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Abstract. The coefficients of the chain polynomial of a finite poset enumerate chains in the
poset by their number of elements. The chain polynomials of the partition lattices and their
standard type B analogues are shown to have only real roots. The real-rootedness of the
chain polynomial is conjectured for all geometric lattices and is shown to be preserved by
the pyramid and the prism operations on Cohen–Macaulay posets. As a result, new fami-
lies of convex polytopes whose barycentric subdivisions have real-rooted f -polynomials are
presented. An application to the face enumeration of the second barycentric subdivision of
the boundary complex of the simplex is also included.
Keywords. Chain polynomial, geometric lattice, partition lattice, real-rooted polynomial,
flag h-vector, convex polytope, barycentric subdivision
Mathematics Subject Classifications. 05A05, 05A18, 05E45, 06A07, 26C10

1. Introduction

The chain polynomial of a finite partially ordered set (poset, for short) L is defined
as pL(x) :=

∑
k⩾0 ck(L)xk, where ck(L) stands for the number of k-element chains in L (thus,

pL(x) is the f -polynomial of the order complex of L). The general question which motivates
this paper is as follows.

Question 1.1. For which finite posets does the chain polynomial have only real roots?

This question has been studied and proven to be very interesting and challenging for spe-
cific classes of posets. For finite distributive lattices, it is known to be equivalent to the poset
conjecture for natural labelings, posed in the seventies by Neggers [Neg78] (see also [Sta89,
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Conjecture 1]) and finally disproved by Stembridge [Ste07], after counterexamples to a more
general conjecture were found by Brändén [Brä04]. For face lattices of convex polytopes, it was
raised by Brenti and Welker in their study of f -vectors of barycentric subdivisions [BW08]. The
question is currently open in this case and is known to have an affirmative answer for face lat-
tices of simplicial (equivalently, simple) polytopes [BW08], cubical polytopes [Ath21] and, by
the results of [Gal05], polytopes of dimension at most five. Another notable result [Sta98, Corol-
lary 2.9] asserts that the chain polynomial pL(x) has only real roots for every poset L which does
not contain the disjoint union of a three-element chain and a one-element chain as an induced
subposet.

This paper partly aims to show that Question 1.1 is very interesting for other classes of posets
as well, especially for geometric lattices (the lattices of flats of matroids). The following state-
ment is the main conjecture posed in this paper (a more precise conjecture appears in Section 5).

Conjecture 1.2. The chain polynomial pL(x) has only real roots for every geometric lattice L.

Our first main result verifies this conjecture for some important geometric lattices, such as
the subspace lattice Ln(q) of all linear subspaces of an n-dimensional vector space over the
field with q elements, the partition lattice Πn [Sta12, Section 3.1] and its standard type B ana-
logue ΠB

n [Wac07, Section 1.3]. The statement about uniform matroids follows from the main
result of [BW08] and is included for the sake of completeness.

Theorem 1.3. Conjecture 1.2 is true for

(a) the subspace lattices Ln(q),

(b) the partition lattices Πn and ΠB
n ,

(c) the lattices of flats of near-pencils and uniform matroids.

Conjecture 1.2 has also been verified computationally for all geometric lattices with at most
nine atoms.

Our second main result gives constructions of posets which preserve the real-rootedness of
the chain polynomial. More specifically, there are natural operations Pyr and Prism on posets
(called pyramid and prism, see Section 2), such that ifL is the face lattice of a convex polytopeP ,
thenPyr(L) andPrism(L) are the face lattices of the pyramid and the prism overP , respectively.
Among other applications, the following statement implies the existence of large families of
nonsimplicial, nonsimple and noncubical polytopes in any dimension, the face lattices of which
have real-rooted chain polynomials.

Theorem 1.4. If the chain polynomial of a bounded Cohen–Macaulay poset L has only real
roots, then so do the chain polynomials of the pyramid and the prism over L.

The content, methods and structure of this paper may be described as follows. Section 2
provides basic definitions and useful background from algebraic, enumerative and geometric
combinatorics (mainly on chain enumeration in posets) and the theory of real-rooted polynomi-
als. Sections 3 and 4 prove parts (a) and (b) of Theorem 1.3, respectively. The proofs depend
on specific combinatorial features of these posets and do not seem to extend easily to other ge-
ometric lattices. They proceed by exploiting explicit combinatorial interpretations of the flag
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h-vectors and the h-polynomials of the order complexes of the posets in question. To the best
of our knowledge, such combinatorial interpretations have not appeared in the literature before
for the partition lattices Πn and ΠB

n . Part (a) of Theorem 1.3 is easier to prove and serves as an
introductory example.

Section 5 discusses Question 1.1 for some general classes of Cohen–Macaulay posets, includ-
ing that of geometric lattices, proves Theorem 1.4 and deduces from that part (c) of Theorem 1.3
(see Proposition 5.8). Proposition 5.3 suggests that the real-rootedness of chain polynomials
of geometric lattices should perhaps be studied in connection to that of chain polynomials of
face lattices of zonotopes and oriented matroids. The proofs in Section 5 rely heavily on re-
sults of Ehrenborg and Readdy [ER98] on the chain enumeration of pyramids and prisms and
of Billera, Ehrenborg and Readdy [BER97] on the chain enumeration of big face lattices of
oriented matroids (reviewed in Section 2). Section 6 applies Proposition 5.3 to give an unex-
pected combinatorial interpretation of the h-polynomial of the second barycentric subdivision
of the boundary complex of a simplex and of its associated γ-polynomial, thus solving a problem
posed in [Ath18].

As noted already, the chain polynomial pL(x) coincides with the f -polynomial of the order
complex ∆(L) of a poset L. The results of Sections 3, 4 and 5 are phrased in terms of the
h-polynomial of ∆(L) instead, which is more natural from an algebraic combinatorics point of
view for the classes of posets we are interested in.

2. Preliminaries

This section includes preliminaries on notation and definitions and discusses some of the key
tools and results from chain enumeration and the theory of real-rooted polynomials which will
be used in this paper. We assume familiarity with main objects of study in algebraic, enumerative
and geometric combinatorics, such as posets, matroids, simplicial complexes, convex polytopes
and oriented matroids; standard references are [Bjö92, BLVS+93, Oxl11, Sta96, Sta12, Wac07,
Zie95]. Any undefined terminology can be found there.

We will denote by Sn the symmetric group of permutations of [n] := {1, 2, . . . , n} and
by |S| the cardinality of a finite set S.

2.1. Simplicial complexes and face enumeration

Given an (n− 1)-dimensional (finite, abstract) simplicial complex ∆, the f -polynomial and the
h-polynomial are defined as

f(∆, x) =
n∑

i=0

fi−1(∆)xi

h(∆, x) = (1− x)nf(∆,
x

1− x
) =

n∑
i=0

fi−1(∆)xi(1− x)n−i,

where fi−1(∆) stands for the number of (i− 1)-dimensional faces of ∆. The h-polynomial has
nonnegative coefficients for all Cohen–Macaulay simplicial complexes [Sta96, Section II.3] (this
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property is meant to be considered here over the field Q of rational numbers) and, in particular,
for all simplicial complexes of interest in this paper. Morever, h(∆, x) can be considered as an
x-analogue of fn−1(∆), to which its coefficients sum up. Since f(∆, x) has only real roots if
and only if so does h(∆, x), the former can be replaced by the latter as far as real-rootedness is
concerned.

2.2. Order complexes and chain enumeration

We will be mostly interested in order complexes of posets. The order complex of a finite
poset (L,⪯) is defined [Sta12, Section 3.8] as the simplicial complex ∆(L) which consists of
all chains in L. We have f(∆(L), x) = pL(x), where pL(x) is the chain polynomial defined in
the introduction. To simplify notation, we set hL(x) = h(∆(L), x) throughout this paper. Thus,
pL(x) and hL(x) are related by the equation

hL(x) = (1− x)n pL

(
x

1− x

)
,

where n is the largest cardinality of a chain in L. The polynomial hL(x) is an x-analogue of the
number of n-element chains of L, which are exactly the (n− 1)-dimensional faces of ∆(L).

Suppose now that L has a minimum element 0̂, a maximum element 1̂ and that it is graded
of rank n, say with rank function ρ : P → {0, 1, . . . , n}. Thus, all maximal chains in L have
exactly n + 1 elements. Following [Sta12, Section 3.13], for S ⊆ [n − 1] we denote by αL(S)
the number of maximal chains of the subposet {t ∈ L : ρ(t) ∈ S} ∪ {0̂, 1̂} of L and set

βL(S) =
∑
T⊆S

(−1)|S−T | αL(T ).

The numbers βL(S) forS ⊆ [n−1] are the entries of the flag h-vector ofL. They are nonnegative
if L is Cohen–Macaulay (see, for instance, [Sta96, Theorem 4.4]) and refine the coefficients
of hL(x), in the sense that

hL(x) =
∑

S⊆[n−1]

βL(S)x
|S|. (2.1)

We also set L = L∖{0̂, 1̂} and recall that hL(x) = hL∖{0̂}(x) = hL∖{1̂}(x) = hL(x).
The theory of edge labelings can provide useful combinatorial interpretations of the num-

bers βL(S). We denote by E(L) and M(L) the set of covering relations and maximal chains
of L, respectively. An edge labeling of L for us will be a map λ : E(L) → Z. Given a maximal
chain C : 0̂ = c0 ≺ c1 ≺ · · · ≺ cn = 1̂ of L, such a map induces the sequence of labels

λ(C) = (λ(c0, c1), λ(c1, c2), . . . , λ(cn−1, cn)).

We denote byDesλ(C) the set of indices i ∈ [n−1] for which λ(ci−1, ci) ⩾ λ(ci, ci+1) and callC
strictly increasing with respect to λ if no such index exists. By restricting λ, all these definitions
apply to the closed intervals in L. We say that λ is a strict R-labeling if every closed interval
in L has a unique strictly increasing maximal chain with respect to λ. Under this assumption
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on λ, for every S ⊆ [n − 1], βL(S) is equal to the number of maximal chains C ∈ M(L)
such that Desλ(C) = S; see [Sta12, Section 3.14] [Wac07, Section 3.2] for examples and more
information on R-labelings.

The flag h-vector ofL is nicely encoded by the ab-indexΨL. Given noncommuting variables
a and b, this may be defined as

ΨL = ΨL(a,b) =
∑

S⊆[n−1]

βL(S)uS,

where uS = u1u2 · · ·un−1, with

ui =

{
b, if i ∈ S

a, if i ̸∈ S,

is the ab-monomial associated to S in the standard way. We note that Equation (2.1) may be
rewritten as hL(x) = ΨL(1, x).

2.3. Face lattices of polytopes

We will denote by F(P) the face lattice of a polytope P . The barycentric subdivisions sd(P)
and sd(∂P) of P and its boundary complex ∂P are defined as the order complexes ∆(L∖{0̂})
and∆(L), respectively, whereL = F(P). In particular, the f -polynomials of sd(P) and sd(∂P)
are the chain polynomials of L∖{0̂} and L and their real-rootedness is equivalent to that
of hL(x) = hL∖{0̂}(x) = h(sd(P), x) = hL(x) = h(sd(∂P), x).

There is another lattice associated to any zonotope Z , namely the geometric lattice of flats of
the matroid defined by the generators of Z . This lattice, say L(Z), is isomorphic to the intersec-
tion lattice of the linear hyperplane arrangement HZ corresponding to Z; the face
poset F(Z)∖{0̂} is anti-isomorphic to the face poset of HZ [Zie95, Section 7.3]. The main
result of [BER97] expresses the flag h-vector of F(Z) in terms of that of L(Z). Consider the
linear function ω : Z⟨a,b⟩ → Z⟨a,b⟩ defined as follows: if v is any ab-word, then ω(v) is
obtained from v by first replacing each occurrence of ab with 2(ab + ba) and then replacing
each of the remaining letters with a+ b.

Theorem 2.1. ([BER97, Corollary 3.2]) We have ΨF(Z) = ω(a · ΨL) for every zonotope Z ,
where L is the lattice of flats of the matroid associated to Z .

Given a bounded, finite posetL, the pyramid overL is defined asPyr(L) = L×L1, whereL1

is the 2-element chain. The prism over L, denoted Prism(L), is defined as the poset obtained
by adding a minimum element to (L∖{0̂})× (L2∖{0̂}), where L2 = L1 ×L1. Then, for every
polytope P , the posets Pyr(F(P)) and Prism(F(P)) are isomorphic to the face lattices of the
pyramid and the prism overP , respectively. Following [ER98], we consider the linear derivation
D : Z⟨a,b⟩ → Z⟨a,b⟩ defined by setting D(a) = D(b) = ab+ ba.

Theorem 2.2. ([ER98, Theorem 4.4]) We have

2ΨPyr(L) = ΨL · (a+ b) + (a+ b) ·ΨL + D(ΨL), (2.2)
ΨPrism(L) = ΨL · (a+ b) + D(ΨL) (2.3)

for every bounded, graded finite poset L.
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2.4. Real-rooted polynomials

A polynomial f(x) with real coefficients is called real-rooted if every root of f(x) is real,
or f(x) ≡ 0.

A real-rooted polynomial f(x), with roots α1 ⩾ α2 ⩾ · · · , is said to interlace a real-rooted
polynomial g(x), with roots β1 ⩾ β2 ⩾ · · · , if

· · · ⩽ α2 ⩽ β2 ⩽ α1 ⩽ β1.

By convention, the zero polynomial interlaces and is interlaced by every real-rooted polynomial.
A sequence (f0(x), f1(x), . . . , fm(x)) of real-rooted polynomials is called interlacing if fi(x)
interlaces fj(x) for 0 ⩽ i < j ⩽ m. The following standard lemma (see, for instance, [Brä15,
Section 7.8]) will be applied several times in this paper.

Lemma 2.3. Let (f0(x), f1(x), . . . , fm(x)) be an interlacing sequence of real-rooted polynomi-
als with positive leading coefficients.

(a) Every nonnegative linear combination f(x) of f0(x), f1(x), . . . , fm(x) is real-rooted. Mo-
roever, f(x) interlaces fm(x) and it is interlaced by f0(x).

(b) The sequence (g0(x), g1(x), . . . , gm+1(x)) defined by

gk(x) = x
k−1∑
i=0

fi(x) +
m∑
i=k

fi(x)

for k ∈ {0, 1, . . . ,m+ 1} is also interlacing.

A polynomial f(x) = a0 + a1x+ · · ·+ anx
n with real coefficients is called symmetric, with

center of symmetry n/2, if ai = an−i for all 0 ⩽ i ⩽ n. Then, f(x) =
∑⌊n/2⌋

i=0 γix
i(1 + x)n−2i

for some uniquely defined real numbers γ0, γ1, . . . , γ⌊n/2⌋ and γ(x) =
∑⌊n/2⌋

i=0 γix
i is the

γ-polynomial associated to f(x). The latter is called γ-positive if γi ⩾ 0 for every i; see [Ath18]
[Brä15, Section 7.3] for more information on this concept.

3. Subspace lattices

This section confirms Theorem 1.3 for subspace lattices. The proof essentially follows by com-
bining [Sta12, Theorem 3.13.3] with [SV15, Theorem 5.4] but serves as a paradigm for the proofs
of the corresponding statements for the lattices Πn and ΠB

n in the following section, which are
more involved.

Given a positive integer n and a prime power q, let Vn(q) be an n-dimensional vector space
over the field with q elements. The subset latticeLn, known as the Boolean algebra of rank n, and
the subspace latticeLn(q) are defined [Sta12, Example 3.1.1] as the set of all subsets of the set [n]
and as the set of all linear subspaces of Vn(q), respectively, partially ordered by inclusion. The
posets Ln and Ln(q) are geometric lattices of rank n, the latter being considered as a q-analogue
of the former. We recall that a descent of a permutation w ∈ Sn is an index i ∈ [n − 1] such
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that w(i) > w(i + 1) and denote by des(w) and Des(w) the number and the set of all descents
of w, respectively.

The order complex ∆(Ln) is isomorphic to the first barycentric subdivision of the boundary
complex of the (n − 1)-dimensional simplex and its h-polynomial hLn(x) = h(∆(Ln), x) is
known [Pet15, Theorem 9.1] to be equal to the nth Eulerian polynomial

An(x) :=
∑
w∈Sn

xdes(w).

The latter is well known [Brä15, Section 7.8.1] to have only real roots for every n. As already
discussed, the following statement is equivalent to part (a) of Theorem 1.3.

Proposition 3.1. The polynomial hL(x) is real-rooted for every subspace lattice L = Ln(q).

Proof. Setting L := Ln(q), we have [Sta12, Theorem 3.13.3]

βL(S) =
∑

w∈Sn: Des(w)=S

qinv(w),

where inv(w) is the number of pairs of indices 1 ⩽ i < j ⩽ n for which w(i) > w(j). This
formula and Equation (2.1) imply that hL(x) = An(x; q), where

An(x; q) :=
∑
w∈Sn

qinv(w)xdes(w)

is one of the well studied q-analogues of An(x) [Sta12, Section 3.19]. The fact that An(x; q)
is real-rooted for every positive real number q was shown in [SV15, Theorem 5.4]. To give a
self-contained proof, we set

An,k(x; q) =
∑

w∈Sn:w(n)=k

qinv(w)xdes(w)

for k ∈ [n] and note that An(x; q) = An+1,n+1(x; q) for every n and that

An+1,k(x; q) = qn+1−k

(
k−1∑
i=1

An,i(x; q) + x

n∑
i=k

An,i(x; q)

)
(3.1)

for k ∈ [n + 1]. An application of Lemma 2.3 shows by induction on n that the sequence
(An,n(x; q), An,n−1(x; q), . . . , An,1(x; q)) is interlacing for all n and positive q. As a result,
An(x; q) = An+1,n+1(x; q) is real-rooted for all n and positive q.

The previous argument also shows that An(x; q) interlaces An+1(x; q) for all n and all posi-
tive q. This follows from part (a) of Lemma 2.3 since, by (3.1), An(x; q) = An+1,n+1(x; q) is a
positive linear combination of the An,k(x; q) for 1 ⩽ k ⩽ n and An,n(x; q) = An−1(x; q). For
the real-rootedness of other q-analogues of An(x), see [SV15, Section 5].



8 Christos A. Athanasiadis, Katerina Kalampogia-Evangelinou

4. Partition lattices

This section proves part (b) of Theorem 1.3. As in Section 3, we will show the equivalent
statement that hΠn(x) and hΠB

n
(x) are real-rooted for every n ⩾ 1.

4.1. The partition lattice of type A

We recall that Πn consists of all partitions of the set [n], partially ordered by reverse refinement.
It is isomorphic to the intersection lattice of the Coxeter hyperplane arrangement of type An−1

and, as such, it is a geometric lattice of rank n− 1. We will first give an explicit combinatorial
interpretation of the flag h-vector of Πn and will deduce one for hΠn(x). A recurrence for the
entries of the former was found by Sundaram [Sun94, Proposition 2.16]; an additional formula
appears as [Sun94, Proposition 2.18]. We consider the multiset

An := {1} × {1, 1, 2} × {1, 1, 1, 2, 2, 3} × · · · × {1, 1, . . . , 1, . . . , n− 2, n− 2, n− 1},

e.g., A3 = {(1, 1), (1, 1), (1, 2)}. We define the descent set of σ = (σ1, σ2, . . . , σn−1) ∈ An

as Des(σ) = {i ∈ [n − 2] : σi ⩾ σi+1} and denote its cardinality by des(σ). The multiset An

has
∏n

k=2

(
k
2

)
= n!(n−1)!

2n−1 elements, as many as the maximal chains of Πn. Moreover, one element
of An has empty descent set and (n− 1)! of them have descent set equal to [n− 2]. These facts
agree with the following statement.

Proposition 4.1. For every n ⩾ 2 and every S ⊆ [n − 2], the number βΠn(S) is equal to the
number of elements of the multisetAn with descent set equal to n−1−S := {n−1−x : x ∈ S}.
In particular,

hΠn(x) =
∑
σ∈An

xdes(σ) (4.1)

for every n ⩾ 2.

To prepare for the proof, we recall [Wac07, Section 3.2.2] the following edge labeling of Πn,
due to Gessel. For a covering relation (x, y) ∈ E(Πn) we define λ(x, y) as the maximum of
min(B) and min(B′), where y is obtained from x by merging the blocks B and B′ of x. The
labeling λ : E(Πn) → {2, 3, . . . , n} is a strict R-labeling (even a strict EL-labeling). In par-
ticular, βΠn(S) is equal to the number of maximal chains C of Πn such that Desλ(C) = S, for
every S ⊆ [n− 2].

Proof of Proposition 4.1. We consider the multiset

A∗
n := {2, 3, 3, 4, 4, 4, . . . , n, n, . . . , n} × · · · × {2, 3, 3, 4, 4, 4} × {2, 3, 3} × {2}

and set Des∗(σ) = {i ∈ [n − 2] : σi > σi+1} for σ = (σ1, σ2, . . . , σn−1) ∈ A∗
n. The bijection

An 7→ A∗
n defined by

(σ1, σ2, . . . , σn−1) 7→ (n+ 1− σn−1, n− σn−2, . . . , 3− σ1)
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shows that for every S ⊆ [n − 2], the number of elements σ ∈ A∗
n with Des∗(σ) = S is equal

to the number of elements σ ∈ An with Des(σ) = n − 1 − S. Thus, we need to show that the
former is equal to βΠn(S).

For that, we employ Gessel’s labeling λ : E(Πn) → {2, 3, . . . , n}. Given a covering relation
(x, y) ∈ E(Πn), we list the blocks of x = {B1, B2, . . . , Bk} so that min(B1) < min(B2) <
· · · < min(Bk) and set φ(x, y) = (i, j) and ψ(x, y) = j, where i < j and y is obtained from x
by merging Bi with Bj . For a maximal chain C : 0̂ = c1 ≺ c2 ≺ · · · ≺ cn = 1̂ of Πn we set

φ̃(C) = (φ(c1, c2), φ(c2, c3), . . . , φ(cn−1, cn)),

ψ̃(C) = (ψ(c1, c2), ψ(c2, c3), . . . , ψ(cn−1, cn))

and consider the resulting maps

φ̃ : M(Πn) →
(
[n]

2

)
×
(
[n− 1]

2

)
× · · · ×

(
[2]

2

)
,

ψ̃ : M(Πn) → {2, 3, . . . , n} × {2, 3, . . . , n− 1} × · · · × {2},

where
(
T
2

)
stands for the set of 2-element subsets of T .

Clearly, φ̃ is a bijection. We claim thatDesλ(C) = Des∗(ψ̃(C)) for everyC ∈ M(Πn). This
would imply that βΠn(S), which is equal to the number of chains C ∈ M(Πn)

with Desλ(C) = S, is also equal to the number of chains C ∈ M(Πn) with Des∗(ψ̃(C)) = S.
Since φ̃ is a bijection, the latter is equal to the number of σ ∈ A∗

n with Des∗(σ) = S.
Thus, it remains to verify the claim. Equivalently, for (x, y), (y, z) ∈ E(Πn), we need to

verify that λ(x, y) ⩾ λ(y, z) ⇔ ψ(x, y) > ψ(y, z). Indeed, let x = {B1, B2, . . . , Bk} with
min(B1) < min(B2) < · · · < min(Bk) and suppose that y is obtained from x by merging Bi

with Bj , where i < j. Then, λ(x, y) = min(Bj) and ψ(x, y) = j. Each one of the inequalities
λ(y, z) ⩽ min(Bj) and ψ(y, z) < j is equivalent to the statement that z is obtained from y by
merging two blocks other than Bj+1, . . . , Bk and the proof follows.

For small values of n,

hΠn(x) =



1, if n = 1

1, if n = 2

1 + 2x, if n = 3

1 + 11x+ 6x2, if n = 4

1 + 47x+ 108x2 + 24x3, if n = 5

1 + 197x+ 1268x2 + 1114x3 + 120x4, if n = 6

1 + 870x+ 13184x2 + 29383x3 + 12542x4 + 720x5, if n = 7.

The following corollary proves and strengthens Theorem 1.3.

Corollary 4.2. The polynomial hΠn(x) is real-rooted and it interlaces hΠn+1(x) for every n ⩾ 1.
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Proof. For k ∈ [n− 1] we set
hn,k(x) =

∑
σ∈An,k

xdes(σ),

where An,k is the multiset consisting of all words (σ1, σ2, . . . , σn−1) ∈ An with σn−1 = k. By
Proposition 4.1,

hΠn(x) = hn+1,n(x) =
n−1∑
k=1

hn,k(x)

for every n ⩾ 2 and

hn+1,k(x) = (n+ 1− k)

(
k−1∑
i=1

hn,i(x) + x

n−1∑
i=k

hn,i(x)

)

for k ∈ [n]. Since (hn+1,n(x), hn+1,n−1(x), . . . , hn+1,1(x)) is an interlacing sequence if and
only if (hn+1,n(x), hn+1,n−1(x)/2, . . . , hn+1,1(x)/n) has the same property, an application of
Lemma 2.3 shows by induction on n that (hn,n−1(x), hn,n−2(x), . . . , hn,1(x)) is interlacing for
every n ⩾ 2 and that hΠn(x) =

∑n−1
k=1 hn,k(x) is interlaced by hn,n−1(x) = hΠn−1(x).

The following conjecture has been verified for n ⩽ 20.

Conjecture 4.3. The polynomial hΠn(x) is interlaced by the Eulerian polynomial An−1(x) for
every n ⩾ 2.

4.2. The partition lattice of type B

We find it convenient to define ΠB
n as the set of all partitions π of {−n,−n+1, . . . , n} with the

following properties:

(i) B ∈ π ⇒ (−B) ∈ π,
(ii) if {i,−i} ⊆ B for some i ∈ [n] and some block B ∈ π, then 0 ∈ B.

For example, {{0, 2,−2}, {1,−3, 5}, {−1, 3,−5}, {4}, {−4}} ∈ ΠB
5 . The partial order on ΠB

n

is again reverse refinement. The unique block of π ∈ ΠB
n containing 0 is called the zero block.

The poset ΠB
n is isomorphic to the intersection lattice of the Coxeter hyperplane arrangement of

type Bn and therefore it is a geometric lattice of rank n.
The proof of Theorem 1.3 for the lattice ΠB

n parallels that for Πn. One can easily verify
that ΠB

n has exactly (n!)2 maximal chains. We consider the multiset

Bn := {1}×{1, 1, 1, 2}×{1, 1, 1, 1, 1, 2, 2, 2, 3}×· · ·×{1, 1, . . . , 1, . . . , n−1, n−1, n−1, n},

where the kth factor has 2k − 2i + 1 elements equal to i, for 1 ⩽ i ⩽ k. We define the descent
set Des(σ) ⊆ [n− 1] and its cardinality des(σ) for σ ∈ Bn just as for elements of An. We note
that Bn has (n!)2 elements, one of which has empty descent set and (2n − 1)!! of which have
descent set equal to [n− 1]. These facts agree with the following analogue of Proposition 4.1.
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Proposition 4.4. For every n ⩾ 1 and every S ⊆ [n − 1], the number βΠB
n
(S) is equal to the

number of elements of the multiset Bn with descent set equal to n− S. In particular,

hΠB
n
(x) =

∑
σ∈Bn

xdes(σ) (4.2)

for every n ⩾ 1.

The proof uses the following analogue of Gessel’s edge labeling for Πn. Let us denote
by |B| the set of absolute values of the elements of a set B ⊆ Z. Given a covering relation
(x, y) ∈ E(ΠB

n ), there exists a unique pair {B,B′} of distinct blocks of x such that

(i) min(|B|) ∈ B and min(|B′|) ∈ B′,
(ii) either B and B′ are nonzero and B ∪ B′ or (−B) ∪ B′ is a nonzero block of y, or one of

B and B′ is the zero block of x and B ∪B′ is contained in the zero block of y.

We then define λ(x, y) as the maximum of min(|B|) and min(|B′|) and leave to the reader to
verify that the resulting map λ : E(ΠB

n ) → {1, 2, . . . , n} is a strict R-labeling. In particu-
lar, βΠB

n
(S) is equal to the number of maximal chains C of ΠB

n such that Desλ(C) = S, for
every S ⊆ [n− 1].

Proof of Proposition 4.4. We adapt the proof of Proposition 4.1 as follows. We consider the
multiset

B∗
n := {1, 2, 2, 2, 3, 3, 3, 3, 3, . . . , n, n, . . . , n}×· · ·×{1, 2, 2, 2, 3, 3, 3, 3, 3}×{1, 2, 2, 2}×{1},

where the kth factor has 2i − 1 elements equal to i, for i ∈ [n − k + 1]. We set
Des∗(σ) = {i ∈ [n − 1] : σi > σi+1} for σ = (σ1, σ2, . . . , σn) ∈ B∗

n. The bijection Bn 7→ B∗
n

defined by
(σ1, σ2, . . . , σn) 7→ (n+ 1− σn, n− σn−1, . . . , 2− σ1)

shows that, for every S ⊆ [n− 1], the number of elements σ ∈ B∗
n with Des∗(σ) = S is equal to

the number of elements σ ∈ Bn with Des(σ) = n− S. Thus, it suffices to show that the former
equals βΠB

n
(S).

Let us call a nonzero block B of a partition x ∈ ΠB
n positive if min(|B|) ∈ B. Given a

covering relation (x, y) ∈ E(ΠB
n ), we let B0 be the zero block of x and list its positive blocks,

say B1, B2, . . . , Bk, so that min(|B1|) < min(|B2|) < · · · < min(|Bk|). Then, some posi-
tive block Bj merges in y either with B0, or with Bi or −Bi for some 1 ⩽ i < j. We set
φ(x, y) = (j, j) or (i, j) or (j, i) in these cases, respectively, and ψ(x, y) = j. For a maximal
chain C : 0̂ = c0 ≺ c1 ≺ · · · ≺ cn = 1̂ of ΠB

n we set

φ̃(C) = (φ(c0, c1), φ(c1, c2), . . . , φ(cn−1, cn)),

ψ̃(C) = (ψ(c0, c1), ψ(c1, c2), . . . , ψ(cn−1, cn))

and consider the resulting maps

φ̃ : M(ΠB
n ) → [n]2 × [n− 1]2 × · · · × [1]2,

ψ̃ : M(ΠB
n ) → [n]× [n− 1]× · · · × [1].



12 Christos A. Athanasiadis, Katerina Kalampogia-Evangelinou

We note that φ̃ is a bijection, verify that Desλ(C) = Des∗(ψ̃(C)) for every C ∈ M(ΠB
n ),

just as in the proof of Proposition 4.1, and conclude that βΠB
n
(S) is equal to the number of

elements σ ∈ B∗
n with Des∗(σ) = S for every S ⊆ [n− 1].

For small values of n,

hΠB
n
(x) =



1, if n = 1

1 + 3x, if n = 2

1 + 20x+ 15x2, if n = 3

1 + 111x+ 359x2 + 105x3, if n = 4

1 + 642x+ 5978x2 + 6834x3 + 945x4, if n = 5

1 + 4081x+ 92476x2 + 268236x3 + 143211x4 + 10395x5, if n = 6.

Corollary 4.5. The polynomial hΠB
n
(x) is real-rooted and it interlaces hΠB

n+1
(x) for every n ⩾ 1.

Proof. For 1 ⩽ k ⩽ n we set
hBn,k(x) =

∑
σ∈Bn,k

xdes(σ),

where Bn,k is the multiset consisting of all words (σ1, σ2, . . . , σn) ∈ Bn with σn = k. By
Proposition 4.4,

hΠB
n
(x) = hBn+1,n+1(x) =

n∑
k=1

hBn,k(x)

for every n ⩾ 1 and

hBn+1,k(x) = (2n− 2k + 3)

(
k−1∑
i=1

hBn,i(x) + x
n∑

i=k

hBn,i(x)

)
for k ∈ [n+ 1]. The result follows from these formulas as in the proof of Corollary 4.2.

The intersection lattice of the Coxeter hyperplane arrangement of type Dn is isomorphic to
the subposetΠD

n ofΠB
n which consists of all elements of the latter with zero block not of the form

{0, i,−i} for any i ∈ [n]. The number of maximal chains of ΠD
n can be shown to equal (n!)2/2

for every n ⩾ 2. For small values of n,

hΠD
n
(x) =



1 + x, if n = 2

1 + 11x+ 6x2, if n = 3

1 + 67x+ 175x2 + 45x3, if n = 4

1 + 397x+ 3143x2 + 3239x3 + 420x4, if n = 5

1 + 2539x+ 50272x2 + 134160x3 + 67503x4 + 4725x5, if n = 6.

We leave the analogue of Propositions 4.1 and 4.4 for ΠD
n open in this paper. Computational

data suggest that the polynomial hΠD
n
(x) is real-rooted for every n ⩾ 2 and that the sequence

(hΠn+1(x), hΠD
n
(x), hΠB

n
(x)) is interlacing for every n ⩾ 3.
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5. Geometric lattices and face lattices of polytopes

This section addresses the question of real-rootedness of hL(x) for geometric lattices, face lat-
tices of polytopes and other classes of posets. Moreover, it discusses connections among these
questions, proves Theorem 1.4 and deduces some partial results from that.

We recall that a finite lattice is called geometric if it is atomic and semimodular (see [Sta12,
Section 3.3] for explanations and more information) or, equivalently, if it is isomorphic to the
lattice of flats of a matroid. For a geometric lattice L, the possible inequalities among the coef-
ficients of hL(x) were studied by Nyman and Swartz [NS04], who showed that

• a0 ⩽ a1 ⩽ · · · ⩽ a⌊(n−1)/2⌋, and
• ai ⩽ an−1−i for 0 ⩽ i ⩽ (n− 1)/2

for every geometric lattice L of rank n, where hL(x) =
∑n−1

i=0 aix
i (later, these inequalities were

extended to the h-polynomials of (n−1)-dimensional simplicial complexes having a convex ear
decomposition in [Swa06] and, more recently, to the h-polynomials of all (n− 1)-dimensional
doubly Cohen–Macaulay simplicial complexes in [APP21, Section 6]). To the best of our knowl-
edge, the unimodality of hL(x) is open. The following conjecture, which has been verified com-
putationally for all geometric lattices with at most nine atoms, is a much stronger statement.

Conjecture 5.1. The polynomial hL(x) has only real roots and is interlaced by the Eulerian
polynomial An(x) for every geometric lattice L of rank n.

The question of real-rootedness of hL(x) was raised by Brenti and Welker [BW08, Ques-
tion 1] for face lattices of polytopes and (in a stronger form) by Athanasiadis and Tzanaki [AT21,
Question 7.4] for face lattices of more general classes of polyhedral complexes, including poly-
hedral balls and doubly Cohen–Macaulay polyhedral complexes. It seems natural to pose the
following even more general question. We recall that a finite poset L, having a minimum el-
ement 0̂, is said to be lower Eulerian if the closed interval [0̂, x] in L is Eulerian (see [Sta12,
Section 3.16] for the definition and information about Eulerian posets) for every x ∈ L.

Question 5.2. Does hL(x) have only real roots for every lower Eulerian Cohen–Macaulay
poset L?

Special classes of lower Eulerian Cohen–Macaulay posets for which it would be interesting
to investigate this question include:

• lower Eulerian Cohen–Macaulay meet semi-lattices,
• face posets of Cohen–Macaulay regular cell complexes,
• face posets of Cohen–Macaulay polyhedral complexes,
• Gorenstein* posets,
• Gorenstein* lattices,
• face lattices of convex polytopes [BW08, Question 1],
• face lattices of zonotopes.
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Given Equation (2.1), the following statement suggests that Conjecture 5.1 may be closely
related to the special case of Question 5.2 concerning face lattices of zonotopes (more gen-
erally, of oriented matroids). We recall that F(P) denotes the face lattice of a polytope P .
For S ⊆ [n − 1], we denote by lpeak(S) the number of elements i ∈ S for which i − 1 ̸∈ S,
known [Pet15, p. 298] as the left peaks of the permutation w ∈ Sn when S = Des(w).

Proposition 5.3. For every n-dimensional zonotope Z

hF(Z)(x) =
∑

S⊆[n−1]

βL(S) (4x)
lpeak(S)(1 + x)n−2lpeak(S), (5.1)

where L is the lattice of flats of the matroid associated to Z . In particular, the
polynomial hF(Z)(x) has only real roots if and only if so does

∑
S⊆[n−1] βL(S)x

lpeak(S).

Proof. The number of occurrences of ab in a word a · w of degree n in a and b is equal
to lpeak(S), where S is the subset of [n − 1] associated to w. Thus, the first statement fol-
lows by substituting a = 1 and b = x in the formula ΨF(Z) = ω(a · ΨL) of Theorem 2.1.
The second statement follows from the first and the fact (see [Gal05, Remark 3.1.1]) that a γ-
positive polynomial

∑⌊n/2⌋
i=0 γix

i(1 + x)n−2i is real-rooted if and only if so is the associated
γ-polynomial

∑⌊n/2⌋
i=0 γix

i.

Remark 5.4. LetZ andL be as in Proposition 5.3. Setting x = 1 in Equation (5.1) shows that the
number of facets of the barycentric subdivision of Z is equal to 2n times the number of maximal
chains of L.

The main result of this section, which is a stronger version of Theorem 1.4, allows one to
construct new posets with real-rooted chain polynomials from posets known to have this prop-
erty.

Theorem 5.5. Let L be a bounded, graded poset of positive rank n.

(a) We have

hPyr(L)(x) = (1 + nx)hL(x) + (x− x2)h′L(x), (5.2)
hPrism(L)(x) = (1 + (2n− 1)x)hL(x) + 2(x− x2)h′L(x) (5.3)

= 2hPyr(L)(x)− (1 + x)hL(x).

(b) Assume thatL is Cohen–Macaulay. If the polynomial hL(x) is real-rooted, then hPyr(L)(x)
and hPrism(L)(x) are also real-rooted and each of them is interlaced by hL(x).

Proof. Part (a) follows by substituting a = 1 and b = x in the formulas of Theorem 2.2.
Indeed, if w is any word of degree n− 1 in a and b having k letters equal to b, then D(w) can
be expressed as a sum of 2n− 2 words of degree n in a and b, of which 2k have k letters equal
to b and 2n− 2k − 2 have k + 1 letters equal to b. As a result, Equation (2.2) implies that

hPyr(L)(x) = (1 + x)hL(x) + δn(hL(x)),
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where δn : Rn−1[x] → Rn[x] is the linear map defined by δn(xk) = kxk + (n − k − 1)xk+1

for 0 ⩽ k ⩽ n−1. Clearly, δn(h(x)) = (n−1)xh(x)+(x−x2)h′(x) for every h(x) ∈ Rn−1[x]
and Equation (5.2) follows. The same argument shows that

hPrism(L)(x) = (1 + x)hL(x) + 2 δn(hL(x))

and yields Equation (5.3).
For part (b) we rewrite Equations (5.2) and (5.3) as

hPyr(L)(x)

(1− x)n+2
=

d

dx

(
xhL(x)

(1− x)n+1

)
, (5.4)

hL(x)hPrism(L)(x)

(1− x)2n+3
=

d

dx

(
x(hL(x))

2

(1− x)2n+2

)
. (5.5)

Since L is Cohen–Macaulay, hL(x) has nonnegative coefficients. Since the latter is assumed
to be real-rooted and has constant term equal to 1, all its roots are negative. Let d be the de-
gree of hL(x). Then, d ⩽ n − 1 and, as it follows from part (a) and its proof, hPyr(L)(x)
and hPrism(L)(x) have nonnegative coefficients and degree d+ 1. Applying Rolle’s theorem and
taking into account that

lim
x→−∞

xhL(x)

(1− x)n+1
= lim

x→−∞

x(hL(x))
2

(1− x)2n+2
= 0

we conclude from Equations (5.4) and (5.5) that each of hPyr(L)(x) and hPrism(L)(x) has d + 1
negative roots which are interlaced by those of hL(x) and the proof follows.

Corollary 5.6. Let M and M′ be matroids with lattices of flats L and L′, respectively. If hL(x)
is real-rooted and M′ is obtained by successively adding coloops to M, then hL′(x) is real-
rooted as well.

Proof. This follows from part (a) of Theorem 5.5, since L′ is isomorphic to Pyr(L) for every
matroid M′ which can be obtained by adding one coloop to M.

The following corollary of Theorem 5.5 provides classes of nonsimplicial, nonsimple and
noncubical polytopes in any dimension, the barycentric subdivisions of which have real-rooted
f -polynomials. For instance, it implies that any polytope which is obtained from one of dimen-
sion at most 5 by applying successively the pyramid or the prism construction has this property.

Corollary 5.7. Let P be a convex polytope. If hF(P)(x) is real-rooted, then hF(Pyr(P))(x)
and hF(Prism(P))(x) have the same property and each of them is interlaced by hF(P)(x).

The near-pencil of rank n onm elements can be obtained from the rank two uniform matroid
on m−n+2 elements by adding n− 2 coloops. Near-pencils and uniform matroids are known
[NS04, Section 3] to minimize and maximize, respectively, the entries of the flag h-vector of
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the lattice of flats among all matroids of given rank and number of elements. The following
statement confirms Conjecture 1.2 for the lattices of flats of these matroids and completes the
proof of Theorem 1.3. Let us denote by L(M) the lattice of flats of a matroid M. The Eulerian
polynomial Bn(x) can be defined (see, for instance, [Ste92, Sections 3.1 and 3.4]) as hF(P)(x),
where P is the n-dimensional cube, or as

Bn(x) =
∑
w∈S±

n

xdesB(w),

where S±
n denotes (this is nonstandard notation) the set of signed permutations of [n], meaning

sequences w = (w1, w2, . . . , wn) for which (|w1|, |w2|, . . . , |wn|) ∈ Sn, and desB(w) is the
number of indices i ∈ {0, 1, . . . , n− 1} such that wi > wi+1, where w0 := 0.

Proposition 5.8. Let Mm,n and Um,n denote the near-pencil and the uniform matroid, respec-
tively, of rank n on m elements and let F(Mm,n) and F(Um,n) be the face lattices of any zono-
topes with associated matroids Mm,n and Um,n, respectively.

(a) The polynomials hL(Mm,n)(x) and hL(Um,n)(x) have only real roots. Moreover, the latter
is interlaced by the Eulerian polynomial An(x).

(b) The polynomials hF(Mm,n)(x) and hF(Um,n)(x) have only real roots. Moreover, the latter
is interlaced by the Eulerian polynomial Bn−1(x).

Proof. By definition, the near-pencil Mm,n is obtained by successively adding coloops to a rank
two matroid. Thus, the real-rootedness of hL(Mm,n)(x) follows from Corollary 5.6. Similarly,
since adding a coloop to a linear matroid M with associated zonotope Z yields a matroid whose
associated zonotope is combinatorially isomorphic to the prism over Z , the real-rootedness
of hF(Mm,n)(x) follows from Corollary 5.7.

Since the geometric lattice L(Um,n), with its maximum element removed, is a simplicial
poset with nonnegative h-vector, the real-rootedness of hL(Um,n)(x) is a special case of [BW08,
Theorem 2]. Similarly, since the zonotope associated to the uniform matroid Um,n is an n-
dimensional cubical polytope, the statement that hF(Um,n)(x) is real-rooted and interlaced
byBn−1(x) is a special case of [Ath21, Corollary 3.5]. Thus, it remains to show that hL(Um,n)(x)
is interlaced by An(x).

To simplify the notation, we set L := L(Um,n) and recall that L is combinatorially iso-
morphic to the poset of nonempty faces of the (n − 2)-dimensional skeleton, say ∆m,n−1, of
the (m − 1)-dimensional simplex 2[m]. As a result, ∆(L) is combinatorially isomorphic to the
barycentric subdivision sd(∆m,n−1) and hL(x) = h(sd(∆m,n−1), x). As explained in [Ath22]
[Ath21, Section 1], this expression implies that

hL(x) =
n−1∑
k=0

ckpn−1,k(x),

where h(∆m,n−1, x) =
∑n−1

k=0 ckx
k and (pn−1,0(x), pn−1,1(x), . . . , pn−1,n−1(x)) is an interlac-

ing sequence of real-rooted polynomials with nonnegative coefficients, originally defined in
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[BW08], which sum to An(x). Since ∆m,n−1 is the one-coskeleton of the Cohen–Macaulay
simplicial complex ∆m,n, as explained in the proof of [AT21, Theorem 6.1] we must have
1 = c0 ⩽ c1 ⩽ · · · ⩽ cn−1. An application of [ABJK22, Lemma 2.2 (c)] [HOW99, Lemma 8]
then shows that

∑n−1
k=0 pn−1,k(x) = An(x) interlaces

∑n−1
k=0 ckpn−1,k(x) = hL(x) and the proof

follows.

Computational data, along with part (b) of Proposition 5.8, suggest the following question.

Question 5.9. Is hF(Z)(x) interlaced by Bn−1(x) for every n-dimensional zonotope Z?

6. An application to the second barycentric subdivision

As mentioned in Section 3, the nth Eulerian polynomial An(x) is equal to the h-polynomial
of the first barycentric subdivision of the boundary complex ∂∆n of the (n − 1)-dimensional
simplex∆n. As an application of results of previous sections, we now give explicit combinatorial
interpretations of the h-polynomial of the second barycentric subdivision of ∂∆n and of its
associated γ-polynomial, thus answering a question raised in [Ath18, Example 4.4].

Let us write sd2(∆) = sd(sd(∆)) for the second barycentric subdivision of a simplicial
complex∆. The polynomial h(sd2(∂∆n), x) is an x-analogue of (n−1)!n!, which is the number
of (n− 2)-dimensional faces (facets) of sd2(∆n). For small values of n,

h(sd2(∂∆n), x) =



1 + x, if n = 2

1 + 10x+ x2, if n = 3

1 + 71x+ 71x2 + x3, if n = 4

1 + 536x+ 1806x2 + 536x3 + x4, if n = 5

1 + 4677x+ 38522x2 + 38522x3 + 4677x4 + x5, if n = 6.

Since (n − 1)!n! is equal to 2n−1 times the number of maximal chains of the partition lat-
ticeΠn, and the latter is equal to the number of elements of the multisetAn, it is not unreasonable
to expect that the coefficients of h(sd2(∂∆n), x) count signed elements of An by some descent-
type statistic. Indeed, let us denote by A±

n the multiset of all signed elements of An, meaning
sequences τ = (τ1, τ2, . . . , τn−1) such that (|τ1|, |τ2|, . . . , |τn−1|) ∈ An. For such τ ∈ A±

n , let us
denote by eDesB(τ) the set of indices i ∈ {0, 1, . . . , n− 2} for which

• τi > τi+1, or
• τi = τi+1 > 0,

where τ0 := 0, and by edesB(τ) the cardinality of eDesB(τ). For example, the multiset A±
3

consists of the twelve signed words (±1,±1), (±1,±1) and (±1,±2). There is one such word τ
with edesB(τ) = 0, ten with edesB(τ) = 1 and one with edesB(τ) = 2.

The combinatorial interpretation provided for the coefficients γn,2,i in the following statement
is analogous to the one provided by Petersen [Pet07, Proposition 4.15] [Pet15, Section 13.2] for
the coefficients of the γ-polynomial associated to the Eulerian polynomial Bn(x). For σ ∈ An,
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we denote by lpeak(σ) the number of descents i ∈ [n−2] of σ for which either i−1 is an ascent
of σ, or i = 1.

Proposition 6.1. For every n ⩾ 2

h(sd2(∂∆n), x) =
∑
τ∈A±

n

xedesB(τ) (6.1)

=

⌊(n−1)/2⌋∑
i=0

γn,2,i x
i(1 + x)n−1−2i, (6.2)

where γn,2,i is equal to 4i times the number of words σ ∈ An with lpeak(σ) = i.

Proof. The poset of faces of sd(∂∆n) is combinatorially isomorphic to F(Hn), where Hn is
the Coxeter hyperplane arrangement of type An−1. As a result, we have h(sd2(∂∆n), x) =
h(sd(Zn), x) = hF(Zn)(x), where Zn is the zonotope associated to Hn (known as the (n − 1)-
dimensional permutohedron). Since the geometric lattice L(Hn) is combinatorially isomorphic
to Πn, applying Proposition 5.3 to Zn we get

h(sd2(∂∆n), x) =
∑

S⊆[n−2]

βΠn(S) (4x)
lpeak(S)(1 + x)n−1−2lpeak(S).

Combined with Proposition 4.1, this expression yields Equation (6.2). To deduce Equation (6.1)
from that, it suffices to show that for every σ ∈ An∑

τ∈Σ(σ)

xedesB(τ) = (4x)lpeak(σ)(1 + x)n−1−2lpeak(σ), (6.3)

where Σ(σ) stands for the set of all words (τ1, τ2, . . . , τn−1) such that (|τ1|, |τ2|, . . . , |τn−1|) = σ.
Indeed, given σ = (σ1, σ2, . . . , σn−1) ∈ An and τ = (τ1, τ2, . . . , τn−1) ∈ Σ(σ) such
that τi = εiσi for every i ∈ [n− 1], with εi ∈ {−1, 1}, one can verify that

• 0 ∈ eDesB(τ) if and only if ε1 = −1,
• for σi < σi+1, we have i ∈ eDesB(τ) if and only if εi+1 = −1,
• for σi ⩾ σi+1, we have i ∈ eDesB(τ) if and only if εi = 1.

Then, the argument given for permutations σ ∈ Sn in [Pet15, Section 13.2] applies verbatim to
our situation and proves (6.3); the details are left to the interested reader.
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[Brä04] P. Brändén. Counterexamples to the Neggers–Stanley conjecture. Electron.
Res. Announc. Amer. Math. Soc., 10:155–158 (electronic), 2004. doi:10.1090/

S1079-6762-04-00140-4.
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