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Kawasaki Disease (KD) is the leading cause of acquired heart disease in children and can 

result in life-threatening coronary artery aneurysms in up to 25% of patients. These aneurysms 

put patients at risk of thrombus formation, myocardial infarction and sudden death. Clinicians 

must therefore decide which patients should be treated with anticoagulant medication and/or 

surgical and percutaneous intervention. Current recommendations regarding initiation of 

anticoagulant therapy are based on anatomy alone with historical data suggesting that patients 

with aneurysms ≥ 8mm in diameter are at highest risk of thrombosis. Given the multitude of 

variables that influence thrombus formation, we postulate that hemodynamic data derived from 

patient-specific blood flow simulations will better predict the risk of thrombosis than maximum 

diameter alone.  
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Firstly, a finite element framework with a lumped parameter boundary condition was 

implemented following a circuit analogy. A patient-specific case study was carried out to study 

the abnormalities in hemodynamics arising due to the presence of the aneurysms in the coronary 

arteries. Furthermore, simulations were performed on a virtual normal control model created from 

the same CT image data to demonstrate order of magnitude variation of several local 

hemodynamic quantities despite no differences in global flow and pressure waveforms between 

the two models. 

Secondly, blood flow simulations were performed on patient-specific models on a cohort 

of KD patients with coronary aneurysms and one KD patient with no coronary aneurysms. Key 

hemodynamic quantities including shear stress and residence times were computed in addition to 

geometric parameters and compared to the corresponding values in the normal vessels with no 

aneurysms.  The findings uncovered various non-intuitive relationships between the flow 

parameters and geometry relating to the risk of thrombosis. The study suggested that a clinical 

risk index based on simulation and geometric data could be used to select patients for 

anticoagulant therapy.  

To our knowledge, we performed the first cardiovascular simulations for KD patients 

with coronary aneurysms. This thesis lays the framework for the construction of a simulation 

based clinical risk index by considering a larger cohort of patient data that may be clinically 

useful in patient management for KD patients with coronary aneurysms.  
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Chapter 1 

1. Introduction 

1.1 Motivation 

Kawasaki Disease is an acute self limited vasculitis occurring primarily in children less 

than 5 years of of age1. KD is the leading cause of acquired heart disease in children2.  Each year 

over 5500 cases of KD are diagnosed in the US alone2. Japan has the highest incidence of KD in 

the world with 1 in every 185 children affected by the disease3.   The symptoms of KD evolve 

over the first 10 days of illness. It is challenging to diagnose patients with Kawasaki Syndrome 

quickly and often the patients are not diagnosed within the first 10 days of fever onset4. Coronary 

artery aneurysms occur in about 20-25% of the untreated cases5. The number is however reduced 

to about 3-5% by the application of Intravenous Immunoglobulin (IVIG)6 within the first 10 days 

of fever onset.   

There are currently very limited clinical data to aid clinicians in the treatment of patient 

with coronary artery aneurysms caused by KD. KD patients with coronary artery aneurysms are 

at increased risk of thrombus formation and myocardial infarction, heart failure and death7. Long 

term patient management of KD patients with regards to antiplatelet therapy, systemic 

anticoagulation, percutaneous intervention such as stenting, rotational ablation and coronary 

artery bypass surgery is challenging8.  Moreover, the vasculopathy of the young adults with 

coronary artery aneurysms caused by KD is markedly different from that of other atherosclerotic 

diseases. So the traditional patient management for treating atherosclerotic diseases does not 

apply for KD patients with aneurysms. Since most patients with KD are otherwise healthy, 

clinicians are faced with the difficult choice of exposing patients to treatment risks, or waiting 

and watching, knowing that a sudden adverse cardiac event may have serious or even deadly 

consequences.   
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Current AHA guidelines for anticoagulation therapy in KD patients with coronary 

aneurysms are only based on the aneurysm diameter. The guidelines are based on Level of 

Evidence C (expert opinions, case studies or standard of care)8. According to the guidelines, 

patients with giant aneurysms (aneurysm diameter > 8mm) are treated with systemic 

anticoagulation9. However, for patients with coronary aneurysms less than 8mm in diameter, the 

treatment is less straightforward. The current guidelines do not take into account the 

hemodynamic features associated with KD patients with coronary aneurysms. As a result, these 

guidelines may cause either undertreatment of patients with coronary aneurysmal diameters less 

than 8mm or over aggressive treatment of those with diameters more than 8mm. We hypothesize 

that analysis of flow features inside coronary aneurysms have the potential to reveal quantitative, 

and often non-intuitive hemodynamic characteristics that cannot be obtained from standard 

clinical imaging modalities. 

Computer simulations of patient-specific hemodynamics have advanced greatly in recent 

years. Various sophisticated computational methods are proving to be useful both as diagnostic as 

well as analysis purposes for adult and pediatric cardiovascular disease. Simulations provide a 

means to obtain crucial hemodynamic information, which cannot be easily obtained from 

conventional imaging modalities. Some critical hemodynamic quantities such as recirculation 

times10, flow distributions in blood vessels11, optimization of surgical grafts12, 13 are currently only 

possible to obtain using simulation methods since they are not obtainable from standard imaging 

modalities. Further, these techniques can be performed using completely non-invasive 

procedures, which makes them more powerful.  

Despite recent advances, computational methods suffer from various drawbacks 

including several assumptions of the model.  Advancements in the field of computing has enabled 

more realistic calculations by incorporating more complicated mathematical models into the 

computational methods. Blood flow simulations on patient-specific models have the ability to 
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extract clinically relevant hemodynamic information that assist clinicians in performing virtual 

surgical optimization11, design patient-specific optimal ventricular assist device14, patient-specific 

simulation of blood flow in coronary artery bypass grafts15, blood flow simulations in abdominal 

aortic aneurysms16 as well as cerebral aneurysms17.   

Despite rapid strides in computational simulations there has been little effort to use these 

technology on KD patients with coronary aneurysms. There is significant potential to apply 

modern computational tools to aid clinicians in a better patient management for KD patients with 

coronary aneurysms. This thesis focuses on using state of the art computational and numerical 

methods to perform patient-specific modeling of KD patients with coronary aneurysms in order to 

understand the role of hemodynamics in thrombotic risk. 

 

1.2 Prior Work on Blood Flow Simulations 

This subsection primarily describes the sate of the art computational models that are 

presently employed in the cardiovascular system with a special emphasis on the models relating 

to the coronary vasculature.  

The human circulatory system consists of a complex network of arteries, arterioles, veins 

and capillaries that supply oxygenated blood and nutrition to all parts of the human body and 

remove deoxygenated blood and excretory wastes from various parts of the human body. Blood 

flowing through this complex network of blood vessels is driven by a central pumping chamber – 

the human heart. From the point of view of physics, simulation of blood flow through this 

complex network of blood vessels is challenging due to the following reasons 

i) There is a large variation of Reynold’s number. For example, as the blood flows 

from the arteries such as the aorta to the capillaries there is several order of 

magnitude change in the Reynold’s Number.  
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ii) The wall of the blood vessels is compliant.  CFD simulations assuming rigid wall 

may not yield accurate results, as they do not account for wave propagation or 

reflection, and more sophisticated coupled-fluid structure formulations need to be 

employed. 

iii) Patient specific modeling typically leads to the truncation of several smaller 

vessels that needs to be modeled by sophisticated boundary conditions to model 

the downstream vascular network. 

 

1.2.1  Lumped Parameter Model 

Boundary conditions are of paramount importance in blood flow simulations. The 

patient-specific models that are use in blood flow simulations usually do not include many of the 

smaller vessels including the capillaries that cannot be clearly observed in a clinical scan (MR or 

X-Ray CT). In such situations approximations need to be made by using reduced order 

mathematical models that can mimic the influence of the smaller vessels. These mathematical 

models lump a group of smaller vessels into a model equation, and are called lumped parameters 

models. Lumped parameter models serve as the boundary condition for the blood flow 

simulations. While the lumped parameter models were based on a circuit analogy, there are other 

approaches in the blood flow simulations. Some of the particularly important methods include the 

usage of one dimensional non-linear wave propagation method18 and the effective implementation 

of the impedance boundary condition that can capture the flow and pressure waves in the arterial 

tree19. 

Lumped parameter models are based on the analogy between an electrical circuit system 

and pressure driven flow system. Similar to electrical systems, which consist of voltage sources, 

resistances, capacitances and inductances, a pressure driven flow inside the human circulatory 

system can also be modeled with these components. In this context, the pressure plays the role of 



5 

 

the voltage driving the flow rate, which is analogous to the flow of current. The resistances model 

the dissipative forces, the capacitance models compliance of vessel wall while inductance models 

the inertial effects in the simulation.  

Typically the smaller vessels contribute to the high downstream resistance, which are 

implemented as a boundary condition in the CFD framework using the equation P = QR where P 

is the outlet pressure, Q is the flow at the outlet and R is the downstream resistance. While, the 

capacitance modeling the compliance of the vessels relates the pressure to the flow in the 

following manner dP/dt = Q/C where C represents the modeled capacitance of the vessel. Finally, 

the inductance modeling the inertial effects is relates the pressure to the flow rate as P = L dQ/dt 

where L is the inductance of the vessel. Using the lumped parameter formulation, the entire 

domain is decomposed into a computational domain and an analytic domain as shown in Figure 

1.1. The 3D computational domain where the Navier-Stokes equations are solved is coupled to 

the analytic 0D domain through the boundary interface of the computational domain as shown in 

the figure. The lumped parameter network is applied in the analytic 0D domain and the entire 

coupled formulation is solved using a stabilized finite element method19, 20. Using the lumped 

parameter boundary condition one can generate physiologic flow and pressure waveforms21-23. 
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One of the most frequently used lumped parameter models is the Windkessel lumped 

parameter model which was developed to identify the afterload of the heart24 and model the 

downstream resistance and compliance of the blood vessels25. All arteries are compliant vessels 

and the is usually modeled by a capacitance of the Windkessel model while the resistance of the 

downstream vessels including that of the capillaries are modeled by a resistance. The three 

element Windkessel model has been used in this study to model the boundary conditions of 

various arterial outlets. The three element Windkessel model comprises of a proximal resistance, 

a capacitance and a distal resistance25. A typical three-element Windkessel RCR boundary 

condition circuit is shown in Figure 1.2 which consists of a proximal resistance RP, a distal 

resistance RD and a capacitance C. The relationship between pressure and flow rate for the RCR 

circuit is obtained by solving an ODE and is given as follows where Q(t) represents the flow and 

P(t) represents the pressure at the outlet of the RCR circuit. 

 

 

 
Figure 1.1: Coupled multidomain formulation where the 3D computational domain is coupled to the 0D 
analytic domain through the boundary surface 

 

P (t) = [P (0)−RPQ(0)]e−
t

RDC +RPQ(t) +
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0
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Lumped parameter models that are used in cardiovascular simulations have also validated 

through in-vivo experiments26 to predict global cardiovascular features. Furthermore, the 

impedance of the arterial tree has been modeled in previous research27. Simulations with the help 

of lumped parameter models has also enabled the optimization of grafts which are essential in 

Fontan surgery13, 28. Such boundary conditions have the potential to be optimized effectively 

under patient specific conditions to match clinical parameters.  

 

1.2.2  Lumped Parameter Heart Model 

The human heart is a complex pump triggered by electrical and mechanical responses and 

is the source of systemic and venous circulation. A significant research effort has been made to 

develop reduced order mathematical models to mimic the actins of the human heart. 

Lumped parameter heart models were first motivated by the canine studies29, 30 done to 

estimate the normalized elastance function of the heart. The normalized elastance function 

estimates the ventricular contraction and relaxation. The elastance function is normalized based 

on the maximum elastance value and the time between the onset of systole and diastole. 

 
 
 

 
 

Figure 1.2: Typical Windkessel RCR circuit 
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Furthermore, it was observed that the normalized elastance function for all the hearts collapses 

into a single curve. Using the normalized elastance the ventricular pressure can be obtained as a 

function of the ventricular volume. Furthermore, it was also shown in a later study that a similar 

behavior exists for the human heart with the normalized elastance function having the same form 

for a wide range of human hearts31.  

A lot of efforts have been made towards the development of a lumped parameter heart 

model for the human heart. Recent work by Kim et al32 provided a lumped parameter model for 

the human heart inspired by studies done on canine by considering the interactions of the heart 

with the systemic and venous circulation33. These lumped parameter models include the 

resistance and inductances that can model the viscous and intertial effects as well.  

 

1.2.3  Lumped Parameter Coronary Vasculature Model 

The coronary circulation is closely linked to the contraction of the human heart. The 

coronary arteries supply oxygenated blood and nutrition to the heart muscles (the myocardium). 

So a healthy coronary artery is of extremely important for the heart to function properly. The 

coronary flow is influenced by the systemic circulation caused by the pumping action of the heart 

as well as the contraction and the relaxation of the myocardium.  

Modeling coronary arteries presents particular challenges that are not readily addressed 

with standard simulation methods. Standard simulation boundary conditions, such as resistance, 

cannot capture coronary flow and pressure behavior, in which flow and pressure are out of phase. 

This effect is particularly significant in the left coronary artery (LCA). During systole, the 

resistance of the coronary bed increases and restricts blood flow through the LCA. During 

diastole, coronary resistance decreases, and blood flow is maximized.  While, in principle, it is 

possible to model this phenomenon with time-varying impedance boundary conditions, a lack of 

information on the patient-specific coronary waveform makes the impedance spectrum difficult to 
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obtain. In recent work, novel lumped parameter boundary conditions were developed for 

modeling coronary flow together with a coupled lumped parameter heart model, which we build 

upon in the present study.34  

Numerous reduced order mathematical models have been developed to study the 

interaction of coronary arteries and the cardiac muscles. One of the most effective means of 

modeling the coronary circulation is through the usage of the intermyocardial pumps. The varying 

elastance models are used to compute the intermyocardial pressures that are provide the 

impedance caused in the coronary flow during systole35. This model was able to explain the 

relationship between pressure and flow in a coronary vasculature. This model has been adopted 

by many researchers to compute the global flow features in the coronary arteries36-38.  

Patient-specific modeling of KD patients with aneurysmal coronary arteries needs to have 

a robust framework for simulating the coronary circulation. Blood flow simulations in such three-

dimensional model appropriate boundary conditions for the simulation to serve as a good 

predictive model. Furthermore, appropriate lumped parameter models need to be employed as the 

boundary conditions for such simulations, which is crucial for a good hemodynamic prediction. 

Kim et al.34 have developed a technique to couple the complex interaction of the coronaries with 

cardiac impedance as well as the arterial impedance by the usage of a lumped parameter heart 

model. This work has been built based on such boundary conditions. However, in this work the 

parameters for such boundary conditions were computed on a patient specific basis, which may 

provide a basis for an effective clinical tool in future work.  

 

1.2.4 Blood Flow simulations in three dimensions 

Computational solutions of the Navier Stokes equations have evolved as a powerful tool 

to study the complex blood flow patterns in the cardiovascular system. A significant research 

effort has been directed towards bridging the gap between engineering and medicine. Simulation 



10 

 

methods provide means to compute flow features that cannot be readily obtained experimentally 

or by traditional imaging modalities.  

Computer simulations of hemodynamics in patient-specific geometries have advanced in 

recent years and are now being widely used in the study of cardiovascular disease. Hemodynamic 

quantities such as flow distribution, wall shear stress, particle residence times, and exercise 

conditions can be easily obtained from simulations.  Simulations have played a key role in the 

study of congenital heart defects,12, 39, 40 abdominal and cerebral aneurysms,16, 41 and bypass 

grafts42.  

 

1.2.5 Equations for Blood Flow Simulations 

The blood flow simulations are governed by the Navier Stokes Equation. Rigid wall 

assumption was assumed in the simulations. Moreover, blood can be considered as a Newtonian 

or Non-Newtonian fluid depending on the physics of the flow. The flow conditions in the 

systemic circulation causes high shear rates in the larger arteries such as the aorta. Under such 

flow conditions, blood is generally treated as a Newtonian fluid43. However, in the small 

arterioles and the capillaries blood should not be treated as a Newtonian fluid. 

The three dimensional  blood flow equations consists of the momentum balance and mass 

balance equations for an incompressible fluid. These equations need to be solved with suitable 

boundary and initial conditions. The boundary Γ of the spatial domain Ω is split into a Dirichlet 

boundary condition Γg and Neumann boundary condition Γh.  The following represent the 

momentum and continuity equations 

 

 

 

ρ "v,t + ρ"v ·∇"v = −∇p+ div(τ̃) + "f (1.1)

div(!v) = 0 (1.2)
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This set of equations is solved to obtain the fluid velocity and pressure distribution. 

Simulations of blood flow in patient specific geometric models has been proven to be a powerful 

tool in predicting outcomes of surgery15, 40, 44 as well as in planning alternate treatment 

strategies11, 45.  

 Computational fluid dynamics techniques have not been previously applied to KD 

patients with coronary aneurysms. Analyzing the hemodynamics using these state of the art 

computational methods may now open up new horizons for better patient management of KD al 

patients with coronary aneurysms. Clinicians currently rely on basic geometric measurements 

such the aneurysmal diameters to make decisions about patient treatment with anticoagulation 

therapy. In the absence of evidence-based guidelines for patient management, these 

computational tools may be able to provide clinicians with additional, often non-intuitive 

information relating to flow features. The risk of thrombosis in the KD patients is influenced by 

hemodynamics in addition to the geometry. Our driving hypothesis is that hemodynamics may 

provide additional means to quantify patient risk of thrombosis, through correlations between 

simulations and hemodynamic data.  

where τ̃ = 2µD̃ with D̃ =
1

2
(∇"v +∇"vT )

!v(!x, t) = !g(!x, t) where !x ∈ Γg (1.3)

!t!n = [−pĨ + τ̃ ] · !n = !h(!v, p, !x, t) where !x ∈ Γh (1.4)

!v(!x, 0) = !v0(!x) where !x ∈ Ω (1.5)
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Chapter 2 

2.  Image-based modeling of hemodynamics in coronary artery aneurysms caused by 

Kawasaki disease  

2.1  Introduction 

In this chapter, we present the first patient-specific computational simulations of blood 

flow in a subject with KD using physiologic boundary conditions and a patient-specific model of 

the aorta and coronary arteries. The downstream boundary condition takes into account the 

coronary microcirculation and myocardial contractility via a lumped parameter model. We 

measured the effect of local geometry on velocity patterns, wall shear stress (WSS), oscillatory 

shear index (OSI) and particle residence times, each of which are postulated to strongly affect the 

propensity for thrombus formation. By creating a patient-specific virtual control model, we also 

quantitatively compare and contrast hemodynamics in the aneurysmal and normal coronary 

artery. 

While aneurysms can be imaged to obtain anatomical information, there are currently no 

available clinical tools to predict the risk of coronary artery thrombosis or myocardial infarction. 

Imaging flow in the coronary arteries non-invasively using phase contrast magnetic resonance 

imaging (MRI) is possible, but is technically challenging because the coronary arteries are small 

and mobile, with maximum displacements in the right and the left coronary arteries of about 

16mm and 10mm respectively.46, 47 CT angiography can now be performed with relatively low 

radiation doses to non-invasively image coronary artery anatomy,48 but provides no 

hemodynamic information. Despite evidence that hemodynamics, including wall shear stress and 

flow stagnation, are closely linked to inflammation and risk of thrombosis, clinical decisions are 

currently typically made based on anatomy alone. 

This work builds upon recent advances in simulation technology, including sophisticated 

lumped parameter boundary conditions,23, 49, 50 increasing anatomic realism,39 particle tracking,10 
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and virtual surgery optimization.45 Special coronary boundary conditions were applied in 

conjunction with the heart model to model the flow and pressure in the coronaries32, 34, 51. We also 

quantify the effects of flow recirculation in the aneurysm by computing particle residence times at 

locations along both coronary arteries.52 

In this study we quantified hemodynamic parameters of likely clinical relevance for 

assessing the thrombotic risk in a patient with KD, using anatomic data obtained by multi-

detector computed tomography (CT). From simulation results, we obtained the first detailed 

quantitative, time-dependent values of shear stress and residence times using realistic flow 

conditions in a coronary aneurysm caused by KD. We created a virtual control model by 

artificially constructing a model of normal coronary anatomy for the same patient to compare 

normal and pathological hemodynamics. 

 

2.2 Methods 

2.2.1 Subject data 

The subject suffered KD at the age of 3 yrs. and developed giant coronary artery 

aneurysms. Anatomic data were obtained from a clinically-indicated CT angiogram (64-slice CT 

General Electric), acquired in 2006 when the patient was 10 years old. The patient has been 

maintained on warfarin with therapeutic INR between 2.0-2.5 and aspirin (81 mg/day). He 

currently has no ischemic symptoms.  This study was approved by the Institutional Review Board 

at UCSD, and written subject assent and parent consent were obtained for the imaging and 

simulation studies. 

 

2.2.2 Model Construction 

Four steps were performed to construct patient specific three-dimensional geometric 

models from CT image data. These steps were: 1) creation of centerline paths in each vessel of 
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interest, 2) segmentation of the vessel lumen using 2D level set methods, 3) lofting the 2D 

segmentations to create a solid model of the desired vasculature and 4) meshing of the solid 

model using unstructured tetrahedral mesh for use in the finite element flow solver.  Models are 

created using a customized version of the open sourced Simvascular software package53 

(simtk.org). 

A virtually healed control case was created by replacing the aneurysmal regions with 

normal coronary geometry, keeping the rest of the anatomy unchanged. This allowed for direct 

comparison of hemodynamic changes between the normal and pathological states. As the 

aneurysm was located in the proximal coronary region, normal coronary diameters for this patient 

were determined assuming Z-score (normalized diameter) values of 0 and using the  body surface 

area (BSA) of the patient based on the following regression equations.54 

 

where LMCA, pLAD and pRCA represent the left main coronary artery, proximal left anterior 

descending coronary artery and proximal right coronary artery, respectively. The above relations 

were used to prescribe the diameter of the normal coronaries approximately 3-4 cm distal to the 

ostia.  Linear interpolation was used to taper the vessels between this point and normal region 

distal to the aneurysm. The arch anatomy and coronary geometry distal to the aneurysms were left 

unchanged and only the diameter of the proximal aneurysmal regions were changed to the 

corresponding normal values.  The maximum diameters in the aneurysmal regions of the KD 

model were 1.14 cm in the LAD and 1.08 cm in the RCA, which were almost 3 times the normal 

values.   
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2.2.3 Simulation Methods 

A finite element mesh was constructed for each model using the commercial software 

Meshsim (Symmetrix, Inc, Troy, NY). Adaptive meshing was used based on the Hessian of the 

velocity field, with a minimum mesh size of 0.2mm to ensure mesh convergence of the 

solutions.55 Resulting meshes had over 3.5 million elements for both the normal and the KD 

model.  Simulations were run for 6 cardiac cycles until the pressure fields at the inlet and outlet 

did not change more than 1% from the previous cycle. Simulations of 6 cardiac cycles took about 

26 hours to complete on 60 processors. A custom stabilized 3-D finite element Navier-Stokes 

solver was used following our previous work.25 The fluids solver and boundary conditions we 

employ have been thoroughly validated in prior work through in vitro experiments using rigid and 

compliant physical phantoms, with abdominal aortic aneurysm, patent thoracic artery, and 

stenotic thoracic artery geometries. Results have shown good agreement between numerically 

simulated and experimentally measured velocity fields and pressure waveforms in rigid and 

deformable geometries.56, 57 

Blood was modeled as a Newtonian fluid with a density of 1.06gm/cc and dynamic 

viscosity of 0.04 dynes/sq cm for all simulations. We assumed the walls to be rigid in all cases. A 

time step size of 1ms was chosen to satisfy the stability condition.58 In order to prevent 

divergence due to backflow at the outlets of the model, additional stabilization terms were used at 

the outlet nodes in the fluid solver14, 59 acting only during periods of flow reversal. 

 

2.2.4 Boundary Conditions 

Coronary artery downstream boundary conditions are crucial for modeling the physiology 

of the coronary circulation and microcirculation. Coronary boundary conditions are applied at 

each coronary outlet of the model, and standard RCR (Windkessel) boundary conditions60 are 
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applied at the outlets of the aorta and branch vessels.  Details of the boundary conditions and their 

implementations are described below.   

2.2.5 Inlet Boundary Condition 

A typical aortic waveform is applied at the inlet of the aorta (Figure 2.1), as a Dirichlet 

boundary condition. The flow waveform is scaled to match the cardiac output and the heart rate 

of the patient obtained from echocardiographic and clinical data.  

2.2.6 Coronary Boundary Conditions 

Blood flow at the inlet to the coronaries is driven by a combination of the aortic pressure 

and downstream coronary resistance. However, during systole, the distal coronary resistance 

increases substantially due to increasing intra-myocardial pressure resulting from the contraction 

of the heart. The intra-myocardial pressure depends on the aortic flow and ventricular pressures. 

Hence, there is a complex interaction between the flow at the coronary outlets and the aortic flow 

at the inlet, which must be captured accurately by the numerical model.  

 
 

Figure 2.1: Boundary conditions imposed at the inlet (A) and outlet (F) of the aorta, the outlets of the 

aortic branches (B-E), and the outlets of the left and right coronary arteries (a-j), which are coupled to 

the lumped parameter heart model shown.  The waveform shown is imposed on the aortic inlet. 
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A circuit analogy lumped parameter network (LPN) is constructed to model coronary 

flow and pressure (Figure 2.1) following previous work.34 The model is comprised of resistors 

that model the effect of viscosity and downstream pressure, capacitors that model the vessel 

compliance, and a time-varying pressure to model the contracting ventricle.  This model is 

governed by a set of ordinary differential equations with a known analytic solution, as described 

in Appendix I.  This equation is implicitly coupled to the coronary outlet boundaries in the finite 

element solver. 

The LPN coronary model has seven parameters that must be tuned to match clinical and 

literature data. These are the arterial resistance (Ra), microcirculation compliance (Ca), 

microcirculation resistance (Ra-micro), myocardial compliance (Cim), venous microcirculation 

resistance (Rv-micro), venous resistance (Rv) and intra-myocardial pressure (Pim(t)). The 

intramyocardial pressure is determined from the ventricular pressures obtained from a lumped 

parameter heart model, as described in the next section. 

Values of the LPN parameters are first determined for the normal coronary model, and 

the same values are then applied to the KD model.  This choice is justified by the observation that 

the distal coronary geometry is unaffected in the KD case, and the diameter compares well with 

normal values. Our methodology to choose parameter values is detailed in the following 

paragraphs. 

The total coronary flow was assumed to be 4% of the cardiac output of the patient34, 61 

and the flow percentages to the right and left coronaries were chosen to be 40% and 60% of the 

total coronary flow,62 respectively.  The flow split to individual coronary outlet branches in the 

LCA and RCA was weighted according to the outlet areas.  

The total resistance (Ra + Ra-micro + Rv-micro + Rv) at each coronary outlet was initially 

estimated by the ratio of the mean pressure to the mean flow through that vessel, where the mean 
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blood pressure is determined by (SBP + 2*DBP)/3.  SBP and DBP are the systolic and the 

diastolic blood pressure, respectively, as measured in the clinic.  

The relative values of resistances (Ra, Ra-micro, Rv-micro and Rv) and capacitances (Ca and 

Cim) were fixed using literature data.34 The total resistance and capacitance values for the LCA 

and RCA were then tuned over multiple flow simulations such that the total coronary flow 

matched the target values, and the peak systolic to diastolic flow ratio matched typical values for 

normal patients.63 

The detailed derivation of the ODE for the LPN circuit is derived below with Pa(t) and 

Pc(t) representing the nodal pressures and Qa(t) and Qm(t) representing the branch currents as 

shown in Figure 2.2. Also it was assumed in the derivation that Rv = Rv + Rv-micro. The governing 

ODE’s for the LPN is as follows. 

 

Using equations (2), (4) and (5) we obtain, 

  

From equations (2) and (3) we obtain, 

 

Finally from equations (7), (8) and (6) we arrive at the following ODE 

Derivation of Coronary BC equation
- Notes prepared by Dibyendu Sengupta

Figure 1: Coronary BC Circuit

The pressure at each nodes and the flow rates through the branches are labeled in the above circuit.
In the following derivation it is assumed Rv = Rv +Rv−micro

Following are the governing ODE’s for the linear circuit
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dPa

dt
=
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− dPim

dt
=
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Substituting (7) and (8) in (6)

RvRamCimCa
d2Pa

dt2
+ (RvCa +RamC +RvCim)

dPa

dt
+ Pa = (Rv +Ram)Q+RvRamCim

dQ

dt
+RvCim

dPim

dt
(9)

1

Derivation of Coronary BC equation
- Notes prepared by Dibyendu Sengupta

Figure 1: Coronary BC Circuit

The pressure at each nodes and the flow rates through the branches are labeled in the above circuit.
In the following derivation it is assumed Rv = Rv +Rv−micro

Following are the governing ODE’s for the linear circuit

P − Pa = RaQ (1)
dPa

dt
=

Qa

Ca
(2)

Pa − Pc = (Q−Qa)Ram (3)
dPc

dt
− dPim

dt
=

Qm

Cim
(4)

Pc = Rv(Q−Qa −Qm) (5)

From equations (2), (4) and (5) we obtain,

Pc = RvQ−RvCa
dPa

dt
−RvCim

dPc

dt
+RvCim

Pim

dt

⇒ RvC
dPa

dt
= RvQ− Pc −RvCim

dPc

dt
+RvCim

dPim

dt
(6)

From (2) and (3),

Pc = RamCa
dPa

dt
+ Pa −RamQ (7)

⇒ dPc

dt
= RamCa

d2Pa

dt2
+

dPa

dt
−Ram

dQ

dt
(8)

Substituting (7) and (8) in (6)

RvRamCimCa
d2Pa

dt2
+ (RvCa +RamC +RvCim)

dPa

dt
+ Pa = (Rv +Ram)Q+RvRamCim

dQ

dt
+RvCim

dPim

dt
(9)

1

Derivation of Coronary BC equation
- Notes prepared by Dibyendu Sengupta

Figure 1: Coronary BC Circuit

The pressure at each nodes and the flow rates through the branches are labeled in the above circuit.
In the following derivation it is assumed Rv = Rv +Rv−micro

Following are the governing ODE’s for the linear circuit

P − Pa = RaQ (1)
dPa

dt
=

Qa

Ca
(2)

Pa − Pc = (Q−Qa)Ram (3)
dPc

dt
− dPim

dt
=

Qm

Cim
(4)

Pc = Rv(Q−Qa −Qm) (5)

From equations (2), (4) and (5) we obtain,

Pc = RvQ−RvCa
dPa

dt
−RvCim

dPc

dt
+RvCim

Pim

dt

⇒ RvC
dPa

dt
= RvQ− Pc −RvCim

dPc

dt
+RvCim

dPim

dt
(6)

From (2) and (3),

Pc = RamCa
dPa

dt
+ Pa −RamQ (7)

⇒ dPc

dt
= RamCa

d2Pa

dt2
+

dPa

dt
−Ram

dQ

dt
(8)

Substituting (7) and (8) in (6)

RvRamCimCa
d2Pa

dt2
+ (RvCa +RamC +RvCim)

dPa

dt
+ Pa = (Rv +Ram)Q+RvRamCim

dQ

dt
+RvCim

dPim

dt
(9)

1



19 

 

 

From equation (9), using Pa = P – RaQ we arrive at the final equation in Appendix I. 

 

 

 

 

 

 

 

 

2.2.7 Lumped parameter heart model 

The LPN coronary models were connected to a lumped parameter heart model32 on the 

right and left (Figure 2.1) via the intramyocardial pressure. In the heart model, the inductances 

model inertial effects and the diodes model the valves.  The left heart model parameters include 

the left atrial pressure (PLA), mitral valve, atrio-ventricular valvular resistance (RA-V), atrio-

ventricular inductance (LA-V), aortic valve, ventriculo-arterial valvular resitance (RV-art), 

ventriculo-arterial inductance (LA-art) and left ventricular pressure. The left ventricular pressure is 

modeled with a normalized time varying elastance function.31 From the normalized elastance 

function, a patient specific elastance function is computed from the patient’s blood pressure, heart 

rate and cardiac output.  Parameters in the right heart model are similar.  

The intra-myocardial pressure is obtained from the ventricular pressures using 

appropriate weights, as discussed in Appendix I. The parameter values for the heart model are 

chosen to match the pulse pressure and the cardiac output of the patient. The patient had a blood 

pressure of 105/52 and a BSA of 1.16m2 at time of scan. His stroke volume, cardiac output and 
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Figure 2.2: Lumped parameter network for coronary boundary condition 
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BSA were 66.8 mL/sec, 4.1L/min and 1.33m2, respectively one year after the scan, and were 

scaled to the time of scan according to the BSA,64 to be 58mL and 3.4L/min, respectively. The 

corresponding cardiac cycle period and heart rate for the patient were 1.02 sec and 59 beats per 

minute.  These parameters along with the applied aortic flow waveform are used to determine 

patient specific ventricular pressures by solving the lumped parameter heart model circuit 

separately. The differential equations governing the lumped parameter heart model are given in 

Appendix I. 

 

2.2.8 RCR boundary conditions 

RCR boundary conditions were applied at all other outlets to model the remaining 

downstream vasculature. The target mean flow through each outlet was fixed based on the branch 

area.65 The total resistance of all the outlets was calculated as the ratio of mean pressure to mean 

flow.  The relative values of proximal resistance to total resistance were fixed at 15.6%.16 The 

total capacitance values were tuned to match the measured blood pressure of the patient.  

 

2.2.9 Exposure Time Computations 

A high density of massless particles was injected virtually into in the right and the left 

coronary artery vasculature and the particle paths were tracked in the domain following the 

velocity field. As a measure of particle residence time, the average time spent by the particles in 

each mesh element was calculated to provide a means to localize and quantify regions of 

recirculation.  Using this procedure, the time spent by all the particles in each element was 

normalized by the element volume and the total number of particles released, to obtain the 

cumulative exposure time (CET).52 We hypothesize that CET is a clinically significant parameter 

in quantifying recirculation or stagnation in the flow field.  Both vigorously recirculating particles 
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and slow moving particles contribute to CET, as both increase the likelihood of thrombosis in 

regions of separated flow.  Details of the CET formulation are described in Appendix II. 

 

2.3 Results 

Figure 2.3 shows the CT data with giant aneurysms in the right and left coronary arteries 

of the patient and the reconstructed models of both the diseased and the virtually created normal 

coronary artery models. Simulations were performed both with the virtual control normal model 

and the diseased KD model using identical boundary conditions.  

 

2.3.1 Flow and pressure 

Figure 2.4 compares flow and pressure at the outlets of the normal and the diseased 

coronary arteries. Results confirmed that flow at outlets C and D in the LCA and RCA peaks 

during diastole, whereas flow at all other outlets peaks during systole.  Thus the boundary 

conditions have captured the expected physiologic behavior of coronary flow. The high 

intramyocardial pressure during systole impeded the systolic flow through the coronary arteries 

while the low intramyocardial pressure during diastole maintained a high diastolic flow through 

them. The flow and pressure waveforms (Figure 2.4) and mean values (Table 2.1) in the LCA and 

RCA for the normal and KD cases were nearly identical. The minimum and maximum aortic 

pressures obtained from the simulation were 106 mmHg and 49 mmHg, which compared well 

with the patient blood pressure of 105/52 mmHg. 

 

 



22 

 

 

 
Figure 2.3: Image data and model construction for a 10-year old KD patient: A) Three-dimensional 

reconstruction of CT data showing giant aneurysms of the proximal right (arrow) and left main and 

proximal left anterior descending (arrowhead) coronary arteries B) Four steps of model construction are 

a) Creating paths, b) Creating segmentations, c) Lofting geometry and d) Meshing C) KD patient 

specific model (left) and virtual control constructed from the same data (right). 
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Figure 2.4: Flow and pressure waveform comparison for the normal and KD model over one cardiac 

cycle at different outlets.  The aneurysmal geometry results in no significant changes to aortic or 

coronary flow and pressure compared to the normal case. 

 

!"

#

$
%

&"

!"

#

$
%

&"

'()*+,"

-%"

'()*+,"

-%"

! "#!"$
%!

""!

&'()*'+,+-+./,0/(*1),234

5
(/
3
3
6
(/
,2
7
7
8
9
4

! "#!"$
%!

""!

&'()*'+,+-+./,0/(*1),234

5
(/
3
3
6
(/
,2
7
7
8
9
4

! "#!"$
%!

""!

&'()*'+,+-+./,0/(*1),234

5
(/
3
3
6
(/
,2
7
7
8
9
4

! "#!"$
%!

""!

&'()*'+,+-+./,0/(*1),234

5
(/
3
3
6
(/
,2
7
7
8
9
4

! "#!"$
%!

""!

&'()*'+,+-+./,0/(*1),234

5
(/
3
3
6
(/
,2
7
7
8
9
4

! "#!"$
!"!

%&!

'()*+(,-,.,/0-10)+2*-345

6
/2
7
-3
,
,
84
5

! "#!"$
!"

%&

'()*+(,-,.,/0-10)+2*-345

6
/2
7
-3
,
,
84
5

! "#!"$
!#"

!#%

&'()*'+,+-+./,0/(*1),234

5
.1
6
,2
+
+
73
4

! "#!"$
!#%

!#&

'()*+(,-,.,/0-10)+2*-345

6
/2
7
-3
,
,
84
5

! "#!"$
!"!

"%!

&'()*'+,+-+./,0/(*1),234

5
.1
6
,2
+
+
73
4

!"#$% &'())*'(%

+,-./%0%

#1/-./%2%

#1/-./%3%

#1/-./%4%

#1/-./%(%



24 

 

2.3.2 Velocity 

The velocity in the left coronary, left circumflex and the left anterior descending artery 

was maximum during diastole even when the velocity in all the other branches was much lower 

(Figure 2.5). Velocity in the aneurysms of both the left and right coronaries remained persistently 

low throughout the cardiac cycle when compared to that of the normal coronary simulation. The 

flow pattern also exhibited substantial recirculation in the aneurysms. 

 

Table 2.1: Flow data in LCA and RCA for the normal and KD simulations 

 Mean LCA 
flow 

throughout the 
cardiac cycle 
(% of cardiac 

output) 

Mean RCA 
flow 

throughout the 
cardiac cycle  
(% of cardiac 

output) 

Total coronary 
flow 

throughout the 
cardiac cycle 
(% of cardiac 

output) 

Mean LCA 
flow 

throughout the 
cardiac cycle 
(% of total 

coronary flow) 

Mean 
RCA flow 
throughout 
the cardiac 

cycle 
(% of total 
coronary 

flow) 
Normal 2.52 1.70 4.22 59.71 40.29 

KD 2.76 1.72 4.48 61.60 38.40 
 

 
Figure 2.5: Comparison of volume rendered velocity at different points in the cardiac cycle for the KD 

and normal models.   Flow stagnation is evident in the KD model throughout the cardiac cycle. 
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 Table 2.2: WSS and OSI values in normal and KD models 

 WSS (dynes/ sq cm) OSI 
 Mean Max Min Mean Max Min 

LAD: KD 3.81 4.52 0.05      0.090       0.430 0.004 
LAD: Normal 27.15 40.10 11.36 0.002 0.080 0.000 

RCA: KD 2.95 5.43 0.05 0.083 0.420 0.007 
RCA: Normal 17.10 39.64 6.70 0.001 0.070 0.000 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

2.3.3 Wall Shear Stress 

Wall shear stress and oscillatory shear index66 (OSI) contours are shown in Figure 2.6 

and Figure 2.7 respectively.   There was a significant reduction in WSS in the aneurysmal parts 

due to flow recirculation and stagnation (Figure 2.6). Values of OSI range from 0 in undisturbed 

flow with unidirectional shear stress vectors to 0.5 with disturbed flow and oscillatory shear stress 

vectors. Flow recirculation led to high values of OSI in the aneurysmal region compared to the 

normal coronary arteries where the OSI was almost zero throughout the length of the cardiac 

cycle (Figure 2.7). Thus the aneurysmal regions are accompanied by a highly oscillatory and low 

 

Figure 2.6: Comparison of WSS at different points in the cardiac cycle for the KD and 

normal models. 
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shear stress compared to the normal model.  The time-varying WSS for the normal and KD cases 

are shown in Figure 2.8 for several locations along the length of the LAD and RCA. WSS values 

varied significantly from the proximal aneurysmal to the distal normal locations throughout the 

cardiac cycle. By comparison, in the aneurysmal parts of the KD model, the WSS values were 

nearly an order of magnitude lower than in the normal model. Distal to the aneurysm, there was  

 

 

 

 

 

 

 

 

 

little difference between the KD and normal WSS curves, confirming that the effect on WSS in 

the KD case is locally confined.  Values in the simulated normal coronary artery models were in 

the range of previously reported normal values.67-69 A comparison of WSS at different locations 

in the KD model showed a significant jump from the aneurysmal to the distal region. (Figure 2.9) 

The mean, maximum and minimum values of WSS and OSI  in the aneurysmal regions in 

the LAD and RCA of the KD model are presented in Table 2.2. The corresponding values in the 

similar regions of the normal model are also shown. The WSS and OSI values in the normal 

coronary arteries are about an order of magnitude higher than in the KD model.  The OSI in the 

normal model is nearly zero indicating nearly unidirectional floFigure 2.10 compares the spatial 

and temporal mean WSS and the lumen radius along the length of the RCA and LAD between the 

KD and the normal model. Distal to the aneurysmal region in the KD model, there is a sudden 

 

Figure 2.7: Comparison of OSI between the KD and normal models.    
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narrowing of lumen diameter back to normal value. WSS gradients, which are a measure of the 

two-dimensional stretch of endothelial cells lining the arterial wall are also computed.  Figure 

2.11 quantifies the spatial and temporal mean WSS, WSS gradients and OSI  vs. radius along the 

length of the RCA and LAD in the KD model. Due to the narrowing of the lumen radius in the 

regions distal to the aneurysms, there was a sharp increase in WSS gradient and a drop in OSI. 

The average WSS gradient increased from 5.50 dynes/cm3 and 4.85 dynes/cm3 in the aneurysmal 

regions of the LAD and RCA, respectively, to 17.50 dynes/cm3 and 25 dynes/cm3 at the outlets of 

the aneurysms. The WSS gradient in the normal coronary artery model over the same region did 

not fluctuate much, with values of 18.5 dynes/cm3 in the LAD and 24.40 dynes/cm3 in the RCA.  

 

2.3.4 Particle Tracking 

Particle tracking simulations performed in the LCA and RCA of the KD model revealed 

that about 32% of the particles remained in the LCA and 28% remained in the RCA after the first 

cardiac cycle.  Nearly all the particles were flushed out of the domain after 5 cardiac cycles. By 

comparison, the corresponding simulations performed on the model with normal coronary arteries 

revealed that only 6% of the particles remained in the LCA and 11% of the particles remained in 

the RCA after the first cardiac cycle and all particles in both the LCA and RCA were completely 

flushed out within just 1.3 cardiac cycles. 
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Figure 2.8: Comparison of time varying and spatially averaged WSS for the KD and normal models at 

different locations in the RCA (left column, Boxes D-F) and LAD (right column, Boxes A-C) 
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Figure 2.9: Comparison of the time varying and spatially averaged  WSS magnitude within the KD 

model at different locations in the LAD (right, Boxes A-C) and RCA (left, Boxes D-F). 
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The cumulative exposure time (CET) plots at different locations throughout LAD and 

RCA are shown in Figure 2.12.  In the aneurysmal region, the CET was high (indicated by red) 

and progressively decreased with sudden decrease of radius and increasing velocity. We 

confirmed an inverse relationship between magnitudes of CET and velocity.  Figure 2.13 

illustrates the variation of average CET with the lumen radius indicating that the aneurysmal 

region had a higher CET compared to the distal region. Increasing CET values along the length of 

the coronaries also correlated with decreasing WSS values, with correlation coefficients of -0.64 

(RCA) and -0.50 (LAD) while decreasing WSS values correlated with larger lumen radius with a 

correlation coefficient of -0.86 (RCA) and -0.77 (LAD) (Figure 2.12). The higher values of CET 

and lower values of WSS indicated substantial flow recirculation in the aneurysmal regions. 

 
Figure 2.10: Comparison of mean WSS (top row) and Lumen Radius (bottom row) for the KD and 

normal models along the LAD (right) and RCA (left). In all the plots, variation of parameters are 

obtained from points a to b in the LAD and c to d in the RCA, where distance is measured along the 

vessel centerline from the ostium. 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Distal to the aneurysm, as the WSS suddenly increased, the CET also decreased, as shown in the 

correlation plots.  

 

2.4 Discussion 

We report the first patient-specific, finite element simulations using custom boundary 

conditions incorporating clinical data to characterize hemodynamics in aneurysms caused by KD. 

 
Figure 2.11: Variation of WSS and lumen radius for the KD model in the LAD (top, right) and RCA 

(top, left), variation of WSSG  and lumen radius for the KD model in the LAD (middle, right) and RCA 

(middle, left) and variation of OSI and lumen radius for the KD model in the LAD (bottom right) and 

RCA (bottom left). In all the plots, variation of parameters are obtained from points a to b in the LAD 

and c to d in the RCA, where distance is measured along the vessel centerline from the ostium. 
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Simulations revealed highly altered hemodynamic conditions and permitted direct comparison 

with a virtual control case based on the same patient. 

Simulation methods provide a powerful means to obtain quantitative measures of 

potentially relevant clinical parameters that cannot be readily obtained by conventional imaging 

modalities. We have demonstrated that modeling with LPN boundary conditions produces 

realistic physiologic flow conditions in the coronary arteries, and that these simulations can 

provide detailed quantitative data for an individual KD patient. As expected, the presence of 

aneurysms in our model did not affect the global blood flow and pressure waveforms, since 

coronary artery resistance is dominated by the distal coronary circulation.  However, local 

parameters related to thrombus formation were strongly affected.  Quantitative comparisons of 

WSS, WSS gradients, OSI, and particle residence times in aneurysms were made between the KD 

and normal models under physiologic flow conditions.  Results showed that WSS is decreased, 

while WSS gradients, OSI, and residence times are increased in the aneurysmal regions, which is 

expected due to the sudden increase of lumen radius. These are consistent with increased risk of 

thrombus formation and inflammation. Although, these results are qualitatively intuitive, the 

current framework provides a means of quantifying these hemodynamic parameters accurately in 

a patient-specific setting. 

WSS levels were an order of magnitude lower in the aneurysmal region of the KD model 

compared to the normal model, which were in the range of values previously reported.67-69 

Experiments using rabbit endothelium demonstrated that reduced levels of WSS varying from 

0.77 to 2.79 dynes/sq cm were associated with thrombus formation.70 Further, results from 

experiments in parallel plate flow chambers revealed that low shear stress values of 4 dynes/ sq 

cm induced extensive platelet aggregation.71 The mean WSS values for our aneurysm model 

(2.95-3.81 dynes/sq cm) may well be in a range associated with thrombotic risk.  In vitro 
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experimentation to correlate WSS levels with likelihood of thrombosis should be a subject of 

future investigation. 

 

Compared to the normal model, OSI was an order of magnitude higher in the aneurysmal 

region of the KD model, indicating increased flow recirculation. In vivo studies using porcine 

aorta demonstrated that disturbed flow (presumably with elevated OSI) leads to a 

 
Figure 2.12: Velocity (top row) and CET (lower row) at different slices in the RCA (left) and LAD 

(right).   Areas of high CET (red) correlate with areas of lower velocity (blue).   
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proinflammatory transcription profile in endothelial cells.72 Additional in vitro studies using 

bovine endothelial cells revealed that slowly oscillating (1 Hz) shear stress with an amplitude of 3 

dynes/sq cm (equal to the upper limit of OSI of 0.5) induced expression of monocyte 

chemoattractant protein-1 and increased binding of monocytes to the endothelium.73 Average OSI 

values (0.08-0.09) in the aneurysmal regions in our simulations were elevated compared to the 

values in the normal model, which were uniformly zero in the corresponding region. These 

studies suggest that the combination of these slightly elevated OSI values in the KD model 

together with low shear values of may create conditions sufficient to elicit an inflammatory 

response and thrombosis.  
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Results demonstrated that WSS gradients are elevated at the outlet of the aneurysm. 

Previous work examining WSS gradients has shown that high gradients result in the upregulation 

of inflammatory markers74 in endothelial cells, as well platelet aggregation leading to 

thrombosis.75 In vitro experiments demonstrated that localized thrombosis is accompanied by an 

increase in WSS from 9.6 dynes/sq cm to over 20.4 dynes/sq cm.75 This compares favorably to 

the increase in WSS values from the body of the aneurysm to the outlet in the KD model (3.81 

 
Figure 2.13 Variation of CET and lumen radius for the KD model in the LAD (top right) and RCA (top 

left), correlation of CET and mean WSS for the KD model in the LAD (middle left) and RCA (middle 

right) and correlation of lumen radius and mean WSS for the KD model in the LAD (bottom left) and 

RCA (bottom right). In all the plots, variation of parameters are obtained from points a to b in the LAD 

and c to d in the RCA, where distances is measured along the vessel centerline from the ostium. 
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dynes/sq cm to 12.60 dynes/sq cm in LAD and 2.95 dynes/sq cm to 14.20 dynes/sq cm in RCA). 

The simulated levels of WSS and WSS gradient values support the clinical observation that the 

aneurysms are prone to thrombosis and inflammation.9 

Particle tracking simulations revealed that 30% of particles re-circulated in the coronary 

aneurysm for at least one full cardiac cycle, with some particles remaining in the domain for as 

long as 5 cardiac cycles.  This is significantly longer than in the normal coronary artery model, in 

which all particles were washed from the domain within 1.3 cardiac cycles. CET values, a 

measure of re-circulation time, were approximately 1.3−2.0 times higher in the aneurysmal 

region. High values of CET also correlated with regions of low WSS, again suggesting a high risk 

for thrombosis in these regions. In vitro measurements of particle recirculation and residence 

times are difficult to perform due to several factors including inaccurate quantification of the 

number of particles in the model, rapid washing out of particles from the domain, difficulties in 

accurate measurement of dye recirculation times, and challenges in uniformly seeding the 

particles without altering the flow field.76 However, in the present computational method, these 

problems can be overcome and an accurate representation of the in vivo behavior can be obtained. 

The primary focus of this work was to investigate hemodynamic parameters such as 

WSS, WSSG, OSI and CET that could inform physicians about risk of thrombus formation and 

vessel wall inflammation in specific patients. Data from autopsy studies of KD patients 

demonstrate that thrombosis of aneurysms associated with inflammation in the arterial wall is 

common.77 In patients with giant aneurysms such as our subject, there is consensus that systemic 

anticoagulation reduces morbidity and mortality.9 However, in patients with smaller aneurysms 

(<8mm), management decisions are less straightforward. The AHA guidelines for the 

management of KD patients with coronary artery aneurysms were only based on Level of 

Evidence C (expert opinion, case studies, or standard of care).8 In addition, there are no 

quantitative data indicating how the actual shape of the aneurysm affects the clinical risk of 
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thrombus formation.  The same techniques presented here could also be applied to patients with 

smaller aneurysms with a range of shapes. Using this framework, simulated perturbations can be 

made in the coronary anatomy to systematically study the effects of specific geometric changes 

on the hemodynamics.  Hence these techniques could provide a framework for evaluating how 

the size and shape of coronary aneurysms affect the hemodynamics, which would be useful in 

risk stratifying patients and choosing optimal treatment strategies. Furthermore, these same 

techniques could also be applied to evaluate coronary artery hemodynamics based upon the 

anatomic data in patients with other coronary artery pathologies. 

Limitations of this work include the assumption of a Newtonian fluid, which could be 

addressed in future work by implementation of non-Newtonian models78 or multiscale modeling 

of clot formation to predict onset of thrombus.79 An additional limitation is the assumption of 

rigid arterial walls in the simulation, which does not account for the significant motion and 

curvature changes of the coronary arteries during the cardiac cycle. In addition, the effect of 

calcium accumulation in the arterial wall that is a frequent sequelae of the inflammation was not 

considered in our model.80 This could be addressed in future work through the use of fluid 

structure interaction  methods, which could be extended to incorporate variable properties of the 

vessel wall including calcification.81 There are limited data on flow split percentages to the left 

and right coronary arteries and the relationship of the intra-myocardial pressures to the left and 

right ventricular pressures, and these are possible minor sources of error.  For validation of these 

models, it may be possible to use MRI with phase-contrast imaging to measure coronary artery 

flow. 

In summary, we have utilized patient-specific data to create a simulation framework that 

allows assessment of velocity, WSS, WSS gradients, OSI and CET.   Future application of this 

technique will include modeling the effects of arterial wall calcification and aneurysm shape and 

location on flow dynamics, assessing patient-specific risk for thrombosis, and planning 
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interventions including stent placement and bypass grafting. This work presents a step towards 

developing such a framework. 
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Chapter 3 

3. Patient specific modeling of multiple Kawasaki Disease patients with coronary 

aneurysms and comparison with clinical outcomes 

3.1 Introduction 

In chapter 2 we observed that simulations can provide critical hemodynamic information 

linked to thrombotic risk, including wall shear stress (WSS), particle recirculation time, and 

oscillatory shear index (OSI), which are difficult or impossible to obtain from standard imaging 

modalities. Simulations have been used extensively in other clinical applications such as 

congenital heart disease12, 39, 82, 83, abdominal aortic aneurysms16, cerebral aneurysms84-86, virtual 

surgery optimization45 and coronary artery bypass grafts15, 87 and there has been growing recent 

interest in the use of simulations as a diagnostic tool in the coronary arteries88. The study in 

chapter 2 also demonstrated that custom downstream coronary boundary conditions, along with a 

lumped parameter heart model31, 34 effectively captured the physiologic coronary circulation. 

Further, it was shown that the presence of aneurysms did not produce significant changes in the 

global flow and pressure waveforms.  However, order of magnitude changes in local 

hemodynamic quantities, including wall shear stress, wall shear stress gradients, oscillatory shear 

index, and particle residence times were observed.  

Coronary aneurysm shape varies greatly among patients, and can be saccular, fusiform, 

or have a string-of-pearls appearance. While aneurysms can be imaged to obtain detailed 

anatomical information, there are currently no available clinical tools to predict the risk of 

coronary artery thrombosis or myocardial infarction. Imaging flow in the coronary arteries non-

invasively using phase contrast magnetic resonance imaging (MRI) is possible, but is technically 

challenging because the coronary arteries are small and mobile, with maximum displacements in 

the right and the left coronary arteries of about 16mm and 10mm respectively46, 47. CT 

angiography can now be performed with relatively low radiation doses to non-invasively image 
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coronary artery anatomy48, but provides no direct hemodynamic information.  Limited flow 

information can be obtained invasively through cardiac catheterization, but this is typically 

limited to global flow and pressure waveforms.  It is therefore desirable to obtain the missing 

hemodynamic information through the use of patient-specific simulations.  

In this chapter, we applied patient specific modeling to a cohort of five KD patients with 

aneurysms and one KD patient with normal coronary arteries. This work incorporates recent 

advances in simulation technology, including sophisticated lumped parameter boundary 

conditions89, increasing anatomic realism51 and particle tracking10. An iterative tuning algorithm 

was developed to match patient specific clinical parameters for the boundary conditions. We 

calculated key hemodynamic quantities that are postulated to be surrogates for thrombotic risk 

and compared these hemodynamic measurements with patient outcomes, including incidence of 

thrombosis and myocardial infarction. We also compared conditions among aneurysms of 

different shapes from more saccular to more fusiform. This comparison uncovered surprising and 

non-intuitive relationships between aneurysm diameter, the currently accepted standard for 

treatment decisions, and hemodynamic quantities linked to thrombus formation. Our results show 

that large anatomical differences, even in aneurysms with the same maximum diameter, can lead 

to drastically different hemodynamic conditions, and likely different thrombotic risk. These data 

suggest that patient-specific computational analysis based on CT imaging could be used to 

construct a clinical index to risk-stratify patients. 

 

3.2 Methods 

3.2.1 Subject Data 

Six KD patients were modeled in this pilot study, of whom five had coronary aneurysms 

(A-E) and one (F) did not, and served as the control.  A brief clinical history was collected for all 

patients (Table 3.1), and clinical data used for simulations was obtained at or near the time of the 
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performance of the CT angiogram that was used for the patient specific modeling (supplemental 

Table 3.1). Patient-specific geometry was obtained from clinically-indicated CT angiograms, with 

patient A-D and F imaged at UCSD (CT750 HD 64-slice CT scanner, GE Medical, Milwaukee, 

WI), and patient E imaged at Sechenov First Moscow State University (Aquilion ONE 320 slice 

CT scanner, Toshiba, Tokyo, Japan). This study was approved by the Institutional Review Board 

at UCSD and First Moscow State University, and written subject consent or assent and parental 

consent were obtained as appropriate for the imaging and simulation studies. 

 

                           Table 3.1:  Clinical Data collected for patients A-F. 
 

 

Patient 
ID  

Blood 
Pressure 
(mmHg) 

Cardiac 
Output 
(L/min) 

Stroke 
Volume 

(mL) 

Heart 
Rate 

(bpm) 

Body 
Surface 

Area (m2) 
A 105/52 3.4 58.00 59 1.16 
B 108/67 4.9 83.20 59 1.79 
C 140/82 5.5 91.67 60 2.10 
D 96/57 5.2 112.80 46 1.97 
E 90/55 4.3 41.00 105 0.76 
F 123/81 3.8 90.47 42 1.70 
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3.2.2 3D Anatomical Models 

Patient-specific 3D anatomic models were constructed from the CT image data using a 

customized version of the open source Simvascular software package following our previous 

work51. Three steps were used to reconstruct 3D geometric models from the CTA: (i) creation of 

centerline paths for vessels of interest (ii) segmentation of the vessel lumen through a 

combination of pixel intensity thresholding and level set methods, and (iii) lofting the 

segmentations to construct a final 3D model. Anatomy in the models included all left and right 

coronary artery branches resolved in the image data, the ascending and descending aorta, and the 

subclavian arteries. Figure 3.1 shows the reconstructed models for all patients. Patient D had an 

occluded right coronary artery and the RCA was excluded from the model as no contrast filling 

was observed in the CT image data. A finite element mesh was constructed for each patient 

specific model using the commercial software Meshsim (Symmetrix, Inc, Clifton Park, NY). We 

employed mesh adaptation with Hessian-based error estimators with an average mesh size of 

approximately 0.2mm to ensure mesh convergence55 and resulting meshes had on average over 3 

million elements. 

 

 
Figure 3.1: Patient specific models constructed from CT image data for KD patients with aneurysms 

(A-E) and one without (F). 
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3.2.3 Simulation Methods 

Blood flow dynamics are governed by the following strong form of 

the Navier-Stokes equations:  

 

where Ω represents the 3D domain, ρ is the density if blood, v is the blood velocity, p is the 

pressure, n is the normal to the vessel wall, τ is the stress on the wall, f are the body forces 

(neglected here), t represents time and x denotes space. The Neumann and Dirichlet boundaries 

are denoted by ∂hΩ and ∂gΩ respectively, and the values of the traction and velocity are denoted 

by h and g respectively. 

 The corresponding weak form is given by 

 

 

Blood flow simulations were run with a custom finite element Navier-Stokes solver. The 

flow solver uses the second order accurate generalized alpha method for time discretization, and 

spatial stabilization is achieved utilizing a SUPG method, enabling the use of linear finite 

elements90. A custom linear solver in the finite element solver combined the generalized 

minimum residual and conjugate gradient methods with a resistance-based preconditioner for 

improved efficiency.  Blood is modeled as a Newtonian fluid with density 1.06g/cc and a 

dynamic viscosity of 0.04 dynes/cm2, and walls are assumed to be rigid, though we use 

capacitance elements in each of the outlets to capture the global effect of wall compliance. 

Simulations were run for 6 cardiac cycles, at which time the cycle-to-cycle variations in the 

pressure field were less than 1%. Additional backflow stabilization terms acting only during the 
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periods of flow reversal were used to prevent simulation divergence due to backflow following 

our recent work51. 
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                                                Figure 3.2: Lumped parameter boundary condition. 
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3.2.4 Boundary Conditions 

The choice of boundary conditions is critical in hemodynamics simulations, and this is 

particularly true for coronary arteries since pressure and flow waveforms are out of phase due to 

changing resistance during cardiac contraction. In addition, measuring coronary flow directly 

with phase contrast MRI remains an area of active research, so that a patient specific flow 

waveform cannot be applied directly at the coronary inflow boundary. To properly model 

coronary physiology, specialized lumped parameter boundary conditions are applied at the outlets 

of the coronary arteries, following the work of Kim et al32, 34 using the coupled multidomain 

method25 and applied by our group in a case study of KD51. 

At the aortic inflow face, a volumetric flow waveform (i.e. Dirichlet boundary condition) 

was applied. For patients C and D, the aortic flow waveform was obtained from phase contrast 

MRI measurements and directly imposed on the aortic inflow face. For all other patients, a typical 

aortic waveform was scaled to match the cardiac output and heart rate of the respective patients.  

At all coronary outflow faces, lumped parameter coronary boundary conditions are 

applied, which are coupled to a lumped parameter heart model. The lumped parameter coronary 

circulation model (Figure 3.2) consists of resistors and capacitors that model the viscous and 

compliance effects of the coronary arterial bed. The ordinary differential equation (ODE) 

governing this circuit and analytic solution for the ODE is derived in the previous chapter. The 

corresponding analytic solution for the ODE is given in Appendix I. 

The equation is coupled monolithically, as a Neumann boundary condition, to the 3D 

domain using the coupled multidomain method, introduced by Vignon et al25 and following the 

work of Kim et al. 

The lumped parameter heart model (Figure 3.2) contains resistors, inductors, diodes, and 

time varying elastance functions modeling the viscous, inertial and contractive effects of the 

myocardial muscles and the valves. The heart model is used off-line to solve for the myocardial 
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pressure, which is then imposed in the lumped parameter coronary network to drive changes in 

vascular resistance with cardiac contraction. The boundary condition parameter values are tuned 

to match the patient specific clinical data shown in Table 3.1, details of which are outlined in the 

following section. In all models, the total coronary bed resistance was tuned such that mean 

coronary flow was approximately 4% of the total cardiac output. Left and right coronary artery 

resistances were then tuned so that the right/left flow split was approximately 40%/60% of the 

total coronary flow62. Resistances of the individual coronary outlets were then weighted to be 

inversely proportional to the outlet area of each vessel. Capacitance values were chosen to match 

previously reported resistance to capacitance ratios for the coronary arteries34, 51, 91. Parameter 

values were iteratively tuned by running successive hemodynamic simulations until the target 

patient blood pressure, the assumed flow splits in the coronary arteries, a the target ratio obtained 

from the literature63 between the systolic and diastolic peak in the coronary flow waveform were 

obtained. The coupled coronary and lumped parameter heart models captured the typical 

physiologic flow features of the coronary circulation, with maximum flow during diastole and 

minimum flow during systole, which is especially pronounced in the left coronary artery. 

At all other outlets, i.e. the aorta and subclavian vessels, Windkessel RCR boundary 

conditions were applied25, 60. Resistances were estimated as the ratio of mean pressure to mean 

flow, using patient blood pressure as a target value. The relative resistance values at different 

outlets, as well as ratios of proximal to distal resistances and capacitance values were tuned to 

match patient specific blood pressure measurements and literature data as in the previous chapter. 

 

3.2.5 Choice of patient specific parameters 

 The choice of patient specific parameters for the boundary condition is crucial in the 

coronary simulation on a patient-specific model. In order to match the patient specific clinical 

parameters, a tuning algorithm is used which will be described in this section. The tuning 
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algorithm is a combination of 0D tuning without performing CFD simulations and 0D-3D tuning 

by subsequently performing CFD simulations on the entire coronary vasculature. This kind of 

approach reduces the time for tuning the boundary condition parameters in coronary simulations. 

 The left and the right ventricular pressures are first computed for generating the 

intramyocardial pressure (Pim). In order to generate the ventricular pressure, offline 0D MATLAB 

scripts are used to solve the heart model circuit as shown in Figure 3.2. In order to compute the 

left ventricular pressure, the patient’s stroke volume, end systolic volume, end diastolic volume, 

heart rate, cardiac output and the blood pressure are used from the clinical records. The set of 

ODE’s as shown in Appendix I are then solved using the MATLAB script by assuming a 

normalized elastance function given by Senzaki et al31. The normalized elastance function is 

scaled by the patient’s heart rate and the ratio of patient’s ventricular pressure and ventricular 

volume. The left atrial pressure (PLA) in the heart model circuit is tuned to match the patient’s 

maximum blood pressure. The cardiac cycle period is proportional to the inductance, LAV and it is 

tuned to match the patient’s heart rate. The rest of the circuit components including the 

resistances (RAV and RV-art) and the inductance (LV-art) are tuned to match the end systolic and end 

diastolic volume of the patient. A typical simulated ventricular pressure and pressure-volume 

loops are shown in Figure A1. A code snippet for ventricular ejection along with the relevant 

ODE and valve open/close testing functions are provided in appendix I.  

 The next step after generating the ventricular pressure is to obtain the RCR parameters 

for the non-coronary outlets in the patient specific model. In order to obtain the correct RCR 

parameters, another MATLAB script is used which is given in Appendix I. Correct RCR 

boundary conditions are critical in achieving accurate patient blood pressure in the CFD 

simulations.  Three parameters in the MATLAB are tuned to achieve this – res_scale, cap_scale 

and ratio. The overall total resistance obtained by the ratio of mean patient blood pressure and the 

mean patient flow rate is used as a first guess to tune the res_scale parameter. The other two 
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parameters, cap_scale and ratio are subsequently tuned to change the time constant (τ = RDC) of 

the circuit and match the difference between the patient’s maximum and minimum blood pressure 

to the estimated difference between the minimum and maximum pressure from simulation. The 

res_scale parameter is eventually changed to scale the simulated pressure to match the clinical 

blood pressure of the patient. The resistances and capacitances at individual outlets are weighted 

according the area of each outlet. The script also generates the “rcrt.dat” which is required by 

CFD flowsolver. 

 The final step in the process of generating the boundary condition parameters file is the 

creation of the “cort.dat” which is essential for running coronary flow simulations using the 

finite element flowsolver. As described in the previous section, the total coronary flow is targeted 

to be 4% of the cardiac output34, 51 and the left and right flow split in the coronaries is assumed to 

be 60% and 40% respectively51 yielding a total flow of 2.4% of the cardiac output in the left and 

1.6% of the cardiac output in the right coronary arteries. Furthermore, a target systolic to diastolic 

peak flow ratio of 0.37 (±0.12) in left coronary and 0.97 (±0.58) in right coronary are assumed 

following the work of Marcus et al63. The intramyocardial pressure (Pim) used in the left and right 

coronary outlets is calculated from the ventricular pressures as discussed in Appendix I. The 

parameters in coronary boundary condition tuned based on these clinical parameters. Two 

separate MATLAB scripts are used to solve the 0D LPN for the coronaries – one for the left and 

the other for the right, each of which produces the file “cort_lca.dat” and “cort_rca.dat” which 

is finally merged into “cort.dat” used in the CFD solver. An example script is provided in 

Appendix I for estimating the parameters for the left coronary circuit. The important parameters 

used for tuning the flow through the coronary outlets are – res_scale, cap_scale_cim and 

cap_scale_ca. The res_scale is used for tuning the overall flow percentage in the left or the right 

coronary. After achieving the desired flow percentage, the parameters for capacitance scaling 
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cap_scale_cim and cap_scale_ca are used to obtain the desired shape of the coronary flow 

waveform by tuning for the target systolic to diastolic peak flow ratio. 

 After generating the “rcrt.dat” and “cort.dat”, patient-specific CFD simulations are run 

for the 3D-0D coupling in a parallel environment. Typically, the boundary condition parameter 

values obtained directly from the 0D MATLAB scripts, over-predicts the actual pressure as 

obtained from the 3D CFD simulations due to the non-linear terms present in the Navier-Stokes 

equations. While, the flow in the coronaries are usually under-predicted by the 0D code and CFD 

simulations reveal a higher flow percentage than the desired value. Hence, the boundary 

conditions are further tuned using the same MATLAB scripts by increasing the resistance for the 

RCR and lumped parameter coronary circuits. Multiple 3D simulations are run in this manner 

until the desired patient-specific clinical parameters are obtained.  

The mesh size for a typical patient-specific simulation is about 4 million and it is 

computationally very expensive to perform multiple CFD simulations to estimate correct 

parameters for the LPN. However, using this approach of estimating LPN parameters by 

separately solving the 0D equations without considering the 3D CFD equations, one can greatly 

reduce the number of simulations needed to obtain the desired boundary condition parameters. 

Typically, the target LPN parameters are obtained within three CFD runs using this approach. 

Each CFD run usually takes about 36 hours to complete on 64 processors.   

 

3.2.6 Lagrangian Particle Tracking 

Particle residence times were quantified using Lagrangian particle tracking. A high 

density of mass-less particles was released in the proximal region of each coronary vessel and 

particles were tracked over multiple cardiac cycles. Particles were assumed to be massless, and 

effects of diffusion were neglected owing to the short residence time of the particles in the 

computational domain. The advection scheme used a Runge–Kutta– Fehlberg integration 
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algorithm with a maximum error tolerance of 105 and linear interpolation of the velocity data in 

space and time.  As a measure of blood flow stagnation and recirculation, two quantities were 

calculated from simulations. First, we computed the percentage of particles remaining in the 

coronary vasculature after one, five and ten cardiac cycles.  Second, we computed the total 

number of cardiac cycles required for all particles to completely wash out of the coronary vessels. 

Increased values of these two parameters indicate high recirculation time and flow stagnation, 

which is hypothesized to be linked to a higher risk of thrombosis. 

 

3.2.7 Geometric Parameters and Aneurysm Shape Index 

Three geometric parameters were determined from the patient specific models.  The first 

was the maximum aneurysm diameter.  The second was an aneurysm shape index, which we 

defined to classify aneurysm geometries on a continuous scale from more saccular to more 

fusiform. A representative aneurysm length was defined as the ratio of total aneurysmal volume 

to maximum aneurysmal area. The total aneurysm volume included all regions in the coronary 

arteries in which the diameter was greater than a Z-score value of zero. The aneurysm shape 

index was then defined as the non-dimensional ratio of the aneurysm length to the maximum 

aneurysmal diameter. A high aneurysm shape index indicates a more fusiform shape, while low 

shape index value indicates a more saccular shape.  The third, aneurysm sphericity (Ψ), was 

defined using the following equation: 

  

where V is the aneurysm volume and A is the surface area. Low aneurysm sphericity indicates a 

more fusiform shape while higher aneurysm sphericity indicates a more saccular shape, where Ψ 

= 1 is a perfect sphere. 

 

Ψ =
π

1
3 (6V )

2
3

A
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3.2.8 Hemodynamic parameters: 

 In addition to particle tracking, several additional hemodynamic parameters were 

computed, including WSS, WSSG, and OSI. Wall shear stress is computed in a post-processing 

step from the velocity and pressure fields of the Navier–Stokes solution. Rearranging the weak 

form in equation (1), with velocity and pressure solutions vi = ∑A NAvi
A and p = ∑A NAp we have 

The weighting function, w is non-zero only at the surfaces where the WSS is to be computed. 

Choosing w to be the surface shape functions, we solve for the boundary tractions.  

 Two additional quantities of interest are derived from the WSS solution, τ(x,t). First, OSI 

is defined as 

 

 

and is an indicator of the directionality of the flow66. OSI has minimum value of 0, corresponding 

to uni- directional traction, and maximum value of 0.5, corresponding to zero mean traction with 

equal time spent in both directions. 

 

Wall shear stress gradients quantify the spatial variations in hemodynamic forces on the 

vessel wall. WSSG quantifies the magnitude of shear-stress gradients using the average wall 

shear direction and its in-plane (plane of the wall) normal. Off-diagonal coupled- derivatives, 

such as gradient of mean wall shear normal to the wall, are neglected since they have been shown 

to have little clinical relevance. The formulation for computation of WSSG is given below.  
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From the velocities the tractions are given by ti = σijnj and the shear stress is given by τi 

(x,t) = ti – (tknk)ni. The WSS is further decomposed into two in-plane components along the unit 

vectors s1(x), which is parallel to the mean wall shear traction, and s2(x), which is orthogonal to s1 

in the plane of the wall. These two components of WSS are given by τ1 = τ.s1 and τ2 = τ.s2 and the 

corresponding WSSG is defined as the equation given above. 

Finally the mean WSSG is obtained from  

 

 

 

3.3 Results 

3.3.1 Flow and pressure waveforms 

Typical aortic flow and pressure waveforms are shown in Figure 3.3, and typical flow 

waveforms at the outlets of the LAD and RCA are shown in Figure 3.4, both for patient B. The 

coronary flow waveforms confirm that the lumped parameter boundary conditions captured the 

expected coronary physiologic features. The flow waveforms of both the LAD and RCA peaked 

during diastole, when coronary resistance is at a minimum. Simulated aortic pressure waveforms  

τ̄G(x) =
1

T

∫ T

0
τG(x, t)dt

                     
      

               Figure 3.3: Typical aortic inflow waveform (right) and aortic pressure at the inlet (left) of patient B. 
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matched the clinical systolic and diastolic blood pressure data for all patients, and shape agreed 

with clinical observation. As reported previously, there was no significant difference between the 

global flow and pressure waveforms of KD patients with aneurysms and the normal control 

model51. 

 

3.3.2 Hemodynamic parameters 

 Minimum coronary flow occurred during diastole, as expected, and this was particularly 

pronounced in the LCA. This led to persistently low velocities in the aneurysmal regions of the 

coronary arteries. Figure 3.5 compares the systolic, diastolic and time-averaged velocities in all 

patient-specific models. The presence of the aneurysms in patients A-E caused substantial flow 

stagnation and recirculation, with persistently lower velocities compared to control patient F.  

 
 
Figure 3.4: Typical simulated LAD (left) and RCA (right) flow waveforms in patient B, showing 

increased coronary flow during diastole. 
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Contours of mean wall shear stress (WSS), oscillatory shear index (OSI), and wall shear 

stress gradient (WSSG) for all models are shown in Figures 3.6, 3.7, and 3.8, respectively. The 

WSS remains about an order of magnitude lower in the aneurysmal regions of patients A-F 

compared to vessels with no aneurysms (patient F and the RCA of patient E). Distal to the 

aneurysms, where coronary artery diameters return to normal, the WSS also returns to the normal 

range, verifying that the aneurysms cause only localized disturbances in hemodynamics. The 

aneurysmal regions are associated with higher than normal values of OSI (Figure 3.7). Distal to 

the aneurysms, as well as in Patient F and the RCA of Patient E, OSI values are near zero, 

 
 

Figure 3.5: Volume rendered velocity magnitude for all patients during systole (top), diastole  

(middle), and time averaged (lower).  
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indicating that the flow is unidirectional. Figure 3.9 shows WSS vs. time for one cardiac cycle at 

the location of maximum aneurysm diameter, indicating that aneurysmal regions are associated 

with an order of magnitude reduction of WSS in all subjects, with some patient variability in 

waveform shape. 
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Figure 3.6: Mean wall shear stress in all patient specific models, showing lower values in 

aneurysmal regions, and large variation among patients. 
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  Figure 3.7: Oscillatory shear index in all patient models, showing increased OSI in 

aneurysmal regions compared to normal. 
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Figure 3.8: WSSG in all patient models, showing increased WSSG variation in 

aneurysmal models compared to normal. 
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Figure 3.9: Wall shear stress vs. time, for one cardiac cycle, in all models shows much lower values in 

aneurysmal regions compared to normal in both LAD (top) and RCA (bottom). 
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3.3.3 Comparison with clinical data 

Hemodynamic and geometric quantities were extracted from simulation results during 

post processing, and are summarized in Table 3.2, together with accompanying clinical outcomes 

data. There were a total of 6 patients, with 14 coronary arteries studied (including LAD, LCX, 

and RCA, Table 3.2). Patient D had a fully occluded RCA that was not modeled. LCX vessels for 

patients A, B, and E were quantified separately because they were aneurysmal, as listed in the 

table.  For other patients (C, D, F) with normal LCX vessels, only the RCA and LCA parameters 

were quantified. There were 3 normal vessels considered, the RCA and LCA of patient F, and the 

RCA of patient E. Hemodynamic parameters in Table xx include the WSS at the maximum 

diameter, averaged WSS in the aneurysms, percent of particles remaining after 1, 5, and 10 

cardiac cycles, and the number of cardiac cycles required for all particles to wash out of the 

model. Geometric parameters are maximum diameter, aneurysm shape index, and aneurysm 

sphericity.    

Clinical outcomes data are listed in Table 3.3 as binary values (yes = 1, no = 0) for 

occurrence of thrombosis, myocardial infarction, surgical intervention, and percutaneous 

intervention.    

Mean values of the above quantities were compared for the following groups of arteries. 

We first compared hemodynamics in normal arteries (N=3) vs. those with aneurysms (N=11).  

Next, to compare within the aneurysmal group, arteries with aneurysms were divided into: those 

with thrombosis (N=6) vs. those without thrombosis (N=5).  Comparisons of mean values for 

these groups are summarized in Figures 3.10 and 3.11.  

Aneurysmal arteries had significantly lower WSS than normal arteries (4.9 for 

aneurysmal vs. 20.9 for normal, P<0.01). Aneurysmal arteries also required significantly more 

cardiac cycles for particles to exit the domain (6.1 for aneurysmal vs. 1.1 for normal, P<0.01). 

Aneurysmal arteries had lower WSS gradients (37.6 for aneurysmal vs. 67 for normal) and higher 
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OSI (0.047 for aneurysmal vs. 0.01 for normal). Velocity fields also showed regions of stagnant 

flow that persisted throughout the cardiac cycle in aneurysmal regions, which were not observed 

in normal arteries. 

 

 

 

 

Figure 3.11 compares geometric and hemodynamic parameters for the thrombosed and 

non-thrombosed groups. Aneurysms with thrombosis required twice as many cardiac cycles 

(mean 7.8 vs. 4.0, 95% difference) for particles to exit the aneurysm domain in simulation, and 

had 108% lower mean WSS (1.5 compared to 3.2 dynes/cm2) at maximum diameter compared to 

 

Figure 3.10: Comparison of hemodynamic parameters between aneurysmal (N = 11) and normal  

(N = 3) vessels in KD patients 
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aneurysms without thrombosis. WSS was also 32% lower for the thrombosis group when 

measured over the entire aneurysm. Mean WSSG was 45% lower while mean OSI was 67% 

higher in the entire aneurysm of the thrombosis group.  Figure 3.11 compares the hemodynamic 

variation of hemodynamic parameters between the KD aneurysmal and the normal vessels, 

showing significant variation in these quantities. 
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 Thrombosed vessels had a 30% lower sphericity index than non-thrombosed vessels, and 

a 24% higher aneurysm shape index.  There was a 15% difference between maximum diameters 

of arteries with thrombosis (10.8mm) and without thrombosis (8.8mm). 

 Following our performing simulations for patient B, this patient became symptomatic and 

was found through follow-up CT imaging to have developed thrombosis in both left and right 

coronary arteries.   A comparison of WSS predicted by simulations is shown in Figure 3.12, 

together with pre- and post- thrombosis CT imaging data.   We qualitatively observe that the 

locations of thrombosis formation correlate well with regions of lowest WSS in simulations in 

         
           Figure 3.11: Comparison of hemodynamic and geometric parameters for thrombosed (N=6) and  

           non-thrombosed (N=5) aneurysms in KD patients. 
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both left and right coronaries. We also observe that patient B had the highest particle recirculation 

times, and the lowest value of WSS in the RCA among all patients in the cohort (Table 3.2).  This 

patient subsequently underwent coronary bypass surgery.   

 

 

 

Figure 3.12: Pre-and post thrombosis CT imaging in patient B (left) and simulation results showing 

correlation between WSS predictions in simulation and locations of thrombosis. 
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      Table 3.2: Representative hemodynamic and geometric parameters for the initial set of KD patients, with    

      corresponding clinical outcomes data. 
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                                                              Table 3.3: Clinical history of the cohort of patients. 

 
Clinical Outcomes 

 

 
Patient 

ID 
Myocardial 
Infarction 
(yes/no) 

 

Percutaneous 
Intervention 

(yes/no) 
 

CABG 
(yes/no) 

A 0 0 0 
B 0 1 1 
C 1 1 0 
D 1 1 0 
E 0 1 0 
F 0 0 0 

 

                                  Table 3.3: Clinical history of the cohort of patients. 
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3.4 Discussion 

Patient-specific modeling allows for computation of spatial and temporal variations in 

hemodynamic quantities that cannot be readily obtained through conventional clinical imaging 

modalities. Using computational modeling, we showed that the presence of aneurysms in the 

coronary arteries of KD patients leads to severely abnormal flow conditions, including low WSS 

and high particle residence times that appear to be linked to increased risk of thrombosis.  This 

study is the first to apply patient-specific modeling to compare flow conditions in a cohort of KD 

patients using realistic aneurysm geometries. In agreement with our previous study, we identified 

significant order of magnitude differences between aneurysmal and normal coronary flow 

conditions. We also confirmed our previous finding that the presence of aneurysms does not 

change the global flow and pressure waveforms. 

This study suggests several surprising relationships between flow conditions, aneurysm 

geometry, and clinical outcomes.  First, simulations confirmed that flow conditions are markedly 

different among patients, even among those with similar aneurysm diameters. This calls into 

question the current clinical practice of using a single diameter measurement to determine 

thrombotic risk and the need for anticoagulant medication.      

Second, our results suggest that hemodynamic parameters, or a combination of 

hemodynamic and geometric parameters, may be better predictors of thrombotic risk than 

maximum aneurysm diameter alone.  When comparing differences between the thrombosis and 

non-thrombosis groups, the maximum diameter had the smallest percentage difference (15%) 

between the two groups of all the parameters examined.   The largest percentage differences 

between the two groups were in WSS and number of cardiac cycles required for particles to exit 

the simulation domain. These findings are contrary to current AHA guidelines that rely solely on 

aneurysm diameter as a predictor of thrombotic risk8. While all but one aneurysm in this group 

was >8mm (Table 2), several large aneurysms had lower than average PRT and higher WSS. 
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Hence, criteria for anti-coagulation based on geometry alone may lead to unnecessary 

anticoagulation in patients with large diameter aneurysms as well as failure to anticoagulate 

patients at higher risk of thrombosis due to unfavorable hemodynamic parameters.    

Furthermore, our results suggest that some patients such as patient B, may be at 

particularly high risk of thrombosis, and importantly may still be at risk even with systemic 

anticoagulation. Such patients may benefit from more additional medical therapy such as more 

intensive anticoagulation with a higher target INR and/or more intensive anti-platelet therapy and 

more intensive monitoring such as serial CT angiograms to assess for the presence of thrombus.  

In addition, the role of the new oral thrombin or Factor Xa inhibitors (dabigatran, rivaroxaban and 

apixaban) in KD remains to be determined. The assessment of patient-specific hemodynamics 

presented here may be of use in the design of clinical trials to evaluate these newer agents in KD 

patients. 

Finally, our results suggest that fusiform aneurysms may confer a higher risk for 

thrombosis than previously appreciated, which goes counter to current clinical thinking that larger 

diameter, saccular aneurysms pose the highest risk. The sphericity index was lower for patients 

who developed thrombosis, suggesting that more fusiform aneurysms may actually have higher 

propensity for thrombus formation compared to saccular aneurysms. Additional patients with 

small and medium aneurysms are needed for comparison to strengthen these findings.  

The correspondence between locations of low WSS for patient B and the subsequent 

location of thrombosis are a promising indicator of the predictive ability of the proposed 

simulation methodology. This patient had the lowest shear stress values and the highest particle 

residence times among all patients in the cohort. This patient’s unique history provided a valuable 

opportunity to compare simulation predictions with patient outcome.   

Prior clinical studies have also examined the relationship between wall shear stress and 

aneurysm shape and have raised awareness of the importance of abnormal hemodyanmics. A 
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2007 study of Ohkubo et al. estimated WSS from flow wire measurements in 111 KD patients, 

classified into giant aneurysm, aneurysm, and normal groups92. WSS levels were correlated with 

the presence of thrombus detected by intravascular ultrasound. Over 90% of aneurysms were 

found at left coronary branching sites, with significantly reduced WSS in giant aneurysms with 

disturbed flow.  However, the accuracy of measuring maximum velocity using flow wires 

remains a challenge, as WSS values were estimated by assuming laminar steady flow in a circular 

pipe, and thus could not fully account for the complex geometry or flow variations among 

patients.         

 We recognize several strengths and limitations to our study. First, the computational 

methodology represents the state of the art in cardiovascular modeling, employing 

physiologically realistic coronary boundary conditions and incorporating patient specific anatomy 

and clinical data.  Second, this paper provides the first quantitative comparison of flow conditions 

in aneurysms of KD patients with subsequent patient outcomes. Third, these results suggest that a 

prospective clinical study is warranted to construct a clinical index based on simulation data that 

could be used to better select patients for anticoagulant therapy. Hemodynamic data could then be 

used in the future to replace or augment the current AHA guidelines, leading to better selection 

criteria for anticoagulation therapy in KD patients.  

The major limitation of this study is the small sample size. A larger cohort and substantial 

computational effort will be required to demonstrate significance in comparisons of patients with 

and without thrombus. A limitation in expanding the cohort size and in creating a useful clinical 

tool is the time- and labor-intensive procedure for the model construction and simulations. In the 

future, these protocols could be streamlined by improved methods for automated image 

segmentation, further advances in high performance computing such as the use of GPU 

computing, and efficiency gains by improving the computational solver methodology. Limitations 

of the modeling methods include the use of rigid walls, a Newtonian flow model, and the 
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assumptions required for assignment of lumped parameter boundary condition values. While 

previous studies have found differences in WSS between rigid and deformable wall simulations84 

with small WSS differences in the coronaries. However a full FSI study should be performed in 

future work using realistic coronary artery material properties to quantify these differences. While 

we have provided justification for the necessary assumptions related to our choice of coronary 

boundary condition values, a comprehensive uncertainty quantification study should be 

performed, following methods proposed in recent work93. Finally, because this was a 

retrospective study, some variability in medical treatment and timing of imaging studies was 

unavoidable. Although we note that all patients with aneurysms in the study were treated with 

anticoagulant therapy prior to the imaging studies with no major changes in treatment during the 

study period, we do not have clinical details regarding INR target, monitoring of INR, or patient 

compliance. 

This study provided the first quantitative evidence that current AHA guidelines for 

determining thrombotic risk based on aneurysm diameter in patients with aneurysms caused by 

Kawasaki disease may be inadequate.  More accurate patient selection for anticoagulation could 

avoid unnecessary treatment in some patients with large aneurysms, while identifying other at-

risk patients who would benefit from systemic anticoagulation.   A larger cohort is needed to 

construct a statistically significant clinical index to validate these findings. 
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Chapter 4 

4. Preliminary Studies 

4.1 Luminal Intensity as a measure of Recirculation 

Patient specific computational simulations are typically an expensive process both from 

the perspective of time and computational requirements. When contrast agent is injected in a 

vessel, there is usually no decay in the mean luminal intensity if there is no abnormality in the 

shape of the vessel (no aneurysm or stenosis) and no obstruction in the blood flow. However, in 

the presence of abnormalities in the shape of the vessel caused either by stenosis or aneurysms, 

the luminal intensity obtained from the CT scan may decay in the regions distal to the 

abnormality. Recent work by Choi et al94 showed that using the luminal intensity of the contrast 

agent in a CT scan of a coronary vessel, it is possible to estimate the degree of stenosis. In this 

work, it was shown that normal coronary arteries have little change in the value of the luminal 

intensity along the length of the coronaries. However, for a stenotic coronary artery, it was shown 

that there is a significant decrease in the luminal intensity. One may be able to use a similar 

method of luminal intensity calculation to estimate the degree of recirculation in the aneurysmal 

regions of the KD patients with coronary aneurysms. 

For KD patients with coronary aneurysms, in the previous two chapters it was shown that 

the aneurysmal regions are associated with a high degree of recirculatory or sluggish flow. 

Contrast based X-Ray CT on these patients were performed by injecting a contrast agent95. The 

presence of the recirculatory or sluggish flow may cause the contrast agent to be trapped in the 

aneurysmal regions of the coronary arteries. This is likely to result in high intensity levels in the 

aneurysmal regions compared to the distal parts of the coronary arteries that have normal 

diameters. By correlating the luminal intensity along the length of the coronaries with a metric of 

recirculation time such as the cumulative exposure time (CET)10, 51 as discussed in chapter two, it 
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may be possible to estimate the degree of recirculation in the aneurysms without requiring a 

simulation for each patient. 

An automated 2D level set segmentation method was implemented following the work of 

Sandhu et al96 to perform 2D segmentation of the coronary geometry as shown in Figure 4.1. 

Using this method, the mean luminal intensity was calculated in the coronary arteries along the 

RCA and LAD of patient A at intervals of 2mm. Figure 4.2 shows the absolute values of the 

luminal intensity in both RCA and LAD. While both the plots show that the luminal intensity 

sharply decreases along the length of the RCA and LAD vessels, the decrease is much higher in 

case of the LAD compared to RCA. Figure 4.2 shows the normalized plot of the luminal intensity 

compared to the normalized CET values both plotted along the lengths of the RCA and LAD of 

patient A. The degree of flow recirculation in the LAD was higher than that in the RCA as 

indicated by the fact that the drop in CET values form the proximal aneurysmal to the distal 

normal parts was more severe in the LAD than in the RCA. The normalized mean luminal 

intensity also showed a correspondingly larger decrease in values of intensity levels are higher in 

the LAD compared to the RCA. Normalized CET and normalized luminal intensity had a high 

correlation coefficient (LAD – 0.91 and RCA – 0.68).  

This is a novel approach of obtaining hemodynamic information directly from the CT 

scan. The luminal intensity measurements can be easily clinically obtained through conventional 

imaging modalities. Using the correlation of the mean luminal intensity with the hemodynamic 

metric for flow recirculation time, one can provide insights into the flow characteristics in the 

coronary artery aneurysms without performing expensive computational simulations. 

 

 

 

 



72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: Automated level set segmentation using the zero level set function in RCA (right) and 

LAD (left).  
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4.2 Statistical Model for Thrombotic Risk Probability  

Patient specific computational simulations in coronary arteries provide insights into the 

hemodynamic characteristics of KD patients with aneurysms that have not been established in 

previous research.  In chapter 4, geometric quantities such as maximum aneurysmal diameter, 

aneurysm shape index and aneurysm sphericity were quantified along with local hemodynamic 

quantities such as WSS and particle recirculation were quantified for the cohort of KD patients 

and compared to the corresponding clinical outcomes. Results showed that there might be a 

          
 

       Figure 4.2: Mean luminal intensity along the length of RCA (top left) and  LAD  (top right).  

       Normalized     mean luminal intensity and normalized mean CET in RCA (bottom left)  and  

       LAD  (bottom right)  showing  a  strong  correlation  between  recirculation  time  and  high  

       luminal  intensity  in  the  aneurysmal  regions.  In  all  the plots, variation of parameters are  

       obtained  from  points  a  to  b  in  the  LAD  and  c  to  d  in  the  RCA,  where  distance   is  

       measured along the vessel centerline from the ostium. 
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correlation between several key geometric and hemodynamic quantities and the presence of 

thrombus formation. Statistical models may be used to uncover the relationships between the 

hemodynamic and geometric quantities and the risk of thrombosis97. However, in order to 

perform the statistical analysis in a statistically significant manner, a sufficiently large number of 

patient-specific simulations need to be performed.  

Among the various statistical models, logistic regression98 typically can serve as a good 

model to predict the risk of thrombosis based on the hemodynamic and geometric factors. The 

presence or absence of thrombosis in a patient can be quantified by a binary variable (y) with y=1 

or 0 representing the occurrence or non-occurrence of thrombosis. The incidence of thrombosis 

(y) depends on the geometric and hemodynamic quantities denoted by the vector x. The 

probability of thrombus formation (y=1) can be modeled by logistic regression using the 

following equation. 

 

The weight vector β in the above equation is obtained numerically using stochastic gradient 

ascent method98. Regularization was also used to avoid overfitting of the data.  

However, in order to obtain statistically significant results for the probability of risk of 

thrombus formation, larger number of patient data with about 100 patients will be required. 

Despite the lack of statistical significance, an effort was made in the thesis to create a framework 

for carrying out statistical analysis by creating a JAVA based logistic regression routine. The 

routine was also embedded in Android App called Kawasaki Disease (Figure 4.3). As shown in 

Figure 4.3, the app consists of several fields where one can enter the geometric and hemodynamic 

parameters for a patient and on pressing the “Calculate Risk Probability” tab, the app runs the 

logistic regression code with the training of the weights of regression being performed with the 

database of existing geometric and hemodynamic data obtained from all the patient-specific 

simulations. 
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 In order to test the probability of thrombotic risk using the limited simulation results 

logistic regression was performed using the data in Table 3.2. The corresponding weights were 

trained using stochastic gradient update rule that is given by the following equation. 

 

where L = Σi:y=1 log(P(y=1|x,β)  + Σi:y=0  (1- log(P(y=1|x,β)) is the log-likelihood function, ||β||22 is 

the additional penalty function prescribed for regularization and the constant µ represents the 

trade-off between the log-likelihood and the penalty function. Using, these relationships, the final 

update rule for β is as follows. 

 

The parameter λ is called the learning rate and is adaptively chosen during the iteration process. 

Based on the results of geometric and hemodynamic data on 14 vessels for 5 patients in Table 

3.2, a subset of 12 vessels were chosen to train the weights using logistic regression and 

stochastic gradient method98. The estimated weights were then used to compute the thrombotic 

risk probability of two remaining vessels – one of the vessels being the RCA of patient B and the 

other being the LAD of patient E. Table 4.1 lists the risk of probability of thrombus formation 

using both hemodynamic and geometric parameters. Although, the probability values are not 

statistically significant, usage of the hemodynamic parameters along with the geometric 

parameters gives a much better estimate for the thrombotic risk probability. As shown in Table 

4.1, RCA of patient B underwent thrombosis based on the clinical records. While the probability 

risk of thrombosis based only on the geometry was 0.41, using both the geometric and 

hemodynamic parameters it was almost twice with a probability of 0.74. Table 4.1 also reveals 

that the LAD of Patient E did not undergo thrombosis despite having large aneurysms. The 

probability of thrombosis for this vessel using only geometry was 0.41 while it was lower when 

both hemodynamics and geometry was considered with a probability of 0.38. Although the 

numbers for probabilities are not conclusive to determine the thrombotic risk of a KD patient with 
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aneurysms, they show that hemodynamic factors along with the geometry may play a significant 

role in the construction of a clinical risk index. 

 The lack of a larger number of patient-specific geometric and hemodynamic data led to 

statistically insignificant results from the logistic regression. In order to perform the analysis with 

a statistically significant outcome (p-value less than 0.05), at least 100 KD subjects need to be 

considered to obtain the geometric and hemodynamic data with a sufficient number of patients 

(~25%) developing thrombosis. Furthermore, sensitivity and specificity of the probability values 

need to be performed to test the discriminative accuracy of the method. 

 

 

 

         
 

        Figure 4.3: Kawasaki Disease App on the Android Emulator performing the logistic regression. 
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4.3 Effect of Deformable Wall 

 All patient specific simulations have been performed in this thesis using the assumption 

of rigid vessel wall. However, arterial walls are deformable and they typically undergo 

deformation in membrane mode, which causes variation in the flow, and pressure waveforms. To 

assess the impact of wall deformation, preliminary simulations were performed using fluid 

structure interaction methods of Figueroa et al20. Following this method, a linearized kinematics 

approach was used to simulate the coupled fluid structure system using a monolithic coupling20, 25 

assuming small wall displacements. The method is computationally much less expensive 

compared to conventional Arbitrary Lagrangian Eulerian (ALE) method81, 84. However, this 

approach yields correct results only for small wall displacements (less than 10% of the original 

diameter). A membrane formulation is used to describe the mass and stiffness of the solid.  

 

 

 

 

 

Table 4.1: Probability of thrombus formation using geometric and hemodynamic parameters 

obtained using logistic regression with the cohort of patient-specific simulations.        

Vessel Thrombosis 
Probability using 

Geometry and 
Hemodynamics 

Thrombosis 
Probability using 

Geometry  

Thrombosis 
Probability using 
Hemodynamics 

Actual 
Clinical 

Record of 
Thrombosis 

Patient B - 
RCA 

0.74 0.41 0.71 1 

Patient E - 
LAD 

0.38 0.41 0.34 0 
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Firstly a model validation problem was performed on a cylinder of radius, a=0.2 cm, a 

prescribed uniform thickness, h=0.002 cm and an elastic modulus, E = 1010 dynes/cm2. A 

sinusoid inflow waveform of Q = 1.256 + 0.1256sin(2πt) cc/sec was applied at the inlet and a 

resistance boundary condition with resistance, R = 100,000 dynes-sec/cm5 is applied at the outlets 

as shown in Figure 4.4. The geometric and the structural parameters such as the radius, thickness 

and elastic modulus were not in the physiologic range. However, the values were in the range 

such that theoretical wall displacements can be obtained using linear theory. The hoop stress (σθθ) 

for the thin wall cylindrical structure is obtained by σθθ = Pa/h where P is the normal pressure, a is 

the radius of the cylinder and h is the thickness of the cylinder. Further using σθθ = EΔr/a, the 

 

 

Figure 4.4: Sinusoid flow waveform being applied with resistance boundary condition at outlet. 

Maximum computed wall displacement matched theoretical value. No difference in outlet pressure 

waveform due to high elastic modulus and low thickness. 
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theoretical wall displacement can be easily obtained.  Figure 4.4, shows that due to high value of 

the elastic modulus, there was no difference in the pressure waveform at the outlet between the 

rigid and the deformable simulation. However, the computed wall displacements at maximum 

pressure difference of P = 12560 dynes/cm2 matched well with the theoretical wall displacements 

of 2.3x10-5 cm obtained using linear theory. 

 In the second case, a more physiologic simulation was performed with a typical coronary 

flow waveform being applied at the inlet of a cylinder of radius, a = 0.3 cm, a uniform thickness, 

h = 0.03 cm and an elastic modulus, E = 4.07x106 dynes/cm2. The geometric and material 

properties were chosen corresponding to a typical coronary artery56. At the outlet, a typical 

coronary boundary condition was applied as shown in Figure 4.5. In this case, the presence of the 

deformation produced an additional compliance in the vessel. Figure 4.5 shows that the presence 

of compliance causes significant changes in the flow and pressure waveforms at the outlets 

between the rigid and the deformable simulations. The pressure waveform is significantly 

damped and phase shifted. The flow waveform is also affected during systole and diastole 

compared to the rigid simulation due to the additional compliance imposed by the vessel wall. 

  

 

 

 

 
Figure 4.5: Typical coronary flow waveform applied at inlet and coronary boundary condition 

applied at outlet. Significant wall displacements are observed during systole. 
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One of the major limitations of this method is the absence of non-uniform wall properties 

in the deformable simulations. A typical patient specific KD model involves the coronary 

vasculature, the aorta and the upper subclavian vessels each of which have different wall 

properties. Non-uniform wall properties need to be applied in future work. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Effect of physiological deformation causes increased compliance in the vessel 

with changes in the peak and  phase shift of both flow (left) and pressure (right) 

waveforms when compared to rigid simulations. 
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Chapter 5 

5. Conclusions and future work 

5.1  Conclusions 

 In this dissertation, we presented the first patient specific hemodynamic simulation on 

KD patients with coronary artery aneurysms. Hemodynamic simulation in the coronary arteries 

are challenging because of the physiology of coronary circulation. We implemented a robust 

finite element framework to perform coronary simulation using the state of the art computational 

methods following work done by previous research groups19, 32, 34. We showed that the lumped 

parameter boundary conditions were crucial in simulating physiologically realistic flow and 

pressure profiles in the coronary arteries. The single patient case study discussed in chapter 2 

revealed highly altered local hemodynamic characteristics in the aneurysmal regions compared to 

the normal model, although there were no differences in the global flow and pressure waveforms. 

The local hemodynamic features in the aneurysms cannot be obtained by conventional imaging 

modality and simulation provides a non-invasive method to compute these quantities from the CT 

scans of KD patients with coronary aneurysms. The aneurysms caused regions of abnormally low 

WSS and high recirculation compared to the normal model with the hemodynamics being in the 

level that is known to cause thrombosis and inflammation as described in chapter 2. 

 In order to perform patient-specific coronary simulations, appropriate tuning of the 

parameters in the LPN is essential. The outlet boundary conditions for the coronary simulations 

consisted of a combination of Windkessel RCR circuit for the non-coronary outlets and custom 

coronary circuit connected to an external lumped parameter heart model for the coronary outlets. 

Tuning all the parameters of the LPN on a patient-specific basis to match the appropriate clinical 

data can be challenging and might need multiple expensive CFD simulations.  We devised a 

tuning algorithm as described in chapter 3 which is a combination of 0D and 0D-3D tuning to 

obtain the correct parameters for the LPN at relatively cheap computational cost. The CFD 
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simulations done on multiple patients using this method were able to capture the patient’s clinical 

parameters correctly as described in the study. 

 The simulations performed on multiple patients revealed several non-intuitive 

relationships between the hemodynamics, aneurysm geometry and clinical outcomes. Current 

AHA guidelines for patient management of KD patients with coronary aneurysms are solely 

based on maximum aneurysmal diameter. However, the simulation results on multiple patients in 

chapter 3 showed that aneurysms with similar diameter had markedly varying hemodynamics and 

different clinical outcomes. A combination of hemodynamic parameters and other geometric 

parameters in addition to the maximum aneurysmal diameter were better predictors of thrombosis 

than maximum aneurysmal diameter. Results also suggested that KD patients with fusiform 

coronary aneurysms had higher propensity for thrombus formation than those with sacculer 

aneurysms, which is contrary to the current clinical thinking. The findings questioned the current 

treatment strategies of anticoagulation therapy for KD patients with coronary aneurysms.  

 The thesis provided a means to risk stratify a group of KD patients with coronary 

aneurysms according to the risk of a clinical fatality. This presents the first systematic 

characterization of hemodynamic and geometric features of coronary aneurysms in KD patients. 

Simulations provide a non-invasive method to obtain critical hemodynamic parameters in the 

coronary arteries on patient-specific basis. The multiscale simulation framework developed in this 

thesis can be used in simulating patient-specific coronary flow in other coronary artery diseases 

including coronary artery bypass grafts (CABG). 

 

5.2  Future work 

5.2.1 Closed loop multiscale coronary flow simulation with deformable walls 

 The multiscale boundary condition used in the thesis relied on an open loop configuration 

where the heart model is explicitly coupled to the coronary boundary conditions. However, the 
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physiologic realism can be improved even further in the simulation of coronary flow. Recently 

more advanced implementation of closed loop lumped parameter network model of the coronary 

circulation has been implemented that includes venous feedback15. The LPN model for the closed 

loop model implicitly couples the coronary boundary conditions with the aorta and the sublavian 

branches (in the upper aorta). Such boundary conditions have been successfully applied to adult 

coronary artery bypass patients15 where the inlet aortic flow waveform was imposed directly by 

the lumped parameter heart model and no MRI derived aortic flow waveform is necessary. The 

parameters of the closed loop LPN model can be iteratively tuned using robust optimization 

method and can be applied to patient-specific simulations of KD patients with coronary 

aneurysms. Furthermore, the coronary arteries undergo substantial motion during ventricular 

contraction and relaxation as they are located on the myocardium47. Hence incorporating 

deformable vessel walls with variable wall properties in the computational modeling using fluid-

structure interaction methods81 are also necessary in simulating realistic flow conditions in the 

coronary arteries.  

 

5.2.2 Development of a risk stratification index 

 A risk stratification index may be developed using quantitative data obtained from 

simulations. The index may improve guidelines for clinical decision-making and has the potential 

to patient outcomes. However, in order to construct such a risk index, a larger number of patient-

specific simulations need to be performed and the simulation results should be correlated to the 

clinical outcomes of the patients in a statistically significant manner. Despite known relationships 

between abnormal hemodynamic parameters and the incidence of thrombus73, 75 it is unclear how 

strongly these parameters influence the formation of thrombus. Advanced statistical analysis 

should be performed on large number of simulation results to uncover the detailed relationships 

between hemodynamics and thrombosis. The statistical relationship may be used in performing 
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better patient management for KD patients with coronary aneurysms by ranking them according 

to thrombotic risk, which may enable clinicians in deciding on anticoagulant therapy effectively. 

 

5.2.3 Application of uncertainty quantification 

 The patent-specific coronary flow simulations are performed under a number of 

assumption based on literature data51. These assumptions may influence the results of the 

simulations significantly. In order to address the sensitivity of the simulation results systematic 

uncertainty quantification should be performed to obtain confidence intervals of the simulation 

results93. These methods will be able to demonstrate the reliability and robustness of simulation 

results. Furthermore, the effect of exercise on the clinical parameters and the boundary conditions 

of the patient-specific simulations should be considered. 

 

5.2.4 Validation using experiments 

 The hemodynamic conditions such as the coronary flow and pressure waveform obtained 

from simulations also need to be validated against in-vivo catheter flow and pressure wire data 

for multiple patients. The validation will increase the reliability of the simulation results. Besides 

this, the cellular level response of the endothelial cells in response to the abnormal 

hemodynamics should be considered. Thrombosis formed in the coronary aneurysms of KD 

patients may be caused by several biochemical processes in addition to the abnormal 

hemodynamics75. In vivo or in vitro experiments performed on the endothelial cells under the 

flow conditions similar to those in the aneurysmal models may be able to reveal the underlying 

biological processes involved.  
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5.2.5 Application of clot models 

 Recent developments in the usage of mathematical clot models in modeling thrombosis 

may be further used in the coronary simulations of KD patients with coronary aneurysms. Clot 

models have been successfully implemented in CFD simulations in earlier studies related to 

vessel injury79. However, implementing a clot model with a three dimensional patient-specific 

coronary simulation is computationally expensive because of widely differing time scales. 

Advanced GPU computing may be used to carry out faster computation to simulate clot formation 

in a patient-specific geometry in a coupled CFD simulation of KD patients with coronary 

aneurysms.   
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Appendix I 

This appendix provides the equations for the lumped parameter boundary conditions that were 

coupled to the finite element flow solver, following previous work. First, the equations for the 

lumped parameter heart model are provided.  The heart model was used off-line to provide intra-

myocardial pressure information for the lumped parameter coronary boundary conditions.  

Second, the lumped parameter coronary boundary conditions are described in detail.  

 

Heart Model 

Phase I: t = 0 to t1 – Isovolumetric Contraction (Valve 1 and valve 2 closed) 

€ 

dQ1
dt

= 0

dVV
dt

= 0

PV (t) = E(t)(VV (t) −V0)

 

Phase II: t = t1 to t2 – Ejection (Valve 1 closed and valve 2 open) 

€ 

dQ1
dt

= 0

dVV
dt

= −Qa

PV (t) = E(t)(VV (t) −V0)

  

Phase III: t = t2 to t3 – Isovolumetric relaxation (Valve 1 and valve 2 closed) 

€ 

dQ1
dt

= 0

dVV
dt

= 0

PV (t) = E(t)(VV (t) −V0)

 

Phase IV: t = t3 to t4 – Filling (Valve 1 open and valve 2 closed) 
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€ 

dQ1
dt

=
1
LAV

[PA − RAVQ1(t) − E2(t)(VV (t) −V0)]

dVV
dt

=Q1(t)

PV (t) = E(t)(VV (t) −V0)  

In the above equations, E(t) is the patient specific elastance function, Q1(t) is the flow   rate 

through valve 1, VV(t) is the ventricular blood volume, PV(t) is the ventricular pressure, PA is the 

atrial pressure, RAV is the atrio-ventricular valvular resistance and LAV is the ventriculo-arterial 

inductance.   

Valve 1 is open when PA > PV(t) and is closed when PA ≤ PV(t). 

Valve 2 is open when QA > 0 and  and is closed when QA = 0 and  where QA 

is the flow rate through valve 2. 

The Intra-myocardial pressure is Pim(t) = λ1PLV(t) + λ2PRV(t) where PLV(t) and PRV(t) represent the 

pressure of the left and the right ventricles respectively. 

For the left coronary artery outlets, λ1 = 1.0 and λ2 = 0.0, since these outlets supply blood only to 

the left ventricle. However, the right coronary arteries supply blood to both the right and left 

ventricles, with the longest branch of the RCA supplying blood to the left ventricle, and the others 

supplying the right ventricle. The weights of the myocardial pressure for the right coronary artery 

outlets are therefore calculated based on the outlet areas of the branches in the RCA, resulting in a 

right:left perfusion ratio of approximately 7:3  (i.e. λ1 = 0.3 and λ2 = 0.7).  Figure A1 shows the 

right and the left ventricular pressures, as well as the pressure volume loop for the patient under 

consideration.  

 

 

 

! 

dQA

dt
> 0

! 

dQA

dt
< 0
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MATLAB Code Snippet for Heart Model during Ejection Phase (Phase II) 

     % Ejection 

     options = odeset('Events', ... 

                   @(t,y)aortic_valve_closing_test(t, y) ... 

                    ,'Maxstep',0.01);              

     [t_ode_soln,y_ode_soln,t_event,y_event,i_event] = ode23( ... 

            @(t,y)dydt_mitral_valve_closed_aortic_valve_open(t,y), ... 

            [t_soln(end) final_t], [Q_la_soln(end) v_lv_soln(end)], options);                       

      t_soln = [t_soln; t_ode_soln(2:end)]; 

      Q_la_soln = [Q_la_soln; y_ode_soln(2:end,1)]; 

      v_lv_soln = [v_lv_soln; y_ode_soln(2:end,2)];   

      t_ejection = size(t_ode_soln,1); 

      if cycle ==1 

          for i=1:t_ejection 

          e_sys(i) = (p_a(t_ode_soln(i)) + scale_aortic_flow*Q_a(t_ode_soln(i))*Rvart +   

dQadt(t_ode_soln(i))*Lvart)/(elastance(t_ode_soln(i))*(y_ode_soln(i,2)-v_lv0)); 

          end 

          max_value_e_sys = max(e_sys) 

          E_sys_max = mean(e_sys) 

      end  

      for i=1:t_ejection 

      p_lv(i) =scale_e_sys*E_sys_max*elastance(t_ode_soln(i))*(y_ode_soln(i,2)-v_lv0); 

      end 

      p_lv = p_lv'; 
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      if cycle ==1 

      p_lv_soln = p_lv; 

      else 

      p_lv_soln = [p_lv_soln; p_lv(2:end)]; 

      end 

      clear p_lv 

      E_dias_max = e_sys (end) 

         vlv_plot = [vlv_plot; y_ode_soln(2:end,2)]; 

        

%       end 

%Aortic Valve closing test 

 function [value,stop,dir] = aortic_valve_closing_test(t_current, y_current) 

     scale_aortic_flow = 1.344; 

     value = scale_aortic_flow*Q_a(t_current); 

    stop = 1; 

    dir = -1; 

% ODE function 

function dydt = dydt_mitral_valve_closed_aortic_valve_open(t_current,y_current) 

scale_aortic_flow = 1.344; 

dydt(1,1) = 0; 

dydt(2,1) = -scale_aortic_flow*Q_a(t_current); 
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MATLAB Code for RCR Parameter Estimation 

clc 

close all 

clear all 

res_scale = 1.7; 

ratio = 0.05; 

cap_scale = 1.4; 

R = ratio*res_scale*1410.70732449662; % Input params 

Rd = (1-ratio)*res_scale*1410.70732449662; 

C = cap_scale*1150e-6; 

tau = Rd*C; 

p0 =0*1333; %initial pressure 

T = 1.43; % Cardiac cycle time 

load aor_flow 

load LV_press.mat 

Q = aor_flow(:,2); 

Q=Q'; 

Q = Q*1; 

t = 0:T/1000:T; 

Pd = pchip(lvp(:,1),lvp(:,2),t); 

Pd = Pd*0; 

p = zeros(1001,1); 

p(1) = p0; 

for k=1:10 

for i=2:1001 
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    tbar = t(1:i); 

    Qtemp = Q(1:i); 

    Qconv = exp(-(t(i) - tbar)/tau).*Qtemp/C; 

    Qconv_integral = trapz(tbar,Qconv); 

    p(i) = (p(1) - R*Q(1)-Pd(1))*exp(-t(i)/tau) + R*Q(i) + Pd(i) + Qconv_integral; 

%     Pd(i) 

end 

p(1) = p(end); 

end 

plot(t(2:1001),p(2:1001)/1333); 

fid = fopen('aor_press','w'); 

fprintf(fid,'%7.4f\n',p); 

fclose(fid); 

A1 = 1.58; 

A2 = 0.70944; 

A3 = 0.3433; 

A4 = 0.4563; 

A = A1 + A2 + A3 + A4; 

R1 = A/A1*R; 

R2 = A/A2*R; 

R3 = A/A3*R; 

R4 = A/A4*R; 

Rd1 = A/A1*Rd; 

Rd2 = A/A2*Rd; 

Rd3 = A/A3*Rd; 
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Rd4 = A/A4*Rd; 

C1 = A1/A*C; 

C2 = A2/A*C; 

C3 = A3/A*C; 

C4 = A4/A*C; 

fp = fopen('rcrt.dat','w'); 

fprintf(fp,'2\n'); 

fprintf(fp,'2\n'); 

fprintf(fp,'%f\n',R1); 

fprintf(fp,'%f\n',C1); 

fprintf(fp,'%f\n',Rd1); 

fprintf(fp,'0.000000 0.000000\n'); 

fprintf(fp,'1.000000 0.000000\n'); 

fprintf(fp,'2\n'); 

fprintf(fp,'%f\n',R2); 

fprintf(fp,'%f\n',C2); 

fprintf(fp,'%f\n',Rd2); 

fprintf(fp,'0.000000 0.000000\n'); 

fprintf(fp,'1.000000 0.000000\n'); 

fprintf(fp,'2\n'); 

fprintf(fp,'%f\n',R3); 

fprintf(fp,'%f\n',C3); 

fprintf(fp,'%f\n',Rd3); 

fprintf(fp,'0.000000 0.000000\n'); 

fprintf(fp,'1.000000 0.000000\n'); 
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fprintf(fp,'2\n'); 

fprintf(fp,'%f\n',R4); 

fprintf(fp,'%f\n',C4); 

fprintf(fp,'%f\n',Rd4); 

fprintf(fp,'0.000000 0.000000\n'); 

fprintf(fp,'1.000000 0.000000\n'); 

% figure(2) 

% plot(t(2:1001),Q(2:1001)) 

% load p_cor.mat 

% J = 0; 

% for i=2:101 

%     J = J + 1/100*(p_cor(i)-p(i))^2; 

% end 

 

Coronary Boundary Condition 

In the finite element solver, the coronary boundary condition couples the pressure P(t) with the 

flow rate Q(t) at the coronary outlet boundaries through the following equation using the coupled 

multi-domain method of Vignon et al20
 

€ 

P(t) = (RQ(t) + eλ1 (t−s)Z1Q(s)ds
0

t

∫ ) − eλ2 ( t−s)Z2Q(s)ds
0

t

∫ + (Aeλ1t − Beλ2t )

+( eλ1 (t−s)Y1Pim (s)ds
0

t

∫ − eλ2 ( t−s)Y2Pim (s)ds
0

t

∫ )
 

where 
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€ 

λ1 =
−p1 + p1

2 − 4 p0p2
2p2

λ2 =
−p1 − p1

2 − 4 p0p2
2p2

A =
−1

p1
2 − 4 p0p2

[(q2λ1 + q1)Q(0) + q2
dQ
dt
(0) + b1Pim (0) + p2(λ2P(0) −

dP
dt
(0))]

B =
−1

p1
2 − 4 p0p2

[(q2λ2 + q1)Q(0) + q2
dQ
dt
(0) + b1Pim (0) + p2(λ1P(0) −

dP
dt
(0))]

R =
q2
p2

Z1 =
q2λ1

2 + q1λ1 + q0
p1
2 − 4 p0p2

Z2 =
q2λ2

2 + q1λ2 + q0
p1
2 − 4 p0p2

Y1 =
b1λ1 + b0
p1
2 − 4 p0p2

Y2 =
b1λ2 + b0
p1
2 − 4 p0p2

 

€ 

p0=1
p1 = Ra−microCa + (RV + RV −micro)(Ca + Cim )
p2 = CaCimRa−micro(RV + RV −micro)
q0 = Ra + Ra−micro + RV + RV −micro
q1 = RaCa (Ra−micro + RV + RV −micro) + Cim (Ra + Ra−micro)(RV + RV −micro)
q2 = CaCimRaRa−micro(RV + RV −micro)
b0 = 0
b1 = Cim (RV + RV −micro)
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MATLAB Code for Coronary Parameter Estimation 

clc 

clear all 

load Pim.mat 

load aor_press 

res_scale = 1.55; 

cap_scale_cim = 3; 

cap_scale_ca = 0.8; 

Q_scale = 1.0; 

A1 = 0.0164; 

A2 = 0.0102; 

A3 = 0.011; 

A4 = 0.025; 

A = A1 + A2 + A3 + A4; 

Ra = res_scale*12.6e3; 

Ramicro = res_scale*20.55e3; 

Rv = res_scale*7.2e3; 

Ca = cap_scale_ca*4.44e-6; 

Cim = cap_scale_cim*37.6e-6; 

p2 = Ca*Cim*Ramicro*Rv; 

p1 = Ramicro*Ca +Rv*(Ca+Cim); 

p0 = 1; 

q2 = Ca*Cim*Ra*Ramicro*Rv; 

q1 = Ra*Ca*(Ramicro+Rv)+Cim*(Ra+Ramicro)*Rv; 

q0 = Ra+Ramicro+Rv; 
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b2 = 0; 

b1 = Cim*Rv; 

b0 = 0; 

n=10000; 

k=n/1000; 

Q = zeros(1,n-2); 

Plv = ones(1,n); 

for i=1:k 

    for j=1:1000 

        P(1000*(i-1)+j) = aor_press(j); 

        Plv(1000*(i-1)+j) = Pim(j,2); 

    end 

end 

cardiac_cycle_period = 1.000; 

dt = cardiac_cycle_period/1000; 

t_final = n*dt; 

t = 0:dt:t_final-3*dt; 

for i=1:n-1 

    dPdt(i) = (P(i+1)-P(i))/dt; 

    dPlvdt(i) = (Plv(i+1)-Plv(i))/dt; 

end 

for i=1:n-2 

    d2Pdt2(i) = (dPdt(i+1)-dPdt(i))/dt; 

    d2Plvdt2(i) = (dPlvdt(i+1)-dPlvdt(i))/dt; 

end 
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Qini = 0.1; 

Q(1) = Qini; 

G = -30; %dp/dt (t =0) 

for i=1:n-2 

    f(i) = p2*d2Pdt2(i) + p1*dPdt(i) + p0*P(i) - b2*d2Plvdt2(i) - b1*dPlvdt(i) - b0*Plv(i); 

end 

for i=1:n-3 

    if i == 1 

        Q(i+1)=(f(i)-(q0-2*q2/(dt*dt))*Q(i)+G*dt*(q2/(dt*dt)-q1/(2*dt)))/(2*q2/(dt*dt)); 

    else 

        Q(i+1)=(f(i)-(q0-2*q2/(dt*dt))*Q(i)-(q2/(dt*dt)-q1/(2*dt))*Q(i- 

1))/(q2/(dt*dt)+q1/(2*dt)); 

    end 

end 

figure(1) 

plot(t,Q) 

figure(2) 

plot(t(8001:9001) - 8*cardiac_cycle_period,Q(8000:9000)) 

total_lca_flow=trapz(0:cardiac_cycle_period/1000:cardiac_cycle_period,(Q(8000:9000))

) 

cor_flow = Q(8000:9000); 

for i=1:4 

    area(i) = 0; 

end 

area(1) = A1; area(2) = A2; area(3) = A3; area(4) = A4; 
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for i=1:4 

    Ra(i) = (A/area(i))*res_scale*12.6e3; 

    Ramicro(i)=(A/area(i))*res_scale*20.55e3; 

    Rv(i) = (A/area(i))*res_scale*7.2e3; 

    Ca(i) = (area(i)/A)*cap_scale_ca*4.44e-6; 

    Cim(i) = (area(i)/A)*cap_scale_cim*37.6e-6; 

    p2(i) = Ca(i)*Cim(i)*Ramicro(i)*Rv(i); 

    p1(i) = Ramicro(i)*Ca(i) +Rv(i)*(Ca(i)+Cim(i)); 

    p0(i) = 1; 

    q2(i) = Ca(i)*Cim(i)*Ra(i)*Ramicro(i)*Rv(i); 

    q1(i) = Ra(i)*Ca(i)*(Ramicro(i)+Rv(i))+Cim(i)*(Ra(i)+Ramicro(i))*Rv(i); 

    q0(i) = Ra(i)+Ramicro(i)+Rv(i); 

    b2(i) = 0; 

    b1(i) = Cim(i)*Rv(i); 

    b0(i) = 0; 

end 

save cor_flow cor_flow 

left_ventricular_pressure = [Pim(:,1)';Pim(:,2)']; 

fp = fopen('cort_lca.dat','w'); 

fprintf(fp,'1001\n'); 

for i=1:4 

    fprintf(fp,'1001\n'); 

    fprintf(fp,'%f\n',q0(i)); 

    fprintf(fp,'%f\n',q1(i)); 

    fprintf(fp,'%f\n',q2(i)); 
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    fprintf(fp,'%f\n',p0(i)); 

    fprintf(fp,'%f\n',p1(i)); 

    fprintf(fp,'%f\n',p2(i)); 

    fprintf(fp,'%f\n',b0(i)); 

    fprintf(fp,'%f\n',b1(i)); 

    fprintf(fp,'%f\n',b2(i)); 

    fprintf(fp,'0\n'); 

    fprintf(fp,'100\n'); 

    fprintf(fp,'%1.15f %f\n',left_ventricular_pressure); 

end 

TT = linspace(0,cardiac_cycle_period,1001); 

systole_lca = trapz(TT(1:331),Q(8000:8330)); 

diastole_lca = trapz(TT(332:1001),Q(8331:9000)); 

lca_systole_flow_percent = systole_lca/diastole_lca*100 

 

 

 

 

 

 

 

 

 

 

               
Figure A1: Left ventricular pressure (top left), right ventricular pressure (top 

right), left ventricular pressure-volume loop (bottom left) and right ventricular 

pressure-volume loop (bottom right) 

 

 

! "#!"$
!

""!

%&'()&*+*,*-.+/.')0(+123

4
'.
2
2
5
'.
+1
6
6
7
8
3

! "#!"$
!

%!

&'()*'+,+-+./,0/(*1),234

5
(/
3
3
6
(/
,2
7
7
8
9
4

!" #"
"

$$"

%&'()*+,--.

/
0*
1
1
(
0*
+,
)
)
2
3
.

!" #"$
"

%"

&'()*+,-../

0
1+
2
2
)
1+
,-
*
*
3
4
/

!"#$%"&'()*+"$ ,)-.'$%"&'()*+"$



100 

 

Appendix II: 

Equations for Cumulative Exposure Time (CET)  

For an isotropic tetrahedral mesh, CET is computed at each element e based on the following 

equation 

€ 

CETe =
1

NtVe

He
p (t)dt

0

∞

∫
p=1

Nt

∑
 

Ve is the volume of the tetrahedral element e 

Nt is the total number of particles released in the domain 

€ 

He
p (t) =

1 if particle p is inside element e
0 otherwise
 
 
  

In the case of an anisotropic mesh, as in the present study, CET is scaled with the average length 

of the tetrahedral elements, and the volume Ve is replaced by the cube root of Ve. 

To achieve adequate resolution in the CET computation, particle tracking was performed with 

over 10 million particles in the right and the left coronary arteries in each cardiac cycle. Particles 

were released once at the start of simulation, and particle tracking continued until all the particles 

were washed from the domain 
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