UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Disentangling Generativity in Visual Cognition

Permalink

https://escholarship.org/uc/item/5nd9k6hw

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 42(0)

Authors

Campbell, Declan Rogers, Timothy

Publication Date

2020

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Disentangling Generativity in Visual Cognition

Declan Campbell

University of Wisconsin - Madison, Madison, Wisconsin, United States

Timothy Rogers

University of Wisconsin- Madison, Madison, Wisconsin, United States

Abstract

Human knowledge is generative: from everyday learning people extract latent features that can recombine to produce new imagined forms. This ability is critical to cognition, but its computational bases remain elusive. Recent research with -regularized Variational Autoencoders (-VAE) suggests that generativity in visual cognition may depend on learning disentangled (localist) feature representations. We tested this proposal by training -VAEs and standard autoencoders to reconstruct bitmaps showing a single object varying in shape, size, location, and color, and manipulating hyperparameters to produce differentially-entangled feature representations. These models showed variable generativity, with some standard autoencoders capable of near-perfect reconstruction of 43 trillion images after training on just 2000. However, constrained -VAEs were unable to reconstruct images reflecting feature combinations which were systematically withheld during training (e.g. all blue circles). Thus, deep auto-encoders may provide a promising tool for understanding visual generativity and potentially other aspects of visual cognition.