∂x

)−1

= (∇xξ)
−1 (2)

where∇x is the gradient operator in physical space. The ref-
erence configuration is constant, therefore ξ̇(x, t) = 0, i.e.,

∂ξ

∂t
+ (u · ∇)ξ = 0. (3)

We discuss coupling fluid and solid phases and imposing the
incompressibility constraint next.

Blurred interface method and monolithic gov-
erning equations
Consider a domain Ω containing n immersed solid objects
covering subdomains Ω1, . . . ,Ωn. Denote the fluid do-
main as Ωf and the solid domain Ωs = ∪nk=1Ωk for k =
1, 2, . . . , n, so that Ω = Ωs ∪ Ωf . The fluid–solid interface
(hereinafter the interface) is denoted as ∂Ωs = ∪nk=1∂Ωk
for k = 1, 2, . . . , n. To avoid excessive distortion, the ref-
erence map ξ is only defined and evolved within Ωs. The
solution to Eq. (3) is the union of solutions within each Ωk.
The velocity u is defined as a global variable spanning Ω.
The incompressibility constraint implies that

∇ · u = 0 (4)

in Ω. To enforce the constraint, a global pressure field is
used as a Lagrange multiplier. Thus, we need only consider
the deviatoric part of the stress tensors. For the fluid, we con-
sider the deviatoric stress of a viscous Newtonian fluid, τ f =
µ
(
∇u +∇uT

)
, where µ is the fluid dynamic viscosity. The

deviatoric solid stress is defined as τ s = σs − 1
3 tr(σs)1.

In a physical system, there may be discontinuities in ve-
locity, density, stresses, and forces across the interface. In
our method, we consider a continuous velocity field, which
naturally corresponds to a no-slip boundary condition at
∂Ωs. Next, we discuss the blurred interface method that en-
sures the traction-matching condition, i.e. σs · n = σf · n,
is satisfied at the interface, and creates a smooth transition of
field values across the interface.

The basic RMT equations work with a variety of interfa-
cial coupling procedures, including sharp and blurred inter-
face methods [24, 25, 26]. In this work we focus on a blurred
interface method because it has several advantages over a
sharp interface method, e.g., it is more stable to interfacial
perturbations, more amenable to simulating immersed solid–
solid contact, and easier to implement [25, 26]. Continuing
with the blurred interface method, we make use of a blur zone
of width 2ε across the interface. The width of the blur zone
2ε scales with the grid spacing so that as grid spacing ap-
proaches zero, a sharp interface representation is recovered.
Without loss of generality, we consider a single solid object
with interface ∂Ωs defined by the zero contour of a signed-
distance function in the undeformed configuration, φ0(X).
Throughout the simulation, we define the time-dependent
level-set function φ(x, t) = φ0(ξ(x, t)) (Fig. 1(b)).
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Figure 1: (a) An initially undeformed solid with reference configuration X undergoes a time-dependent mapping χ(X, t) to
its current configuration at time t. (b) A level-set function φ(x, t) distinguishes the two phases which share a global velocity
u(x, t). A blur zone (yellow), defined by |φ| < ε, is used to transition between phases. (c) The order in which ξ(x, t) is
extrapolated is defined by layers. The 1st layer (green), e.g. cell (i, j, k), are non-interior orthogonal neighbors to the interior
cells (yellow), e.g. cell (p, q, r). Subsequent layers, e.g. 2nd layers (red), are constructed in the same way, until the blur zone is
filled or a physical boundary is reached. 2D schematics are shown for clarity.

In the blur zone, quantities that may have jump across the
interface, e.g. ρ, τ and b, are blended to smoothly vary be-
tween the fluid and the solid phases [34, 35, 36]. Let Q de-
note a scalar, or a component of a vector or a tensorial quan-
tity in Ω. Consider Qf in the fluid domain Ωf , and Qs in the
solid domain Ωk. We blend Qf and Qs such that Q transi-
tions smoothly between Ωf and Ωk,

Q = Qs +Hε(φ)(Qf −Qs) (5)

where φ is the value of the level-set function defining the
boundary of Ωk, and Hε(φ) is a smoothed Heaviside func-
tion,

Hε(φ) =





0 if φ ≤ −ε,
1
2 (1 + φ

ε + 1
π sin πφ

ε ) if |φ| < ε,
1 if φ ≥ ε,

(6)

which has a continuous second derivative. The momentum
balance equation of the coupled fluid–structure system is

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · τ + b (7)

with blended ρ, τ , and b. The monolithic equation above
satisfies the flow equation and elasticity equation, in the fluid
and the solid phases, respectively. Furthermore, the traction-
matching condition is also automatically satisfied due to
blending of stresses near the interface. Eqs. (3), (4), & (7)
form a single set of governing equations for the coupled FSI
system.

In the solid bodies, we add an artificial viscosity µa to
improve numerical stability. If µa scales with grid size, in

the limit of very fine spatial resolution, we recover the un-
damped solid equation. If it is set to a grid size-independent
constant, it is equivalent to simulating a Kelvin–Voigt vis-
coelastic solid. We also define a dimensionless constant γt
that applies an additional multiplicative factor to the artificial
viscosity in the blur zone (see SI for details).

Extrapolation of ξ(x, t)
Since ξ(x, t) is only defined inside the solid, it needs to be
extrapolated to several grid cells outside of the interface for
calculating derivatives in Eq. (3) and the deformation gra-
dient tensor F near the interface. We describe our new ex-
trapolation method for a single solid occupying domain Ωs,
though it can be easily applied to any number of objects. First
we simplify the spatial order in which ξ(x, t) is extrapolated
by making use of adjacency rules on a fixed grid. Consider
a Cartesian mesh with M × N × O grid cells indexed by
i, j, k, we define orthogonal neighbors of a central cell as
those cells that share a common face with the central cell
(Fig. 1(c)). We label cells with φ < 0 as the interior cells, or
equivalently, as cells in the zeroth layer. All the other cells
are left as unmarked. Then, for each interior cell, we label its
unmarked orthogonal neighbors as the first layer cells, with
index l = 1. We repeat this procedure to find subsequent
layers l = 2, 3, . . ., until we reach a physical boundary or the
maximum number of layers, whichever occurs earlier. The
maximum number of layers is chosen so that the entire blue
zone can be covered by the extrapolation procedure while
conserving computational resources.

The extrapolation is then performed in ascending order of
layers, but it can be computed independently for each cell
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within the same layer. Suppose we aim to create an extrap-
olated reference map, ξe = (ξi, ξj , ξk) in layer li,j,k, with
cell index (i, j, k). Subscript e denotes an extrapolated cell.
Using WLS regression, we first build a local linear model of
the reference map ξ(x, t) as a function of physical coordinate
x. To find eligible data points for the regression, we search
within a rs = 2 box centered at cell (i, j, k), where rs is the
search radius measured in number of grid cells. Consider a
cell with index (p, q, r) with ξd = (ξp, ξq, ξr), where sub-
script d denotes a data cell. It is eligible to be a data point
in the regression only if it is marked as a layer in the previ-
ous procedure, and lp,q,r < li,j,k. In other words, reference
map ξd must exist and be in layers lower than that of ξe. In
the case of multiple solid objects, ξd must emanate from the
same object whose extrapolation we seek.

The weights in the regression are important to ensure the
quality of the extrapolated values, especially when local de-
formations are large. In the weighting scheme, we use an ex-
ponential decaying kernel centered at the extrapolated cell,
and near the interface we incorporate geometric information
via φ0. Details are provided in the SI. The WLS problem
is solved to obtain a set of coefficients β, and extrapolated
reference map is calculated by ξe(xe, t) = βxe. If the lin-
ear system is degenerate, we increase the search radius rs by
1 and repeat the procedure from searching for eligible data
points, but this is rare in practice.

In multi-body simulations, the extrapolation procedure is
applied to each object independently. We require that solid
bodies do not co-exist at a grid cell. However, the blur zone
of an object is allowed to overlap with blur zones or inte-
riors of other objects. Thus, at a single grid cell, there can
be several reference maps, extrapolated or not, each belong-
ing to a distinct object. Since extrapolated values are only
needed in a small region near the interface, we design a cus-
tom data structure that is tailored to store these extrapolated
values efficiently in memory. Besides eliminating the need
of reinitialization, the current extrapolation method has two
additional advantages: (1) layers can be defined given a def-
inition of adjacency on the grid; (2) the method is layer-wise
and object-wise independent, thus easy to be parallelized.

Numerical procedures and implementation

The RMT implementation in 3D (RMT3D) is developed in
C++ and parallelized via domain decomposition using the
Message-Passing Interface (MPI) library. The numerical
schemes extend our previous work on 2D RMT implemen-
tation [26] and follow established discretizations for solv-
ing hyperbolic conservative laws [37, 36]. In summary,
we extend from previous works the variable arrangement
on the grid, finite-difference schemes to compute spatial
derivatives, and Godunov-type upwinding scheme for hyper-
bolic conservation laws [38] to handle the advective parts
of Eqs. (3) & (7). In addition, an approximate projection

method [37, 39] and a marker-and-cell projection method are
used to enforce the incompressibility constraint (Eq. (4)) on
the velocity solution at each timestep, and on an intermedi-
ate velocity field between two timesteps, respectively. Large
linear systems from the projection methods are solved using
a custom geometric multigrid solver. In many-body simula-
tions, a collision stress-based contact model developed in the
previous work [26] is used. Details of the numerical schemes
and convergence tests are provided in the SI.

Results

In this section, we consider immersed viscoelastic neo-
Hookean solids (constant µa) in various settings. We
nondimensionalize the governing equations using appropri-
ate length, time, and mass scales in each test case. We also
use isotropic grid spacing h in all simulations.

Settling sphere in a square cylinder

The transport of rigid and deformable particles in fluid flow is
central in many biological and physical systems. While ana-
lytical solutions are available for simple cases such as a rigid
sphere in unbound creeping flow, more complex FSIs in this
setting elude analytical approaches. In recent decades, the ef-
fects of confinement and multi-body interactions during set-
tling have been a focus of much experimental and numerical
work [41, 40, 42, 43, 44, 45]. In this section, we simulate a
solid sphere with a high shear modulus settling in a confined
geometry. We aim to demonstrate that by simply increasing
the solid shear modulus, our method can easily capture the
dynamics of a settling rigid sphere at various Reynolds num-
ber.

We compare simulated data with experimental measure-
ments of positions, velocities, and wall correction factors on
the terminal velocity of a rigid sphere settling in a square
cylinder [40, 41]. We devise a dimensionless parameter
ζ ≡ ρfGd/(ρsµu0) that compares the strength of the solid
elastic stress against that of the viscous stress, u0 is the ter-
minal velocity of a sphere in an unbound creeping flow, G is
the shear modulus, and d is the sphere diameter. We find that
a moderate value of G, much smaller than the experimental
values, suffices to satisfy ζ � 1 and ensure minimum elas-
tic deformation. To accurately capture settling dynamics, it
is critical to make sure that the artificial viscosity does not
excessively add to the viscous drag at the interface. There
are two sources of additional drag in our method: (1) vis-
cous stress due to the use of µa and γt in the blur zone and
(2) solid shear stress blended into the fluid side of the blur
zone. To address (1) and still ensure stability, we restrict µa
by µa/µ ∈ [1, 4]. In the meanwhile, we set γt = µ/µa − 1
and the blur zone width ε = 0.5h so that the total viscos-
ity on the fluid side is exactly µ. The solid elastic energy in
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Figure 2: Comparisons of settling sphere simulations against experiments. The positions (a) and velocities (b) of a
simulated sphere (solid lines) are compared with experimental results (symbols) by ten Cate et al. [40]. Parameters
are given in Table 1. The inset in (b) shows an example simulation. (c) The wall correction factors in simulations
are compared against experimental results by Miyamura et al. [41], using parameters (L,Lz, ρs, ρf , G, µ, µa, γt, h, ε) =
(1, 6, 2, 1, 10, 0.04714, 0.04714, 0, 1/160, 1/320). Actual Rep = 0.021, 0.132, 0.319, 0.537, 0.694, 0.743, respectively, for
spheres with increasing diameters.

all simulations in this section is < 8 × 10−3% of the total
energy, confirming that the elastic deformation is negligible
and so is the additional drag due to (2).

The simulation domain and results are shown in Fig. 2.
In Table 1 we report the physical parameters used in exper-
iments by ten Cate et al. [40] and the corresponding dimen-
sionless simulation parameters. As shown in Fig 2(a, b), po-
sitions and velocities in simulations agree well with all four
experiments by ten Cate et al. [40]. To resolve the lubrica-
tion layer when the sphere approaches the bottom, we use
an appropriate grid resolution (h = 1/160) but no additional
treatments. In addition, we apply repulsive forces to the solid
when it breaches a threshold distance to the bottom, to keep
it from penetrating the wall (see SI for details).

The presence of walls drastically modifies the flow, reduc-
ing the terminal velocity from u0 to ut. Define the ratio of
the object size to the confinement size as η = d/L, where
L is the width of the square cylinder cross-section. The re-
duction factor ut/u0 can be expressed as ut/u0 = f(η), and
it is measured experimentally by Miyamura et al. [41]. To
match these results, we first nondimensionalize length, time,
and mass using l0 = 0.1 m, t0 = 1 s,m0 = 10−3 kg, re-
spectively. The terminal velocity according to Stokes’ law is
u0 = (ρs − ρf )gd2/18µ. To emulate the flow conditions in
these experiments, µ is chosen so that the particle Reynolds
number Rep = ρsu0d/µ is small. The actual terminal ve-
locity ut is averaged over time after it has been reached. The
apparatus used by Miyamura et al. has a height to width ratio
of 100:1, which is hard to achieve in our simulations. Instead
we use a square cylinder with aspect ratio 6:1 and only con-
sider data from the central 2/3 of the domain. Fig. 2(c) shows
that the wall correction factors in our simulations agree well
with a reported curve fit of the experimental measurements
[41].

Besides easily simulating a wide range of solid stiffness,
another benefit of the RMT is that buoyant or neutrally buoy-

ant solids require no special treatment to address the added-
mass effect, a numerical difficulty often suffered by parti-
tioned FSI methods [46]. This is an important advantage as
many FSI problems of interest involve such density ratios
in the solid and fluid phases, e.g. problems in hemodynam-
ics [47] and biomechanics [7]. To demonstrate this, as well
as the RMT’s ability to simulate complex suspensions [48],
we show a simulation of the settling of 150 soft ellipsoids in
Fig. 3.

Lid-driven cubic cavity with a sphere

In computational fluid dynamics the lid-driven cavity has
long been an important benchmark problem [49, 50]. Despite
its simplicity, it exhibits rich flow dynamics due to varying
cavity geometries, boundary conditions, and Reynolds num-
bers. In stark contrast to the extensive studies on the fluid
problem in both 2D and 3D, results on lid-driven cavities
with deformable boundaries and immersed solids are much
fewer [20, 51, 52, 53]. In this section, we turn our attention
to a neutrally buoyant deformable sphere in a lid-driven cav-
ity, which to our best knowledge is the first 3D result of its
kind.

Shown in Fig. 4(a), the cavity has size Lx ×Ly ×Lz and
two span aspect ratios, Lz/Lx and Ly/Lx. The lid moves
with velocity utop = (ux, 0, 0) and no-slip boundary condi-
tions are applied on all the other walls. We rescale length
and velocity by Lx and ux, respectively. As a validation, we
simulate lid-driven cavity flows without a solid, configured
with various span aspect ratios and Reynolds numbers. Our
results agree well with high accuracy benchmarks [49] (see
SI for details).

A circular particle in a square lid-driven cavity in 2D has
been investigated by Zhao et al. [51] and widely used as a
validation case in later works [19, 54, 55, 56]. We simulate
a sphere in a cubic cavity but choose parameters similar to
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Figure 3: Various stages of 150 ellipsoids settling in a square cylinder (see SI for full movie). All ellipsoids have major
axis R = 0.13 initially aligned with z-direction, aspect ratio 2:1:1. Half of the ellipsoids are buoyant, ρs/ρf = 0.8 (yellow)
and the others are denser than the fluid ρs/ρf = 1.25 (orange). Other parameters are (Lx, Ly, Lz, ρf , G, µ, µa, γt, h, ε) =
(1, 1, 2, 1, 10−1, 10−3, 10−3, 0, 1/128, 1/128). No-slip boundary conditions are applied on all the walls. In (b) and (c) cross-
sections at y = 0.5 are shown, color corresponds to the y component of vorticity. Fluid–solid interfaces are plotted with a thick
black line, and contours of reference map components ξx and ξz are plotted with black and blue dashed lines, respectively. A
contact model among solid bodies via collision stress [26] is used. The maximum particle Reynolds number is approximately
20. This simulation was run with 48 MPI processes on Intel “Cascade Lake” and took 19 hours to simulate to T = 36.

Table 1: Physical parameters (columns 2–3) used in the experiments by ten Cate et al. [40] and dimensionless simulation param-
eters (column 4–7). Experiment: sphere density 1120 kg/m3, diameter 15 mm, and domain dimensions 10 cm×10 cm×16 cm.
Simulation: M, L, T are units of mass, length, and time, respectively. Length and time are rescaled by l0 = 0.1 m and t0 = 0.1 s,
respectively. Mass is rescaled in each case so that the fluid density is 1 M/L3. For all cases, h = 1/160, ε = 0.5h.

ρf µ ρs µ µa/µ G
(kg/m3 ) (kg/(ms)) (M/L3 ) (10−3M/(LT)) – (M/LT2 )

A 970 0.373 1.155 3.845 1 5.0
B 965 0.212 1.161 2.197 1 2.5
C 962 0.113 1.164 1.175 2 2.0
D 960 0.058 1.167 0.6042 4 2.0

those in the 2D test case to highlight qualitative differences in
3D (Fig. 4(b, c)). The middle cross-section of the deformed
sphere (Fig. 4(b)) is qualitatively similar to the shape of the
deformed circular particle at long time [56]. The distinctions
between the two cases are more apparent in their centroid tra-
jectories. Compared with the 2D case [19], although the cen-
troid of a sphere in a cubic cavity (Fig. 4(c)) also converges to
a stationary point, each spiral of its trajectory is much closer
to the neighboring ones. There are several reasons for this,
most notably the topological difference between an infinite
cylinder and a sphere. Another reason is the reduced circu-
lation due to lateral walls in the third dimension [50], which
allows the sphere to interact with the moving lid for a longer
time before being carried back to the center of the cavity by
the flow.

We also simulate spheres with varying shear moduli.
Snapshots of a simulation with G = 0.03 are shown in
Fig. 4(a). To our knowledge, this is the lowest shear modu-
lus reported in the literature for cavity flow with deformable
solids. In addition, as Fig. 4(e, g) show, as the shear modulus
increases, the sphere exhibits distinct centroid trajectories.

Fig. 4(d, f) offer some intuition for the qualitative changes.
As a stiffer sphere moves toward and along the top lid, it de-
forms less and is able to separate earlier from driving flow.
Consequently, a stiffer sphere is carried by the flow from the
top right more toward the center than toward the bottom.

We also want to show the effect of the lateral walls on the
solid deformation. We simulate a sphere with G = 0.1 ini-
tially at (0.6, 0.5Ly, 0.5) in cavities with Ly/Lx = 0.5, 4.
Fig. 4(h–j) show two views of the sphere at the closest ap-
proach to the top lid in each cavity. As the walls become far-
ther apart, the sphere becomes less stretched lengthwise and
less compressed vertically, again suggesting that a reduced
circulation increases the strength of the interaction between
the sphere and the moving boundary. We note that here we do
not impose any repulsive forces on the sphere near the walls
to avoid interfering with its dynamics, thus properly resolv-
ing the lubrication layer between the sphere and the bound-
aries is critical in keeping it from penetrating the walls. In
simulations with a coarse resolution and a low G, a nonzero
γt is needed to dampen the motion of the interface near the
boundaries.
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Figure 4: Simulations of a sphere in the lid-driven cavity. For all cases, parameters (Lx, Lz, ux, ρs, ρf , µ, µa, ε) =
(1, 1, 1, 1, 1, 10−2, 10−2, 1.5h), γt ∈ [0, 4], h ∈ [1/160, 1/48]. The sphere has radius 0.2 and is initially centered at
(0.6, 0.5Ly, 0.5). (a) 3D snapshots of a simulation at various times, (Ly, G) = (1, 0.03). (b) Contours of the reference map
and the interface are plotted against a background of velocity magnitude (heatmap and contours). A cross-section at y = 0.5
and T = 50 is shown, (Ly, G) = (1, 0.1), h = 1/N . (c) The trajectory of the sphere centroid from T = 0 to T = 50 of
the sphere in (b). The color corresponds to the velocity magnitude of the centroid. (d), (f) The same as (b) but for solid shear
moduli G = 0.25 and 0.5, respectively. (e), (g) The same as (c) but for solid shear moduli G = 0.25 and 0.5, respectively. (h),
(i), (j) 3D shape of a deformed G = 0.1 sphere at the closest approach to the top in cavity with Ly = 0.5, 1.0, 4.0, respectively.
See SI for additional parameters, movies, and trajectory data.

In this section, we demonstrate that our numerical
schemes, including the new extrapolation method, perform
well under the stress of simulating extreme deformations
near boundary singularities in a dynamic flow.

Swimming

We now apply the RMT to model swimming where the ac-
tive deformations in the solid phase drive the motions in the
system. Swimming has been an FSI problem of interest for
decades [57, 58, 59]. To address the difficulty of resolving
the full FSI, especially motions of the phase boundary, mod-
elers often apply simplifications such as asymptotic analysis
and scaling arguments. A related, widely applied numerical
approach in the low Reynolds number regime is to abstract
the swimmer into a one-dimensional collection of regular-
ized singularities [6, 32, 60, 61, 62, 63]. As the swimmer
undergoes prescribed deformation or active forcing, the re-
sulting flow is a good approximation to the swimmer’s far
field. However, this method is not well suited for contexts
where the near field is of prime importance, such as dense
suspensions of swimmers and swimming in tight confine-
ment. These cases often require specializations [64, 65] or
immersed boundary methods [8, 66]. Here, we show that

the RMT naturally resolves the near field around finite-size
swimmers in confined geometries. Despite being an Eulerian
method, the RMT provides easy access to the reference map,
allowing for straightforward definition of the active stresses
in the swimmer’s body frame.

We begin with a description of our model swimmer, a
cylindrical flagellum of length L and radius R with a spher-
ical head of radius Rh > R as shown in Fig. 5(a), and
the active stress driving its cyclic deformation. We decom-
pose the solid stress tensor into passive and active parts
σs = σ(p) +σ(a), where σ(p) = σ(p)(F) is the elastic stress
tensor from previous sections. We seek to define a time-
dependent active stress field σ(a) = σ(a)(t, ξ,F) as a func-
tion of body position and local deformation, which will in-
duce a planar bending wave traveling along the cylinder flag-
ellum. First, we specify how body orientation is determined
in the deformed frame. We assume without loss of general-
ity that the reference frame coordinate system is centered on
the flagellum and aligned with the swimmer. Denoting the
reference frame’s orthonormal basis as {ẽI}, I ∈ X,Y, Z,
we orient {ẽI} so ẽX points along the body toward the head
and ẽZ vertically up. The directions of these vectors in the
deformed space, {eI}, where eI = F · ẽI/‖F · ẽI‖, are also
body-aligned as shown in Fig. 5(a).
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Figure 5: Swimming of flagellar objects driven by active bending moments. (a) Schematic of a swimmer. Swimmers have
a spherical head of radius Rh and a cylindrical body of length L and a body radius R < Rh. The body is actuated by trav-
eling wave of bending moments B applied to vertical cross-sections (marked in red). (b) Expanded view showing the active
in-plane stresses σ(a)

XX directed along the body’s long axis ẽX . The stress magnitude varies linearly with the height above the
horizontal midplane (a dashed blue line). The swim speed U (c) and efficiency e (d) as a function of W , the bending wave
amplitude, are presented for a variety of body shapes. Simulations in the top row vary R with L = 1.5, and those in the
bottom row vary L with R = 0.15. (e–g) Body shapes, mid-stroke, are shown for several R,L combinations. See SI for
simulation movies. Steady-state measurements are taken at time T . T = 20 forR = 0.15, and T = 10 otherwise. For all cases,
(Lx, Ly, Lz, Rh, ρ,G, µ, µa, γt, h, ε) = (3, 1, 1, 0.25, 1, 1, 10−2, 10−2, 0, 1/96, 1/192).

Now, we define the active stress in terms of the
reference map coordinates X(x, t) = ẽX · ξ(x, t) and
Z(x, t) = ẽZ · ξ(x, t), which denote the reference dis-
tance along the cylinder and above the midplane, respec-
tively. Bending moments are induced by axial stresses
σ

(a)
XX = eX · σ(a) · eX of opposing sign about the midplane
Z = 0, as shown in Fig. 5(b), so we set σ(a)

XX = σ0Z for
simplicity. Letting the full tensor be traceless, we set

σ(a) =
3Zσ0

2

(
eX ⊗ eX −

1

3
1

)
, (8)

where σ0 ∝ cos(kX − ωt) for some wavenumber k and
frequency ω. Introducing the amplitude parameter W =
B/3GIk2, where I is the cylinder’s cross-sectional area mo-
ment of inertia and B a bending moment magnitude, we set

σ0 = 3WGk2 cos(kX − ωt), (9)

to systematically set bending moments across a range of R.
We emphasize that W is not a prescribed or measured verti-
cal displacement, but a parameter derived from scaling argu-
ments describing linear rod bending (see SI for details).

We nondimensionalize variables and parameters using
length, time, and stress scales l = 2π/k, τ = 2π/ω,
Σ = G. We simulate the dimensionless, uniform density
system at constant ρ, µ and Rh with varying R, W , and L.
For each combination of parameters, we calculate the av-
erage swim speed U , shown in Fig. 5(c), and active power

P =
〈
−
∫

Ωs
σ(a) : ∇udV

〉
, where 〈∗〉 denotes time aver-

aging over many cycles of oscillation. We also calculate an
approximate Lighthill efficiency e = CU2/P [67], shown in
Fig. 5(d), where C is a drag coefficient used to estimate the
force required to tow the swimmer at velocity U . Mid-stroke
body shapes for selected parameters are shown in Fig. 5(e–
g). See SI for details and movies.

Broadly, swimming with the prescribed active stress is
faster and more efficient at larger body sizes. This may be in
part due to the changing Reynolds number Res correspond-
ing to the time-averaged object motion, since it grows as
Res ∼ W 2 over the range of simulated W values; in con-
trast, the Reynolds number Reo describing the swimming
gait varies more slowly as Reo ∼ W . Both Res,Reo ∈
[10−4, 0.1] for the results presented in Fig. 5 (see SI for de-
tails.) At large amplitudes, the efficiency scales as e ∼ W 2,
consistent with U,P ∼W 2. Notably, there is effectively no
motion at L = 1, suggesting a minimum length is required
for efficient locomotion.

Conclusion and future work

The reference map technique is an efficient and flexible nu-
merical method for FSI problems that involve many bodies,
complex solid geometries, large deformations, and actuation.
We have demonstrated the accuracy of its first 3D imple-
mentation, RMT3D, by convergence tests and comparisons
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against experimental data of settling spheres. We have also
presented its applications to simulate settling of a large num-
ber of ellipsoids with varying density, a soft sphere in several
lid-driven cavity flows, and swimmers with different body
geometries, actuated by active stress.

A major future direction for the RMT is to address the
issue of solid self-contact, which is a common occurrence
in geometrically large deforming bodies, such as long slen-
der structures and active swimmers. Other future work in-
cludes developing a more accurate contact model with physi-
cal boundaries to capture rebound behavior, as well as apply-
ing adaptive mesh refinement techniques to increase compu-
tational efficiency in many-body and multi-scale systems.
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1 Details of numerical algorithms on Cartesian grid
The numerical algorithms that we use for modeling fluid–structure interactions (FSI) are built upon a modern implementation
for simulating incompressible fluid mechanics that is based upon Chorin’s projection method [1, 2]. Since its introduction in
1968, a variety of extensions have been explored in the literature to improve accuracy and stability [3]. We make use of a
mature implementation that incorporates many such advancements, developed by Almgren, Bell, and coworkers [4, 5, 6, 7, 8].
We refer the reader to the papers by Yu et al. [9, 10] that use this implementation to simulate an inkjet printer nozzle; these
papers provide a comprehensive description of the numerical approaches.

In our algorithms, we keep the fluid simulation component the same as in this existing body of work. We then build
the reference map technique (RMT) on top of the same framework for handling solid objects, using similar principles in the
numerical discretization. The numerical methods and approach are similar to the two-dimensional implementation of the RMT
that we previously developed [11]. We use a second-order accurate discretization in space and first-order accurate explicit
scheme in time for both the fluid and the solid phases. Due to error contributions from the interfacial coupling procedure, the
overall FSI method is approximately first-order accurate in both space and time. Convergence rates are reported for various test
cases in sections below.

As described in the main text, the treatment of the reference map field and extrapolation is improved and simplified, and
removes the need for specialized level-set methods and reinitialization techniques that have been required in previous imple-
mentations [12, 13, 11]. A major benefit of the new implementation is that it is more amenable for parallelization in the
distributed memory paradigm, a necessity in 3D simulations.

1.1 Overview
Governing equations

We first provide a broad sketch of the overall numerical algorithm and introduce the staggered arrangement of variables on a
Cartesian grid. We discretize the following governing equations for the coupled fluid–structure system,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · τ + b, (S1)

∂ξ

∂t
+ (u · ∇)ξ = 0, (S1)

∇ · u = 0, (S1)

where ρ is the mass density, u is the global velocity, ξ is the reference map variable in the solid bodies, p is the global hydrostatic
pressure, b is a body force density if applicable, and τ is the deviatoric stress tensor. The deviatoric stress tensor τ is the fluid
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stress tensor τ f in the fully fluid phase, and it is the solid stress tensor τ s in the fully solid phase. Near the fluid–solid interface,
τ is a mixed quantity using a smooth transition function over a blur zone of characteristic width 2ε,

τ = Hε(φ)τ f + (1−Hε(φ))(τ s + τ a) (S1)

where τ a denotes the artificial viscous stress tensor added to the solid. Hε(φ) is the smoothed Heaviside function, which is
defined in the main text and has been used in other works [14, 9, 11]. To simplify notation, we refer to φ0, a signed-distance
defined in the reference configuration of the solid object, as φ hereinafter. The artificial viscous stress is defined as

τ a = µa(1 + γtεH
′
ε(φ))(∇u +∇uT) (S2)

where µa is the solid artificial viscosity and γt is a dimensionless multiplier to amplify the artificial viscosity in the blur zone.
The contribution of∇uT term to the divergence of viscous stress is negligible due to the incompressibility constraint∇·u = 0.
Therefore, in the actual computation, we do not compute∇uT even though it is present in the fluid stress and the artificial stress
tensors.

Variable arrangement

The placement of variables on the computational grid is illustrated in Fig. S1. A domain [ax, bx]× [ay, by]× [az, bz] is divided
in M,N,O number of grid cells, yielding grid spacings ∆x,∆y,∆z, respectively. To integrate in time, we take steps of size
∆t. We denote the nth timestep tn, and the total number of timesteps U . Thus tn = n∆t, n = 1, 2, . . . , U . The discretized
velocity solution is denoted uni,j,k, where the subscripts i, j, k indicate cell-centered position on the grid, and the superscript
n indicates the number of timesteps. Other quantities on the grid are indexed in a similar fashion unless specified otherwise.
When applicable, 1/2 in the indices indicate either cell faces between to grid cells or the midpoint between two timesteps.
When spatial indices are omitted, we refer to the solutions in the entire computation domain. Primary variables are mass
density ρni,j,k, global velocity uni,j,k, and reference map variables in solids and blur zones ξni,j,k, which are all placed at the cell
centers. In addition, there is also a global pressure variable pn−1/2

i,j,k placed at the nodes. Note that subscripts i, j, k denote nodal
quantities for the pressure field only.

Spatial and temporal discretizations

We discretize Eqs. (S1) & (S1) by

un+1 − un

∆t
+ [(u · ∇)u]

n+1/2
=

1

ρ(φn+1/2)

[
−∇pn+1/2 +∇ ·

(
(1−Hε(φ

n+1/2))(τn+1/2
s + τ ña) +Hε(φ

n+1/2)τnf

)
+ bn+1/2

]
,

(S2)

ξn+1 − ξn

∆t
+ [(u · ∇)ξ]

n+1/2
= 0. (S2)

Note that φn+1/2 refers to φ0(ξn+1/2), not the reinitialized level-set function. A number of terms on the right hand side (RHS)
of the above equations are calculated at the half-timestep n+ 1

2 for improved accuracy. If applicable, a body force density can
be prescribed at cell centers at mid timestep, bn+1/2

i,j,k . Since this is an explicit scheme it is necessary to compute τnf and τ ña
using information at timestep n, which results in τ ña using quantities at two different times, i.e.,

τ ña = µa(1 + γtεH
′
ε(φ

n+1/2))(∇un + (∇un)T). (S2)

Better accuracy could be achieved by using a Crank–Nicolson-type update formula [15], but since this would depend on un+1

it would result in an implicit numerical scheme, which is outside the scope of this work.
To handle the advective terms [(u · ∇)u]

n+1/2 and [(u · ∇)ξ]
n+1/2, we require at cell faces

1. intermediate velocities un+1/2
i±1/2,j,k,u

n+1/2
i,j±1/2,k,u

n+1/2
i,j,k±1/2,

2. intermediate reference maps ξn+1/2
i±1/2,j,k, ξ

n+1/2
i,j±1/2,k, ξ

n+1/2
i,j,k±1/2.

We use a Godunov-type upwinding scheme to compute these quantities, which will be discussed in subsection 1.2.
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MAC projection

Using the intermediate face velocities, we can compute the discrete divergence in the cell centers using centered finite differ-
ences. However, due to discretization error, this discrete divergence field may not evaluate to precisely zero as expected by
Eq. (S1). We employ an intermediate marker-and-cell (MAC) projection to correct the face velocities to satisfy the discrete
divergence-free property. This has been shown to improve accuracy and volume conservation in previous work [11]. To do this
we first solve the equation

∇ ·
(

1

ρ
∇qn+1/2

)
=
∇ · un+1/2

∆t/2
(S3)

for an intermediate solution qn+1/2 at the cell centers. The RHS of the equation above is evaluated using the intermediate
face velocities. We subtract ∆t

2ρ∇q from the intermediate velocities, thus ensuring the discrete divergences are zero to machine
precision. In Eq. (S3) we have dropped the subscripts that indicate cell faces, and we will continue to do so for brevity.

Approximate pressure-Poisson projection

Using update equations (S2) & (S2), an intermediate velocity update u∗ at t = tn can be computed. Once this is computed,
we apply the projection step making use of the approximate finite-element projection introduced by Almgren et al. [5]. This
involves solving the Poisson equation

∇ ·
(

1

ρ
∇ψ
)

=
∇ · (u∗ − un)

∆t
(S3)

for the pressure correction ψ, after which the pressure is updated using pn+1/2 = pn−1/2 + ψ. The finite-element projection
is implemented using trilinear basis functions centered on each cell corner. At a particular pressure point pni,j,k located at a cell
corner, the corresponding basis function is non-zero over the 2× 2× 2 block of adjacent grid cells.

Stress calculations

The fluid deviatoric stress τnf at time tn is computed at the cell faces by using centered finite differences on the cell centered
velocities un. To compute solid deviatoric stress τns , deformation gradient Fn is first computed at the cell faces by using
centered finite differences on the reference maps, F = (∇xξ)−1. Then τns is computed at the cell faces directly using the
incompressible neo-Hookean constitutive relation

τns = G
(
Bn − 1

3 tr(Bn)
)

(S3)

where Bn = Fn(Fn)T. If blur zones of S solid objects overlap, S > 1, computations of solid stress and artificial viscous stress
remain the same for each object. To avoid notation confusion, we drop the spatial indices, and use subscript m to represent
different solid objects. But it is assumed that the discussion below only applies at cell faces where it is needed. In each solid
object, we separately compute

τns,m = Gm
(
Bn
m − 1

3 tr(Bn
m)
)
, (S3)

τ ña,m = µa(1 + γtεH
′
ε(φ

n+1/2
m ))(∇un + (∇un)T), (S3)

where φn+1/2
m is the specific level-set function defining the fluid–solid interface of solid m, evaluated on the reference map

variables of this solid object at time n+1/2. In the overlapping region, the overall stress tensors τ s and τ a are combined using
the respective stress tensors from each of the overlapping solid objects,

τns =





∑S
m=1(1−Hε(φ

n
m))τns if

∑S
m=1(1−Hε(φ

n
m)) ≤ 1,

∑S
m=1(1−Hε(φnm))τns∑S
m=1(1−Hε(φnm))

otherwise.
(S3)

The artificial viscous stress tensor τna is computed similarly. To blend multiple solid blur zones with the fluid, we modify the
volume fraction used in Eq. (S1) to

Hε(φ
n) = max

[
1−

S∑

s=1

(1−Hε(φ
n
s )), 0

]
. (S3)
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1.2 Evaluating the advective term
Advective derivatives

To evaluate advective derivatives on the left hand side of Eqs. (S2), (S2), we use the formulae

[(u · ∇)u]
n+1/2

=
u
n+1/2
i+1/2 + u

n+1/2
i−1/2

2

u
n+1/2
i+1/2 − u

n+1/2
i−1/2

∆x

+
v
n+1/2
j+1/2 + v

n+1/2
j−1/2

2

u
n+1/2
j+1/2 − u

n+1/2
j−1/2

∆y

+
w
n+1/2
k+1/2 + w

n+1/2
k−1/2

2

u
n+1/2
k+1/2 − u

n+1/2
k−1/2

∆z
, (S3)

[(u · ∇)ξ]
n+1/2

=
u
n+1/2
i+1/2 + u

n+1/2
i−1/2

2

ξ
n+1/2
i+1/2 − ξ

n+1/2
i−1/2

∆x

+
v
n+1/2
j+1/2 + v

n+1/2
j−1/2

2

ξ
n+1/2
j+1/2 − ξ

n+1/2
j−1/2

∆y

+
w
n+1/2
k+1/2 + w

n+1/2
k−1/2

2

ξ
n+1/2
k+1/2 − ξ

n+1/2
k−1/2

∆z
, (S3)

where u = (u, v, w). For brevity, only the indices that differ from i, j, k are shown in the subscripts. To obtain un+1/2 and
ξn+1/2 at a cell face, we use a Taylor expansion using values straddling the cell face, keeping terms up to first order in time
and space. Without loss of generality, we consider a face in x-direction, indexed by i+ 1/2, j, k. Two Taylor expansions are
constructed, centered at values at cell i, j, k and cell i+ 1, j, k. Expanding from the left side of the face, we have

u
n+1/2,L
i+1/2,j,k = uni,j,k +

∆x

2

∂u

∂x

∣∣∣∣
n

i,j,k

+
∆t

2

∂u

∂t

∣∣∣∣
n

i,j,k

. (S4)

From the momentum balance equation (Eq. (S1)) we obtain an expression for ∂u/∂t as

∂u

∂t

∣∣∣∣
n

i,j,k

= −
(
u
∂un

∂x
+

(
v
∂un

∂y

)
+

(
w
∂un

∂z

))

i,j,k

+
1

ρ(φn)i,j,k

(
−∇pn−1/2 +∇ · τn(un, ξn, φn) + bn

)
i,j,k

. (S4)

The terms on the RHS of Eq. (S4) are evaluated at step n, except for the pressure, which is evaluated at step n− 1/2. Since we
are expanding in the x-direction, the barred terms in the bracket are the tangential derivatives (also called transverse derivatives)
and they are treated differently; details will be discussed later in this subsection. Substituting Eq. (S4) into Eq. (S4), we have

u
n+1/2,L
i+1/2,j,k = uni,j,k +

(
∆x

2
− ∆t

2
uni,j,k

)
∂u

∂x

∣∣∣∣
n

i,j,k

− ∆t

2

((
v
∂un

∂y

)
+

(
w
∂un

∂z

))

i,j,k

+
∆t

2ρ(φn)i,j,k

(
−∇pn−1/2 +∇ · τn(un, ξn, φn) + bn

)
i,j,k

. (S4)

Similarly, Taylor expanding from the right side of the cell face, we have

u
n+1/2,R
i+1/2,j,k = uni+1,j,k −

(
∆x

2
+

∆t

2
uni+1,j,k

)
∂u

∂x

∣∣∣∣
n

i+1,j,k

− ∆t

2

((
v
∂un

∂y

)
+

(
w
∂un

∂z

))

i+1,j,k

+
∆t

2ρ(φn)i+1,j,k

(
−∇pn−1/2 +∇ · τn(un, ξn, φn) + bn

)
i+1,j,k

. (S4)
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The Taylor expansion procedure to create values of ξn+1/2
i+1/2,j,k makes use of Eq. (S1), which has a much simpler form. Expanding

from the left and right sides respectively gives

ξ
n+1/2,L
i+1/2,j,k =ξni,j,k +

(
∆x

2
− ∆t

2
uni,j,k

)
∂ξ

∂x

∣∣∣∣
n

i,j,k

− ∆t

2

((
v
∂ξn

∂y

)
+

(
w
∂ξn

∂z

))

i,j,k

, (S4)

ξ
n+1/2,R
i+1/2,j,k =ξni+1,j,k −

(
∆x

2
+

∆t

2
uni+1,j,k

)
∂ξ

∂x

∣∣∣∣
n

i+1,j,k

− ∆t

2

((
v
∂ξn

∂y

)
+

(
w
∂ξn

∂z

))

i+1,j,k

. (S4)

Godunov-type upwinding scheme

Now there are two choices for velocity and two for reference map on the cell face indexed by i+ 1/2, j, k, we perform Godunov
upwinding to select one. We define the normal velocity as un+1/2,L

n and un+1/2,R
n , expanded from the left and the right cells,

respectively. We use qn+1/2,L and qn+1/2,R to represent other components of the velocity or the reference map, expanded from
the left and the right, respectively. To choose the normal velocity, we follow

un+1/2
n =





u
n+1/2,L
n if un+1/2,L

n > 0 and un+1/2,L
n + u

n+1/2,R
n > 0,

u
n+1/2,R
n if un+1/2,R

n < 0 and un+1/2,L
n + u

n+1/2,R
n < 0,

0 otherwise.

(S5)

After this, we select a value for the other quantities at the cell face based on un+1/2
n according to

qn+1/2 =





qn+1/2,L if un+1/2
n > 0,

qn+1/2,L+qn+1/2,R

2 if un+1/2
n = 0,

qn+1/2,R if un+1/2
n < 0.

(S5)

Here we have dropped all spatial index subscripts since all terms are evaluated at i+ 1/2, j, k.

Normal derivatives

To compute the normal derivatives (in the example given here, ∂u/∂x and ∂ξ/∂x), we employ the fourth-order monotonicity-
limited scheme of Collela [7], which is described in detail by Yu et al. [9] and Rycroft et al. [11].

Tangential derivatives

To ensure stability, especially in intermediate to high Reynolds number regime, we compute the tangential derivatives (shown
as the barred terms in Eqs. (S4), (S4), & (S4)) using an upwinding scheme which is commonly used for solving hyperbolic
conservative laws [4, 5, 8, 9]. Our approach to construct an upwinding scheme in 3D is only one of the many possibilities, and
in selecting the following scheme, we prioritize algorithmic simplicity and the ease implementation.

Without loss of generality, we consider the quantities on the transverse faces indexed by i, j + 1/2, k, required in Eq. (S4), (S4), (S4)
when applied to faces indexed by i+ 1/2, j, k. The procedure to compute tangential derivative terms along the z-direction is
similar. We start by performing a Taylor expansion again to construct the velocities and reference maps on the transverse cell
faces, but neglect contributions from pressure, stress, body forces, and tangential derivatives to obtain

ū
n+1/2,D
i,j+1/2,k =uni,j,k +

(
∆y

2
− ∆t

2
vni,j,k

)
∂u

∂y

∣∣∣∣
n

i,j,k

, (S5)

ū
n+1/2,U
i,j+1/2,k =uni,j+1,k −

(
∆y

2
+

∆t

2
vni,j+1,k

)
∂u

∂y

∣∣∣∣
n

i,j+1,k

, (S5)

ξ̄
n+1/2,D
i,j+1/2,k =ξni,j,k +

(
∆y

2
− ∆t

2
vni,j,k

)
∂ξ

∂y

∣∣∣∣
n

i,j,k

, (S5)

ξ̄
n+1/2,U
i,j+1/2,k =ξni,j+1,k −

(
∆y

2
+

∆t

2
vni,j+1,k

)
∂ξ

∂y

∣∣∣∣
n

i,j+1,k

, (S5)
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where the superscripts D and U denote down and up, respectively. We perform a similar Godunov upwinding procedure to
select a normal advective velocity at each face, so that

v̄
n+1/2
adv =





v̄n+1/2,D if v̄n+1/2,D > 0 and v̄n+1/2,D + v̄n+1/2,U > 0,

v̄n+1/2,U if v̄n+1/2,U < 0 and v̄n+1/2,D + v̄n+1/2,U < 0,

0 otherwise,
(S5)

where we have dropped the subscripts since all terms are evaluated at i, j + 1/2, k. Next, we select between Taylor expansions
ūn+1/2,D and ūn+1/2,U, as well as between expansions ξ̄

n+1/2,D and ξ̄
n+1/2,U, based on v̄n+1/2

adv . For two generic vector
quantities at the face denoted by q̄n+1/2,D and q̄n+1/2,U, we define

q̄n+1/2 =





q̄n+1/2,D if v̄n+1/2
adv > 0,(

q̄n+1/2,D + q̄n+1/2,U
)
/2 if v̄n+1/2

adv = 0,

q̄n+1/2,U if v̄n+1/2
adv < 0.

(S6)

Finally, we compute the tangential derivative terms,

(
v
∂q

∂y

)∣∣∣∣
n+1/2

i,j,k

=
v̄
n+1/2
i,j−1/2,k,adv + v̄

n+1/2
i,j+1/2,k,adv

2

q̄
n+1/2
i,j+1/2,k − q̄

n+1/2
i,j−1/2,k

∆y
. (S6)

1.3 Contact with a wall
We use subscript α to represent walls of the rectangular domain, with α = 1, 2, 3, 4, 5, 6 referring to walls with normal vectors
ex,−ex, ey,−ey, ez,−ez , respectively. The inward unit normal at a wall is denoted by nα. When a part of the solid body is
within a threshold distance from a wall with nα, we impose a repulsive acceleration, arep,α, to the grid cells in the solid body
that have breached the threshold, acting at the cell centers. This acceleration is multiplied by a transition function in a small
transition zone of width ∆hα, where ∆hα is the grid spacing in the Cartesian direction aligned with nα.

For those solid grid cells that experience wall acceleration,

arep,α =





Arepnα if φ ≤ −∆hα,(
1
2 −

φ
2∆hα

)
Arepnα if |φ| < ∆hα,

0 if φ ≥ ∆hα.

(S6)

If a solid body is in close approach to more than one wall, the repulsive accelerations are added together. As the solid approaches
the wall and deforms to form a contact area, a small region of cells experiences the repulsive acceleration described by Eq. (S6).

We use the following approach to choose an appropriate value for Arep. First, given the velocity of an object at its center of
mass, the repulsive acceleration should be sufficient to stop the object from going through any physical boundary. In a rigid
body, this means that the center of mass velocity is zero before or when the edge of the solid reaches the boundary. Though the
solid objects will deform in our simulations, the rigid body case offers good guiding intuition. Second, we impose the condition
that the repulsive acceleration, at a minimum, should be able to support an object resting against a wall.

We first define a critical threshold, dw. When the distance between any cell belonging to the solid object and the wall
falls below dw, the wall repulsive acceleration comes into effect. In practice, we set dw = ∆hα so that the solid objects
are sufficiently close to the wall and experience effects due to boundaries, however, dw can be increased so that the repulsive
acceleration can be applied to more grid cells.

Let us consider an object of volume V approaches the wall with a normal velocity component U , which has a momentum
along the normal direction, ρsV U . Suppose the volume of the object that actually experiences repulsive acceleration is Vrep,
the effective acceleration at the center of mass is VrepArep

V . Following the reasoning of the first case above,

U − VrepArep

V
ts = 0,

Uts −
1

2

VrepArep

V
t2s = dw.

(S6)

Solving these equations yields Arep = V U2

2dwVrep
and ts = 2dw/U .
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We use the smallest length scale of the solid, Lmin, to obtain a conservative estimate of the contact area between the solid
and the wall, and use dw as the thickness of the region of cells that breach this threshold. Thus a conservative estimate of Vrep
is Vrep = dwL

2
min, which yields

Arep =
V U2

2d2
wL

2
min
. (S6)

In the second case described above, when the object is at rest at a wall, we need to make sure that the forces experienced by the
region of cells that have breached the dw threshold is large enough to support the entire object, so that |ρs−ρf |V g = ρsVrepArep
and hence

Arep =
|ρs − ρf |V g
ρsVrep

. (S7)

In practice, we also find that it is helpful to set a minimum value ofAre = U2
safe/dw, Usafe ≈ 4.5, as an additional safety measure

to prevent solid objects from moving through physical boundaries. Given this lower limit and Eqs. (S6), (S7), we choose the
maximum value among the three to be the value of Arep,

Arep = max

(
U2

safe/dw,
V U2

2d2
wL

2
min
,
|ρs − ρf |V g
ρsVrep

)
. (S7)

For simulations with multiple objects, Arep is computed for each object separately.

1.4 Weighting scheme for weighted least squares-based extrapolation
In the absence of the reinitialized level-set function, we use an exponential decay kernel centered at the extrapolated cell
to weigh data points in the linear squares regression. Near the fluid–solid interface we incorporate approximate geometric
information via φ0(ξ).

Consider a cell (p, q, r) which provides data ξd at position xd = (xp, xq, xr) in the weighted least squares linear regression
to extrapolate to ξe at cell (i, j, k) with position xe = (xi, xj , xk). First, we compute the normalized gradient vector ne of
φ0(ξn) at cell (i, j, k) as well as a physical vector x′ = xe − xd. Then, depending on which layer extrapolation ξe resides in,
the weight of data provided by cell (p, q, r) is defined as

ω =

{
max

(
0, x

′·ne
|x′| 2−(ri+rj+rk)

)
if li,j,k ≤ 2,

2−(ri+rj+rk) if li,j,k > 2,
(S7)

where ri = |i − p|, rj = |j − q|, rk = |k − r| and lp,q,r is the index of the extrapolation layer as defined in the main text.
The exponential kernel accounts for locality on the Cartesian grid, while ne approximates a surface normal and accounts for
geometric information near the interface. However, we only make use of ne in the extrapolating to the first two layers, since
φ(ξn) approximates a signed-distance function more poorly farther away from the interface in the presence of deformation.

1.5 Configuring a simulation
Before commencing a simulation, we need expressions of level-set functions that represent the fluid–solid interface. Each solid
body is associated with such as level-set function. In addition, we need to configure the simulation domain, and prescribe
material properties, boundary conditions, and initial conditions. Besides physics-related parameters, we also need to specify
the type of data to collect and the frequency of outputting data files and checkpoint files. Main parameters that specify the
physics in a simulation are documented in Table S1.

Initialization

1. Set initial conditions for velocity u0
i,j,k, and for reference map ξ0

i,j,k for all i, j, k such that φ0(ξ0
i,j,k) ≤ 0. We refer to

these reference map variables as primary reference maps (PRMs). Using the undeformed state as the reference state of
a solid body, the primary reference map variable is set to be the physical coordinate on the grid, ξ0

i,j,k = xi,j,k, where
x = (xi, yj , zk).
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2. If a test case has known pressure, also set p−1/2
i,j,k , otherwise, we may set pressure to 0 everywhere. However, since

pressure is computed as an auxiliary field rather than from an equation of state, the initial pressure profile is not known
in general. Therefore, p−1/2

i,j,k = 0 is generally not compatible with the initial velocity. The incompatibility can degrade
the accuracy of the solution.

To address this, we perform initial iterations to estimate p−1/2
i,j,k . We run the timestepping algorithm, described in

subsection 1.6, with an initial guess of p−1/2
i,j,k = 0. After an iteration, we keep the pressure estimate p̃1/2

i,j,k but discard

changes to all other fields. In the next iteration, let p−1/2
i,j,k = p̃

1/2
i,j,k, and repeat until a tolerance on the divergence of

u0
i,j,k is reached, or until a maximum number of iterations is reached. Note that in order to carry out initial iterations, the

variant of approximate projection method that computes the pressure increments should be used [16].

3. If applicable, initialize b0
i,j,k.

4. Extrapolate reference map variables to the blur zones. Extrapolated reference maps (ERMs) and the PRMs (together
denoted as ξ0

i,j,k) are both required to begin the simulation.

5. Evaluate φ0(ξ0) everywhere reference map variables ξ0
i,j,k exist.

6. Initialize ρ0
i,j,k by blending ρf and ρs using using Hε(φ0(ξ0

i,j,k)) (Eq. (S3)).

1.6 Timestepping algorithm
After initializing the simulation, we perform the following steps for timestep n = 0, 1, 2, . . . , U of size ∆t. This procedure is
also used in the iterations to create an initial pressure profile.

1. Compute τnf , τns , and τna , and mix them to get τn, as described in subsection 1.1.

2. Using the Godunov-type upwinding scheme described in subsection 1.2, we compute u
n+1/2
i±1/2,j,k,u

n+1/2
i,j±1/2,k,u

n+1/2
i,j,k±1/2

everywhere, and ξ
n+1/2
i±1/2,j,k, ξ

n+1/2
i,j±1/2,k, ξ

n+1/2
i,j,k±1/2 only within solids.

3. Perform the MAC projection, then update the normal face velocities. Any boundary conditions should be enforced before
the projection step and after the velocity update.

4. Compute the advective term [(u · ∇)u]
n+1/2
i,j,k and [(u · ∇)ξ]

n+1/2
i,j,k according to Eqs. (S3).

5. Compute the predictor values of PRMs, i.e. ξn+1
i,j,k within solids (Eq. (S2)).

6. Extrapolate PRMs to yield ERMs to cover the blur zones, these are the predictor values of ERMs.

7. Apply corrector to all available reference maps (PRMs and ERMs), ξn+1/2
i,j,k = 1

2

(
ξni,j,k + ξn+1

i,j,k

)
.

8. Compute solid stress τn+1/2
s and artificial viscous stress τ ña , then mix with τnf to create τn+1/2, as described in subsec-

tion 1.1.

9. Update density to ρn+1/2
i,j,k using Hε(φ0(ξ

n+1/2
i,j,k )) (Eq. (S3)).

10. Compute the intermediate velocity for approximate projection, u∗i,j,k, by

u∗i,j,k = uni,j,k −∆t[(u · ∇)u]
n+1/2
i,j,k − 1

ρ
n+1/2
i,j,k

(
∇ · τn+1/2 −∇pn−1/2

i,j,k + b
n+1/2
i,j,k

)
(S8)

11. Perform the approximate projection, then update cell center velocities to un+1
i,j,k and nodal pressure to p

n+1/2
i,j,k . Any

boundary conditions should be enforced before the projection step and after updating velocity and pressure.

12. Restore all PRMs and ERMs to their predictor values, ξn+1
i,j,k.

13. Update the density to ρn+1
i,j,k using Hε(φ0(ξ

n+1/2
i,j,k )) (Eq. (S3)).
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2 Test cases
In this section, we first present simulations of a pre-stretched, immersed sphere to demonstrate that the convergence of our
method, as well as the scaling behavior of the simulated FSI problem, are as expected. We also provide additional details and
results of examples mentioned in the main text.

2.1 Pre-stretched sphere
We simulate a viscoelastic neo-Hookean solid sphere, subject to initial strain, relaxing to equilibrium in a cubic periodic domain.
Parameters reported here are dimensionless.

1. The sphere has a radius R = 0.2 and a shear modulus G = 1, positioned at the center of a periodic box with unit length,
fluid viscosity µ = 0.01. The sphere has the same density as the fluid, and is pre-strained at T = 0 in the x-direction by
a stretch λ = 1.21. We use isotropic grid spacing ∆x = ∆y = ∆z = h. The solution with the smallest h is used as the
reference solution in the convergence plot.

Elastic energy and volume of the sphere over time are reported in Fig. S2(a), and the convergence in surface area,
volume, and ‖J − 1‖2 is reported in Fig. S2(b), where J is the determinant of the deformation gradient. The pressure-
Poisson projection method we use to enforce incompressibility is an approximate one, which means locally, it is possible
to have J 6= 1. To account for the local violation of incompressibility, we compute strain energy density with a logarith-
mic correction factor [17],

Φelas =
1

2
G
(

tr(C)− 3− 2 ln(J)
)

(S9)

where C = FTF is the right Cauchy–Green tensor. This strain energy density equation is used throughout our analysis.

Since we use a reference solution rather than the exact solution, only part of the error can be captured by a Richardson
error model [18, 19, 20, 11]. For other sources of error, e.g. reference map extrapolations, Godunov-type upwinding
procedures, Richardson model is not a good fit. Thus, we adopt the 3-parameter error model proposed by Rycroft et
al. [11]

E(h) = B(hs − αhsref) +O(hs+1) (S9)

where α is the Richardson correction factor which indicates the proportion in the error that can be captured by a Richard-
son error model, and s is the overall convergence rate. We report the fitted convergence parameters in the caption of
Fig. S2.

2. We demonstrate scaling of elastic energy of the immersed sphere in various combinations ofG, µ, ρs/ρf , andR (Fig. S3).
First, we find the pertinent parameter in our test case by dimensional analysis. Consider a standalone, ideal, incompress-
ible neo-Hookean elastic body with density ρs = ρ, shear modulus G, and a characteristic length scale R. In the absence
of viscous damping, uniaxial tension or compression induces an oscillatory response due to elastic restoring forces in
the solid body. The oscillation time scale is τosc = R

√
ρ/G. In addition to being the characteristic oscillation period,

this time scale can also be interpreted as the time it takes for elastic waves to traverse the elastic body. Now, suppose
the elastic body is immersed in a viscous fluid, with viscosity µ and density ρf = ρ. In our method, the solid material
is made viscoelastic by using a constant artificial viscosity µa. We impose µa = µ in this case. Out of the parameters
relevant to the fluid ρ, µ,R, we can build another time scale, τdiss = ρR2/µ. We can interpret τdiss as the time scale of
the fluid dissipating the kinetic energy generated by the oscillating sphere as it returns to equilibrium.

The ratio between these two time scales is

γ = τdiss/τosc = R
√
ρG/µ.

In the simple system we have considered here, having assumed solid and fluid have identical densities ρ, and viscosity
µa = µ, we have four dimensional parameters µ,G, ρ,R. By the Buckingham Π Theorem, γ is the only dimensionless
parameter in this system. It can be interpreted as the number of oscillations a viscoelastic sphere undergoes before
returning to the equilibrium. Incidentally, we can also consider the relaxation time scale of the viscoelastic solid, τrel =
µ/G. Taking the ratio τosc/τrel also yield the dimensionless parameter γ.

S9



We carry out a series of simulations (parameters documented in Table S2) to demonstrate the scaling behavior in this
system. In Fig. S3(a), we show solid elastic energy from various simulations normalized by its initial value E0. Values
of G, R, and µ are varied across simulations, but dimensionless parameter γ is kept the same. The number of visible
oscillations before energy is fully dissipated by the fluid is the same across these simulations. After rescaling time by
τdiss, we also find that peaks and valleys of the elastic energy fall at similar places on the rescaled time axis. Furthermore,
given the same γ, if the sphere radius is kept the same, which implies

√
G/µ is constant, elastic energy curves collapse

onto the same one (simulation A1 and A2).

In Fig. S3(b), we show the number of visible oscillations is qualitatively linearly proportional to γ. Simulation B1,
which has γ = 10, is compared to simulation B2, A1, and B3, which have have γ = 15.8, 20, 30, respectively. The
orange dashed line indicates approximately one oscillation period in simulation B1 after initial release. Within the same
rescaled time (in units of respective τdiss), we observe about 1.5, 2, and 3 times more periods in simulation B2, A1, and
B3, respectively. The increase in the number of periods follows the increase in γ approximately linearly.

If the solid has a different density from fluid, the matter becomes more complex. Though the oscillation time scale
τosc should only depend on ρs, the energy dissipation, influenced by dynamics in both the solid and the fluid phases, now
depends on both ρs and ρf . We demonstrate this effect in Fig. S3(c). In simulation C1 and C2, we have chosen to use
ρs in calculating γ and τdiss. While the number of visible oscillations remains similar among simulations A1, C1, and
C2, which have identical γ, rescaling time with τdiss no longer lead to the alignment of energy peaks and valleys on the
rescaled time axis across simulations.

2.2 Settling
We provide si_movie_1.mov Settling of 150 ellipsoids, described in main text Fig. 3.

2.3 Lid-driven Cavity
Here we provide results in comparing lid-driven cavity flow simulated with RMT3D without any solid objects with 3D bench-
marks as a validation test for our Navier–Stokes solver code. In addition, we present convergence tests and centroid positions
data of an immersed sphere in cubic lid-driven cavity flow. Convergence rates are computed using Eq. (S9) and reported in
the figure caption when applicable. Finally, we provide additional simulation parameters used in Fig. 4 in the main text, and
include movies mentioned there.

1. Comparison of normal velocities and pressure profiles in a cubic lid-driven cavity with Reynolds number Re = 1000
against benchmark results is shown in Fig. S4; convergence of normal velocity extrema and steady state kinetic energy is
shown in Fig. S5.

2. Comparison of normal velocities and pressure profiles in a cubic lid-driven cavity with Reynolds number Re = 100, 400
against benchmark results is shown in Fig. S6.

3. Comparisons of normal velocities and pressure profiles in a lid-driven cavity of various aspect ratios with Re = 1000
against benchmark results are shown in Figs. S7 & S8.

4. Convergence in surface area, volume, elastic energy, and ‖J − 1‖2, where J is the determinant of the deformation
gradient, for a sphere with G = 0.1 in a cubic lid-driven cavity with Re = 100 is shown in Fig. S9.

5. Additional parameters for simulations presented in Fig. 4 in the main text are documented in Table S3.

6. trajectories.txt trajectories.txtTrajectories of the centroid of a sphere with G = 0.1, 0.25, 0.5 in a cubic lid-
driven cavity with Re = 100. Isotropic grid spacing h = 1/160.

7. si_movie_2.mov A sphere of radius 0.2 in unit cubic lid-driven cavity with Re = 100 and solid shear modulus
G = 0.03, described in main text Fig. 4(a).

8. si_movie_3.mov A sphere of radius 0.2 in unit cubic lid-driven cavity with Re = 100 and solid shear modulus
G = 0.1, described in main text Fig. 4(b)&(c).

9. si_movie_4.mov A sphere of radius 0.2 in unit cubic lid-driven cavity with Re = 100 and solid shear modulus
G = 0.25, described in main text Fig. 4(d)&(e).
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10. si_movie_5.mov A sphere of radius 0.2 in unit cubic lid-driven cavity with Re = 100 and solid shear modulus
G = 0.5, described in main text Fig. 4(f)&(g).

2.4 Swimming
In this section, we expand on some of the contexts and results from the section in the main text on simulating swimming with
the RMT.

Amplitude parameter

The amplitude parameter W = B/3GIk2 is derived from scaling arguments and linear bending theory. Here, we explicitly list
the relationships and scalings between bending moment amplitude B, displacement scaling constant W , and the vertical linear
stress density σ0.

In Euler beam theory, the stress density is related to the bending moment across a cross-section as σ0 ∼ B/I , where I is the
area moment of inertia of the cross-section. There is a similar relationship to the beam curvature κ ∼ B/3GI , where 3GI is
the beam bending modulus for a shear modulus G. Given a vertical displacement scale W and length scale k−1, the curvature
also satisfies κ ∼Wk2 for Wk � 1. Thus, W ∼ B/3GIk2 and σ0 ∼ 3WGk2, motivating the definitions in the main text.

Swimming statistics

For each simulation, we calculate a swim speed U , active power P , drag coefficient C, and swimming efficiency e. Here, we
detail the form of each and describe its calculation.

We let 〈ψ〉 describe the time-average and ψ̂ the oscillation magnitude of a time-dependent value ψ(t). To calculate these
quantities, time traces ψ(t) are fit to a function

f(t) = c0 + c1t+ c2t
2 +

2∑

j=1

[Aj cos(2πjt) +Bj sin(2πjt)] . (S11)

Then 〈ψ〉 = c0, ψ̂ =
√
A2

1 +B2
1 .

• The swim speed U =
〈
u

(c)
x

〉
, where u(c) is centroid velocity and the subscript x denotes the direction of swimming

• The power P =
〈
−
∫

Ωs
σ(a) : ∇udV

〉
where σ(a) is the active part of the solid stress

• The drag coefficient C is computed for each combination of swimmer body radius R and length L. A simulation is
conducted for each body shape with no active stress subject to a density ratio ρs/ρf = 2 and gravitational acceleration
g = 1/10 in the swimming direction. The centroid velocity u(c)

x (t) is fit to the function

g(t) = Uf + (U0 − Uf )e−λt, (S11)

for an initial and final velocity U0 and Uf and a rate λ representing the speed with which the object approaches terminal
velocity. The drag coefficient is then calculated as C = (ρs − ρf )Vsg/Uf , where Vs is the swimmer volume.

• The swimming efficiency is typically defined e = FU/P , where F is the force required to tow the swimmer at velocity
U . In the main text, we substitute an approximate tow force F̄ = CU representing a linear estimate.

Reynolds numbers

We describe two Reynolds numbers: one corresponding to the steady flow induced by time-averaged motion of the object
through the fluid, and another describing the oscillatory flow driven by the object’s cyclic deformation. Here we describe the
form of both and report the calculated values.

• The steady Reynolds number Res = ρURh/µ uses the calculated swim speed as a velocity scaling and the swimmer
head radius as a length scale.
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• The oscillatory Reynolds number Reo = ρû
(c)
z R/µ uses û(c)

z —the magnitude of the oscillating vertical velocity—as a
velocity scale and the swimmer radius as a length scale.

For each simulation reported in Fig. 5 in the main text, the values of the two Reynolds numbers are calculated and docu-
mented in Fig. S10.

Movie

Finally, we provide si_movie_6.mov Swimmers with various body geometries, actuated by active stress, described in main
text Fig. 5.
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Figure S1: Arrangement of variables in the three-dimensional reference map simulation. Depending on the finite difference
scheme we use, variable can reside at cell centers, faces, or nodes.
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Table S1: Main dimensionless simulation parameters in the RMT. In addition, Dirichlet and Neumann boundary conditions can
be specified for each face of the rectangular simulation domain.

ρf fluid density
µ fluid viscosity
ρs solid density
G solid shear modulus
µa solid artificial viscosity
γt blur zone viscosity constant
ε half blur zone width

Lx, Ly, Lz simulation domain side lengths
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Figure S2: (a) Elastic energy and volume of a sphere with radius 0.2 and shear modulus G = 1 in a periodic unit box. The
incompressible sphere is stretched in x-direction by a factor of 1.44, and compressed in the other directions accordingly. Fluid
viscosity µ = 0.01, and solid sphere has the same density as the fluid, ρs = ρf = 1. An incompressible neo-Hookean solid
is modeled. However, J 6= 1 in our numerical scheme, especially near the fluid–solid interface. Therefore, a correction factor
is used in the strain energy density (Eq. (S9)). The correction approaches zero as the grid is refined, since J converges to 1.
(b) Convergence of errors in surface area, volume, elastic energy, and ‖J − 1‖2, where J is the determinant of the deformation
gradient. Errors are measured at T = 0.2. The solid lines are fitted curves using Eq. (S9). Convergence rates (with Richardson
correction factor α in brackets) are 1.34(0.97), 1.44(1.0), and 1.04(1.0), for area, volume, and ‖J − 1‖2, respectively.
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Table S2: Dimensionless simulation parameters for pre-stretched sphere scaling test. Fluid density ρf is always kept at unity.
Solid artificial viscosity µa is identical to fluid viscosity µ.

Case µ ρs/ρf R G γ τdiss

A1 0.005 1 0.2 0.25 20.0 8
A2 0.01 1 0.2 1 20.0 4
A3 0.005 1 0.1 1 20.0 2
A4 0.0075 1 0.3 0.25 20.0 12
B1 0.005 1 0.1 0.25 10.0 2
B2 0.02 1 0.2 2.5 15.8 2
B3 0.005 1 0.3 0.25 30.0 18
C1 0.005 0.5625 4

15 0.25 20.0 8
C2 0.005 2.25 2

15 0.25 20.0 8
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Figure S3: Elastic energy (rescaled by respective initial value E0) over time (rescaled by respective characteristic time τdiss)
of pre-stretched spheres. Simulation parameters are documented in Table S2. In (b), normalized elastic energies are further
reduced by a factor of 100, 104, 106 for simulation B2, A1, B3 so that the curves are clearly separated. In (c), similar reduction
factors of 100 and 104 are applied to curves from simulation C1 and C2 for clarity.
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Figure S4: Comparing normal velocities and pressure profiles against benchmark results by Albensoeder and Kuhlmann [21]
for cubic lid-driven cavity with Reynolds number Re = 1000. Spatial coordinates are shifted by 0.5 in both plots such that
the domain is [−0.5, 0.5]× [−0.5, 0.5], and rotated to be aligned with figures in the work by Albensoeder and Kuhlmann [21].
(a) Normal velocities along the center lines in the central xz-plane are rescaled and plotted for five simulation resolutions,
N = 32, 48, 64, 96, 128. (b) Pressure profiles along the center lines in the central xz-plane are plotted. Pressure values are
shifted by a constant such that it is kept at zero at position (0.0, 0.0).
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Figure S5: Error convergence in a cubic lid-driven cavity flow with Re = 1000, using N = 128 solution of as the reference
solution. (a) Error in the extrema of normal velocities, min(u), min(w), and max(w), along center lines in the central xz-plane.
(b) Error in the total kinetic energy after steady state has been reached.
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Figure S6: Comparing normal velocities against benchmark results by Albensoeder and Kuhlmann [21] for cubic lid-driven
cavity with Reynolds number Re = 100, 400. Spatial coordinates are shifted by 0.5 in both plots such that the domain is
[−0.5, 0.5] × [−0.5, 0.5], and rotated to be aligned with figures in the work by Albensoeder and Kuhlmann [21]. Normal
velocities along the center lines in the central xz-plane are rescaled and plotted for resolution N = 96.
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Figure S7: Comparing normal velocities and pressure profiles against benchmark results by Albensoeder and Kuhlmann [21]
for lid-driven cavities with aspect ratios 1 : 2 : 1 and 1 : 3 : 1, with Reynolds number Re = 1000. Spatial coordinates are
shifted by 0.5 in both plots such that the domain is [−0.5, 0.5]× [−0.5, 0.5], and rotated to be aligned with figures in the work
by Albensoeder and Kuhlmann [21]. (a) Normal velocities along the center lines in the central xz-plane are rescaled and plotted
for five simulation resolutions N = 96 per unit simulation length. (b) Pressure profiles along the center lines in the central
xz-plane are plotted. Pressure values are shifted by a constant such that it is kept at zero at position (0.0, 0.0).
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Figure S8: Comparing normal velocities and pressure profiles against benchmark results by Albensoeder and Kuhlmann [21]
for lid-driven cavities with aspect ratio 1 : 1 : 2, with Reynolds number Re = 1000. Spatial coordinates are shifted in both
plots such that the domain is [−0.5, 0.5] × [−1.0, 1.0], and rotated to be aligned with figures in the work by Albensoeder and
Kuhlmann [21]. (a) Normal velocities along the center lines in the central xz-plane are rescaled and plotted for five simulation
resolutions N = 96 per unit simulation length. (b) Pressure profiles along the center lines in the central xz-plane are plotted.
Pressure values are shifted by a constant such that it is kept at zero at position (0.0, 0.0).

S22



Figure S9: (a) Sphere elastic energy and volume over time for a sphere with radius 0.2 and shear modulus G = 0.1 in a cubic
lid-driven cavity. Reynolds number Re = 100. An incompressible neo-Hookean solid is modeled. However, J 6= 1 in our
numerical scheme, especially near the fluid–solid interface. Therefore, a correction factor is used in the strain energy density
(Eq. (S9)). The correction approaches zero as the grid is refined, since J converges to 1. (b) Convergence of errors in surface
area, volume, elastic energy, and ‖J − 1‖2, where J is the determinant of the deformation gradient. Errors are measured at
T = 0.5. The solid lines are fitted curves using Eq. (S9). Convergence rates (with Richardson correction factor α in brackets)
are 2.00(0.98), 2.08(1.0), 1.51(0.92), and 1.16(1.0) for surface area, volume, elastic energy, and ‖J − 1‖2, respectively.
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Table S3: Additional parameters simulations presented in Fig. 4 in the main text. Number of grid cellsN and blur zone viscosity
multiplier γt are reported for each case in subfigure Fig. 4(a), (b), (d), (f), (h), and (j). Isotropic grid spacing h = 1/N .

Case N γt
(a) 128 0
(b) 48 2
(b) 64 4
(b) 96 2
(b) 128 0
(b) 160 0
(d) 48 0
(d) 64 1
(d) 96 0
(d) 128 0
(d) 160 0
(f) 48 0
(f) 64 0
(f) 96 0
(f) 128 0
(f) 160 0
(h) 128 0
(j) 64 0
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Figure S10: Reynolds numbers describing the oscillatory (Reo, left column) and steady (Res, right column) flows about the
swimmer. Top row: Swimmer body length is kept at L = 1.5 while its body radius R varies. Bottom row: Swimmer body
radius is kept at R = 0.15 while its body length L varies. Other simulation parameters are reported in Fig. 5 caption in the
main text.
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