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Abstract
Until recently, advances in understanding the genetic architecture of
psychiatric disorders have been impeded by a historic, and often
mandated, commitment to the use of traditional, and unvalidated,
categorical diagnoses in isolation as the relevant phenotype. Such studies
typically required lengthy structured interviews to delineate differences in
the character and duration of behavioral symptomatology amongst
disorders that were thought to be etiologic, and they were often
underpowered as a result. Increasing acceptance of the fact that
co-morbidity in psychiatric disorders is the rule rather than the exception
has led to alternative designs in which shared dimensional symptomatology
is analyzed as a quantitative trait and to association analyses in which
combined polygenic risk scores are computationally compared across
multiple traditional categorical diagnoses to identify both distinct and unique
genetic and environmental elements. Increasing evidence that most mental
disorders share many common genetic risk variants and environmental risk
modifiers suggests that the broad spectrum of psychiatric pathology
represents the pleiotropic display of a more limited series of pathologic
events in neuronal development than was originally believed, regulated by
many common risk variants and a smaller number of rare ones.
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Introduction
Investigation of the underlying genetic risk of individual men-
tal disorders has been hampered by a number of factors, includ-
ing a lack of validity for current categorical diagnoses and a 
high rate of co-morbidity amongst disorders, as well as the 
operational difficulty in accruing a sufficient number of subjects 
satisfying rigidly defined diagnostic requirements. In recent 
years, investigators have recognized that what was initially  
perceived as a problem may in fact represent a strength and 
that alternative approaches, focusing on genetic analysis of 
shared intermediate risk phenotypes in quantitative traits, 
such as cognition, dimensional symptomatology, and cortical 
structure and function, may represent a more direct probe of  
causality1–3. Such approaches have in turn engendered new 
statistical methods of analysis4–6. To this end, Plana-Ripoll  
et al.7, in a large-scale study encompassing almost 84 million 
person years, have convincingly shown that co-morbidity is  
present across all psychiatric disorders and is bi-directional, 
meaning that the risk for any given additional mental dis-
order is increased by the presence of the first. Seemingly  
disparate psychiatric disorders then are likely to share common  
genetic risk variants and, depending on gene dosage and the 
additional contribution of rare variants and environmental  
modulation, represent pleiotropic versions of a pathology network 
that is more shared than distinct.

Shared individual variants
One method of identifying overlap between disorders is to find 
individual variants shared by two or more disorders. A genome-
wide association study (GWAS) of individuals with autism 
spectrum disorder (ASD) found a significant overlap with 
schizophrenia (SCZ) at 8p11.23, 3p25.3 (ATP2B2), and 3p13  
(FOXP1)8. However, while the authors collected around 
16,500 cases and approximately 16,000 controls, they did not 
find individual variants exceeding their appropriate GWAS  
threshold in the discovery set.

Similarly, in an older study, McCarthy et al. found copy number 
variation (CNV) duplications of 16p11.2 associated with SCZ 
as well as bipolar disorder (BPD) and depression9. At the 
same time, the microduplications were rare, and the power to  
detect significance was low.

Xiao et al.10 used prior research identifying two single nucleotide 
polymorphisms (SNPs), rs2709370 and rs6785, in the cAMP 
responsive element-binding (CREB)-1 gene to study associa-
tions with BPD, major depressive disorder (MDD), and SCZ. A 
meta-analysis found both SNPs were associated with increased 
risk of BPD (p = 2.33 × 10-4 and 6.33 × 10-5, respectively).  
Likewise, an association with SCZ (3.96 × 10-5 and 2.44 × 10-5) 
and MDD (p = 0.0144 and 0.0314) were identified. A number 
of studies demonstrating similar genetic overlap between other 
combinations of mental, medical, and neurologic disorders  
have also recently appeared11–23.

Determining overlap using polygenic summary 
statistics
Since each individual locus has a small contribution to dis-
ease risk in complex disorders, creating corresponding issues 

with power that hinder identification, efforts have focused on 
polygenic attempts to determine shared risk. The methods  
covered below to estimate overlap in genetic loading include 
linkage disequilibrium score regression (LDSR) and polygenic  
risk scores (PRS)24.

LDSR utilizes GWAS data to determine a linkage equilibrium 
score, defined as the sum of LD r2 with all other SNPs, as well 
as to find heritability estimates and determine genetic correla-
tions with different phenotypes. The common variant heritability 
(h2g) of each disorder, or the proportion of phenotypic variance, 
is potentially explainable by an optimal linear predictor 
formed using additive effects of autosomal SNPs. The optimal  
predictors for two phenotypes can be correlated25. The 
LDSR approach has limitations. If LD scores in the refer-
ence population approximate those in the target population, 
this will increase measurement error of the LDSR. Another 
issue of bias arises if LD scores in the reference population 
are increased or decreased with respect to those of the target  
population26.

A PRS may, for example, prune and threshold associating statis-
tics from a GWAS, then choose the best polygenic score based on 
a set of candidate polygenic scores for each disease. The GWAS 
is performed in the discovery sample with a PRS assigned to 
individuals for a given disorder (risk alleles weighted by their 
odds ratios). The coefficient of determination from regression 
analysis, R2, is pruned by significance thresholds (P_T). The  
best polygenic score is often based on the maximal AUC. There 
are also limitations for the PRS method: the discovery sam-
ple must be as large as the original sample and both must be 
of significant size. The phenotype should be homogeneous (a 
problem in such disorders as MDD), and the level of genetic  
variation explained by common variants must be high as well27.

As an example of these methods, one GWAS on alcohol 
dependence found genetic correlations based on LDSR with  
depressive symptoms, a diagnosis of MDD, attention deficit 
hyperactivity disorder (ADHD), SCZ, neuroticism, and subjec-
tive well-being at the p = 10-5 level or better28. Likewise, a study  
using a summary statistic to determine polygenic risk corre-
lated among 24 disorders found a strong overlap between SCZ 
and BPD, both of which were associated with depression29. 
Similar associations have been reported for ADHD and eat-
ing disorders30 and between substance abuse and psychotic  
disorders31,32.

In children, a PRS was used to determine the shared contribu-
tion among ADHD, several pediatric psychiatric disorders, 
depression, panic disorder, and generalized anxiety disorder 
(GAD)33. In sum, Brikell and colleagues identified a general 
psychopathology factor suggesting a vulnerability to multiple  
disorders in children. Another study used PRS to determine 
overlap between SCZ and ASD with social communication  
difficulties at 8 and 17 years old34.

A similar polygenic approach was employed by Selzam et al.35 
to posit a shared dimension which contributes to multiple 
disorders. A principal components analysis found a general 
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“p” factor on which all disorders loaded that explained up 
to 60% of the variance, with SCZ, BPD, and depression the  
highest-loading disorders.

A large study by The Brainstorm Consortium (265,218 cases 
and 784,643 controls) published results from a GWAS dem-
onstrating similarities among different psychiatric disorders 
and, in contrast, demonstrating differences with neurologi-
cal disorders, except migraine25. This study determined the  
common variant heritability of 17 disorders including multiple 
psychiatric disorders from disparate domains such as affective  
disorders, anxiety disorders, SCZ, ADHD, post-traumatic 
stress disorder (PTSD), and ASD. Findings demonstrated SCZ 
was genetically correlated with most of the other psychiat-
ric disorders (average genetic correlation [r

g
] = 0.40), while  

MDD was correlated with all. Clinically, these results are 
consistent with shared treatment guidelines for both MDD 
and anxiety disorders, shared symptomatology of depres-
sion with PTSD, and co-existence of mood disorders and SCZ 
in schizoaffective disorder. The aforementioned findings with 
migraine included an association between migraine and ADHD  
(r

g
 = 0.26, p = 8.81 × 10-8), migraine and Tourette Syndrome  

(r
g
 = 0.19, p = 1.80 × 10-5), and migraine and MDD (r

g
 = 0.32,  

p = 1.42 × 10-22).

The above findings regarding neurological disease and its 
overlap with psychiatric pathology were replicated in at least 
one GWAS determining genetic overlap between MDD and  
migraine36. LDSR was also used to demonstrate a 14.3% 
genetic correlation between SCZ and amyotrophic lateral  
sclerosis (ALS), with PRS for SCZ explaining 0.12% of the 
phenotypic variance in ALS, corresponding to a modest odds  
ratio of 1.08–1.2637. While there is little shared heritability 
with other neurological diseases, depression has a PRS associ-
ated with those of heart failure and ischemic disease, consist-
ent with known phenomena such as depression after myocardial  
infarction38.

An alternative approach has been to look at subphenotypes, 
such as rapid cycling and presence of psychosis in both BPD 
and SCZ patients39–41. Smeland et al.14 took a somewhat differ-
ent approach, examining how both SCZ and BPD compared 
in association with genes linked to cognitive performance.  
A number of unique associations were found, with most 
for BPD predicting better performance and for SCZ worse  
performance.

Gene networking
Analysis of gene networks has built on transcription data to 
identify correlated transcripts/genes that form modules. These 
modules built from different transcripts that correlate with 
one another over different individuals form putative path-
ways of genes working in concert. The benefit of using such a  
method is a dimensional reduction analysis; rather than look-
ing at single genes, the module “eigengene”, which roughly  
approximates the first principal component, is used for a group 
of genes hypothesized to be functioning in concert based on a  

pattern of up- or down-regulation together. Such gene network-
ing approaches have demonstrated shared and differential module 
expression in BPD, ASD, ADHD, alcoholism, depression,  
and SCZ39,42–44.

Expression studies of SCZ using post-mortem brain sam-
ples have been limited in size, but in a study of 92 medicated 
and 29 antipsychotic-free SCZ patients and 118 healthy con-
trols, hierarchical clustering of 5,000 preselected transcripts was 
used to find modules of genes. Two in particular were highly  
expressed in the brain, and a statistic, k-within, was used to  
find hub genes in one module specifically related to SCZ45.

Conclusions
Although recent advances in identifying shared risk architec-
ture are exciting, the timeline for clinical translation remains 
opaque. The number of implicated common risk variants is large 
and continues to grow, their individual effect sizes remain small, 
and methods for determining which rare variants are causally 
related and which are merely incidental are limited, as is our 
understanding of the role of epigenetic factors. Articulation of  
relevant pathologic pathways and spatiotemporal charac-
terization of altered expression in development awaits further 
research, making potential therapeutic interventions based on 
these findings even more distant in the future. The first dra-
matic effect is likely to be in diagnostic classification and in 
how we consider matching patients to treatments and predicting  
prognosis.

A limitation of many of these studies is the use of mostly  
European ancestry, making results difficult to extrapolate 
to other populations. Power also continues to be an issue in 
detecting more rare variants, specifically in GWAS studies  
looking to replicate individual SNP or CNV findings.

One area of psychopathology not yet explored is that of person-
ality disorders; there is known overlap, for example, between 
borderline personality disorder and MDD, anxiety disorders, 
and PTSD, although large-scale investigation of the genet-
ics of core personality constructs has thus far resulted in  
conflicting findings. It might also be useful to further character-
ize the contribution from environmental experiences shared 
across disorders through concomitant use of SNP, CNV, and  
transcriptomic data.

Could shared heritability lead to neuroanatomical correlates? 
One natural step in this regard is to examine transdiagnos-
tic neuroanatomical similarities coinciding with shared genet-
ics, as Gong et al.46 did, finding that SCZ, MDD, PTSD, and  
obsessive–compulsive disorder shared greater gray matter  
volume in the putamen on MRI (P <0.001), which correlated 
with severity of symptoms. Similarly, van der Meer et al.47 
were able to link SCZ-associated genes to specific changes in  
hippocampal subfield volumes that were distinct from those 
seen in Alzheimer’s disease. Recent reports from the ENIGMA  
Consortium lend additional support to this avenue of inquiry48,49.
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