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Abstract

Deep Brain Stimulation (DBS) is a widely used therapy to ameliorate symptoms experienced by 

patients with Parkinson’s Disease (PD). Conventional DBS is continuously ON even though PD 

symptoms fluctuate over time leading to undesirable side-effects and high energy requirements. 

This study investigates the use of a logistic regression-based classifier to identify periods when PD 

patients have rest tremor exploiting Local Field Potentials (LFPs) recorded with DBS electrodes 

implanted in the Subthalamic Nucleus in 7 PD patients (8 hemispheres). Analyzing 36.1 minutes 

of data with a 512 milliseconds non-overlapping window, the classification accuracy was well 

above chance-level for all patients, with Area Under the Curve (AUC) ranging from 0.67 to 0.93. 

The features with the most discriminative ability were, in descending order, power in the 31-45 

Hz, 5-7 Hz, 21-30 Hz, 46-55 Hz, and 56-95 Hz frequency bands. These results suggest that using a 

machine learning-based classifier, such as the one proposed in this study, can form the basis for 

on-demand DBS therapy for PD tremor, with the potential to reduce side-effects and lower battery 

consumption.

I Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative disorder affecting an estimated 6.2 

million people worldwide [1]. Patients with PD suffer from a variety of movement-related 

symptoms including bradykinesia, rigidity and tremor, which are usually treated with 

dopaminergic medication. Over time, however, it becomes more difficult to control the 

symptoms with medication alone and patients may eventually require advanced treatment 

options such as Deep Brain Stimulation (DBS). DBS is a well established and clinically 

proven treatment for advanced PD [2] and to date, more than 150,000 patients worldwide 

have been implanted with DBS. For PD, the DBS surgery consists of implanting electrodes 

inside the brain, commonly targeting either the subthalamic nucleus (STN) or the globus 

(corresponding author: phone +44 (0) 1865 234764; syed. shah@ndcn.ox. ac.uk). 
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pallidus internus (GPi). These are then connected to a subcutaneous pulse generator in the 

chest. DBS systems currently in use deliver continuous high frequency stimulation (~130Hz) 

and may lead to stimulation-induced side effects and accelerated battery depletion. However, 

motor symptoms like tremor fluctuate and turning DBS ON only when symptoms appear is 

likely to reduce side effects and battery consumption. Deciding on when to turn ON DBS 

depending on the presence of symptoms has been investigated in several contexts and is 

commonly referred to as Closed-Loop Deep Brain Stimulation (CLDBS). While some 

CLDBS approaches rely on additional sensing devices (e.g. cortical strip of electrodes [3] or 

peripheral sensors [4]), it would be advantageous if extra instrumentation and related 

additional power demands could be avoided. Specifically, can Local Field Potentials (LFPs) 

recorded directly from the DBS electrodes already implanted provide useful information? A 

previously developed CLDBS system for PD used the threshold crossing of the power in 

beta frequency band (13-35Hz) of LFPs to trigger the delivery of stimulation and this proved 

to be at least as effective as conventional DBS [5]. However, beta band activity has been 

shown to only correlate well with bradykinesia and rigidity, and not tremor [6]. This then 

motivates the exploration of machine learning techniques in combining a large pool of 

features extracted from the LFP to identify tremor and build a classifier. This can then allow 

CLDBS to suppress tremor in PD patients, either in isolation or coupled to a parallel control 

loop aimed at bradykinesia and rigidity.

This study aims to use machine learning-based approaches on LFP data collected from PD 

patients to develop a classifier that can separate periods of tremor from those without using 

LFPs recorded from the contra-lateral STN with DBS electrodes.

II Methods

Figure 1 provides an overview of the methods used in this study. LFPs were collected from 

patients’ STNs with DBS electrodes while simultaneously recording accelerometer data 

from the contralateral tremulous hand. Where accelerometers provided data from 2 or 3 

axes, principal component analysis (PCA) was performed to identify the dominant tremor 

axis. This was followed by labelling to identify both ‘tremor’ and ‘no tremor’ periods. After 

extracting various features from the LFP with a sliding window, a classifier was developed 

with supervised learning and internally validated with a 5-fold cross validation.

A Dataset Collection

The dataset used in this study was collected from 7 patients (8 STNs) with PD who had DBS 

electrodes implanted. All these patients had rest tremor. Patients had an initial surgery where 

4-contact DBS electrodes were implanted in the STN and leads temporarily externalised. 

Data were collected 3-4 days after DBS surgery following overnight medication withdrawal. 

Leads were internalized and connected to a subcutaneous battery at a second operation. 

During the experiment, an accelerometer was attached to the patient’s hand affected with 

tremor to record any tremor present with simultaneous recording of the LFPs. In each case, 

the bipolar channel with the best classification performance was chosen for further analysis 

(out of the three bipolar channels). Out of the 8 cases, 1 patient had recordings available for 

both the left and right hands, while 4 patients had only right hand recordings and 2 had 
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recordings from only the left hand. The accelerometer recordings were undertaken with a tri-

axial accelerometer in 2 cases, bi-axial in 4 cases and mono-axial in 2 cases. The study was 

approved by the local ethics committee and all patients provided informed and written 

consent.

B Dataset Labelling

The time-series recorded by the accelerometer was used to identify both ‘tremor’ and ‘non-

tremor’ periods. In cases with multi-axial recordings, principal component analysis was used 

to identify the dominant axis. Subsequently, both tremor and non-tremor periods were 

identified by visual inspection of an expert who ensured that the signal in the non-tremor 

periods had negligible amplitude relative to the periods with tremor. The mean Signal to 

Noise Ratio (SNR) of the ‘tremor’ versus the ‘non-tremor’ period was 63.2 ± 20.9 decibels. 

At the same time, the periods identified as having tremor were inspected closely to ensure 

that the dominant frequency lay in the pathological range of tremors associated with PD (4-8 

Hz). As an example, Figure 2 shows a recording from a single patient with both tremor 

periods (in red) and non-tremor periods (in blue) identified. All selected periods were at 

least 10 seconds long with a mean duration of 59 seconds.

C Feature Extraction

Due to the limited previous work in this direction, this study aimed to generate a large pool 

of features for further investigation. A 512 milliseconds non-overlapping window was used 

to extract various features with a time resolution suitable for real-time therapeutic 

application. Informed by our previous work [7], we generated a number of frequency-

domain and time-domain features.

Frequency-domain features were extracted after convolving the LFP signal with the complex 

Morlet wavelet to transform the time-domain signal into a time-frequency signal [8]. The 

wavelet transform was based on a linear frequency scale of 501 points ranging from 0 to 500 

Hz, with a variable number of cycles ranging from 4 to 10 on a logarithmic scale based on 

frequency. The frequency bands defined were 0-4 Hz, 5-7 Hz, 8-12 Hz, 13-20 Hz, 21-30 Hz, 

31-45 Hz, 46-55 Hz, 56-95 Hz, 96-105 Hz, 106-200 Hz, 201-300 Hz, 301-349 Hz and 

350-500 Hz. In each 512 milliseconds window, the mean power in each of these frequency 

bands was identified as a feature.

The time-domain features explored in this study were the three Hjorth parameters originally 

proposed to characterize the complexities found in the electroencephalogram time-series 

which are not otherwise captured by extracting power in various frequency bands with a 

wavelet transform [9]. These are activity (characterizes the mean power of a signal), 

mobility (equivalent to the standard deviation of the power spectrum of a signal) and 

complexity (characterizes the ‘smoothness’ of a signal relative to a pure sine wave). The 

Hjorth parameters can easily be computed in real-time by applying differentiation (can be 

approximated by taking the difference of consecutive samples) operations to the time-

domain signal.

All the features extracted for each window were normalized to have zero mean and unit 

variance according to equation (1) where Zf refers to a N × 1 column vector from N 
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windows representing one of the afore-mentioned features, and mean(Zf) and std(Zf) refers 

to the mean and standard deviation of this vector respectively.

Z f =
Z f − mean Z f

std Z f
(1)

D Classification Algorithm

In this study, we used Logistic Regression (LR) for classification. LR is one of the most 

widely used supervised algorithms for classification in machine learning offering an easily 

interpretable solution [10]. In LR, a linear function represents a weighted sum of different 

features as shown in equation (2) where xN and θN represent the Nth feature and parameter 

respectively.

hθ x = θ0 + θ1 x1 + θ2 x2… . θN xN (2)

To ensure that the output of equation (2) is limited to the range from 0 to 1, the output of this 

equation is fed as input to a sigmoid function. The output from the sigmoid function can thus 

also be interpreted as a probability. The objective of the LR-based classification is, then, to 

find the linear function hθ(x) (defined by the choice of the parameter sets, θ0, θ1, … θN) that 

will provide the maximal separation between the two classes. For ease of computation, it is 

typical to label one class as 0 and the second class as 1 in a two-class classification problem. 

Using this convention, the supervised learning problem is essentially that of optimization 

where the minimum of an appropriately defined cost function (equation (3)) is identified by 

gradient descent algorithm. Equation (3) defines such a cost function where x(i) represents 

the ith feature vector, g(.) represents the sigmoid function, hθ(x(i)) represents the linear 

function defined earlier in equation (2) and N represents the total number of training 

examples. This cost function outputs a large value whenever the predicted output, g(hθ(x(i))) 

is different from the actual value, yi and a small value when the predicted output is close to 

the actual value for the ith training example.

c θ = − 1
N ∑

i = 1

N
yilog g hθ x i + 1 − yi log 1 − g hθ x i (3)

A common problem often encountered in machine learning in cases with large feature 

spaces (relative to the training examples) is that of over-fitting. Over-fitting typically results 

in large values of the parameters, [θ0, θ1, … θN] that are to be identified through an 

optimization procedure. One technique to deal with this problem is to modify the cost 

function to include a function of the parameters as an additional term to penalize any large 

values. In this work, we used the sum of squares of the parameters as the additional term 
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parametrized by λ (the l2 norm i.e. λ∑i = 1
N θi

2
) that controls the relative importance of 

regularization in the optimization function with 0 indicating no regularization and a large λ 
leading to a heavily regularized model potentially leading to an under-fitting problem. This 

form of regularization is often employed in supervised learning problems and it is 

commonly referred to as ridge regression.

E Performance Evaluation

To ensure generalizability of our results, a 5-fold cross validation was used. Since the total 

tremor and non-tremor periods differed for each patient, both those periods were separately 

divided into 5 folds with each fold consisting of 20% of the continuous data in either tremor 

or non-tremor state. Subsequently, 5 iterations were performed where in every iteration, 3 

folds were used for training followed by one of the remaining folds for determining the 

optimal value of λ (to determine the amount of regularization) and the other remaining fold 

for testing using the optimal value of λ identified during the validation.

The LR-based classifier outputs a number between 0 and 1 for every test window, which can 

be interpreted as the probability of the corresponding window belonging to the period when 

the patient is in the tremor state. For a specific threshold applied to this probability, one can 

classify the corresponding window as belonging to the tremor period or the non-tremor 

period. Correct and incorrect classification of a tremor period is taken as True Positive and 

False Negative respectively while correct and incorrect classification of non-tremor period is 

taken as True Negative and False Negative respectively. The proportion of these afore-

mentioned measures will vary depending on the threshold chosen. A widely used method to 

evaluate the performance of a 2-class classifier is (the Receiver Operating Characteristics 

(ROC) curve) to sweep across all possible thresholds from one extreme (very low to classify 

all periods as those with tremor) to the other extreme (very high to classify all periods as 

those without tremor). Each point in the ROC curve corresponds to a specific threshold and 

the area under the ROC curve (AUC) provides a measure of the ability of the classifier to 

distinguish between the two periods with 0.5 indicating a chance-level accuracy and a 1 

suggesting a perfect classifier. This study uses AUC as a measure of classifier accuracy in 

order to assess performance.

III Results

Figure 3 shows the output of the regularized LR-based classifier (dotted line in red), along 

with both tremor and non-tremor periods (solid line in blue) on test data using multiple folds 

with tremor and non-tremor periods concatenated together. Figure 4 shows the resulting 

ROC for the same patient illustrating the performance of the classifier in terms of sensitivity 

and specificity for all possible threshold values. Each point on the ROC curve corresponds to 

realizing a specific classifier as a result of choosing a specific threshold. Figure 5 shows the 

output (3-point median filtered) after choosing one such threshold shown in Figure 4 marked 

in green. From the figure, it can clearly be seen that the classifier correctly identifies both 

tremor and non-tremor period most of the time.
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Figure 6 shows the ROC curve for each of the 8 cases on the testing dataset, as well as the 

mean of all these ROCs (thick red line). Table 1 provides the AUC for each patient, the SNR 

of tremor versus non-tremor as well as the number and total duration of tremor and non-

tremor periods. In total, 2,167 seconds (36.1 minutes) of data were analyzed from 8 STNs 

with 1320 seconds of tremor (22.0 minutes) and 847 seconds of non-tremor period (14.1 

minutes) resulting in mean AUC of 0.78 (min: 0.67, max: 0.93). For each of the 8 cases, we 

inspected the weights associated with each feature and then ranked features based on their 

weights (since all the features were zero mean and unit variance, their weights were on the 

same scale). The top 5 features according to the mean rank in the order of importance were: 

31-45 Hz, 5-7 Hz, 21-30 Hz, 46-55 Hz, and 56-95 Hz.

IV Discussion and Future work

Previous studies exploiting LFPs to identify tremor from STN are limited. The study in [11] 

used data from 10 patients to propose the use of Hidden Markov Model-based classifier 

using four frequency bands as features. However, in that study, electromyogram was used to 

sense tremor, which is highly focal and more prone to miss tremor elsewhere than 

accelerometer recordings. Furthermore, the study used a 2-second window, which would 

lead to a latency of at least 2 seconds in real-time implementation of their method, and this 

might be deemed clinically undesirable. The results in this study are based on a 512 

milliseconds window, a 74% shorter window that would potentially lead to a significantly 

faster response time. Another study [12] used an LR-based classifier using telemetry from a 

single patient. However, this study used a 6-second window for feature extraction which 

would lead to a long latency in any real-time implementation and hence fail to optimally 

treat tremor. The study in [13] used a 1-second window but it was based on a single subject 

and used EMG to identify periods of tremor. Studies done by [14], [15] used data from more 

than one patient but the window size used was, again, rather long i.e. 2 seconds.

There are some limitations of this study that are important to acknowledge. The ‘tremor’ and 

‘no tremor’ periods were identified through visual inspection picking only those periods that 

were clearly belonging to either of the two classes. Future work would automate this 

procedure to ensure that tremor periods with lower SNR are also analyzed. Recordings took 

place in patients with temporally externalized leads in the immediate post-operative state. 

Thus, a confounding stun effect (lesion effect) [16] that compromised SNR of both tremor 

and LFPs, and led to an underestimation of tremor prediction, cannot be excluded. In 

addition, patients were recorded at rest and so it remains to be seen whether the classifier 

using LFP signals can distinguish tremor from voluntary movement. Lastly, this study 

focused only on tremor but PD patients can experience other symptoms and consequently, 

the proposed classifier should ideally be part of a multi-stage classifier, each one for a 

different symptom complex.

Nevertheless, this study has demonstrated the utility of machine learning in identifying 

periods when a PD patient has rest tremor using LFP from the contra-lateral STN with AUC 

ranging from 0.68 to 0.93. The fact that the AUCs are well above 0.5 (chance-level 

accuracy) clearly demonstrates the discriminative power of LFPs in identifying tremor. The 

clinical usefulness of this approach is yet to be demonstrated in a follow-up study, but 
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clinical performance could be improved still further in cases with AUCs at the lower end of 

the spectrum, by selecting an operating point (corresponding to a specific threshold) on the 

ROC biased towards sensitivity (by choosing a lower threshold) as it is more acceptable to 

stimulate a patient in the absence of tremor (False Positive) as opposed to not to stimulate in 

the presence of tremor (False Negative). Consequently, even for patients with low AUCs 

(which are still much above chance-level of 0.5), CLDBS driven by a machine learning 

based classifier such as the one proposed in this study have the potential to be an 

improvement over continuous DBS for treating PD patients with tremor by reducing 

stimulation ON time.
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Figure 1. 
Overview of the methods used in this study
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Figure 2. 
Identification of tremor periods (red) and non-tremor periods (blue) through visual 

inspection for a single patient
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Figure 3. 
Tremor (1) and Non-Tremor (0) periods in several test folds concatenated along with the 

LR-based classifier output for a single patient
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Figure 4. 
ROC curve showing both the training and testing accuracy along with the marking of a 

specific threshold (see Figure 5)
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Figure 5. 
Tremor (1) and Non-Tremor (0) periods along with the output of a classifier (3-point median 

filtered for visualization) based on a choice of a specific threshold on the ROC (shown by 

green dot in Figure 4).
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Figure 6. 
ROC performance (on the test set) of the LR-based classifier for all the 8 cases, along with 

the mean ROC plotted (thick, red plot)
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Table 1
Number and Total Duration of ‘Tremor’ and ‘No Tremor’ Periods, Signal to Noise Ratio, 
and the AUC Performance for the 8 Cases used in this Study

Case ID

Period duration in seconds
(number of periods)

SNR (dB) ROC Area Under the Curve (AUC)

No Tremor Tremor

p1 54 (1) 191 (3) 50.0 0.68

p2 202 (5) 73 (3) 58.9 0.91

p3 183 (2) 122 (1) 44.8 0.67

p4 15 (1) 335 (2) 67.8 0.85

p5 244 (4) 304 (8) 79.9 0.71

p6 65 (1) 96 (1) 103.2 0.72

p7 34 (1) 149 (2) 62.8 0.93

p8 50 (1) 50 (1) 38.1 0.74

8 cases 847 (16) 1320 (21) 63.2 0.78 ± 0.11
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