
UCLA
UCLA Electronic Theses and Dissertations

Title
Order statistics and variability in data streams

Permalink
https://escholarship.org/uc/item/5nd2399r

Author
Felber, David

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5nd2399r
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Order statistics and variability in data streams

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

David Victor Felber

2015

© Copyright by

David Victor Felber

2015

Abstract of the Dissertation

Order statistics and variability in data streams

by

David Victor Felber

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Rafail Ostrovsky, Chair

High-volume data streams are too large and grow too quickly to store entirely

in working memory, introducing new challenges to what might otherwise be simple

calculations. For one, nearly all interesting statistics of a stream can only be

estimated without recalling expired data, which can be costly or impossible. For

another, even just estimating a statistic could be infeasible if the space required

to do so does not grow slowly with the size of the stream.

One such set of fundamental statistics are the quantiles (order statistics) of a

dataset defined by an aggregating stream of items. We develop an approximate

quantile summary with probabilistic guarantees that yields a new upper bound

on the space needed for such a summary when the items are subject only to

comparison operations.

The difficulties of data streams are compounded when streams may arrive dis-

tributed across several locations, as would occur in sensor networks and telecom-

munication networks; in addition to handling the high volume of these streams

we must also coordinate among the sites to ensure consistency for any statistics

we wish to track, ideally with a minimum of communication.

We introduce a new, natural parameter for data streams, the “variability” v,

that permits us to easily extend existing algorithms for the aggregating streaming

ii

model to one in which streams are composed of insertion and deletion transactions.

For this second model, our definition refines existing worst-case communication

bounds from O(n) to Õ(v) for a host of problems. We further show that the

variabilities for many streams of interest grow slowly with respect to the size of

the streams.

iii

The dissertation of David Victor Felber is approved.

Suhas Diggavi

Raghu Meka

Alexander Sherstov

Rafail Ostrovsky, Committee Chair

University of California, Los Angeles

2015

iv

Table of Contents

1 A randomized quantile summary 1

1.1 Introduction . 1

1.1.1 Previous work . 2

1.1.2 Our results . 3

1.2 A simple streaming summary . 4

1.2.1 Bernoulli sampling . 4

1.2.2 GK summary . 5

1.2.3 Our summary . 5

1.2.4 Caveats . 7

1.3 An online summary . 8

1.3.1 Algorithm description . 10

1.3.2 Error analysis . 11

1.3.3 Space and time complexity 14

1.4 Discussion . 15

2 Variability in data streams . 18

2.1 Introduction . 19

2.2 Variability . 21

2.2.1 Interesting cases with small variability 23

2.3 Upper bounds . 27

2.3.1 Partitioning time . 28

2.3.2 Estimation inside blocks 29

v

2.3.3 The deterministic algorithm 30

2.3.4 The randomized algorithm 31

2.4 Lower bounds . 32

2.4.1 The deterministic bound 33

2.4.2 The randomized bound . 34

2.5 Variability as a framework . 39

2.5.1 Tracking item frequencies 40

2.5.2 Item frequencies with low communication 40

2.5.3 Item frequencies in small space+communication 41

2.5.4 Remarks . 42

2.5.5 Aggregate functions with one site 42

References . 44

vi

List of Figures

1.1 The big picture. 6

1.2 Each row r has its own copy Gr of the GK algorithm that approxi-

mates its input to ε/8 relative error. Ar is the prefix stream of row

r, Br is its suffix stream, Rr is its prefix stream replacement (gen-

erated by the previous row), Jr is the joint stream Rr followed by

Br, Sr is its sample stream, and Qr is a one-time stream generated

from Gr at time 2rm to get the replacement prefix Rr+1. 9

vii

Acknowledgments

I offer my sincere thanks and appreciation to Rafail Ostrovsky, my advisor.

Rafi was always willing to make time to speak with me, to point out interesting

problems and directions for research, to share his thoughts and ideas, and to

discuss and listen to mine. Anything that I’ve accomplished here, would not have

been, without his guidance.

I’m grateful also to Suhas Diggavi, Raghu Meka, and Alexander Sherstov, for

serving on my dissertation committee; to Adam Meyerson, for introducing me to

computer science theory research; and to Aaron Coté, Ran Gelles, Yuan He, Alan

Roytman, Michael Shindler, Brian Tagiku, Corey Worrell, and Arman Yousefi,

past and present colleagues, who contributed to making my time as a graduate

student pleasant and enjoyable.

This dissertation is based on co-authored work. Chapter 1 is a version of

[FO15a]. Chapter 2 is a version of [FO15b]. Versions of both have been submitted

to conferences for publication.

On a personal note, I thank my family for supporting me in all my endeavors.

viii

Vita

2008 B.S. (Computer Science) and B.S. (Mathematics), University

of California, Los Angeles.

2010 M.S. (Computer Science), University of California, Los Angeles.

2011–2015 Teaching Assistant, University of California, Los Angeles.

ix

CHAPTER 1

A randomized quantile summary

A quantile summary is a data structure that approximates to ε-relative error the

order statistics of a much larger underlying dataset.

In this chapter we develop a randomized online quantile summary for the cash

register data input model and comparison data domain model that uses O(1
ε

log 1
ε
)

words of memory. This improves upon a previous upper bound of O(1
ε

log3/2 1
ε
)

by Agarwal et. al. (PODS 2012). Further, by a lower bound of Hung and Ting

(FAW 2010) no deterministic summary for the comparison model can outperform

our randomized summary in terms of space complexity. Lastly, our summary

has the nice property that O(1
ε

log 1
ε
) words suffice to ensure that the success

probability is 1− e−poly(1/ε).

1.1 Introduction

A quantile summary S is a fundamental data structure that summarizes an under-

lying dataset X of size n, in space much less than n. Given a query φ, S returns

a sample y of X such that the rank of y in X is (probably) approximately φn.

Quantile summaries are used in sensor networks to aggregate data in an energy-

efficient manner and in database query optimizers to generate query execution

plans.

Quantile summaries have been developed for a variety of different models and

metrics. The data input model we consider is the standard online cash register

1

streaming model, in which a new item is added to the dataset at each new timestep,

and the total number of items is not known until the end. The data domain

model we consider is the comparison model, in which stream items come from an

arbitrary ordered domain (and specifically, not necessarily from the integers).

Formally, our quantile summary problem is defined over a totally ordered

domain D and by an error parameter ε ≤ 1/2. There is a dataset X that is

initially empty. Time occurs in discrete steps. In timestep t, stream item xt

arrives and is then processed, and then any quantile queries φ in that step are

received and processed. To be definite, we pick the first timestep to be 1. We write

Xt or X(t) for the t-item prefix stream x1 . . . xt of X. The goal is to maintain at

all times t a summary St of the dataset Xt that, given any query φ in (0, 1], can

return a sample y = y(φ) so that |R(y,Xt)− φt| ≤ εt, where R(a, Z) is the rank

of item a in set Z, defined as |{z ∈ Z : a ≤ z}|. For randomized summaries, we

only require that ∀t∀φ, P (|R(y,Xt) − φt| ≤ εt) ≥ 2/3; that is, y’s rank is only

probably close to φt, not definitely close. In fact, it will be easier to deal with the

rank directly, so we define ρ = φt and use that in what follows.

1.1.1 Previous work

The two most directly relevant pieces of prior work ([ACH12, ACH13] and

[MRL99]) are randomized online quantile summaries for the cash regis-

ter/comparison model. Aside from oblivious sampling algorithms (which require

storing Ω(1/ε2) samples) the only other such work of which we are aware is an

approach by Wang, Luo, Yi, and Cormode [WLY13] that combines the methods

of [ACH12, ACH13] and [MRL99] into a hybrid with the same space bound as

[ACH12, ACH13].

The newer of the two is that of Agarwal, Cormode, Huang, Phillips, Wei, and

Yi [ACH12, ACH13]. Among other results, Agarwal et. al. develop a random-

2

ized online quantile summary for the cash register/comparison model that uses

O(1
ε

log3/2 1
ε
) words of memory. This summary has the nice property that any two

such summaries can be combined to form a summary of the combined underlying

dataset without loss of accuracy or increase in size.

The earlier such summary is that of Manku, Rajagopalan, and Lindsay [MRL99],

which uses O(1
ε

log2 1
ε
) space. At a high level, their algorithm downsamples the

input stream in a non-uniform way and feeds the downsampled stream into a

deterministic summary, while periodically adjusting the downsampling rate.

For the comparison model, the best deterministic online summary to date is the

(GK) summary of Greenwald and Khanna [GK01], which uses O(1
ε

log εn) space.

This improved upon a deterministic (MRL) summary of Manku, Rajagopalan,

and Lindsay [MRL98] and a summary implied by Munro and Paterson [MP78],

which use O(1
ε

log2 εn) space.

A more restrictive domain model than the comparison model is the bounded

universe model, in which elements are drawn from the integers {1, . . . , u}. For

this model there is a deterministic online summary by Shrivastava, Buragohain,

Agrawal, and Suri [SBA04] that uses O(log u
ε

) space.

Not much exists in the way of lower bounds for this problem. There is a simple

lower bound of Ω(1/ε) which intuitively comes from the fact that no one sample

can satisfy more than 2εn different rank queries. For the comparison model, Hung

and Ting [HT10] developed a deterministic Ω(1
ε

log 1
ε
) lower bound.

1.1.2 Our results

In the next section we describe a simple O(1
ε

log 1
ε
) streaming summary that is

online except that it requires n to be given up front and that it is unable to

process queries until it has seen a constant fraction of the input stream. In section

1.3 we develop this simple summary into a fully online summary that can answer

3

queries at any point in time. We close in section 1.4 by examining the similarities

and differences between our summary and previous work and discuss a design

approach for similar streaming problems.

1.2 A simple streaming summary

Before we describe our algorithm we must first describe its two main components in

a bit more detail than was used in the chapter introduction. The two components

are Bernoulli sampling and the GK summary [GK01].

1.2.1 Bernoulli sampling

Bernoulli sampling downsamples a stream X of size n to a sample stream S by

choosing to include each next item into S with independent probability m/n. (As

stated this requires knowing the size of X in advance.) At the end of processing

X, the expected size of S is m, and the expected rank of any sample y in S

is E(R(y, S)) = m
n
R(y,X). In fact, for any times t ≤ n and partial streams

Xt and St, where St is the sample stream of Xt, we have E(|St|) = mt/n and

E(R(y, St)) = m
n
R(y,Xt). To generate an estimate for R(y,Xt) from St we use

R̂(y,Xt) = n
m
R(y, St). The following theorem bounds the probability that S is

very large or that R̂(y,Xt) is very far from R(y,Xt) (for any given time t ≥ n/64,

but not for all times t = n/64 . . . n combined). Wang et. al. [WLY13] credit the

result to Vapnik and Chervonenkis [VC71].

Theorem 1.2.1. For all times t ≥ n/64, P (|St| > 2tm/n) < exp(−m/192).

Further, for all times t ≥ n/64 and items y,

P (|R̂(y,Xt)−R(y,Xt)| > εt/8) < 2 exp(−ε2m/12288)

Proof. For the first part, P (|St| > 2tm/n) < exp(−tm/3n) < exp(−m/192)

4

(since t ≥ n/64).

For the second part,

P (|R̂(y,Xt)−R(y,Xt)| > εt/8)

= P (|R(y, St)− E(R(y, St))| > εtm/8n)

The Chernoff bound is

P (|R(y, St)− E(R(y, St))| > δE(R(y, St))) < 2 exp(−min{δ, δ2}E(R(y, St))/3)

Here, δ = εt/8R(y, St), so

P < 2 exp(−ε2t2m/192nE(R(y, St))) ≤ 2 exp(−ε2m/12288)

yielding the theorem.

This means that, given any 1 ≤ ρ ≤ t, if we return the sample y ∈ St with

R(y, St) = ρm/n, then R(y,Xt) is likely to be close to ρ.

1.2.2 GK summary

The GK summary is a deterministic summary that can answer queries to relative

error, over any portion of the received stream. If Gt is the summary after inserting

the first t items Xt from stream X into G then, given any 1 ≤ ρ ≤ t, Gt can return

a sample y ∈ Xt so that |R(y,Xt)− ρ| ≤ εt/8. Greenwald and Khanna guarantee

in [GK01] that Gt uses O(1
ε

log(εt)) words. We call this the GK guarantee.

1.2.3 Our summary

We combine Bernoulli sampling with the GK summary by downsampling the input

data stream X to a sample stream S and then feeding S into a GK summary G.

5

It looks like this:

X → S
sampling

S stream of
≈ m samples GK(ε/8)stream

input X
query

quantiles

Figure 1.1: The big picture.

The key reason this gives us a small summary is that we never need to store

S; each time we sample an item into S we immediately feed it into G. Therefore,

we only use as much space as G(S(Xt)) uses. In particular, as long as we have

m = O(poly(1/ε)), we use only O(1
ε

log 1
ε
) words.

To answer a query ρ for Xt we ask Gt the query ρm/n and return the resulting

sample y. There is a slight issue in that ρm/n may be larger than |S|; but

if the approximation guarantee holds for the largest item in Xt then we have

ρm/n < (t+εt/8)m/n, so using min{ρm/n, |S|} instead will not cause more than

ε/8 relative error in the approximation.

The probability that our sample stream St is not too big (uses more than

2tm/n samples) is at least 1− exp(−m/192). If this happens to be the case then

the probability that all of its samples y have |R(y, St) − E(R(y, St))| ≤ εtm/8n

(that is, are good) is at least 1− 4m exp(−ε2m/12288) by theorem 1.2.1 and the

union bound. Choosing m ≥ 300000 ln 1/ε
ε2

suffices to guarantee that both events

occur with total probability at least 2/3.

Further, if both St events occur then the total error introduced by both St and

Gt is at most εt/2. Suppose that Gt returns y when given ρm/n. This means that

|R(y, St)− ρm/n| ≤ ε|St| ≤ ε(2tm/n)/8 by the GK guarantee. Since both events

for St occur, we also have |R(y, St)−m
n
R(y,Xt)| ≤ εtm/4n (and only εtm/8n in the

case that we don’t truncate ρm/n to |S|). Thus, |m
n
R(y,Xt)− ρm/n| ≤ εtm/2n.

Equivalently, |R(y,Xt)− ρ| ≤ εt/2.

6

1.2.4 Caveats

There are two serious issues with this summary. The first is that it requires us

to know the value of n in advance to perform the sampling. Also, as a byproduct

of the sampling, we can only obtain approximation guarantees after we have seen

at least 1/64 (or at least some constant fraction) of the items. This means that

while the algorithm is sufficient for approximating order statistics over streams

stored on disk, more is needed to get it to work for online streaming applications,

in which (1) the stream size n is not known in advance, and (2) queries can be

answered approximately at all times t ≤ n and not just when t ≥ n/64.

An important point to note is that the GK summary only works in the cash

register data input model; it does not permit items to be deleted from the stream.

A naive approach to avoiding the aforementioned problems would be to restrict

the number of items sampled using a method like reservoir sampling [Vit85]. Aside

from the issue of implementing such a sampling method in O(1
ε

log 1
ε
) words, a ma-

jor problem with this approach is that it effectively deletes items from the sample

stream that is fed into the GK summary. So to use our basic streaming summary

idea of figure 1.1 online really requires an approach that permits committing to

sampled items.

Thus, adapting our basic streaming summary idea to work online constitutes

the next section and the bulk of this chapter. We start with a high-level overview

of our online summary algorithm. In section 1.3.1 we formally define an initial

version of our algorithm whose expected size at any given time (but not necessarily

at all times) is O(1
ε

log 1
ε
) words. In section 1.3.2 we show that our algorithm

gurantees that ∀n∀ρ, P (|R(y,Xn)− ρ| ≤ εn) ≥ 1− exp(−1/ε). In section 1.3.3

we discuss the slight modifications necessary to get a deterministic O(1
ε

log 1
ε
)

space complexity, and also perform a time complexity analysis.

7

1.3 An online summary

Our algorithm works in rows, which are illustrated in figure 1.2. Row r is a

summary of the first 2r32m stream items. Since we don’t know how many items

will actually be in the stream, we can’t start all of these rows running at the

outset. Therefore, we start each row r ≥ 1 once we have seen 1/64 of its total

items. However, since we can’t save these items for every row we start, we need to

construct an approximation of this fraction of the stream, which we do by using

the summary of the previous row, and join this approximating stream with the

new items that arrive while the row is live. We then wait until the row has seen

a full half of its items before we permit it to start answering queries; this dilutes

the influence of approximating the 1/64 of its input that we couldn’t store.

Operation within a row is very much like the operation of our fixed-n streaming

summary. We feed the joint approximate prefix + new item stream through a

Bernoulli sampler to get a sample stream, which is then fed into a GK summary

(which is stored). After row r has seen half of its items, its GK summary becomes

the one used to answer quantile queries. When row r+1 has seen 1/64 of its total

items, row r generates an approximation of those items from its GK summary

and feeds them as a stream into row r + 1.

Row 0 is slightly different in order to bootstrap the algorithm. There is no

join step since there is no previous row to join. Also, row 0 is active from the

start. Lastly, we get rid of the sampling step so that we can answer queries over

timesteps 1 . . .m/2.

After the first 32m items, row 0 is no longer needed, so we can clean up the

space used by its GK summary. Similarly, after the first 2r32m items, row r is no

longer needed. The upshot of this is that we never need storage for more than six

rows at a time. Since each GK summary uses O(1
ε

log 1
ε
) words, the six live GK

summaries use only a constant factor more.

8

G
K

0(
ε/

8)
D

up
 e

ac
h

m
ε/

8
tim

es

G
K

1(
ε/

8)
D

up
 e

ac
h

2m
ε/

8
tim

es

Sa
m

pl
e

w
/p

 =
 1

/6
4

Jo
in

R
1 &

 B
1

J 1

S 1

≈
 m

 s
am

pl
es

Q
1 =

8/
ε

qu
an

ti
le

s

Q
0 =

8/
ε

qu
an

ti
le

s

R
1 @

 e
nd

 o
f

tim
e

mG
K

2(
ε/

8)
D

up
 e

ac
h

4m
ε/

8
tim

es

Sa
m

pl
e

w
/p

 =
 1

/1
28

Jo
in

R
2 &

 B
2

J 2

S 2

≈
 m

 s
am

pl
es

Q
2 =

8/
ε

qu
an

ti
le

s

R
2 @

 e
nd

 o
f

tim
e

2m

G
K

3(
ε/

8)
D

up
 e

ac
h

8m
ε/

8
tim

es

Sa
m

pl
e

w
/p

 =
 1

/2
56

Jo
in

R
3 &

 B
3

J 3

S 3

≈
 m

 s
am

pl
es

Q
3 =

8/
ε

qu
an

ti
le

s

R
3 @

 e
nd

 o
f

tim
e

4m

G
K

4(
ε/

8)
D

up
 e

ac
h

16
m

ε/
8

tim
es

Sa
m

pl
e

w
/p

 =
 1

/5
12

Jo
in

R
4 &

 B
4

J 4

S 4

≈
 m

 s
am

pl
es

Q
4 =

8/
ε

qu
an

ti
le

s

R
4 @

 e
nd

 o
f

tim
e

8m

R
5 @

 e
nd

 o
f

ti
m

e
16

m

B
0=

X
1

…
 3

2
m

A
0=

R
0=

∅

B
1=

X
m

+1

…

64
 m

A
1=

X
1

…
 m

B
2=

X
2

m
+1

 …
 1

28
 m

A
2=

X
1

…
 2

 m

B
3=

X
4

m
+1

 …
 2

56
 m

A
3=

X
1

…
 4

 m

B
4=

X
8

m
+1

 …
 5

12
 m

A
4=

X
1

…
 8

 m

qu
er

y
ac

tiv
e

ov
er

 ti
m

es
1…

32
m

qu
er

y
ac

tiv
e

ov
er

 ti
m

es
32

m
+

1… 64
m

qu
er

y
ac

tiv
e

ov
er

 ti
m

es
64

m
+

1…
12

8m

qu
er

y
ac

tiv
e

ov
er

 ti
m

es
12

8m
+

1…
25

6m

qu
er

y
ac

tiv
e

ov
er

 ti
m

es
25

6m
+

1…
51

2m

 J

0 =
 B

0

G
K

5(
ε/

8)
D

up
 e

ac
h

32
m

ε/
8

tim
es

Sa
m

pl
e

w
/p

 =
 1

/1
02

4
Jo

in
R

5 &
 B

5
J 5

S 5

≈
 m

 s
am

pl
es

Q
5 =

8/
ε

qu
an

ti
le

s
B

5=
X

16
 m

+1
…

 1
02

4
m

A
5=

X
1

…
 1

6
m

qu
er

y
ac

tiv
e

ov
er

 ti
m

es
51

2m
+

1…
10

24
m

 …

 S

0 =
 J

0

Figure 1.2: Each row r has its own copy Gr of the GK algorithm that approximates
its input to ε/8 relative error. Ar is the prefix stream of row r, Br is its suffix
stream, Rr is its prefix stream replacement (generated by the previous row), Jr is
the joint stream Rr followed by Br, Sr is its sample stream, and Qr is a one-time
stream generated from Gr at time 2rm to get the replacement prefix Rr+1.

9

Our error analysis, on the other hand, will require us to look back as many as

Θ(log 1/ε) rows to ensure our approximation guarantee. We stress that we will

not need to actually store these Θ(log 1/ε) rows for our guarantee to hold; we will

only need that they didn’t have any bad events (as will be defined) when they

were alive.

1.3.1 Algorithm description

Our algorithm works in rows. Each row r has its own copy Gr of the GK algorithm

that approximates its input to ε/8 relative error. For each row r we define several

streams: Ar is the prefix stream of row r, Br is its suffix stream, Rr is its prefix

stream replacement (generated by the previous row), Jr is the joint stream Rr

followed by Br, Sr is its sample stream, and Qr is a one-time stream generated

from Gr by querying it with ranks ρ1 . . . ρ8/ε, where ρq = q(ε/8)(m/32) for r ≥ 1

and ρq = qεm/8 for r = 0.

The prefix stream Ar = X(2r−1m) for row r ≥ 1, importantly, is not directly

received by row r. Instead, at the end of timestep 2r−1m, row r−1 generates Qr−1

and duplicates each of those 8/ε items 2r−1εm/8 times to get the replacement

prefix Rr, which is then immediately fed into row r before timestep 2r−1m+1

begins.

Each row can be live or not and active or not. Row 0 is live in timesteps

1 . . . 32m and row r ≥ 1 is live in timesteps 2r−1m+1 . . . 2r32m. Live rows require

space; once a row is no longer live we can free up the space it used. Row 0 is active

in timesteps 1 . . . 32m and row r ≥ 1 is active in timesteps 2r16m+1 . . . 2r32m.

This definition means that exactly one row r(t) is active in any given timestep t.

Any queries that are asked in timestep t are answered by Gr(t). Given query ρ,

we ask Gr(t) for ρ/2r(t)32 (if r ≥ 1) or for ρ (if r = 0) and return the result.

10

At each timestep t, when item xt arrives, it is fed as the next item in the suffix

stream Br for each live row r. Br joined with Rr defines the joined input stream

Jr. For r ≥ 1, Jr is downsampled to the sample stream Sr by sampling each item

independently with probability 1/2r32. For row 0, no downsampling is performed,

so S0 = J0. Lastly, Sr is fed into Gr.

Figure 1.2 shows the operation of and the communication between the first

six rows. Solid arrows indicate continuous streams and dashed arrows indicate

one-time messages. Algorithm 1 is a pseudocode listing of the algorithm.

Initially, allocate space for G0. Mark row 0 as live and active.
for t = 1, 2, . . . do

foreach live row r ≥ 0 do
with probability 1/2r32 do

Insert xt into Gr.

if t = 2r−1m for some r ≥ 1 then
Allocate space for Gr. Mark row r as live.
Query Gr−1 with ρ1 . . . ρ8/ε to get y1 . . . y8/ε.
for q = 1 . . . 8/ε do

for 1 . . . 2r−1εm/8 do
with probability 1/2r32 do

Insert yq into Gr.

if t = 2r16m for some r ≥ 1 then
Mark row r as active. Unmark row r−1 as active.

if t = 2r32m for some r ≥ 0 then
Unmark row r as live. Free space for Gr.

on query ρ do
Let r = r(t) be the active row.
Query Gr for rank ρ/2r32 (if r ≥ 1) or for rank ρ (if r = 0).
Return the result.

Algorithm 1: Procedural listing of the algorithm in section 1.3.1.

1.3.2 Error analysis

Define Cr = x(2r32m+1), x(2r32m+2), . . . and Yr to be Rr followed by Br and

then Cr. That is, Yr is just the continuation of Jr for the entire length of the

input stream.

11

Fix some time t. All of our claims will be relative to time t; that is, if we write

Sr we mean Sr(t). Our error analysis proceeds as follows. We start by proving that

R(y, Yr) is a good approximation of R(y, Yr−1) when certain conditions hold for

Sr−1. By induction, this means R(y, Yr) is a good approximation of R(y,X=Y0)

when the conditions hold for all of S0 . . . Sr−1, and actually it’s enough for the

conditions to hold for just Sr−log 1/ε . . . Sr−1 to get a good approximation. Having

proven this claim, we then prove that the result y = y(ρ) of a query to our

summary has R(y,X) close to ρ. Lastly, we show that m = O(poly(1/ε)) suffices

to ensure that the conditions hold for Sr−log 1/ε . . . Sr−1 with very high probability

(1− e−1/ε).

Lemma 1.3.1. Let αr be the event that |Sr| > 2m and let βr be the event that

any of the first ≤ 2m samples z in Sr has |2r32R(z, Sr) − R(z, Yr)| > εt/8. Say

that Sr is good if neither αr nor βr occur (or if r = 0).

For all rows r ≥ 1 such that t ≥ tr = 2r−1m, and all for all items y, if Sr−1 is

good then we have that |R(y, Yr)−R(y, Yr−1)| ≤ 2rεm.

Proof. At the end of time tr we have Yr(tr) = Rr(tr), which is each item y(ρq) in

Qr−1 duplicated εtr/8 times. If Sr−1(tr) is good then theorem 1.2.1 and the GK

guarantee imply |R(y(ρq), Yr−1(tr))− 2r−132ρq| ≤ εtr/2.

Fix q so that y(ρq) ≤ y < y(ρq+1), where y(ρ0) and y(ρ1+8/ε) are defined

to be inf D and supD for completeness. By fixing q this way we ensure that

R(y, Yr(tr)) = 2r−132ρq. By the above bound on R(y(ρq), Yr−1(tr)) we also have

that 2r−132ρq − εtr/2 ≤ R(y, Yr−1(tr)) < 2r−132ρq+1 + εtr/2.

Recalling that ρq = qεm/256, these bounds imply that

|R(y, Yr(tr))−R(y, Yr−1(tr))| ≤ 2rεm

For each time t after tr, the new item xt changes the rank of y in both streams Yr

12

and Yr−1 by the same additive offset, so

|R(y, Yr)−R(y, Yr−1)| = |R(y, Yr(tr))−R(y, Yr−1(tr))| ≤ 2rεm

yielding the lemma.

By applying this lemma inductively we can bound the difference between Yr

and X = Y0:

Corollary 1.3.2. For all r ≥ 1 such that t ≥ tr = 2r−1m, if all of S0(t1), S1(t2), . . . ,

Sr−1(tr) are good, then |R(y, Yr)−R(y,X)| ≤ 2 · 2rεm.

To ensure that all of these Si are good would require m to grow with n, which

would be bad. Happily, it is enough to require only the last log2 1/ε sample

summaries to be good, since the other items we disregard constitute only a small

fraction of the total stream.

Corollary 1.3.3. Let d = log2 1/ε. For all r ≥ 1 such that t ≥ tr = 2r−1m, if all

of Sr−1(tr), . . . , Sr−d(tr−d+1) are good, then |R(y, Yr)−R(y,X)| ≤ 2r+2εm.

Proof. By lemma 1.3.1 we have |R(y, Yr)−R(y, Yr−d)| ≤ 2r+1εm. At time t ≥ tr−d,

Yr−d and X share all except possibly the first 2(r−d)−1m = 2r−1m/2d = 2r−1εm

items. Thus

|R(y, Yr)−R(y,X)| ≤ |R(y, Yr)−R(y, Yr−d)|+ |R(y, Yr−d)−R(y,X)|

≤ 2r+1εm+ 2rεm

proving the corollary.

We now prove that if the last several sample streams were good then querying

our summary will give us a good result.

13

Lemma 1.3.4. Let d = log2
1
ε

and r = r(t). If all Sr(t), Sr−1(tr), . . . , Sr−d(tr−d+1)

are good, then querying our summary with rank ρ (= querying the active GK

summary Gr with ρ/2r32 if r ≥ 1, or with ρ if r = 0) returns y = y(ρ) such that

|R(y,X)− ρ| ≤ εt.

Proof. For r ≥ 1 we have that |R(y, Yr)−R(y,X)| ≤ 2r+2εm ≤ εt/2 by corollary

1.3.3. By theorem 1.2.1 and the GK guarantee, |R(y, Yr)− ρ| ≤ εt/2.

For r = 0, the GK guarantee alone proves the lemma.

Lastly, we prove that m = O(poly(1/ε)) suffices to ensure that all of Sr(t),

Sr−1(tr), . . . , Sr−d(tr−d+1) are good with probability at least 1− e−1/ε.

Lemma 1.3.5. Let d = log2 1/ε and r = r(t). If m ≥ 400000 ln 1/ε
ε2

then all of

Sr(t), Sr−1(tr), . . . , Sr−d(tr−d+1) are good with probability at least 1− e−1/ε.

Proof. There are at most 1+log2 1/ε ≤ 4 ln 1/ε of these summary streams total.

Theorem 1.2.1 and the union bound give us P (some αr occurs) ≤ 4 ln 1
ε

exp(− m
192

)

and P (some βr occurs) ≤ 16m ln 1
ε

exp(− ε2m
12288

).

Together, P = P (some Sr is not good) ≤ 20m ln 1
ε

exp(−ε2m/12288). It suf-

fices to choose m ≥ 400000 ln 1/ε
ε2

to obtain P ≤ e−1/ε.

1.3.3 Space and time complexity

A minor issue with the algorithm is that, as written in section 1.3.1, we do not

actually have a bound on the worst-case space complexity of the algorithm; we

only have a bound on the space needed at any given point in time. This issue

is due to the fact that there are low probability events in which |Sr| can get

arbitrarily large and the fact that over n items there are a total of Θ(log n) sample

streams. The space complexity of the algorithm is O(max |Sr|), and to bound this

value with constant probability using the Chernoff bound appears to require that

max |Sr| = Ω(log log n), which is too big.

14

Fortunately, fixing this problem is simple. Instead of feeding every sample of

Sr into the GK summary Gr, we only feed each next sample if Gr has seen < 2m

samples so far. That is, we deterministically restrict Gr to receiving only 2m

samples. Lemmas 1.3.1 through 1.3.4 condition on the goodness of the sample

streams Sr, which ensures that the Gr receive at most 2m samples each, and

the claim of lemma 1.3.5 is independent of the operation of Gr. Therefore, by

restricting each Gr to receive at most 2m inputs we can ensure that the space

complexity is deterministically O(1
ε

log 1
ε
) without breaking our error guarantees.

From a practical perspective, the assumption in the streaming setting is that

new items arrive over the input stream X at a high rate, so both the worst-

case per-item processing time as well as the amortized time to process n items are

important. For our per-item time complexity, the limiting factor is the duplication

step that occurs at the end of each time tr = 2r−1m, which makes the worst-case

per-item processing time as large as Θ(n). Instead, at time tr we could generate

Qr−1 and store it in O(1/ε) words, and then on each arrival t = 2r−1m+1 . . . 2rm

we could insert both xt and also the next item in Rr. By the time tr+1 = 2tr that

we generate Qr, all items in Rr will have been inserted into Jr. Thus the worst-

case per-item time complexity is O(1
ε
Tmax

GK), where Tmax
GK is the worst-case per-item

time to query or insert into one of our GK summaries. Over 2r32m items there

are at most 2m insertions into any one GK summary, so the amortized time over

n items in either case is O(m log(n/m)
n

TGK), where TGK is the amortized per-item

time to query or insert into one of our GK summaries. Algorithm 2 includes the

changes of this section.

1.4 Discussion

Our starting point is a very natural idea that appears to have been first used in

Manku et. al. [MRL99]. This key idea is to downsample the input stream and feed

15

Initially, allocate space for G0. Mark row 0 as live and active.
for t = 1, 2, . . . do

foreach live row r ≥ 0 do
with probability 1/2r32 do

Insert xt into Gr if Gr has seen < 2m insertions.
if r ≥ 1 and 2r−1m < t ≤ 2rm and Gr has seen < 2m insertions
then

with probability 1/2r32 do
Also insert item t−2r−1m of Rr into Gr.

if t = 2r−1m for some r ≥ 1 then
Allocate space for Gr. Mark row r as live.
Query Gr−1 with ρ1 . . . ρ8/ε to get Qr−1 = y1 . . . y8/ε.
Store Qr−1, to implicitly define Rr.

if t = 2r16m for some r ≥ 1 then
Mark row r as active. Unmark row r−1 as active.

if t = 2r32m for some r ≥ 0 then
Unmark row r as live. Free space for Gr.

on query ρ do
Let r = r(t) be the active row.
Query Gr for rank ρ/2r32 (if r ≥ 1) or for rank ρ (if r = 0).
Return the result.

Algorithm 2: Procedural listing of the algorithm in section 1.3.3. The
changes between sections 1.3.1 and 1.3.3 are that Gr never has more than
2m insertions and that stream Rr is paired with items in Br.

the resulting sample stream into a deterministic summary data structure (compare

our figure 1.1 with figure 1 on page 254 of [MRL99]). At a very high level, we are

simply replacing their deterministic O(1
ε

log2 εn) MRL summary [MRL98] with

the deterministic O(1
ε

log εn) GK summary [GK01].

Our implementation of this idea, however, is conceptually different from the

implementation of Manku et. al. in two respects. First, we use the GK algorithm

strictly as a black box, whereas Manku et. al. peek into the internals of their

MRL algorithm, using its algorithm-specific interface (New, Collapse, Out-

put) rather than the more generic interface (Insert, Query). At an equivalent

level, dealing with the GK algorithm is already unpleasant—the space complexity

analysis in [GK01] is quite involved. Using the generic interface, our implemen-

16

tation could just as easily replace the GK boxes in the diagram in figure 1.2 with

MRL boxes; or, for the bounded universe model, with boxes running the q-digest

summary of Shrivastava et. al. [SBA04].

The second respect in which our algorithm differs critically from that of Manku

et. al. is that we operate on streams rather than on stream items. We use this

approach in our proof strategy too; the key step in our error analysis, lemma 1.3.1,

is a statement about (what to us are) static objects, so we can trade out the com-

plexity of dealing with time-varying data structures for a simple induction. This

idea of developing streaming algorithms with analyses that hinge on analyzing

streams rather than just stream items may be a generally useful design approach.

The way we implemented this idea in our method for reducing a deterministic

summary to a randomized summary was:

1. For a fixed n, downsample the input stream, feed the resulting sample stream

into the deterministic summary, and prove a probabilistic bound.

2. Run an infinite number of copies of step 1, for exponentially growing values

of n.

3. Replace a constant fraction prefix of each copy with an approximation gen-

erated by the previous copy, and prove using step 1 that this approximation

probably doesn’t cause too much error.

4. Use step 3 inductively to prove a probabilistic bound for the entire stream.

17

CHAPTER 2

Variability in data streams

We consider the problem of tracking with small relative error an integer function

f(n) defined by a distributed update stream f ′(n). Existing streaming algorithms

with worst-case guarantees for this problem assume f(n) to be monotone; there are

very large lower bounds on the space requirements for summarizing a distributed

non-monotonic stream, often linear in the size n of the stream.

Input streams that give rise to large space requirements are highly variable,

making relatively large jumps from one timestep to the next. However, in practice

the impact on f(n) of any single update f ′(n) is usually small. In this chapter

we propose a framework for non-monotonic streams that admits algorithms whose

worst-case performance is as good as existing algorithms for monotone streams

and degrades gracefully for non-monotonic streams as those streams vary more

quickly. We introduce a new stream parameter, the “variability” v, deriving its

definition in a way that shows it to be a natural parameter to consider for non-

monotonic streams. It is also a useful parameter. From a theoretical perspective,

we can adapt existing algorithms for monotone streams to work for non-monotonic

streams, with only minor modifications, in such a way that they reduce to the

monotone case when the stream happens to be monotone, and in such a way that

we can refine the worst-case communication bounds from Θ(n) to Õ(v). From a

practical perspective, we demonstrate that v can be small in practice by proving

that v is O(log f(n)) for monotone streams and o(n) for streams that are “nearly”

monotone or that are generated by random walks.

18

2.1 Introduction

In the distributed monitoring model, there is a single central monitor and several

(k) observers. The observers receive data and communicate with the monitor,

and the goal is to maintain at the monitor a summary of the data received at the

observers while minimizing the communication between them.

This model was introduced by Cormode, Muthukrishnan, and Yi [CMY08,

CMY11] with the motivating application of minimizing radio energy usage in sen-

sor networks, but can be applied to other distributed applications like determining

network traffic patterns. Since the monitor can retain all messages received, al-

gorithms in the model can be used to answer historical queries too, making the

model useful for auditing changes to and verifying the integrity of time-varying

datasets.

The distributed monitoring model has also yielded several theoretical results.

These include algorithms and lower bounds for tracking total count [CMY08,

CMY11, LRV11, LRV12], frequency moments [CMY08, CMY11, HYZ12, WZ11,

WZ12], item frequencies [HYZ12, WZ11, WZ12, YZ09, YZ13], quantiles [HYZ12,

WZ11, WZ12, YZ09, YZ13], and entropy [ABC09, WZ11, WZ12] to small relative

error.

However, nearly all of the upper bounds assumed that data is only inserted

and never deleted. This is unfortunate because in the standard turnstile streaming

model, all of these problems have similar algorithms that permit both insertions

and deletions. In general, this unfortunate situation is unavoidable; existing lower

bounds for the distributed model [ABC09] demonstrate that it is not possible to

track even the total item count in small space when data is permitted to be

deleted.

That said, when restrictions are placed on the types of allowable input, the

lower bounds evaporate, and very nice upper bounds exist. Tao, Yi, Sheng, Pei,

19

and Li [TYS10] developed algorithms for the problem of summarizing the or-

der statistics history of a dataset D over an insertion/deletion stream of size n,

which has an Ω(n)-bit lower bound in general; however, they performed an in-

teresting analysis that yielded online and offline upper bounds proportional to∑n
t=1 1/|D(t)|, with a nearly matching lower bound. A year or two later, Liu,

Radunović, and Vojnović [LRV11, LRV12] considered the problem of tracking |D|

under random inputs; for general inputs, there is an Ω(n)-bit lower bound, but

Liu et. al. obtained (among other results) expected communication costs pro-

portional to
√
n log n when the insertion/deletion pattern is the result of fair coin

flips.

In fact, the pessimistic lower bounds for the general case can occur only when

the input stream is such that the quantity being tracked is forced to vary quickly.

In the problems considered by Tao et. al. and Liu et. al., this occurs when |D| is

usually small. These two groups avoid this problem in two different ways: Tao et.

al. provide an analysis that yields a worst-case upper bound that is small when

|D| is usually large, and Liu et. al. consider input classes for which |D| is usually

large in expectation.

Our contributions In this paper we propose a framework that extends the

analysis of Tao et. al. to the distributed monitoring model and that permits

worst-case analysis that can be specialized for random input classes considered by

Liu et. al. In so doing, we explain the intuition behind the factor of
∑n

t=1 1/|D(t)|

in the bounds of Tao et. al. and how we can separate the different sources of

randomness that appear in the algorithms of Liu et. al. to obtain worst-case

bounds for the random input classes we also consider.

In the next section we derive a stream parameter, the variability v. We prove

that v is O(log f(n)) for monotone streams and o(n) for streams that are “nearly”

monotone or that are generated by random walks, and find that the bounds of Tao

20

et. al. and Liu et. al. are stated nicely in terms of v. In section 2.3 we combine

ideas from the upper bounds of Tao et. al. [TYS10] with the existing distributed

counting algorithms of Cormode et. al. [CMY08, CMY11] and Huang, Yi, and

Zhang [HYZ12] to obtain upper bounds for distributed counting that are propor-

tional to v. In section 2.4 we show that our dependence on v is essentially necessary

by developing deterministic and randomized space+communication lower bounds

that hold even when v is small. We round out the piece in section 2.5 with a dis-

cussion of the suitability of variability as a general framework, in which we extend

the ideas of section 2.3 to the problems of distributed tracking of item frequencies

and of tracking general aggregates when k = 1.

But before we jump into the derivation of variability, we define our problem

formally and abstract away unessential details.

Problem definition The problem is that of tracking at the coordinator an

integer function f(n) defined by an update stream f ′(n) that arrives online at the

sites. Time occurs in discrete steps; to be definite, the first timestep is 1, and we

define f(0) = 0 unless stated otherwise. At each new current time n the value

f ′(n) = f(n)− f(n−1) appears at a single site i(n).

There is an error parameter ε that is specified at the start. The requirement

is that, after each timestep n, the coordinator must have an estimate f̂(n) for

f(n) that is usually good. In particular, for deterministic algorithms we require

that ∀n, |f(n)− f̂(n)| ≤ εf(n), and for randomized algorithms we require that

∀n, P (|f(n)−f̂(n)| ≤ εf(n)) ≥ 2/3.

2.2 Variability

In the original distributed monitoring paper [CMY08], Cormode et. al. define

a general thresholded problem (k, f, τ, ε). A dataset D arrives as a distributed

21

stream across k sites. At any given point in time, the coordinator should be able

to determine whether f(D) ≥ τ or f(D) ≤ (1−ε)τ .

In continuous tracking problems, there is no single threshold, and so f(n) is

tracked to within an additive ετ(n), where τ(n) also changes with the dataset

D(n). Since τ is now a function, it needs to be defined; the usual choice is f

itself, except for tracking item frequencies and order statistics, for which (following

the standard streaming model) τ is chosen to be |D|. That is, the continuous

monitoring problem (k, f, ε) is, at all times n maintain at the coordinator an

estimate f̂(n) of f(n) so that |f(n)−f̂(n)| ≤ εf(n).

The intuition for the way we define variability is from looking at the situation

as though item arrivals and communication occur continuously. That is, over

n = [0.1, 0.2] we receive the second tenth of the first item, for example. At any

time t at which f changes by ±εf , we would need to communicate at least one

message to keep the coordinator in sync; so if f changes by f ′(t) dt then we should

communicate | f
′(t) dt

εf(t+dt)
| messages.

With discrete arrivals, dt = 1. Otherwise, the idea remains the same, so we

would expect the total number of messages to look like
∑n

t=1 |
f ′(t)
εf(t)
|, where here

we define f ′(t) = f(t) − f(t−1) to simplify the expressions. In sections 2.3 and

2.4 we find that, modulo the number k of sites and constant factors, this is indeed

the case.

Being a parameter of the problem rather than of the stream, we can move

the 1/ε factor out of our definition of variability and bring it back in along with

the appropriate functions of k when we state upper and lower bounds for our

problem. This permits us to treat the stream parameter v independently of the

problem. We also need to handle the case f = 0 specially, which we can do by

communicating at each timestep that case occurs.

Keeping all of this in mind, we define the f -variability of a stream to be

22

v(n) =
∑n

t=1 min{1, |f
′(t)
f(t)
|}. We also write v′(t) = min{1, |f

′(t)
f(t)
|} to be the increase

in variability at time t. We say “variability” for f -variability in the remainder of

this paper.

From a practical perspective, we believe low variability streams to be common.

In many database applications the database is interesting primarily because it

tends to grow more than it shrinks, so it is common for the size of the dataset to

have low variability; as more items are inserted, the rate of change of |D| shrinks

relative to itself, and about as many deletions as insertions would be required to

keep the ratio constant. In the following subsection, we prove that monotone and

nearly monotone functions have low variability and that random walks have low

variability in expectation, lending evidence to our belief.

From a theoretical perspective, variability is a way to analyze algorithms for

ε relative error in the face of non-monotonicity and generate provable worst-case

bounds that degrade gracefully as our assumptions about the input become in-

creasingly pessimistic. For our counting problem, it allows us to adapt the existing

distributed counting algorithms of Cormode et. al. [CMY08, CMY11] and Huang

et. al. [HYZ12] with only minor modifications, and the resulting analyses show

that the dependence on k and ε remains unchanged.

2.2.1 Interesting cases with small variability

We start with functions that are nearly monotone in the sense that they are

eventually mostly nondecreasing. We make this precise in the theorem statement.

Theorem 2.2.1. Let f−(n) =
∑

t:f ′(t)<0 |f ′(t)| and f+(n) =
∑

t:f ′(t)>0 f
′(t). If

there is a monotone nondecreasing function β(t) ≥ 1 and a constant t0 such that

for all n ≥ t0 we have f−(n) ≤ β(n)f(n), then the variability
∑n

t=1 |f ′(t)/f(t)| is

O(β(n) log(β(n)f(n))).

The proof partitions time into intervals over which f+(t) doubles and shows

23

the variability in each interval to be O(β(n)).

Proof. For i = 1, . . . , k, define ti to be the earliest time t such that we have

f+(ti) > 2f+(ti−1), where k is the smallest index such that tk > n. (If k is

undefined, define k = n+ 1.)

The cost
∑t0−1

t=1 |f ′(t)/f(t)| is constant. We bound the cost
∑n

t=t0
|f ′(t)|/f(t)

as follows. We partition the interval [t0, tk) into subintervals [t0, t1), . . . , [tk−1, tk)

and sum over the times t in each one. There are at most 1 + log f+(n) of these

subintervals.

n∑
t=t0

|f ′(t)|
f(t)

≤
k∑
i=1

ti−1∑
t=ti−1

|f ′(t)|
f(t)

≤
k∑
i=1

1 + β(n)

f+(ti−1)

ti−1∑
t=ti−1

|f ′(t)|

≤
k∑
i=1

(1 + β(n))
f+(ti−1) + f−(ti−1)

f(ti−1)

≤ 4(1 + β(n))(1 + log f+(ti−1))

≤ 4(1 + β(n))(1 + log(2(1 + β(n))f(n)))

because the condition f−(t) ≤ β(t)f(t) implies f(t) ≥ f+(t)/(1 + β(t)) and

f−(t) ≤ f+(t).

When f(n) is strictly monotone, β(n) = 1 suffices, and the theorem reduces to

the result claimed in the abstract. As we will see in section 2.3, our upper bounds

will simplify in the monotone case to those of Cormode et. al. [CMY08, CMY11]

and Huang et. al. [HYZ12].

Next, we compute the variability for two random input classes considered by

Liu et. al. [LRV11, LRV12]. This will permit us to decouple the randomness of

their algorithms from the randomness of their inputs. This means, for example,

that even our deterministic algorithm of section 2.3 has o(n) cost in expectation

for these input classes. The first random input class we consider is the symmetric

random walk.

24

Theorem 2.2.2. If f ′(t) is a stream of i.i.d. ±1 coin flips then the expected

variability E(v(n)) = O(
√
n log n).

Proof. The update sequence defines a random walk for f(t), and the expected

variability is
n∑
t=1

P (f(t)=0) +
n∑
t=1

t∑
s=1

2P (f(t)=s)/s

We use the following fact, mentioned and justified in Liu et. al. [LRV11]:

Fact 2.2.3. For any t ≥ 1 and s ∈ [−t, t] we have P (f(t)=s) ≤ c1/
√
t, where c1

is some constant.

Together, these show the expected cost to be at most

c1

n∑
t=1

(1 + 2Ht)/
√
t ≤ c2 log(n)

n∑
t=1

1/
√
t ≤ c3 log(n)

√
n

since (1 + 2Hn) ≤ c2
c1

log(n) and
∑n

t=1 1/
√
t ≤ c3

2c2

∫ n
1

1/
√
t dt.

The second random input class we consider is i.i.d. increments with a common

drift rate of µ > 0. The case µ < 0 is symmetric. We assume that µ is constant

with respect to n. The proof is a simple application of Chernoff bounds.

Theorem 2.2.4. If f ′(t) is a sequence of i.i.d. ±1 random variables having

P (f ′(t)=1) = (1 + µ)/2 then E(v(n)) = O(logn
µ

).

Proof. We show that, with high probability, f(t) ≥ µt/2 for times t ≥ t0 = t0(n)

when n is large enough with respect to µ.

We write f(t) = −t + 2Yt, where Yt =
∑t

s=1 ys, and ys is a Bernoulli variable

with mean 1+µ
2

. We have that P (f(t) ≤ µt/2) = P (Yt ≤ 2+µ
4
t) and also that

E(Yt) = 1+µ
2
t. Further, P (Yt≤ 2+µ

4
t) ≤ exp(−µt/16) using a Chernoff bound. Let

A be the event ∃t≥ t0 (f(t) ≤ µt/2). Then P (A) ≤
∑n

t=t0
e−µt/16 by the union

25

bound. We can upper bound this sum by

n∑
t=t0

e−µt/16 ≤ e−µt0/16 +

∫ n

t0

e−µt/16 dt ≤ 17e−µt0/16/µ

Taking t0 = (16/µ) ln(17n/µ) gives us P (A) ≤ 1/n. Thus

E

(
n∑
t=1

min

{
1,

∣∣∣∣f ′(t)f(t)

∣∣∣∣}
)
≤ t0 +

(
1

n

)
n+

(
1− 1

n

) n∑
t=t0

2

µt
= O

(
log n

µ

)

yielding the theorem.

Remarks We can restate the results of Liu et. al. [LRV11, LRV12] and Tao

et. al. [TYS10] in terms of variability. For unbiased coin flips, Liu et. al. obtain

an algorithm that uses O(
√
k
ε

√
n log n) messages (of size O(log n) bits each) in

expectation, and for biased coin flips with constant µ, an algorithm that uses

O(
√
k
ε

1
|µ|(log n)1+c) messages in expectation. If we rewrite these bounds in terms

of expected variability, they become O(
√
k
ε
E(v(n))) and O(

√
k
ε

(log n)cE(v(n))),

respectively. In the next section, we obtain (when k = O(1/ε2)) a randomized

bound of O(
√
k
ε
v(n)). In marked contrast to the bounds of Liu et. al., our bound

is a worst-case lower bound that is a function of v(n); if the input happens to be

generated by fair coin flips, then our expected cost happens to be O(
√
k
ε

√
n log n).

The results of Tao et. al. are for a different problem, but they can still be

stated nicely in terms of the |D|-variability v(n): for the problem of tracking the

historical record of order statistics, they obtain a lower bound of Ω(1
ε
v(n)) and

offline and online upper bounds of O((1
ε

log2 1
ε
)v(n)) and O(1

ε2
v(n)), respectively.

We adapt ideas from both their upper and lower bounds in sections 2.3 and 2.4.

26

2.3 Upper bounds

In this section we develop deterministic and randomized algorithms for maintain-

ing at the coordinator an estimate f̂(n) for f(n) that is usually good. In particular,

for deterministic algorithms we require that ∀n, |f(n)− f̂(n)| ≤ εf(n), and for

randomized algorithms that ∀n, P (|f(n)− f̂(n)| ≤ εf(n)) ≥ 2/3. We obtain

deterministic and randomized upper bounds of O(k
ε
v(n)) and O((k +

√
k
ε

)v(n))

messages, respectively. For comparison, the analogous algorithms of Cormode et.

al. [CMY08, CMY11] and Huang et. al. [HYZ12] for the monotone case use

O(k
ε

log n) and O((k +
√
k
ε

) log n) messages, respectively.

For our upper bounds we assume that f ′(n) = ±1 always. If |f ′(n)| > 1

we could simulate it with |f ′(n)| arrivals of ±1 updates with O(log max f ′(n))

overhead; in the following theorem and proof, we define 1/f(n) = 1 when f(n) = 0

and assume that f(n) ≥ 0 always, to simplify notation.

Theorem 2.3.1. For f ′(n) > 1 we have
∑f ′(n)

t=1
1

f(n−1)+t
≤ f ′(n)

f(n)
(1 +H(f ′(n))) and

for f ′(n) < −1 we have
∑1−f ′(n)

t=0
t

f(n)+t
≤ 3f ′(n)

f(n)
, where H(x) is the xth harmonic

number.

Proof. For f ′(n) > 1, we have

f ′(n)∑
t=1

1

f(n−1) + t
=

f ′(n)

f(n)
+

1

f(n)

f ′(n)∑
t=1

f ′(n)− t
f(n−1) + t

≤ f ′(n)

f(n)
+
f ′(n)

f(n)

f ′(n)∑
t=1

1

t

If f ′(n) < −1 and f(n) ≥ 1, then

1−f ′(n)∑
t=0

1

f(n) + t
≤ 1

f(n)
+ ln

(
f(n−1)

f(n)

)
=

1

f(n)
+ ln

(
1 +
|f ′(n)|
f(n)

)
≤ 2|f ′(n)|

f(n)

and if f(n) = 0, add another |f ′(n)|/f(n).

27

2.3.1 Partitioning time

We use an idea from Tao et. al. [TYS10] to first divide time into manageable

blocks. At the end of each block we know the values n and f(n) exactly. Within

each block, we know these values only approximately. The division into blocks is

deterministic and the same for both our deterministic and randomized algorithms.

Our division ensures that the change in v(n) over each block is at least 1/5, which

simplifies our analysis. Specifically, we prove

Theorem 2.3.2. There is an algorithm to divide time into blocks B0, B1, . . .,

where Bj = [nj + 1, nj+1], such that n0 = 0, the change vj = v(nj+1) − v(nj) in

variability over each block Bj is at least 1/5, and the partitioning algorithm uses

at most 25kv + 3k messages of size O(log n) bits each.

The algorithm is:

� The coordinator requests the sites’ values ci and fi at times n0 =0, n1, n2, . . .

and then broadcasts a value r. These values will be defined momentarily.

� Each site i maintains a variable ci that counts the number of stream updates

f ′(n) it received since the last time it sent ci to the coordinator. It also

maintains fi that counts the change in f it received since the last broadcast

nj. Whenever ci = d2r−1e, site i sends ci to the coordinator. This is in

addition to replying to requests from the coordinator.

� The coordinator maintains a variable t̂. After broadcasting r, t̂ is reset to

zero. Whenever site i sends ci, the coordinator updates t̂ = t̂+ ci.

� The coordinator also maintains variables f̂ , j, and tj. At the first time

nj > nj−1 at which t̂ ≥ tj, the coordinator requests the ci and fi values,

updates f̂ and r, sets tj+1 = d2r−1ek, broadcasts r, and increments j.

� When r is updated at the end of time nj, it is set to r if 2r2k ≤ |f(nj)| < 2r4k

and zero if |f(nj)| < 4k.

28

Proof. Algebra tells us some facts:

� d2r−1ek ≤ nj+1 − nj ≤ 2rk.

� |f(n)− f(nj)| ≤ 2r5k for all n in Bj.

� If r ≥ 1 then |f(n)− f(nj)| ≥ 2rk for all n in Bj.

The total number of messages sent in block Bj is at most 5k: we have at most

2k updates from sites, k requests from the coordinator, k replies from each site,

and k broadcast at nj+1.

The change in variability vj over block Bj is

vj =

nj+1∑
t=nj+1

1

min{1, |f(t)|}
≥ 2rk/2r5k ≥ 1/5

And therefore the total number of messages is bounded by 25kv + 3k.

2.3.2 Estimation inside blocks

What remains is to estimate f(n) within a given block. Since we have partitioned

time into constant-variability blocks, we can use the algorithms of Cormode et.

al. [CMY08, CMY11] and Huang et. al. [HYZ12] almost directly. Both of our

algorithms use the following template, changing only condition, message, and

update:

� Site i maintains a variable di that tracks the drift at site i, defined as the sum

of f ′(n) updates received at site i during the block. I.e., f(n)−f(nj) =
∑

i di.

� Site i also maintains a variable δi that tracks the change in di since the last

time site i sent a message. δi is initially zero.

� The coordinator maintains an estimate d̂i for each value di. These are ini-

tially zero. It also defines two estimates based on these d̂i:

� For the global drift: d̂ =
∑

i d̂i.

29

� For f(n): f̂(n) = f(nj) + d̂(n).

� When site i receives stream update f ′(n), it updates di. It then checks

its condition. If true, it sends a message to the coordinator and resets

δi = 0.

� When the coordinator receives a message from a site i it updates its

estimates.

2.3.3 The deterministic algorithm

Our method guarantees that at all times n we have |f(n) − f̂(n)| ≤ ε|f(n)|. It

uses O(kv/ε) messages in total.

� Condition: true if |δi| = 1 and r = 0, or if |δi| ≥ ε2r. Otherwise, false.

� Message: the new value of di.

� Update: set d̂i = di.

Proof. Let δ =
∑

i δi be the error with which d̂ estimates d =
∑

i di. The error in

f̂ is

|f(n)− f̂(n)| = |(f(nj) + d(n)) − (f̂(nj) + d(n) + δ(n))| = |δ(n)|

When r ≥ 1 we have |Bj| ≤ 2rk, and we always have that δ ≤ |Bj|. Since we

constrain δi < ε2r at the end of each timestep, we maintain at the end of each

timestep that |f(n)− f̂(n)| < ε2rk ≤ ε|f(n)|.

We also use at most 2k/ε messages for the block. If r = 0 then the number

of messages is at most k. If r ≥ 1, then since a site must receive ε2r new stream

updates to send a new message, and since there are at most 2rk stream updates

in the block, there are at most k/ε messages.

In each block the change in v is at least 1/5, so the total number of messages

is at most 5kv/ε.

30

2.3.4 The randomized algorithm

Our method uses O(
√
kv/ε) messages (plus the time partitioning) and guarantees

that at all times n we have P (|f(n)− f̂(n)| > ε|f(n)|) < 1/3.

The idea is to estimate the sums d+
i and d−i of +1 and −1 updates separately.

The estimators for those values are independent and monotone, so we can use the

method of Huang et. al. [HYZ12] to estimate the two and then combine them.

Specifically, the coordinator and each site run two independent copies A+ and

A− of the algorithm. Whenever f ′(n) = +1 arrives at site i, a +1 is fed into

algorithm A+ at site i. Whenever f ′(n) = −1 arrives at site i, a +1 is fed into

algorithm A− at site i. So the drifts d+
i and d−i at every site will always be non-

negative. At the coordinator, the estimates d̂±i and d̂± are tracked independently

also. However, the coordinator also defines d̂ = d̂+− d̂− and f̂(n) = f(nj) + d̂(n).

The definitions for algorithm A± are

� Condition: true with probability p = min{1, 3/ε2rk1/2}.

� Message: the new value of d±i .

� Update: set d̂±i = d±i − 1 + 1/p.

Proof. The following fact 2.3.3 is lemma 2.1 of Huang et. al. [HYZ12]. Our

algorithm effectively divides the stream f ′(Bj) into two streams |f ′(B±j)|. Since

these streams consist of +1 increments only we run the algorithm of Huang et.

al. separately on each of them. At any time n, stream |f ′(B±j)| has seen d±i (n)

increments at site i, and lemma 2.1 of Huang et. al. guarantees that the estimates

d̂±i (n) for the counts d±i (n) are good.

Fact 2.3.3. E(d̂±i) = d±i and Var(d̂±i) ≤ 1/p2.

This means that E(d̂±) =
∑

iE(d̂±i) =
∑

i d
±
i , and therefore it also means that

E(d̂) =
∑

iE(d+
i − d−i) =

∑
i di. Since the estimators d̂±i are independent, the

31

variance of the global drift is at most 2k/p2. By Chebyshev’s inequality,

P (|δ(n)| > ε2rk) ≤ 2k/p2

(ε2rk)2
< 1/3

Further, the expected cost of block Bj is at most

p|Bj| ≤ (3/ε2rk1/2)(2r2k) ≤ 30k1/2vj/ε

ensuring that only O(
√
kv/ε) messages are used in total.

2.4 Lower bounds

In this section we show that the dependence on v is essentially necessary by devel-

oping deterministic and randomized lower bounds on space+communication that

hold even when v is small. Admittedly, this is not as pleasing as a pure com-

munication lower bound would be. On the other hand, a distributed monitoring

algorithm with high space complexity would be impractical for monitoring sensor

data, network traffic patterns, and other applications of the model. Note that

in terms of space+communication, our deterministic lower bound is tight up to

factors of k, and our randomized lower bound is within a factor of log(n) of that.

For these lower bounds we use a slightly different problem. We call this prob-

lem the tracing problem. The streaming model for the tracing problem is the

standard turnstile streaming model with updates f ′(n) arriving online. The prob-

lem is to maintain in small space a summary of the sequence f so that, at any

current time n, if we are given an earlier time t as a query, we can return an

estimate f̂(t) so that P (|f(t)− f̂(t)| ≤ εf(t)) is large (one in the deterministic

case, 2/3 in the randomized case). We call this the tracing problem because our

summary traces f through time, so that we can look up earlier values.

The reason for introducing this problem is that a space lower bound for the

32

tracing problem implies a space+communication lower bound for the distributed

tracking problem:

Lemma 2.4.1. Fix some ε. Suppose that the tracing problem has an Ω(Lε(n))-bit

space deterministic lower bound. Also suppose that there is a deterministic algo-

rithm A for the distributed tracking problem that uses Cε(n) bits of communication

and Sε(n) bits of space at the site and coordinator combined. Then we must have

C + S = Ω(L).

Further, if we replace “deterministic” with “randomized” in the preceding para-

graph, the claim still holds.

Proof. Toward a contradiction, suppose that for all constants c < 1 and all n0

there is an n > n0 such that C(n)+S(n) < cL(n). Then we can write an algorithm

B for the tracing problem that uses L′(n) < cL(n) bits of space: simulate A,

recording all communication, and on a query t, play back the communication that

occurred through time t.

At no point did we use the fact that A guarantees P (|f(t)−f̂(t)| ≤ εf(t)) = 1,

so the claim still holds if we change the correctness requirement to P ≥ 2/3.

2.4.1 The deterministic bound

The deterministic lower bound that follows is similar in spirit to the lower bound

of Tao et. al. [TYS10]. It uses a simple information-theoretic argument.

Theorem 2.4.2. Let ε = 1/m for some integer m ≥ 2, let n ≥ 2m, let c < 1

constant, and let r ≤ nc and even. If a deterministic summary S(f) guarantees,

even only for sequences for which v(n) = 6m+9
2m+6

εr, that |f(t)− f̂(t)| ≤ εf(t) for all

t ≤ n, then that summary must use Ω(logn
ε
v(n)) bits of space.

The full proof follows. At a high level, the sequences in the family take only

values m or m + 3, and each sequence is defined by r of the n timesteps. If the

33

new timestep t is one of the r chosen for our sequence, then we flip from m to

m + 3 or vice-versa. All of these sequences are unique and there are 2Ω(r logn) of

them.

Proof. We construct a family of input sequences of length n and variability 6m+9
2m+6

εr.

Choose sets of r different indices 1 . . . n so that there are choose(n, r) such sets.

For each set S we define an input sequence fS. We define fS(0) = m and the

rest of fS recursively: fS(t) = fS(t−1) if t is not in S, and fS(t) = (2m+3)−fS(t−1)

if t is in S. (That is, switch between m and m+ 3.)

If A and B are two different sets, then fA 6= fB: let i be the smallest index that

is in one and not the other; say i is in A. Then fA(1 . . . (i−1)) = fB(1 . . . (i−1)),

but fA(i) 6= fA(i−1) = fB(i−1) = fB(i).

The variability of any fS is 6m+9
2m+6

εr: There are r/2 changes from m to m + 3

and another r/2 from m + 3 to m. When we switch from m to m + 3, we get a

change in variability of |f ′(t)/f(t)| = 3/(m+ 3), and when we switch from m+ 3

to m, we get |f ′(t)/f(t)| = 3/m. Thus
∑

t |
f ′(t)
f(t)
| = r

2
6m+9
m(m+3)

= 6m+9
2m+6

εr.

There are choose(n, r) ≥ (n/r)r input sequences in our family, so to distinguish

between any two input sequences we need at least r log(n/r) = Ω(r log n) bits.

Any summary that can determine for each t the value f(t) to within ±εf(t), must

also distinguish between f(t) = m and f(t) = m+3, since there is no value within

εm of m and also within ε(m+ 3) of m+ 3. Since this summary must distinguish

between f(t) = m and f(t) = m+ 3 for all t, it must distinguish between any two

input sequences in the family, and therefore needs Ω(r log n) bits.

2.4.2 The randomized bound

We use a construction similar to the one in our deterministic lower bound to

produce a randomized lower bound. In order to make the analysis simple we

forego a single variability value for all sequences in our constructed family, but

34

still maintain that they all have low variability. C is a universal constant to be

defined later.

Theorem 2.4.3. Choose ε ≤ 1/2, v ≥ 32400ε lnC, and n > 3v/ε. If a summary

S(f) guarantees that P (|f(t) − f̂(t)| ≤ εf(t)) ≥ 99/100 for all t ≤ n, even only

for sequences for which v(n) ≤ v, then that summary must use Ω(v/ε) bits of

space.

We prove this theorem in two lemmas. In the first lemma, we reduce the claim

to a claim about the existence of a hard family of sequences. In the second lemma

we show the existence of such a family.

First a couple of definitions. For any two sequences f and g define the number

of overlaps between f and g to be the number of positions 1 ≤ t ≤ n for which

|f(t)−g(t)| ≤ εmax{f(t), g(t)}. Say that f and g match if they have at least 6
10
n

overlaps.

Lemma 2.4.4. Let F be a family of sequences of length n and variabilities ≤ v

such that no two sequences in F match. If a summary S(f) guarantees for all f

in F that P (|f(t) − f̂(t)| ≤ εf(t)) ≥ 99/100 for all t ≤ n, then that summary

must use Ω(log |F|) bits of space.

The full proof follows. At a high level, if S(f) is the summary for a sequence

f , we can use it to generate an approximation f̂ that at least 90% of the time

overlaps with f in at least 9
10
n positions. Since no two sequences in F overlap in

more than 6
10
n positions, at least 90% of the time we can determine f given f̂ .

We then solve the one-way IndexN problem by deterministically generating F and

sending a summary S(f(x)), where x is Alice’s input string of size N = log2 |F|,

and f(x) is the xth sequence in F .

Proof. Let S(f) be the summary for a sequence f , and sample f̂(1) . . . f̂(n) once

each using S(f) to get f̂ . We want f̂(t) to be a good approximation for most of

35

the timesteps. Let A be the event that |{t : |f(t)−f̂(t)| ≤ εf(t)}| ≥ 90
100
n. By

Markov’s inequality and the guarantee in the premise, we must have P (A) ≥ 9/10.

Let ω define the random bits used in constructing S(f) and in sampling f̂ . For

any choice ω in A we have that f̂ overlaps with f in at least 9
10
n positions, which

means that f̂ overlaps with any other g ∈ F in at most 7
10
n positions: at most

the 6
10
n in which f and g could overlap, plus the 1

10
n in which f̂ and f might not

overlap.

Define F ⊆ F to be the sequences g that overlap with f̂ in at least 9
10
n

positions. This means that when ω ∈ A we have |F | = 1, and therefore with

probability at least 9/10 we can identify which sequence f had been used to

construct S(f).

We now prove our claim by reducing the IndexN problem to the problem of

tracing the history of a sequence f . The following statement of IndexN is roughly

as in Kushilevitz and Nisan [KN97]. There are two parties, Alice and Bob. Alice

has an input string x of length N = log2 |F| and Bob has an input string i of

length log2N that is interpreted as an index into x. Alice sends a message to Bob,

and then Bob must output xi correctly with probability at least 9/10.

Consider the following algorithm for solving IndexN . Alice deterministically

generates a family F of sequences of length n and variabilities ≤ v such that

no two match, by iterating over all possible sequences and choosing each next

one that doesn’t match any already chosen. Her log2 |F| bits of input x index a

sequence f in F . Alice computes a summary S(f) and sends it to Bob. After

receiving S(f), Bob computes f̂(t) for every t = 1 . . . n, to get a sequence f̂ . He

then generates F himself and creates a set F of all sequences in F that overlap

with f̂ in at least 9
10
n positions. If F = {f}, which it is with probability at least

9/10, then Bob can infer every bit of x.

36

Since the IndexN problem is known to have a one-way communication com-

plexity of Ω(N), it must be that |S(f)| = Ω(log |F|).

Lemma 2.4.5. For all ε ≤ 1/2, v ≥ 32400ε lnC, and n > 3v/ε, there is a family

F of size eΩ(v/ε) of sequences of size n such that no two sequences match and every

sequence has variability at most v.

The full proof follows. At a high level, sequences again switch between m =

1/ε and m+3, except that these switches are chosen independently. We model

the overlap with a Markov chain; the overlap between any two sequences is the

sum over times t of a function y applied to the states of a chain modeling their

interaction. We then apply a result of Chung, Lam, Liu, and Mitzenmacher

[CLL12] to show that the probability that any two sequences match is low. Lastly,

we show that not too many sequences have variability more than v, by proving

that they usually don’t switch between m and m+3 many times.

Proof. We construct F so that each of the two items holds (separately) with

probability at least 4/5. Let m = 1/ε. To construct one sequence in F , first

define f(0) = m with probability 1/2, else f(0) = m+3. Then, for t = 1 . . . n:

define f(t) = (2m+3)− f(t−1) with probability p = v/6εn, else f(t) = f(t−1).

That is, switch from m to m+3 (or vice-versa) with probability p = v/6εn.

We first prove that the probability is at most 1/5 that any two sequences f

and g match. We have that P (f(0)=g(0)) = 1/2. If at any point in time we have

f(t) = g(t), then

P (f(t+1)=g(t+1)) = α = 1− 2p(1−p)

and P (f(t+1) 6=g(t+1)) = 1− α = 2p(1−p)

37

Similarly, if f(t) 6= g(t), then

P (f(t+1)=g(t+1)) = 1− α

and P (f(t+1) 6=g(t+1)) = α

The overlap between f and g is the number of times t that f(t) = g(t). We

model this situation with a Markov chain M with two states, c for “same” (that

is, f = g) and d for “different” (f 6= g). Let st be the state after t steps, and

let pt = (pt(c), pt(d)) be the probabilities that M is in state c and d after step t.

The stationary distribution π = (1/2, 1/2), which also happens to be our initial

distribution. We can model the overlap between f and g by defining a function

y(st) = 1 if st = c and y(st) = 0 otherwise; then Y =
∑n

t=1 y(st) is the overlap

between f and g. The expected value E(y(π)) of y evaluated on π is 1/2.

The (1/8)-mixing time T is defined as the smallest time T such that we have

1
2
||M tr0 − π||1 ≤ 1/8 over all initial distributions r0. Let r0 be any initial distri-

bution and rt = M tr0. If we define ∆t = rt(c)− π(c), then ∆t = (2α−1)t∆0. We

can similarly bound |rt(d)− π(d)|, so we can bound

T ≤ ln(8)

ln(1/(2α−1))
≤ 3

(1− (2α−1))
≤ 3

2p(1−p)
≤ 3

2p
=

9εn

v

since 1 − p ≥ 1/2 and since 1/ ln(1/x) ≤ 1/(1−x) for x in (0, 1). With this

information we can now apply a sledgehammer of a result by Chung, Lam, Liu,

and Mitzenmacher [CLL12]. Our fact 2.4.6 is their theorem 3.1, specialized a bit

to our situation:

Fact 2.4.6. Let M be an ergodic Markov chain with state space S. Let T be its

(1/8)-mixing time. Let (s1, . . . , sn) denote an n-step random walk on M starting

from its stationary distribution π. Let y be a weight function having E(y(π)) = µ.

Define the total weight of the walk by Y =
∑n

t=1 y(st). Then there exists some

38

universal constant C such that P (Y ≥ (1 + δ)µn) ≤ C exp(−δ2µn/72T) when

0 < δ < 1.

Specifically, this means that P (Y ≥ 6
10
n) ≤ C exp(−v/(25 · 72 · 9 · ε)).

Since v is large enough, we can also write P ≤ exp(−v/32400ε). If we choose

|F| = 1
5

exp(v/(2 · 32400ε)), then by the union bound, with probability at least

4/5, no pair of sequences f, g matches.

We also must prove that there are enough sequences with variability at most

v. The change in variability due to a single switch from m to m+3 (or vice-versa)

is at most 3/m = 3ε. For any sequence f , let Ut = 1 if f switched at time t,

else Ut = 0. The expected number of switches is v/6ε; using a standard Chernoff

bound, P (
∑

t Ut ≥ 2v/6ε) ≤ exp(−v/18ε) ≤ 1/10. Suppose we sample N

sequences and B of them have more than 2v/6ε switches. In expectation there

are at most E(B) ≤ 1
10
N that have too many switches. By Markov’s inequality,

P (B ≥ N/2) ≤ 1/5, so we can toss out the ≤ N/2 bad sequences. This gives us

a final size of F of 1
10

exp(v/(2 · 32400ε)).

2.5 Variability as a framework

In section 2.2 we proposed the f -variability
∑n

t=1 min{1, |f
′(t)
f(t)
|} as a way to ana-

lyze algorithms for the continuous monitoring problem (k, f, ε) over general update

streams. However, our discussion so far has focused on distributed counting. In

this final section we revisit the suitability of our definition by mentioning exten-

sions to tracking other functions of a dataset defined by a distributed update

stream.

39

2.5.1 Tracking item frequencies

We can extend our deterministic algorithm of section 2.3 to the problem of tracking

item frequencies, in a manner similar to that in which Yi and Zhang [YZ09, YZ13]

extend the ideas of Cormode et. al. [CMY08] to this problem.

Problem definition The problem of tracking item frequencies is only slightly

different than the counting problem we’ve considered so far. In this problem there

is a universe U of items and we maintain a dataset D(t) that changes over time.

At each new timestep n, either some item ` from U is added to D, or some item `

from D is removed. This update is told to a single site i; that is, site i(n) receives

an update f ′`(n) = ±1.

The frequency f`(t) of item ` at time t is the number of copies of ` that appear

in D(t). The first frequency moment F1(t) at time t is the total number of items

|D(t)|. The problem is to maintain estimates f̂`(n) at the coordinator so that for

all times n and all items ` we have that P (|f`(n)−f̂`(n)| ≤ εF1(n)) is large.

Since in this problem we are tracking each item frequency to εF1(n), we use

F1-variability instead, defining v′(t) = min{1, 1/F1(t)}.

2.5.2 Item frequencies with low communication

We first partition time into blocks as in section 2.3.1, using f = F1. That is, at

the end of each block we know the values n and F1(n) deterministically, and also

that either r = 0 holds or that F1(nj) is within a factor of two of F1(nj−1).

For tracking during blocks we modify the deterministic algorithm so that each

site i holds counters di` and δi` for every item `. It also holds counters fi` of the

total number of copies of ` seen at site i across all blocks.

At the end of each block, each site i reports all fi` ≥ ε2r/3 (using the new value

of r). If site i reports counter fi` then it starts the next block with di` = δi` = 0;

40

otherwise, di` is updated to di` + δi` and then δi` is reset to zero. Within a block

r ≥ 1, the condition is true when δi` ≥ ε2r/3.

The coordinator maintains estimates f̂i` of fi` for each site i and item `. When-

ever the coordinator receives an update δi` during a block it updates its estimate

f̂i` = f̂i` + δi`.

Estimation error The total error in the estimate f̂i`(n) at any time n is the

error due to di` plus the error due to δi`. In both cases these quantities are bounded

by ε2r/3 ≤ εF1(n)/3.

Communication The total communication for a block is the total communi-

cated within and at the end of the block. Within a block, all δi` start at zero, and

there are at most 2rk updates, so the total number of messages sent is 3k/ε. At

the end of a block, fi` ≥ ε2r/3 is true for at most 12k/ε counters fi`. Therefore

the total number of messages O(k
ε
v(n)).

2.5.3 Item frequencies in small space+communication

The algorithm so far uses |U | counters per site, which is prohibitive in terms of

space. In [CM05] Cormode and Muthukrishnan show that in order to track over a

non-distributed update stream each f`(n) so that for all ` and all times n we have

P (|f`(n)−f̂`(n)| ≤ εF1(n)/3) ≥ 8/9, it suffices to randomly partition each item

in U into one of 27/ε classes using a pairwise-independent hash function h, and

to estimate f`(n) as fh(`)(n). The 27/ε counters and the hash function h together

form their Count-Min Sketch [CM05].

Similarly, in [GM06, GM07] Ganguly and Majumder adapt a data structure of

Gasieniec and Muthukrishnan [Mut05], which they call the CR-precis, to deter-

ministically track each f`(n) to εF1(n)/3 error. This data structure uses 3
ε

rows

of 6 log |U |
ε log 1/ε

counters, and estimates f`(n) as the average over rows r of fh(r,`)(n).

41

(Ganguly and Majumder actually take the minimum over the rows r, but the

average works too and yields a linear sketch.)

In either case, we can first reduce our set of items ` to a small number of coun-

ters c, and instead of tracking fi` we track fic for each counter c. The coordinator

can then linearly combine its estimates f̂ic to obtain estimates f̂i` for each item `.

This introduces another εF1(n)/3 error, yielding algorithms that guarantee

� P (|fi`(n)− f̂i`(n)| ≤ εF1(n)) = 1 in O(k log |U |
ε2 log 1/ε

v(n) log n) bits of space +

communication, and

� P (|fi`(n)−f̂i`(n)| ≤ εF1(n)) ≥ 8/9 in O(k log |U |+ k
ε
v(n) log n) bits of space

+ communication.

2.5.4 Remarks

We obtain a randomized communication bound ofO(k
ε
v(n)) messages, but it might

be possible to do better. In [HYZ12] Huang et. al. both develop a randomized

counting algorithm (O(
√
k
ε

log n) messages) and also extend it to the problem of

tracking item frequencies to get the same communication bound. Unfortunately,

their algorithm appears to require the total variance in their estimate at any time

t < n to be bounded by a constant factor of the variance at time n. This is

only guaranteed to be true when item deletions are not permitted (and F1 grows

monotonically). We avoid this problem in section 2.3.4 for tracking f = F1 by

deterministically updating F1 at the end of each block. For this problem, though,

deterministically updating all of the large f̂i` at the end of each block could incur

O(k/ε) messages.

2.5.5 Aggregate functions with one site

In this subsection we consider general single-integer-valued functions f of a dataset.

When there is a single site, the site always knows the exact value of f(n), and

42

the only issue is updating the coordinator to have an approximation f̂(n) so that

|f(n) − f̂(n)| ≤ εf(n) for all n. We can show that this problem of tracking f

to ε relative error when k = 1 has an O(1
ε
v(n))-word upper bound, where here

v(n) is the f -variability. The algorithm is: whenever |f − f̂ | > εf , send f to the

coordinator.

Proof. If f(n) = 0 then v′(n) = 1. Also, if f(n) changes sign from f(n−1), then

v′(n) = 1. So consider intervals over which f(n) is nonzero and doesn’t change

sign. Over such an interval, let Φ(n) = |f(n)−f̂(n)
f(n)

|. If at time n we update f̂ then

Φ(n) = 0. Otherwise,

Φ(n) =
|f(n−1)− f̂(n−1) + f ′(n)|

|f(n)|
≤ |f(n−1)− f̂(n−1)|

|f(n)|
+
|f ′(n)|
|f(n)|

=
|f(n−1)|
|f(n)|

Φ(n−1) +
|f ′(n)|
|f(n)|

≤ |f(n)|+ |f ′(n)|
|f(n)|

Φ(n−1) +
|f ′(n)|
|f(n)|

≤ Φ(n−1) +
(1+Φ(n−1))|f ′(n)|

|f(n)|

Since Φ(n) ≤ ε we have |Φ′(n)| ≤ (1+ε)|f
′(n)
f(n)
|. We only send a message each time

that Φ would be more than ε, so the total number of messages sent is at most the

total increase in Φ, which is
∑n

t=1 min{1, |f
′(t)
f(t)
|}.

Along with our lower bounds of section 2.4, this upper bound lends evidence

to our claim that variability captures the difficulty of communicating changes in

general functions f that are due to the non-monotonicity of the input stream.

43

References

[ABC09] Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. “Func-
tional monitoring without monotonicity.” In Automata, Languages and
Programming, pp. 95–106. Springer, 2009.

[ACH12] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips,
Zhewei Wei, and Ke Yi. “Mergeable summaries.” In Proceedings of
the 31st symposium on Principles of Database Systems, PODS ’12, pp.
23–34, New York, NY, USA, 2012. ACM.

[ACH13] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips,
Zhewei Wei, and Ke Yi. “Mergeable summaries.” ACM Transactions
on Database Systems (TODS), 38(4):26, 2013.

[CLL12] Kai-Min Chung, Henry Lam, Zhenming Liu, and Michael Mitzen-
macher. “Chernoff-hoeffding bounds for markov chains: Generalized
and simplified.” arXiv preprint arXiv:1201.0559, 2012.

[CM05] Graham Cormode and S. Muthukrishnan. “An improved data stream
summary: the count-min sketch and its applications.” Journal of Algo-
rithms, 55(1):58 – 75, 2005.

[CMY08] Graham Cormode, S. Muthukrishnan, and Ke Yi. “Algorithms for Dis-
tributed Functional Monitoring.” In Proceedings of the Nineteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pp.
1076–1085, Philadelphia, PA, USA, 2008. Society for Industrial and
Applied Mathematics.

[CMY11] Graham Cormode, S Muthukrishnan, and Ke Yi. “Algorithms for
distributed functional monitoring.” ACM Transactions on Algorithms
(TALG), 7(2):21, 2011.

[FO15a] David Felber and Rafail Ostrovsky. “A randomized online quantile sum-
mary in O(1

ε
log 1

ε
) words.” arXiv preprint arXiv:1503.01156, 2015.

[FO15b] David Felber and Rafail Ostrovsky. “Variability in data streams.” arXiv
preprint arXiv:1502.07027, 2015.

[GK01] Michael Greenwald and Sanjeev Khanna. “Space-efficient online com-
putation of quantile summaries.” In Proceedings of the 2001 ACM SIG-
MOD international conference on Management of data, SIGMOD ’01,
pp. 58–66, New York, NY, USA, 2001. ACM.

[GM06] Sumit Ganguly and Anirban Majumder. “CR-precis: A deter-
ministic summary structure for update data streams.” CoRR,
abs/cs/0609032, 2006.

44

[GM07] Sumit Ganguly and Anirban Majumder. “CR-precis: A Deterministic
Summary Structure for Update Data Streams.” In Bo Chen, Mike Pa-
terson, and Guochuan Zhang, editors, Combinatorics, Algorithms, Prob-
abilistic and Experimental Methodologies, volume 4614 of Lecture Notes
in Computer Science, pp. 48–59. Springer Berlin Heidelberg, 2007.

[HT10] Regant Y.S. Hung and Hingfung F. Ting. “An Ω(1
ε

log 1
ε
) Space Lower

Bound for Finding ε-Approximate Quantiles in a Data Stream.” In Der-
Tsai Lee, DannyZ. Chen, and Shi Ying, editors, Frontiers in Algorith-
mics, volume 6213 of Lecture Notes in Computer Science, pp. 89–100.
Springer Berlin Heidelberg, 2010.

[HYZ12] Zengfeng Huang, Ke Yi, and Qin Zhang. “Randomized algorithms for
tracking distributed count, frequencies, and ranks.” In Proceedings of
the 31st symposium on Principles of Database Systems, pp. 295–306.
ACM, 2012.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cam-
bridge University Press, New York, NY, USA, 1997.

[LRV11] Zhenming Liu, Bozidar Radunović, and Milan Vojnović. “Continuous
distributed counting for non-monotonic streams.” In Technical Report
MSR-TR-2011-128, 2011.

[LRV12] Zhenming Liu, Bozidar Radunović, and Milan Vojnović. “Continuous
distributed counting for non-monotonic streams.” In Proceedings of the
31st symposium on Principles of Database Systems, pp. 307–318. ACM,
2012.

[MP78] J. I. Munro and M. S. Paterson. “Selection and Sorting with Limited
Storage.” In Proceedings of the 19th Annual Symposium on Foundations
of Computer Science, SFCS ’78, pp. 253–258, Washington, DC, USA,
1978. IEEE Computer Society.

[MRL98] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay.
“Approximate medians and other quantiles in one pass and with limited
memory.” In ACM SIGMOD Record, volume 27, pp. 426–435. ACM,
1998.

[MRL99] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay.
“Random sampling techniques for space efficient online computation of
order statistics of large datasets.” In ACM SIGMOD Record, volume 28,
pp. 251–262. ACM, 1999.

[Mut05] Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and
applications. Now Publishers Inc, 2005.

45

[SBA04] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and
Subhash Suri. “Medians and beyond: new aggregation techniques for
sensor networks.” In Proceedings of the 2nd international conference
on Embedded networked sensor systems, SenSys ’04, pp. 239–249, New
York, NY, USA, 2004. ACM.

[TYS10] Yufei Tao, Ke Yi, Cheng Sheng, Jian Pei, and Feifei Li. “Logging every
footstep: quantile summaries for the entire history.” In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of
data, SIGMOD ’10, pp. 639–650, New York, NY, USA, 2010. ACM.

[VC71] Vladimir N Vapnik and A Ya Chervonenkis. “On the uniform conver-
gence of relative frequencies of events to their probabilities.” Theory of
Probability & Its Applications, 16(2):264–280, 1971.

[Vit85] Jeffrey S Vitter. “Random sampling with a reservoir.” ACM Transac-
tions on Mathematical Software (TOMS), 11(1):37–57, 1985.

[WLY13] Lu Wang, Ge Luo, Ke Yi, and Graham Cormode. “Quantiles over
data streams: an experimental study.” In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pp. 737–
748. ACM, 2013.

[WZ11] David P. Woodruff and Qin Zhang. “Tight Bounds for Distributed
Functional Monitoring.” CoRR, abs/1112.5153, 2011.

[WZ12] David P Woodruff and Qin Zhang. “Tight bounds for distributed func-
tional monitoring.” In Proceedings of the 44th symposium on Theory of
Computing, pp. 941–960. ACM, 2012.

[YZ09] Ke Yi and Qin Zhang. “Optimal Tracking of Distributed Heavy
Hitters and Quantiles.” In Proceedings of the Twenty-eighth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS ’09, pp. 167–174, New York, NY, USA, 2009. ACM.

[YZ13] Ke Yi and Qin Zhang. “Optimal Tracking of Distributed Heavy Hitters
and Quantiles.” Algorithmica, 65(1):206–223, 2013.

46

	A randomized quantile summary
	Introduction
	Previous work
	Our results

	A simple streaming summary
	Bernoulli sampling
	GK summary
	Our summary
	Caveats

	An online summary
	Algorithm description
	Error analysis
	Space and time complexity

	Discussion

	Variability in data streams
	Introduction
	Variability
	Interesting cases with small variability

	Upper bounds
	Partitioning time
	Estimation inside blocks
	The deterministic algorithm
	The randomized algorithm

	Lower bounds
	The deterministic bound
	The randomized bound

	Variability as a framework
	Tracking item frequencies
	Item frequencies with low communication
	Item frequencies in small space+communication
	Remarks
	Aggregate functions with one site

	References

