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EPIGRAPH

Well, I’m walkin’ down the line,

I’m walkin’ down the line

An’ I’m walkin’ down the line.

My feet’ll be a-flyin’

To tell about my troubled mind.

—Bob Dylan, Walking down the line
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ABSTRACT OF THE DISSERTATION

Anti-Instinctive Learning in Fruit Flies

by

Ruichen Sun

in Biology

University of California San Diego, 2019

Professor Ralph J. Greenspan, Chair

Learning is a fundamental experience-dependent process involving permanent changes in

behaviors. Among all learning processes, anti-instinctive learning, an ability to modify one’s

innate behaviors in ways that go against one’s innate tendency, can confer great evolution-

ary advantages to animals and enable them to better adapt to the changing environment.

Yet, our understanding of anti-instinctive learning and its underlying mechanisms is still

limited. In this dissertation, I describe a new learning behavior of the fruit fly, which also

identifies a second anti-instinctive learning behavior in the fly. This learning paradigm re-

quires fruit fly to respond to a recurring, aversive, mild heat stress by modifying its innate

locomotion behavior. Chapter 1 of this dissertation reviews definitions of behavior with a

focus on locomotion, and the effects of learning on behaviors. Chapter 2 of this dissertation

xiv



describes the design of a novel behavioral apparatus, the LaserSync system, used in this

study. Chapter 3 of this dissertation describes the wild type fruit fly’s anti-instinctive learn-

ing behaviors. Chapter 4 of this dissertation describes the exploration of the molecular and

cellular mechanisms underlying anti-instinctive learning behavior. We found that experienc-

ing movement-triggered heat stress repeatedly significantly reduced walking activity in wild

type flies, indicating that fruit flies are capable of anti-instinctive learning. Based on this

new learning behavior, we explored potentially relevant molecular and neuronal mechanisms

underlying anti-instinctive behavior. This work is an effort to develop an animal model of

anti-instinctive learning behavior that allows for rigorous interrogation of the underlying bio-

logical mechanisms. Insights generated from this study will bring us closer in understanding

the biology of learning, and perhaps higher cognitive functions in general.
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Chapter 1

Introduction

1.1 What is Behavior?

More than 60 years ago, the Nobel-winning ethologist Nikolaas Tinbergen summarized

four fundamental distinct aspects for the study of animal behaviors: survival value, ontogeny,

evolution, and causation [137]. To illustrate, for a given behavior, one can ask four types

of questions: 1) how does this behavior help the organism survive (survival value)? 2)

How does this behavior change during the lifetime of the organism (ontogeny)? 3) How

did individuals of previous generations affect this behavior of the individual in the current

generation (evolution)? 4) What is the mechanism of the behavior (causation)? Note that

among these four questions, the last question is perhaps the most difficult to answer. These

questions provided a framework to understand specific animal behaviors. But before we can

study any behavior, we must first answer: what is behavior?

It has been surprisingly difficult to define behavior. Tinbergen suggested that behavior

is, ”the total movements made by the intact animal” [138]. Yet, this definition is somewhat

misleading – it suggests that a turtle, in being shifted by an ocean wave, is undertaking

behavior of a sort. Nonetheless, no better definition of behavior has been proposed since

Tinbergen wrote. A recent survey of definitions of behavior among 174 behavioral biologists

showed no agreement [77]. The researchers, however, were able to synthesize a new definition
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based on the respondents’ varying answers: the internally coordinated responses (actions

or inactions) of whole living organisms (individuals or groups) to internal and or external

stimuli, excluding responses more easily understood as developmental changes [77].

Not only has the definition of behavior been fuzzy, but behavioral research itself also

has made limited progress in the past several decades. One can use genome research as a

comparison. If we apply Tinbergen’s four questions to genomic studies, we can answer them

more readily than we can in behavioral studies. First, the survival value of DNA is obvious:

mutations that reduce an organism’s fitness will be weeded out by natural selection. Second,

changes in DNA can be compared and traced from individual to individual and from species

to species. Third, DNA stays largely the same from generation to generation and from the

beginning until the end of an individual’s life. Lastly, the central dogma of molecular biology

has already been verified as a valid framework of how DNA works [153, 28]. If we compare

the timeline of progress in behavior research and that of genomic research, the contrast is

even more telling: in 1953, the definition of species was as fuzzy as the definition of behavior;

and today, progress in genomics has already helped to clarify confusion on speciations at the

molecular level and facilitated the emergence of genetic engineering, while not much progress

has been made in our understanding of behaviors. In terms of research methodology, today’s

ethologists, similar to ethologists in the past, are still focused on stereotypical behaviors that

are robust to environmental changes or are part of fixed behavioral patterns [78].

An example of a behavior study can illustrate our limited understanding of behaviors.

Animals closely related to one another phylogenetically sometimes show completely distinct

forms of behavior, an example of which is the Nudibranch mollusk, commonly referred to as

the sea slug. Nudibranchs are a group of aquatic shell-less mollusks found in the ocean. Many

species within the Nudibranch group do not swim [75]. Among those which do, some swim by

flexing their bodies in the dorsal-ventral direction, others by bending their bodies in the left-

right direction [75]. Tritonia diomedea is a dorsal-ventral swimmer, while Melibe leonina is a

left-right swimmer [75, 92]. While the genus of Tritonia and Melibe are monophyletic, they

swim in starkly different ways. The difference can be traced to the neural circuits controlling
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swimming [63, 136]. In Tritonia, neurons from both left and right sides fire synchronously

during swimming, while in Melibe, neurons fire in alternation [63, 136]. Yet, apart from

differences in neuronal functions, the flexibility of a fixed behavior may also contribute to

the observed differences in swimming behaviors. Melibe, being a left-right swimmer, was

found to possess dorsal-ventral neuronal homologs, although these neurons are mostly silent

when Melibe is swimming (in a left-right way) [136]. It is unclear whether Melibe is capable

of both dorsal-ventral and left-right swimming, and for unknown reasons, simply favors one

to the other.

Several experiments could shed light on this question. As neurons on the left and

right sides of the left-right swimmer Melibe fire in alternation during swimming, one might

selectively activate these neurons (both on the left and right sides of the animal) in Melibe

and see whether dorsal ventral swimming occurs. Another experiment would be to raise

individual Melibe with groups of Tritonia from the day Melibe hatches, and see whether

dorsal-ventral swimming occurs as a result of learning and influences from the surrounding

environment. These Gedanken experiments, however, are challenging to perform in Nudi-

branchs, because they cannot be cultured and bred in the laboratory and that we do not

have molecular markers to selectively target dorsal-ventral neurons in Nudibranchs.

In fact, these two issues, difficult to keep in laboratory and lack of available molecular

markers, have been the major roadblocks for studying behaviors of most animals in the

lab. Luckily, there is still hope, and it is from the fruit fly. Fruit flies, unlike the sea

slug, offer an amenable test system for studying sophisticated behaviors and for elucidating

the mechanisms underlying such behaviors [127, 43, 27, 85, 5]. Progress in genetics and

molecular biology, pioneered by Seymour Benzer, has cemented the fruit fly as a powerful

model organism in studying mechanisms underlying behaviors [16, 71, 38, 141, 107]. An

example is aggression behavior. A recent study showed that female flies from different

subspecies of Drosophila display different levels of aggression when feeding [118]. Drosophila

erecta gathers around food sources much faster than Drosophila melanogaster does, and they

show greater levels of aggression [145, 59]. Such behavior is food-specific and can be easily
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observed during feeding [94]. When reared with Drosophila melanogaster, Drosophila erecta

becomes less aggressive than when raised alone or with con-specifics. Such a difference in

aggression and social behavior was found to be correlated with elevated expression of genes

related to immune response and olfaction in the socialized flies [118]. These studies, together

with other studies using fruit flies, revealed that a deeper understanding of animal behaviors

is possible.

1.2 Moving Around in Nature

The response of an organism to external or internal stimuli is the hallmark of behavior

[77]. In this sense, behaviors are algorithmic by nature: generating solutions to problems.

The algorithmic nature of behaviors, however, does not require organisms to solve the same

problem in the same way (e.g. different types of swimming behaviors of the closely related

Tritonia and Melibe), nor does it impose upon the organisms uniform hardware in imple-

menting these solutions. A good example to illustrate this, i.e. the diversity of behavioral

solutions to a single problem, is how different species move in nature with or without a ner-

vous system. For almost all organisms, the ability to move is a prerequisite for performing

many behaviors. Having a nervous system certainly helps an organism to achieve a more

sophisticated sequence of motions, but there remains room in animal life for much simpler

solutions to movement. For example, organisms with no nervous system, such as the aneural

Trichoplax and most bacteria, are capable of motion [125, 2]. Here, I briefly review and

compare these locomotion solutions seen in different organisms.

Nature presents every organism, prokaryotes and eukaryotes alike, with the same

problem: how to move? Consider a bacterial cell, suspended in liquid and attracted to

certain stimuli. The flagellum is a structure consisting of a basal body, filament, and hook,

driven by a proton motive force, and it represents a common bacterial solution to the problem

of motion [17, 82]. Counterclockwise rotation forces the filaments in the flagellum to coalesce

into a bundle along the long axis of the cell body; as a result, the bacterial cell moves forward.
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Clockwise motion, on the other hand, makes the filaments less organized, causing the cell to

tumble. Thus, the flagellar rotation direction is important in bacterial movements, and it is

found that the rotational direction is controlled by a series of events inside the bacterial cell

in response to extracellular stimuli [111].

In addition to bacteria, prokaryotes also include another major domain of life: ar-

chaea. It turns out that the flagellum is also the archaeal solution to the problem of motion

[41]. Archaeal and bacterial flagella, however, are structurally different [60]. Many of the

proteins that make up flagellum in archaea resemble the proteins that make up the bacterial

type IV pili structure [93]. In bacteria, type IV pili are used for pulling the cell forward when

anchored to a surface [48]. But in archaea, type IV pili-like flagella function by rotating their

filaments without being attached to any surface, similar to bacterial flagella. Thus, despite

the differences in molecular structures of their motor proteins, bacteria and archaea move in

functionally the same way.

Regardless of the specific proteins used in moving, physics places constraints on how

fast single cells move through a homogeneous environment. A bacterial cell can swim at

20–40µm/s, corresponding to 20-40 body lengths per second, or bps [53]. Some archaeal

cells swim at anywhere between 3–380µm/s, or 3–380bps [53]. To put these numbers in

context, one needs to compare it to the bacterial life cycle. Escherichia coli doubles every

40 minutes or less [26]. At 20µm/s, E. coli can move up to 48mm in its lifetime when there

is no external force. Thus, it would be a challenge for E. coli to move on its own to food

sources 100 meters away in one generation.

Some eukaryotes, such as protozoan Paramecium and Trichoplax adhaerens, also use

flagella and cilia to move around. Eukaryotic flagella are structurally unlike those in bacteria

[60, 72, 95], and may have evolved from pre-existing cytoskeletal components such as tubulin

and dynein [90]. In eukaryotes, flagella and ciliary movements are rather inefficient. Parame-

cium propels itself at 50–200µm/s (1 bps) by moving its cilia attached to the outside of the

cell membrane [73, 109, 147]. Trichoplax does not have any internal organs, tissues, nerves,

or muscles. Unicellular species can propel themselves by synchronous ciliary movement, as
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it is fairly easy to coordinate the cilia movement within a single cell. But for multicellular

organisms, such as Trichoplax, coordinating ciliary movements across different cells becomes

challenging. The cilia of Trichoplax can only beat asynchronously, resulting in Trichoplax

moving at around 15µm/s, or 0.015bps — much slower than that of unicellular organisms

(e.g. E. coli) [146, 125, 128].

Using cilia/flagella to move is better controlled by intracellular chemical signaling,

and such processes are ill-suited for synchronizing multiple cells’ cilia movements [82]. Thus,

though efficient in moving prokaryotes and unicellular eukaryotes, the flagellum-like struc-

tures reach a bottleneck in moving multicellular organisms, and novel algorithms are needed

for accomplishing their locomotion.

The emergence of muscles and their innervating nerves allow organisms to have more

precise control of movements [32]. Derived from the mesoderm, muscles generate force with

the sliding and contraction between two proteins, actin and myosin [55]. Most eukaryotes,

including all bilaterians, such as vertebrates and insects and annelids, have striated muscles,

suggesting that the emergence of muscle is an event in evolution possibly predating the rise of

bilaterians [129]. As an example, jellyfish, one of the most basal animal phylum (Cnidaria),

also use striated muscles to propel themselves [116]. It is likely that the striated muscles

found in bilaterians evolved from ancient cells that were able to contract (as modern muscles

do), but were unable to regulate their contractions (the way muscle-innervating neurons do)

[129].

The Nervous system evolved to become the control system for muscle-coordinated

movement [61]. The nervous system is a network of nerve cells, also called neurons, which

can be divided into three categories: sensory neurons, interneurons, and motor neurons

[65]. External stimuli activate sensory neurons, which transmit signals to downstream inter-

neurons. Then, interneurons further transmit the signal to downstream motor neurons.

Motor neurons synapse onto muscle fibers, forming what is called neuromuscular junctions.

At neuromuscular junctions, motor neurons can elicit muscle contraction by transmitting

signals to muscles via neurotransmitters, typically acetylcholine (in vertebrates) or glutamate
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(in invertebrates) [69]. Endowed with such a system, organisms can move with more precision

and greater speed compared to unicellular organisms.

1.3 Nature Alters Behaviors via Learning

The ways with which different organisms move around exemplifies how diverse the

forms of a basic behavior can be. Their behaviors are products of the diverse environment

the animals evolved in. One of the universal processes that the environment alters in be-

havior is learning. Learning, sometimes also referred to as acquisition or conditioning, is an

experience-dependent biological process in which lasting changes occur in the individuals’

behavioral potential [3]. Almost all organisms are able to learn, including aplysia, C. elegans,

fruit flies, mammals, and of course humans [152, 104, 143, 19, 151].

Two major types of learning exist, non-associative and associative learning [65]. Non-

associative learning refers to processes in which a behavioral response towards a single stim-

ulus changes without an associated stimulus [65]. Non-associative learning includes habitu-

ation, where responses’ intensity or frequency decreases upon repeated presentation of the

stimulus, and sensitization, where a response’ intensity or frequency increases with repeated

stimuli [65]. Habituation and sensitization are viewed as the simplest forms of learning

[25, 24].

In contrast to non-associative learning, associative learning can be broadly defined

as a process in which a subject associates one stimulus with another or with a behavior

[65, 151]. The process of associating two stimuli is referred to as classical conditioning,

whereas the association of a stimulus and behavior is called operant conditioning [106, 124].

Classical conditioning is the process by which an animal acquires an automatic response to

a particular environmental stimulus (in the presence of another stimulus), usually the kind

of stimulus unable to elicit responses from the animal prior to the learning process [105, 97].

An example is Ivan Pavlov’s study of dogs in which he showed that dogs can be conditioned

to produce a salivation response to an otherwise neutral ringing of a bell if the bell ring is
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repeatedly paired with food [98]. On the other hand, operant conditioning is a process by

which an animal learns to associate certain behaviors of its own to a non-neutral outcome

(either positive or negative) [124]. An example is B. F. Skinner’s experiments on pigeons [39].

In the study, pigeons kept in an enclosed chamber received rewards (such as food pellets) if

they perform a specific behavior (such as pecking a disc) [39]. This kind of training has been

extensively used, either consciously or unconsciously, in training animals and even children

[151].

A series of cellular and molecular events are involved in associative learning, and

some of these events are shared across species [65]. One example is the classical conditioning

of Aplysia’s gill and siphon withdrawal reflex to gentle touches on its siphon using electric

shocks to its tail[23]. A touch on an Aplysia’s siphon activates its sensory neurons and result

in a Ca2+ influx, whereas electric shocks to its tail trigger serotonin release to postsynaptic

neurons, which include the siphon sensory neurons and motor neurons. Adenylyl cyclase in

the sensory neurons respond to the co-occurrence of the Ca2+ influx and serotonin release

(through serotonin receptors), and activates the postsynaptic motor neuron, resulting in the

gill withdrawal [50, 65]. In other words, adenylyl cyclase facilitates the pairing of the siphon

touch with electric shocks, allowing the former to elicit gill withdrawal reflex without the

latter.

Important cellular and molecular events in the process of memory storage following

learning have also been identified. Memory consists of short-term and long-term memory,

the conversion of the former to the latter called consolidation [65]. During learning, elec-

tric shocks to the tail trigger serotonin release at the synapse between sensory and motor

neurons. Serotonin then binds to postsynaptic receptors, activating adenylyl cyclase, which

then converts intracellular ATP to cAMP. cAMP then activates protein kinase A (PKA),

and this event leads to phosphorylation of existing intracellular proteins, resulting in the

formation of short-term memory [65]. Converting short-term memory to long-term memory,

however, requires new protein synthesis, which in turn requires gene expression. cAMP re-

sponsive element binding protein (CREB) is responsible for transcribing genes which have
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cAMP response element sequences in their promoter regions [120]. Studies in fruit flies have

shown that overexpression of CREB repressor blocks long-term memory formation, whereas

overexpression of CREB activator leads to the formation of immediate long-term memory

(also called photographic memory) [163, 164, 99, 142, 120].

1.4 Learning Against One’s Innate Behaviors

Although the learning process modifies behaviors, not all behaviors can be modified

in the same way and to the same extent. In particular, actions or tasks that conform to an

animal’s innate behaviors or confer immediate benefits (such as feeding) are easier to acquire

than actions that go against an individual’s innate behaviors [151]. It is estimated that most

of the behaviors studied in laboratory conditions are between the two extremes mentioned

[83, 65]. Conditioning subjects to perform behaviors that are against their instincts, which

I call anti-instinctive learning, is perhaps one of the most difficult types of conditioning to

study.

Yet, anti-instinctive learning is as important, if not more so, as other types of learn-

ing. An example is the Stanford Marshmallow study [89]. In the study, preschool children

were presented with marshmallows and given a choice between eating the marshmallow im-

mediately or waiting 15 minutes for another marshmallow. If the child eats the marshmallow

before the end of 15 minutes, he or she would not be given another marshmallow. Some

children in this study were able to wait 15 minutes for the bigger reward (a second marsh-

mallow). These children’s behaviors showed that humans are able to act against the instinct

to consume food presented in front of us, a fact that at first glance seems to violate the prin-

ciples of evolution. Yet, the ability to resist immediate rewards turns out to be positively

correlated with a child’s future scholastic achievements and better stress management ability

as an adult, both of which are desirable traits in the human society [88].

In humans, behavior control, such as acting against one’s instinct, usually requires

prefrontal cortex activity in the brain [134, 4, 65]. In addition to behavior control, the
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prefrontal cortex is also involved in higher cognitive functions, such as language, reasoning,

and planning, resulting in its being often seen as the neurological foundation for higher

cognition and intelligence [157]. Yet, the human brain consists of 120 billion neurons (with

21 - 26 billion neurons in the cortex) and understanding how these neurons interact and

engender behavioral control is still technically infeasible [52], not to mention the issues

inherent in human behavior studies. For example, in the Stanford Marshmallow experiment,

age is a confounding factor positively correlated with the children’s ability to wait [89].

This means that direct comparison between behaviors of 3-year-olds and those of 4-year-

olds directly would not be appropriate, as the ability to act against their innate attraction

towards sweets changes as a child grows older. Also, it is unclear if these children’s previous

experiences are controlled for in the study. It is possible that if a child has been rewarded

for delay gratification prior to the study may affect how he or she behaved in the study. Yet,

controlling for past experience in studies using human subjects is again challenging, and

any attempt to control for past experiences in human subjects, such as keeping the subject

isolated for days, would be deemed unethical.

In light of the importance of anti-instinctive learning and the current limitations

in studying this phenomenon in humans, it is worth exploring the phenomenon in model

organisms. Fruit flies, with their powerful genetics and rich behavior repertoire, are ideal

for studying anti-instinctive learning behavior [42, 37]. Yet, one may wonder if the tiny fly

indeed has the ability to perform behaviors as complex as learning to behave against its

instinct. Studies on fruit fly courtship conditioning indicate that the answer to the previous

question may be positive.

Courtship conditioning refers to the phenomenon in which the courtship behavior of a

male fly is modified by its prior sexual experience [119]. Female virgin fruit flies are receptive

to a male’s courtship attempts [119]. After mating, the recently mated female becomes

unreceptive to any new male’s courtship attempts [119]. If a naive male has previously been

rejected by an unreceptive female, the male fly would later court a receptive female with

much less fervor [119]. As the drive to mate is one of the most basic instincts for animals,

10



a male fly’s reluctance to court receptive females after being rejected by other females goes

against their instincts. Therefore, the existence of courtship conditioning behavior in flies not

only indicates that they are not automata born with only predetermined behavior programs

but also suggests that they are able to perform anti-instinctive learning behavior.

However, it is challenging to study the mechanisms underlying anti-instinctive learn-

ing using courtship conditioning as a model. On the one hand, previous studies have sug-

gested that experience-dependent changes in courtship behavior of the male fly are modulated

by olfactory, visual, and tactile cues [139, 140, 1, 87]. On the other hand, a recent study

showed that courtship conditioning was mainly due to an unsuccessful mating attempt per se

instead of olfactory or visual cues [68]. These contradictory results can be partly attributed

to the complexity of courtship conditioning behavior itself: the conditioning stimulus in this

behavior is not one chemical or visual signal, but an intact female fly. For a male fly, a female

fly is a very complex stimulus simultaneously containing olfactory, visual, and tactile signals.

Therefore, although courtship conditioning is an example of anti-instinctive learning, it is

not a suitable model to study the behavior. To study anti-instinctive learning behaviors

in flies, one needs a simpler behavior model with simpler conditioning signals, preferably

simpler than an actual fly.

No other anti-instinctive learning behavior in fruit flies have been reported since the

discovery of courtship conditioning. In this dissertation, I describe a new learning behavior

of the fruit fly, which also identifies a second anti-instinctive learning behavior in the fly.

This learning paradigm requires fruit fly to respond to a recurring, aversive, mild heat stress

by modifying its innate locomotion behavior. Chapter 2 of this dissertation describes the

design of the experimental apparatus used in this study. Chapter 3 of this dissertation

describes the wild type fruit fly’s anti-instinctive learning behaviors. Chapter 4 of this

dissertation describes the exploration of the molecular and cellular mechanisms underlying

anti-instinctive learning behavior. This work is an effort to develop an animal model of anti-

instinctive learning behavior that allows for rigorous interrogation of the underlying biological

mechanisms. Insights generated from this study will bring us closer in understanding the

11



biology of learning, and perhaps higher cognitive functions in general.
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Chapter 2

LaserSync: A System for Studying

Fruit Fly Anti-Instinctive Learning

Behaviors

2.1 Introduction

Like all learning and memory processes, learning to behave against one’s innate be-

havior requires training. Such a process requires the subject to form an unnatural association

between an innate behavior of their own and an unpleasant outcome. One of the most basic

innate behaviors of a fly is its walking behavior, while one kind of stresses that a fly strongly

dislikes is heat [130, 110]. This allows one to build a new anti-instinctive learning model by

leveraging these two coexisting traits in a fly.

To study the changes of fruit fly walking behavior before and after receiving recurring

mild heat stress, a behavioral apparatus system called LaserSync was designed and built. The

LaserSync system is capable of delivering precise heat stress to a single fly while continuously

monitoring its walking behavior. The LaserSync system consists of 4 LaserBoxes, an adapter

board, a myRIO FPGA system, and a computer (Figure 2.1, 2.2, 2.3). Up to 4 flies can

be assayed independently in each of the 4 LaserBoxes at the same time. Data for these flies’
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walking behaviors are recorded in the LaserBoxes and transferred via the adapter board

and the myRIO FPGA system to the computer for storage. Detailed descriptions of these

components are introduced in the following sections.

Adapter Board

myRIO FPGA System

FPGA Chip
CPU

LaserBox

Box Fixture

Position Sensor
Glass Tube
Diffuser
LED Array

3D Printed Fixtures Infrared 
Laser

Computer

Main Control Panel
FPGA Control Panel

Circuit Board

LaserBox

Box Fixture

Position Sensor
Glass Tube
Diffuser
LED Array

3D Printed Fixtures Infrared 
Laser

Circuit Board

LaserBox

Box Fixture

Position Sensor
Glass Tube
Diffuser
LED Array

3D Printed Fixtures Infrared 
Laser

Circuit Board

LaserBox

Box Fixture

Position Sensor
Glass Tube
Diffuser
LED Array

3D Printed Fixtures Infrared 
Laser

Circuit Board

Figure 2.1: Overview of the components in the LaserSync system and their relationships.
In the first row are the 4 LaserBoxes. In the second row is the adapter board. In the third
row is the myRIO FPGA system. In the fourth row is the computer. Data flows from the
first row to the fourth row

2.2 LaserBox

LaserBox is both the experiment chamber and the starting point of data collection in

the LaserSync system. A total of 4 LaserBoxes were built in the LaserSync system. Each of

the 4 LaserBoxes consists of a box fixture, an infrared laser emitter and a LaserBox circuit

board (Figure 2.4, 2.5). Inside the box fixture are a 3D-printed fixture, a position sensor,

a glass tube, a diffuser, and a red LED array. The 4 LaserBoxes are identical in design and

can operate independently and simultaneously.
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Figure 2.2: A top view of the LaserSync system. The 4 black-colored parts on the right
hand side of the figure are infrared lasers with associated supporting parts. The 4 green
stations at the center of the figure are 4 LaserBoxes. The transparent fixture with rainbow-
colored ribbon cables connectors attached on the left side of the figure is the adapter board
and myRIO FPGA system.

Figure 2.3: A side view of LaserSync system during an experiment. The red light comes
from the 4 red LED arrays in each of the 4 LaserBoxes.

2.2.1 Box Fixtures of the LaserBox

As mentioned earlier, the main components of a box fixture are a 3D printed fixture,

a position sensor, a glass tube, and an LED array. The 3D printed fixture itself is made of

acrylonitrile butadiene styrene. The relative positions for each of these components inside
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Figure 2.4: A schematics of the LaserBox, which consists of a position sensor, a glass tube,
a diffuser, a red LED array, and an infrared laser. The red color of the red LED array
represents where the red light is emitted. The red arrows pointing away from the LED array
indicates the direction of the red light, which arrives at the position sensor. The gray arrow
pointing away from the infrared laser indicates the direction of the infrared light. The black
shape inside the glass tube represents a single fly, which blocks a small portion of the red
light, resulting in less light arriving at the sensor in the location where the fly is.

Figure 2.5: A top view of a LaserBox. Each sub-components of the LaserBox are labelled
with a red line. The green board underneath the 3D-printed black fixture is the LaserBox
circuit board.

the 3D printed fixture are a position sensor, a short-pass optical filter, a glass chamber, a

diffuser and a red LED panel (Figure 2.4, 2.6). When viewed from outside of the LaserBox,

most of the components are hidden except for the LED array and the diffuser between the

LED array and the holder (the green panel is the LED array and the grey square is the

diffuser, Figure 2.6(a)). The position sensor is a linear sensor array (AMS-TAOS USA Inc.,

Cat. No. TSL1406R, Plano, Texas, USA) with a custom-made 645nm short-pass filter placed

in front of it (dimension: 55 ∗ 12.7 ∗ 1 mm3, Midwest Optical System, Inc., Cat. No.SP645-

R55X12.7mm). The glass chamber is a custom-made 48.7∗4∗2 mm3 transparent borosilicate

tube (Friedrich & Dimmock Inc., Cat. No.BRT-2-4-50, Millville, New Jersey, USA) with two

custom-made detachable 4 ∗ 2∗ 1 mm3 glass windows (Fisher Scientific, Cat. No.12-550-100)

at both ends of the holder to provide complete enclosure. The assembled chamber is held in

a custom-made 3D-printed holder, which an experimenter can quickly place in the LaserBox

(Figure 2.6(d)). The light emitted by the red 630nm LED panel (Figure 2.7) is diffused by
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an acrylic diffuser and then passes through the glass chamber and short-pass filter, and then

reaches the position sensor (Figure 2.4). The relative positions of these components can be

found in Figure 2.6.

(a) Box fixture viewed from the outside (b) Box fixture viewed from the side

(c) Box fixure sub-components (d) The 3D-printed holder for securing
the position of the glass tube

Figure 2.6: LaserBox’ box fixture and its sub-components.

2.2.2 Infrared Laser Emitter of the LaserBox

The second main component of the LaserBox is an 808nm infrared laser emitter

(Roithner Lasertechnik GmbH, Cat. No.RLDB808-120-3, Vienna, Austria), which is placed

on the right side of the box fixture (Figure 2.5). In between the box fixture and the laser

is a condenser (Thorlabs Inc., Cat. No.ACL12708U, Newton, New Jersey, USA), which

condenses the light emitted by the laser emitter before it reaches the box fixture.

Previous fruit fly behavioral apparatuses used Peltier elements or an electric board as

a heating source [8, 160, 123, 33, 15, 162]. We found that infrared laser is a better source for
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(a) A top view of the LED board. The 5 white rectangular parts are the LED
diodes. The 5 purple rectangular parts are resistors. The light green lines are
circuits connecting all the parts on this board.

(b) A bottom view of the LED board. The blue irregularly-shaped part at
the center of the board is the connector connecting to power sources.

Figure 2.7: LED array circuit board.

delivering heat stress compared to Peltier elements or an electric board. Compared to Peltier

elements, which delivers heat stress to the animal by warming up the surrounding air, laser

emitters increase the fly’s body temperature faster and allows for faster cooling, as infrared

light heats up the animal directly [122, 160]. Compared to electric boards, which delivers

heat stress to the animal only when the animal is in contact with the wires on the circuit

board, the laser emitter can deliver heat stress continuously to the fly regardless of where

it stands [15]. The laser emitter (wavelength: 808 nm) delivers collimated infrared light of

intensity between 0 mW and 270 mW. The maximum intensity of 270 mW can increase

the fly’s body temperature from room temperature (20− 22◦C) to 45◦C and maintain it at

45◦C (Figure 2.8). Therefore, the laser emitter can warm up the fly’s body temperature

from room temperature to up to 45◦C. This is validated by measuring body temperature

when the fly is being irradiated by the infrared light. To do so, one inserts a thermocouple

data acquisition module-connected mini hypodermic probe (OMEGA Engineering, Inc., Cat.

No. TC-08 and No.HYP1-30-1/2-T-G-60-SMP-M) in an adult fly’s abdomen and placing

the fly in the center of the glass chamber irradiated with the infrared light. The fly’s body

temperature can be readily measured as long as the probe is inside the fly’s body. This
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Figure 2.8: Infrared laser can warm up a fly and maintain its body temperature at any
level between room temperature and 45◦C. The inset shows a fly, indicated by the red star,
with its body temperature being measured by a metal temperature probe inside the glass
tube.

invasive temperature measurement is a separate validation step and is not conducted during

behavior experiments.

Of the 4 LaserBoxes, one has an external monochromatic camera (FLIR Integrated

Imaging Solutions, Inc., Cat. No.Flea3 1.3 MP Mono USB3 Vision (e2v EV76C560)) po-

sitioned at the top of the box fixture. This camera provides visual information for experi-

menters to deliver prompt heat stress to the fly during experiments.

2.2.3 Circuit Board of the LaserBox

The LaserBox circuit board, located at the bottom of the box fixtures of each Laser-

Box, is responsible for 1) integrating optical signals received by the position sensor and

transmitting the optical signals downstream to the adapter board for further processing,

and 2) changing the ON/OFF status of the LED array and the infrared laser emitter based
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Figure 2.9: A top view of LaserBox circuit board. The white lines at center indicates the
location of the box fixtures. Other small components are labeled directly on the board.

Figure 2.10: A bottom view of LaserBox circuit board.

on experimenter’s command. The top and bottom of the circuit board are shown in Fig-

ure 2.9 and 2.10. Refer to Figure 2.11 and 2.12 for detailed circuitry design.

2.3 Adapter Board

The adapter board of the LaserSync system receives optical signals from the position

sensors in each of the 4 LaserBoxes and relays them to the myRIO FPGA system for real-
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Figure 2.11: Circuitry design of the circuit board of the LaserBox, page 1/2
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Figure 2.12: Circuitry design of the circuit board of the LaserBox, page 2/2
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Figure 2.13: A top view of the adapter board.

Figure 2.14: A bottom view of the adapter board.

time data processing. Also, the adapter board passes the experimenter’s command to change

ON/OFF status to LED arrays and laser emitters in each of the 4 LaserBoxes. The top and

bottom of the adapter board are shown in Figure 2.13 and 2.14. Also, refer to Figure 2.15

and 2.16 for detailed circuitry design.

2.4 MyRIO FPGA System and End-User Computer

MyRIO FPGA system is a device embedded with re-configurable input and output

ports (hence the acronym RIO) manufactured by National Instrument, Inc (Cat. No.myRIO-

1950). FPGA stands for field programmable gate arrays, a kind of device re-programmable

by the user. The LaserSync system’s software control systems are deployed to the myRIO

FPGA system.

The myRIO FPGA system performs the initial data processing during an experiment
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Figure 2.15: Circuitry design of the adapter board, page 1/2

Figure 2.16: Circuitry design of the adapter board, page 2/2
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(i.e. in real-time). The real time data pre-processing is enabled by the two microchips, one

of which is an FPGA chip, and the other is a regular dual-core ARM CPU. The FPGA CPU

enables data acquisition to be done at 40MHz at the pixel level, allowing the position sensor

to record the fly’s locations at a frame rate of 50Hz.

During experiments, fruit fly’ walking behaviors are recorded by position sensors (in

all 4 LaserBoxes) and live-streamed through the arena-view camera (in 1 of the 4 LaserBoxes).

The position information of the flies is transferred from individual position sensors via the

adapter board and myRIO FPGA system to the end-user computer. In the meantime, the

laser emitters’ ON/OFF status is changed from time to time by an experimenter operating

the software system installed on the end-user computer (see Figure 2.21 for a user interface

of the software system installed on the computer). For details of the criteria for turning the

laser emitter ON or OFF, see Chapter 3. For more details about the software, see section

2.5.

2.5 Software Systems

The LaserSync system is programmed in LabVIEW (Laboratory Virtual Instru-

ment Engineering Workbench), a visual programming language developed by National In-

struments, Inc. An individual program written in LabVIEW is called a Virtual Inter-

face, or VI. The LaserSync software consists of two parts: an FPGA VI and a main

VI. During experiments, the fly’s locations and the laser emitter status are recorded and

stored initially in the format of technical data management streaming (TDMS), a file for-

mat native to the LabVIEW environment. For the complete FPGA VI and main VI’s

source code, see https://github.com/ruichensun/RS_LabVIEW. TDMS format is not com-

monly used in data analysis pipelines, therefore, after each experiment, I convert these

TDMS raw data files to the CSV format to facilitate downstream data analysis. See

https://github.com/Ruichensun/TDMS2CSV for complete conversion source code.
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2.5.1 FPGA VI

Figure 2.17: User interface of the FPGA VI. J1, J4, J5, J8 represent the 4 LaserBoxes.
IRQ stands for interrupt request line, which is physical connection in the program that can
send interrupt signals to the FPGA chip. All buttons are labeled according to its function.

The raw data are recorded as the intensity of light received by each pixel of the

position sensor. The frames generated from the position sensor are not collected frame by

frame, but rather, pixel by pixel, while the output of FPGA VIs is grouped by frames (768

pixels a frame). In other words, during experiments, the sensor collects 1 ∗ 768-pixel frame

at 50Hz. At this frame rate, the minimum required CPU speed is 768 ∗ 50Hz, equivalent to

38.4KHz. Since the 4 sensors are generating data simultaneously, the minimal required CPU

speed quadrupled to 153.6KHz. Although the myRIO FPGA system has two chips, only the

FPGA CPU can handle a sampling rate of 153.6KHz. Therefore, in order to achieve reliable

data acquisition (without any data loss) at 50Hz sampling frame rate from 4 independent po-

sition sensors located in each LaserBoxes simultaneously, the core components of the control

system were programmed and deployed in the FPGA CPU to achieve the 153.6KHz require-

ment at the back-end of the system. Figure 2.17 shows the user interface of the FPGA VI

(graphical codes of the program on the FPGA chip). In normal circumstances, an experi-

menter would not need to interact with this VI, as all of the experimental procedures can be

done by interacting with the Main VI (see section 2.5.2). The core functionalities built inside

this FPGA VI are monitoring of the raw data from the position sensors (graphical codes

shown in Figure 2.18), control of the red LED arrays (graphical codes shown in Figure 2.19),

and control of the infrared laser emitters (graphical codes shown in Figure 2.20).
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Figure 2.18: Graphical code of position sensor data monitoring. The two panels shown
here correspond to the code’s two core functions: 1) continuously collect data from each
pixel until 768 pixels have been collected (top panel), 2) terminate the previous frame with
768 pixels and initiate a new frame (bottom panel).

27



Figure 2.19: Graphical code of LED array control function. The code contains 4 identical
blocks, corresponding to the 4 LaserBoxes.

Figure 2.20: Graphical code of infrared laser emitter control function. J1, J4, J5, J8 refer
to the 4 LaserBoxes.
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2.5.2 Main VI

Main VI is an interface between an experimenter and the LaserSync system during

experiment. It is designed to receive data from FPGA VI, conduct the first step of data

pre-processing, and store the processed data on a hard drive (Figure 2.21, 2.22).

Figure 2.21: User interface of the main VI. J1, J4, J5, J8 represent the 4 LaserBoxes.
All buttons are labeled according to its function. The 3 plots stream the light intensity of
each pixel, the difference between the current frame and a dynamic reference frame, and the
difference time series representation of the fly’s location (from left to right)

Data from the FPGA are pixels in groups of 768 (see section 2.5.2). Main VI takes

these data and performs initial data pre-processing, which is finding the fly’s location and

storing it in a USB flash drive connected to the MyRIO system.

The main VI locates the fly using the following method. First, a dynamic reference

frame based on the average of 10 previous consecutive frames, each frame containing 768

pixels, is created. Then, the dynamic reference frame will be subtracted from a current

frame (Figure 2.23). The result of the subtraction shows the difference between the current

frame and the dynamic reference frame (Figure 2.24). If the fly has moved during the past

10 frames (200 ms), the regions that it currently occupies will show up as positive values

in the difference frame, as the fly is blocking the red light’s pathway and casting a shadow
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Figure 2.22: Graphical code of the main VI. It consists of four parts: file initiation (at the
left of the image), position sensor monitoring (the big rectangle at the center of the immage),
red LED array control (the smaller rectangle underneath the position sensor monitoring
function), and infrared laser emitter control (the smaller rectangle underneath the position
sensor monitoring function).

Figure 2.23: Visualization of light intensity at all 768 pixels in a 1D current frame (black
line) and a 1D dynamic reference frame (red line).

on the sensor. This results in a lower intensity at this position in the current frame than

that in the reference frame (whose value is the average of the past 10 frames). If the fly has

not moved during the past 10 frames, every pixel in the current frame will have the same
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Figure 2.24: Visualization of the fly location (red dot) deduced from the difference frame
(black line). As the original 1D difference frame contains noise at all pixels (black line), and
the fly is located at regions with positive value of light intensity change, the smoothed 1D
difference frame with only non-negative value retained (red line) was used to deduce fly’s
location (red dot).

value as its corresponding pixel in the reference frame, hence no difference exists between

the current frame and reference frame. Thus, the resulting difference frame will have values

of zero across the entire 768 pixels. Using this method, one can interpret the regions with

positive values in the difference frame as the fly’s position (Figure 2.24). Once the regions

with positive values in the difference frame is identified, the center of this region is used to

represent the fly location in that image. Such a computation is carried out for every frame

at a frame rate of 50Hz during each experiment.

During experiments, the computed location of each fly is temporarily stored on a

USB flash drive on the MyRIO FPGA system. After the end of the experiment, the stored

location information of the fly is transferred to the end-user computer for permanent storage

and further data analysis.
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2.6 Merits of the LaserSync system

Previous studies of fruit fly reinforcement learning behaviors were enabled by several

custom-made systems, such as flight simulator and heat box [155, 160]. The flight simulator

and heat box use heat as the stressor to train the flies to perform associative learning

behaviors, such as flying in certain directions in the flight simulator, or avoiding specific

locations in the heat box enclosure [155, 160]. However, both setups have limitations. In

the flight simulator, the fly is tethered. This creates an unnatural posture which limits the

fly’s range of motion, making it easier for the fly to become exhausted and rendering the

fly unwilling to perform its usual behaviors. Additionally, extra stimuli such as an air puff,

are often needed to keep the fly engaged in the task, which may confound the measurement

of responses to the heat stressor. Moreover, in order to get a very strong learning outcome,

previous studies chose punishingly high temperatures to stress the flies in the flight simulator

setup – sometimes strong enough to kill it within a couple of seconds. In the heat box

apparatus, Peltier elements are used to deliver heat [8, 160, 123, 33, 162]. This method relies

on heating air inside the chamber in order to transfer heat from the Peltier elements’ surface

to the fly’s body. Therefore, such heat delivery is inherently slow and inefficient, creating a

delay in the reinforcing signal. Also, this way of delivering heat stress often requires higher

temperature due to the low heat transfer efficiency.

The LaserSync system is designed and built to overcome the above issues. It has

three main advantages. First, it can deliver precise and instantaneous heat stressors, which

not only ensures the consistency of reinforcement feedback but also prevents the fly from

being overheated. Secondly, the laser emitter’s status can be accurately synchronized across

4 LaserBoxes for experiments requiring control groups. In particular, the LaserBoxes can

be configured in such a way that the flies in the control group receive exactly the same

heat stressor as flies in the experimental group, allowing the study of learning behavior in a

controlled manner. Thirdly, inside the glass chamber, a fly can walk freely while its location

is accurately tracked.
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Chapter 3

Anti-Instinctive Learning in Wild

Type Fruit Flies

3.1 Introduction

The relationship between innate and learned behaviors has attracted a lot of attention

since the mid-20th century [137, 21, 78, 79]. Innate behaviors have long been thought to be

fixed and robust [137]. Recent studies, however, have shown that innate behaviors are fluid

and can be modified by internal states, environmental cues, and learning [131, 133, 117, 144,

132, 9, 159].

The ability to modify one’s innate behaviors via learning can confer great evolutionary

advantages to animals and enable them to better adapt to changing environments. Among

the different ways learning can modify innate behaviors, anti-instinctive learning is perhaps

one of the most challenging types of learning (see Chapter 1 of this dissertation and [83]).

Understanding the degree to which a subject is capable of anti-instinctive learning and the

underlying mechanisms of anti-instinctive learning have the potential to answer the question

of how innate and learned behaviors are related. Yet, progress in this area has been limited.

Previous works on fruit fly courtship conditioning have indicated that their innate

behavioral repertoire may be fluid and that flies may possess the capability for anti-instinctive
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learning (see Chapter 1). However, studies on courtship conditioning have not agreed on

what specific signals were learned during the conditioning phase, as conditioning a male

fruit fly with a mated female would always involve a mixture of olfactory, visual, tactile,

auditory, and gustatory cues [139, 140, 1, 87, 68]. Thus, a simpler behavior paradigm of

anti-instinctive learning is called for. In light of the limited progress in this area, I designed

and built the LaserSync system (see Chapter 2) to study a novel anti-instinctive learning

behavior of fruit flies.

Figure 3.1: A fly’s walking behavior inside the glass chamber of LaserBox

When placed inside a LaserBox of the LaserSync system, a fly shows robust walk-

ing behavior: pacing the glass chamber back and forth tirelessly for 40 minutes (or longer)

(Figure 3.1). This robust locomotion behavior allows us to study how this innate behav-

ior can be perturbed by learning. In addition to its active nature, fruit flies, as poik-

ilothermic creatures, naturally prefer ambient temperature over an extremely hot enviro-

https://www.overleaf.com/project/5c1abb087118db71cbf51d82nment [84, 35]. When facing

a sharp temperature increase, innately heat-aversive flies become more active and try to

escape from the warming environment [35, 12, 40, 45, 110]. Therefore, learning to stop

walking when heated is against a fly’s innate tendency. If a fly is capable of anti-instinctive

learning, experiencing recurring movement-triggered heat stress will reduce its walking. In

this chapter, I describe a novel behavior paradigm using the LaserSync system to investigate

if wild type fruit flies can reduce walking after experiencing recurring movement-triggered

heat stress.
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3.2 Methods

3.2.1 Fly Rearing

Adult virgin female and male Canton-S flies of 2-7 days old were used in this study.

Flies were kept in 23◦C with 50 - 80% humidity and 12:12 light-dark (LD) cycles. All flies

were assayed during the circadian time (CT) 1 - 6 and CT 7 - 10 (lights are turned on at

CT 0 and turned off at CT 12). After behavioral assays, all flies were returned to their

original isolation vials and were kept until death. All flies were isolated at eclosion and

reared individually in 2.5 ml plastic isolation vials containing 150mg food (Caplugs Cat.

No.214-2002-010, Rancho Dominguez, California). Isolating flies at eclosion allows us to

study an individual fly’s learning ability without the complication of group rearing, where

peer exposure may affect a fly’s behavior in learning tasks. The fly food used in this study

was made of dark corn syrup (30 mL/L), yeast (35 g/L), nipagin (1.125g/L), propionic acid

(7.5mL/L), ampicillin (50mg/L), chloramphenicol (50mg/L), sucrose (15 g/L), and agar (10

g/L).

3.2.2 Behavioral Experiment Setup

The LaserSync system was used in the study. For details about the LaserSync system,

see Chapter 2.

Before each experiment, an experimenter transfers a fly into the glass tube (chamber)

by placing the chamber inside the isolation vial and allowing the fly voluntarily to enter

the chamber. No anesthetic was used in the process. After the fly enters the chamber, the

experimenter closes both ends of the chamber using a glass window (window) on each side.

The chamber, with both ends closed, is now secured inside a holder (for an image of the

holder, see Figure 2.6(d)). Then, the experimenter places the holder into the LaserBox’s

holder slot and is ready for experiments.

During experiments, the entire LaserSync system is kept in the dark, except for the

red light emitted from the LED array, whose peak wavelength is 630 nm (Figure 2.3). As
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Figure 3.2: Mild heat stress was used as the stressor. Laser emitter can quickly elevate a
fly’s body temperature from room temperature to 26 − 27◦C and maintain the fly’s body
temperature at that level (black line).

fruit flies cannot perceive red and infra-red light, it is reasonable to assume that the fly

receives no visual stimuli during experiments [67]. In addition to no visual signals, the

flies experience few or no olfactory or gustatory cues during experiments, as all chambers

are cleaned thoroughly after each experiment to prevent any odor or body secretion being

carried over from one experiment to another.

A mild punitive temperature of 26 − 27◦C was chosen as the stressor (Figure 3.2).

Behavioral studies on freely moving fruit flies frequently used 37◦C or higher temperature

as stressor [9, 162, 22, 33, 14]. Using 37◦C or higher temperature as a stressor, however,

may cause physiological damage to the fly as it can die after more than a few seconds

of exposure to high heat (personal communications with Dr. Bjoern Brembs). As the

behavioral experiment in this study involves recurring heat stress and lasts one hour, and

as the laser emitter in the LaserSync system is able to warm up the body temperature of

the fly to any level below 45◦C, using conventional high heat as the stressor is not ideal and

not necessary. Therefore, in order to study anti-instinctive learning behavior with minimal
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Figure 3.3: A 5-session fruit fly anti-instinctive learning behavior assay. The top row
represents the 5 session assay, consisting of the Pre-Test, Train 1, Test 1, Train 2, and Test
2 sessions. The training given to each fly during experiments are visualized in the area
extended from ”Train 1”. For each of the ”Laser Status” row, red cells indicate that the
Laser emitter’s status is ON, white cells indicate that the Laser emitter’s status is OFF.
For each of the ”Fly Movement” row, gray cells indicate that the fly is walking, white cells
indicate that fly is not moving.

potential physiological damage, a mild heat stressor was chosen.

3.2.3 Behavioral Assay

To investigate whether flies are capable of anti-instinctive learning, a 5-session be-

havioral assay was designed (Figure 3.3).

Every fly in the experimental group (training fly) receives 5 sessions in one experiment:

Pre-test, Train 1, Test 1, Train 2, and Test 2. Each of the 3 test sessions (Pre-Test, Test 1,

and Test 2) are 10 minutes long, during which its walking behaviors are recorded. No heat

stress was given during the 3 test sessions. Each of the two training sessions (Train 1 and

Train 2) consists of up to 20 episodes of mild heat stress treatments which are only given to

the fly when it moves. The mild heat stress treatment stops when the fly stops walking. If

the fly has received 20 episodes of mild heat stress treatments, or if it has been stationary

for 8 minutes, the Train session concludes and the experiment moves on to the next session.
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The cutoff at the 8-minute was based on the observation that 1) different flies need different

amounts of mild heat stress to finish the Train 1 and Train 2 session, and not setting a cutoff

time would result in the duration of different experiments inconsistent and overly variable,

and 2) the fact that prolonged inactivity during the Train sessions in itself is an indicator of

having learned to inhibit its walking activity.

In addition, the training fly receives the mild heat stress treatment when it is at

either end of the chamber, the ends defined as the left and right most 3mm segment of the

chamber, during Train 1 and Train 2 sessions. This is due to the fact that flies are naturally

attracted to edges [126]. If a fly is allowed to stay still at either end of the chamber during

the training session, the edge-attraction instinct will confound the measurement of learning

effect.

Two types of control groups are used: a yoked control group (yoked fly) and a blank

control group (blank fly). Flies in both groups were assayed simultaneously individually in

a LaserBox that is different from the LaserBox the training fly is in. The yoked fly receives

identical mild heat stress treatment to that of the training fly, regardless of whether the

yoked fly is moving or not. The blank fly does not receive any mild heat stress treatment

throughout the entire duration of the experiment.

Flies were assigned to the training group, yoked control group, and blank control

group randomly. In this chapter and 4, if not stated otherwise, training fly group data is

color-coded with red, while yoked fly group data and blank fly group data are color-coded

with blue and gray, respectively.

3.2.4 Data Analysis

Data Collection and Pre-processing

Before experiments, every fly is given a number as its unique identifier. During

each experiment, a fly’s real-time location information along with the ON/OFF status of

laser emitters is recorded in individual technical data management streaming (TDMS) files
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(see Chapter 2 for details about the TDMS file and the LabVIEW software system). The 5

sessions of data from one fly are stored in 5 separate files. After each experiment, these TDMS

files are converted into comma-separated value files (CSV files) for downstream processing

(see Chapter 2 for details). R, a programming language and a free software environment for

statistical analysis, is used for downstream processing. In addition to the CSV files storing

the walking behaviors of the fly, each fly’s basic information, such as eclosion dates and

gender, are recorded in a separate CSV file (”fly info data file”). The fly info data file is

used as a reference to match each fly’s basic attributes with its behaviors over the course of

5 sessions in an experiment.

For each fly, the percentage of time active during the Pre-Test session and the like-

lihood of receiving mild heat stress for training flies during the Train 1 session are used for

quality control. Flies that are inactive more than 90% of the time are removed from further

analysis. The lack of robust walking behavior before the fly receives any heat stress signals

that this fly may be physiologically different from healthy flies. For the training flies, they

would receive more mild heat stress during walking than during resting. Therefore, for these

flies, the likelihood of receiving mild heat stress during walking is much higher than that

during resting. If a training fly likelihood of receiving heat stress during walking is less than

20% higher than its likelihood of receiving heat stress during a pause, the fly will also be

removed from further analysis. The 20% difference requirement is only used for screening

the Train 1 sessions, as in the Train 2 session many training flies have shown complete lack

of activity and did not trigger any mild heat stress.

After quality control, each fly’s overall percentage of time active (”activity level”)

during Pre-Test, Test 1, and Test 2 sessions is computed and analyzed. After the quantifi-

cation, activity levels of training flies are compared to yoked flies and blank flies. In Train

1 and Train 2, a fly’s cumulative activity levels were used for comparison.

For details about customized functions written for analysis, refer section 3.5 at the

end of this chapter. For complete scripts written for this study, see https://github.com/

Ruichensun/fly_source.
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Statistical Analysis

The Kruskal–Wallis test followed by pairwise Wilcoxon rank sum tests (with Ben-

jamini Hochberg correction) is used for all statistical comparisons. Confidence intervals are

calculated using permutation tests with 10,000 permutations of the raw data. Interpretation

of p values are shown in Table 3.1.

Table 3.1: P Value Interpretation

Category Symbol
0.0500 ≤ p ≤ 1.0000 n.s.
0.0100 ≤ p < 0.0500 *
0.0010 ≤ p < 0.0100 **
0.0001 ≤ p < 0.0010 ***
0.0000 ≤ p < 0.0001 ****

3.3 Results

3.3.1 Training Flies and Yoked Flies Experience the Same Heat

Stress in Different Ways

Training flies and yoked flies receive the same heat stress during Train 1 and Train 2

session. However, what the flies are doing when experiencing mild heat stress are different.

We measure both groups of flies’ likelihood of receiving mild stress during walking and during

pause (Figure 3.4, 3.5, Table 3.2). The likelihood of receiving heat stress during walking

is the percentage of time the fly is receiving mild heat stress out of the total time the fly is

walking. Similarly, the likelihood of receiving mild heat stress during pause is the percentage

of time the fly is receiving mild heat stress out of the total time the fly is in pause.

During the Train 1 session, the training flies receive heat stress 88.5%± 2.0% of the

time when they walk, while these flies receive the stress only 29.0%± 5.9% of the time when

they are not walking (Figure 3.4). During the same Train 1 session, however, yoked flies
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Figure 3.4: Likelihood of receiving heat stress during Train 1 session.

receive heat stress with comparable likelihood during both walking and resting: 57.9%±4.6%

during walking, and 64.2%± 4.0% during resting (Figure 3.4), indicating that their walking

behaviors are not preferentially punished as those of the training flies are.

For the training flies, the difference in the likelihood of receiving heat stress during

walking and resting is significant during the Train 2 session. These training flies experience

mild heat stress 83.7%± 5.0% of the time during walking and 15.1%± 5.8% during resting

(Figure 3.5). On the other hand, during the same Train 2 session, yoked flies has comparable

likelihood of receiving mild heat stress when they are walking or in pause. During walking,

yoked flies’ median likelihood of receiving heat stress is 31.3%± 16.1%. When staying still,

a yoked fly’s likelihood of receiving mild heat stress is 29.1% ± 11.8% (Figure 3.5). As
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Figure 3.5: Likelihood of receiving heat stress during Train 2 session.
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Table 3.2: Estimates of Likelihood of Receiving Mild Heat Stress During Train Sessions

Fly Group Median CI (Lower) CI (Upper) Sample Size
Training Flies in Train 1, Walking 0.885 0.865 0.905 75
Training Flies in Train 1, Pause 0.290 0.231 0.340 75
Yoked Flies in Train 1, Walking 0.579 0.533 0.636 146
Yoked Flies in Train 1, Pause 0.642 0.602 0.696 146
Training Flies in Train 2, Walking 0.837 0.787 0.890 75
Training Flies in Train 2, Pause 0.151 0.093 0.229 75
Yoked Flies in Train 2, Walking 0.313 0.152 0.461 146
Yoked Flies in Train 2, Walking 0.292 0.174 0.455 146

the likelihood of receiving mild heat stress is comparable between when the fly is walking

and when it is standing still, this indicates that the mild heat stress the yoked flies receive

are random. Thus, the experience of heat stresses inside the LaserBoxes are fundamentally

different for training flies and yoked flies, allowing us to use behavioral changes in the yoked

flies as a control group for behavioral changes in the training flies.

3.3.2 Training Flies Reduce Activity During the Training Sessions

Table 3.3: Wild Type Flies’ Ending CAD (Unit: seconds) of Each Train Session

Session Group Median CI (Lower) Median CI (Upper) Sample Size
Train 1 Training 52.24 44.01 60.37 75

Yoked 63.10 57.97 68.38 146
Blank 66.56 55.69 76.95 73

Train 2 Training 31.20 22.22 41.24 75
Yoked 57.52 51.42 63.76 146
Blank 60.88 48.87 69.56 73

If flies are capable of anti-instinctive learning, training flies would show less movement

during the Train 1 or Train 2 sessions compared to either the yoked flies or the blank flies.

To test this hypothesis, we measured the cumulative active duration (CAD) of all flies during

the two Train sessions (Figure 3.6, 3.7). The time a fly requires to complete one training

session varies from fly to fly due to the operant nature of the experiment. As a result, the
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Figure 3.6: CAD of wild type flies during the Train 1 session. The solid lines indicate the
median of CAD of each group at each time point. The shaded areas indicate bootstrapped
95% confidence interval at each time point. Kruskal-Wallis test followed by Mann-Whitney
U test with BH correction was done on all three groups at the end of the session.
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Figure 3.7: CAD of wild type flies during the Train 2 session. The solid lines indicate the
median of CAD of each group at each time point. Training flies’ CAD are significantly lower
than the other groups. The shaded areas indicate bootstrapped 95% confidence interval at
each time point. Kruskal-Wallis test followed by Mann-Whitney U test with BH correction
was done on all three groups at the end of the session.
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Table 3.4: P Values from Wild Type Fruit flies Activity Levels Kruskal-Wallis Test, Followed
by Mann-Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 1 P Values Test 2 P Values
Krusal-Wallis Test 0.1821 0.005071 3.826e-07
Training vs Yoked N/A 0.0083 1.5e-05
Training vs Blank N/A 0.0090 6.9e-07
Yoked vs Blank N/A 0.7886 0.19

minimum length of both training sessions, 163 secs, was used when comparing the CAD

across three groups of flies. This time point is referred as the end of Train 1 and Train

2 sessions. At the end of Train 1 session, the CAD of flies in the training group (CAD:

52.24 ± 8.18 sec) is smaller than that of the yoked flies (CAD: 63.10 ± 5.20 sec) and the

blank flies (CAD: 66.56± 10.63 sec) (Figure 3.6, 3.3). At the end of the Train 2 session, the

training flies move significantly less (CAD: 31.2± 9.51 sec) compared to those in the yoked

flies (CAD: 57.52 ± 6.17 sec) or the blank flies (CAD: 60.88 ± 10.34 sec) (Figure 3.7, 3.3).

These results, together, indicate that flies in the training group have gradually learned to

stop moving while flies in the two control groups fail to do so, a sign of learning.

3.3.3 Training Flies’ Reduced Activity Level Persist After Train-

ing Ends

As training flies showed a clear sign of anti-instinctive learning during both Train

1 and Train 2 sessions, the next question is whether their learned inhibition of walking

persists after each training session ends. To answer this question, we measured each animal’s

percentage of time active, also called activity level, during each of the 3 test sessions (Pre-

Test, Train 1, Train 2). During the Pre-Test session, flies are active most of the time

(Figure 3.8, 3.5). Specifically, the median activity levels for flies in each group are 58.0%±

3.0% for the training group; 56.0% ± 2.5% for the yoked flies; and 53.0% ± 5.0% for the

blank flies. During the Test 2 session, which is after two training sessions, flies from the

training group showed significantly lower activity than the flies in the two control groups.
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Figure 3.8: Wild type flies’ percentage time active during test sessions
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Table 3.5: Wild Type Flies’ Activity Level in Each Test Session

Session Group Median CI (Lower) Median CI (Upper) Sample Size
Pre-Test Training 0.58 0.56 0.62 75

Yoked 0.56 0.54 0.59 146
Blank 0.53 0.47 0.57 73

Test 1 Training 0.42 0.37 0.48 75
Yoked 0.51 0.49 0.54 146
Blank 0.49 0.46 0.51 73

Test 2 Training 0.15 0.06 0.24 75
Yoked 0.45 0.41 0.50 146
Blank 0.47 0.44 0.50 73

The training flies’ activity level is 15.0% ± 9.0%, whereas the yoked and the blank groups’

activity level are: 45.0%± 4.5% for the yoked group and 47.0%± 3.0% for the blank control

group. The significant difference between the training flies and the control flies further

reinforces that flies in the training group have learned to act anti-instinctively with recurring

movement-triggered heat stress, while flies in the control groups fail to do so.

In addition to the behavioral effect, we kept track of all flies’ life span after exper-

iments. The Kaplan-Meier estimation of the survival probability after receiving recurring

heat stress shows no significant difference among the three groups of flies, indicating that

heat stress endured by the flies in the training group and the yoked group did not induce

major physiological damages in the flies (Figure 3.9). Taken together, wild type flies are able

to learn to inhibit walking after receiving recurring movement-triggered heat stress. Such

learning persists after the two Train sessions finish. The result shows that flies are capable

of anti-instinctive learning.

3.3.4 Yoked Flies Show A Moderate Decrease in Activity Level

In addition to the training flies’ learning effect, we also observed that the yoked flies’

activity level showed a moderate decrease as they receive more recurring mild heat stress

(Figure 3.8). As the yoked flies receive randomly occurring heat stress, it is interesting that
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Figure 3.9: Kaplan-Meier estimation of survival probability after experiment

their activity level decrease more than the blank flies’ activity level (Figure 3.4, 3.5). Two

possible factors may underlie this phenomenon: the effect of prolonged heat stress or the

effect of learning.

Prolonged Heat Stress’ Effect on Activity Level

Due to the operant nature of the experiment, different training flies require different

amounts of total laser exposure to complete both Training sessions. As a result, yoked

flies inevitably experience laser stimulation of varying durations. Although the heat stress

intensity is mild (26−27◦C), it is still possible that a subset of flies experience longer exposure

to heat stress and become more exhausted as a result.

To find out if this is the case, we investigated the correlation between the total

duration of laser exposure during the two Train sessions (Duration (sec)) and the change in

activity levels between Pre-test and Test 2 sessions (Activity Difference) (Figure 3.10). If

such an correlation exists, yoked flies having been exposed to longer heat stress will show
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Figure 3.10: The relationship between total laser exposure duration and yoked flies’ changes
in activity level before and after training

more negative activity changes. The result, however, shows that the correlation between the

amount of heat stress received and the decrease in activity level is negligible, indicating that

the decrease in the yoked flies’ activity level is likely not due to prolonged heat stress-induced

exhaustion.

Learning

The second possible cause for the yoked flies’ decrease in activity level after experi-

encing heat stress is learning. Although both the timing and amount of heat stress yoked

flies experience are determined by the training flies and are, in general, unrelated to the

yoked flies’ own activity, a subset of yoked flies may have received, by chance, more heat

stress when they are walking than when they were in pause. To understand if that’s the case,

we measured the randomness of heat stress received by a given fly. The randomness of heat

stress can be quantified by measuring the difference between the likelihood of receiving heat
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stress during walking and the likelihood of receiving heat stress during pause (Equation 3.1).

This measurement will be referred to as the exposure differential, or ED. For example, if a

yoked fly experiences heat stress 50% of the time during walking and 50% of the time during

the pause, its’ ED will be 0. If another yoked fly experiences heat stress 80% of the time

during walking, and 30% of the time during the pause, its ED would be 0.5. If learning exist,

we would expect yoked flies to show more negative activity difference (a negative Activity

Difference) when they receive more heat stress during walking (with a more positive ED),

or less negative activity change (a positive Activity Difference) when they receive less heat

stress during walking (with a more negative ED).

ED = P (heated|walking)− P (heated|pause) (3.1)

Our result shows that, during Train 1 session, the correlation between the yoked flies’

ED and their change in activity level between Pre-Test and Test 1 showed a moderate but

significant negative relationship (Figure 3.11). This indicates that a small amount of flies

did change their behavior based on not-so-randomly occurring heat stress. During Train 2

session, the yoked flies’ ED is still negatively correlated with their activity changes between

Test 1 and Test 2, though the correlation coefficient is less negative than that of the Train 1

session (Figure 3.12). The reduced negative correlation seen in the Train 2 session ED and

the activity difference between Test 1 and Test 2 is not surprising. This is likely due to that

many training flies have become completely stationary during Train 2 and do not trigger

any heat stress, resulting in the yoked flies receiving no heat stress during walking or during

a pause. These flies’ ED, together with the yoked flies receiving truly random heat stress,

would both be 0. Therefore, the correlation between ED and activity difference is affected

by the two different groups of yoked flies for the Train 2 session. Our results show that

some yoked flies indeed seemed to have a higher likelihood of experiencing heat stress during

walking than during the pause, especially during the two Train sessions. These flies, in turn,

show a greater activity level decrease. For these flies, a significant negative correlation exists
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Figure 3.11: The relationship between ED and activity difference of yoked flies during
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between the change in activity level and ED. Thus, the observed activity level decrease in

some yoked flies’ may be due to their experiencing, by chance, more heat stress when they

were walking than when they were in pause, indicating that anti-instinctive learning in the

LaserSync can occur when the ED is positive. This result, together with previous results,

further validates the flies’ ability to perform anti-instinctive learning when they experience

more heat stress during walking than during the pause.

3.4 Acknowledgment

Chapter 3 includes materials from the following article, currently being prepared for

submission for publication. This dissertation author is the first author of the paper.

Sun, Ruichen; Delly, Joseph; Sereno, Emily; Wong, Sean; Huang, Yan; Chen, Xinyu;

Wang, Yuxuan; Greenspan, Ralph. ”Anti-Instinctive Learning Revealed by Locomotion-

Triggered Heat Stress in Drosophila”.

3.5 Appendix: Data analysis R code

See below for customized functions written in R for analyzing data. For complete

scripts written for this study, see https://github.com/Ruichensun/fly_source.
# Computing a fly ’s transient speed in a recording
get_fly_moving_speed = function(x, framerate) {

data_start = 31
fly_pos = x[data_start:min (600 * framerate , length(x))]
experiment_time = length(fly_pos) / framerate
tot_moving_dist = sum(abs(diff(fly_pos)))
return(tot_moving_dist * (47 / 768) / experiment_time)

}

# Computing a fly ’s initial pause duration of a recording
get_fly_initial_pause = function(x, framerate){

data_start = 31
fly_pos = x[data_start:min (600 * framerate , length(x))]
experiment_time = length(fly_pos) / framerate
fly_speed = diff(c(x[data_start - 1], fly_pos))
pause = sum(fly_speed == 0) / framerate
return(pause / experiment_time)

}

# Find all of the pauses a fly makes in a recording and obtain their time points and
durations

get_pause_df = function(fly_pos , fly_speed){
label_for_pause = rep(0, length(fly_pos))
for (i in 2: length(label_for_pause)) {

if (( fly_speed[i] == 0) & (fly_speed[i - 1] > 0)) {label_for_pause[i] = 1}
else if (( fly_speed[i] > 0) & (fly_speed[i - 1] == 0)) {label_for_pause[i] = 2}
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else if (( fly_speed[i] < 0) & (fly_speed[i - 1] == 0)) {label_for_pause[i] = 3}
else if (( fly_speed[i] == 0) & (fly_speed[i - 1] < 0)) {label_for_pause[i] = 4}

}

# Getting the index for the pause start and ends #
starts = c()
ends = c()
is_start = 1
if (fly_speed [1] == 0){

starts = c(starts , 1)
is_start = 0

}

for (i in 1: length(label_for_pause)) {
if (label_for_pause[i] != 0) {

if (is_start == 1) {
if (( label_for_pause[i] == 1) | (label_for_pause[i] == 4)) {

starts = c(starts , i)
is_start = 0

}
}
else{

ends = c(ends , i)
is_start = 1

}
}

}

if (length(starts) < 1) {
starts = 1

}
pause_df = data.frame()

if (length(ends) < 1) {
start_type = label_for_pause[starts]
start_position = fly_pos[starts - 1]
ends = length(fly_pos)
end_position = fly_pos[ends]
end_type = label_for_pause[ends]
pause_df = data.frame(

starts [1: length(ends)] - 1,
start_position [1: length(ends)],
start_type [1: length(ends)],
ends ,
end_position ,
end_type ,
ends - starts [1: length(ends)]

)
} else{

if (length(starts) - length(ends) == 1){
ends = c(ends , length(fly_pos))

}
end_type = label_for_pause[ends]
start_type = label_for_pause[starts]
if (starts [1] == 1){

start_position = fly_pos[starts]
startindex = starts [1: length(ends)]

}else{
start_position = fly_pos[starts - 1]
startindex = starts [1: length(ends)] - 1

}
end_position = fly_pos[ends]
pause_df = data.frame(

startindex ,
start_position [1: length(ends)],
start_type [1: length(ends)],
ends - 1,
end_position ,
end_type ,
ends - starts [1: length(ends)]

)
}
colnames(pause_df) = c(

"Start_Index",
"Start_Position",
"Start_Type",
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"End_Index",
"End_Position",
"End_Type",
"Pause_Duration"

)
return(pause_df)

}

# Quantifications of a fly ’s walking behaviors in a recording
one_fly_statistics = function(input_file ,

framerate = 50,
speed_max_thres = 30,
speed_zero_thres = 1e-2,
pause_frame_thres = 25,
chamber_end_thres = 60,
chamber_left = 21,
chamber_right = 752
){

# pause_frame_thres - Least of number of frames in a pause
# speed_zero_thres - How small the speed is to be treated as not moving (i.e. zero)
# speed_max_thres - Maximum speed allowed (The setting for this threshold is as follows:
# The distance of centers of adjacent pixels is 63.5um
# A fly needs 5-6 seconds to travel from one end of the tube to the other end without

pause (in a 50fps setting , 250 - 300 frames ==> 5-6sec)
# The tube length is 48.7mm.
# So the average walking speed is 48.7mm/5sec = 9.74mm/s or 48.7mm/6sec = 8.11mm/s
# Between two adjacent frames (which are 0.02s apart in a 50fps setting), the possible

transient speed is 8.11mm/s x 0.02s = 0.1622 mm

or 9.74mm/s x 0.02s = 0.1948 mm
# This transient displacement translates to 0.1622( mm)/63.5 um = 2.55px, or 0.1948 mm /63.5

um = 3.06px
# Therefore , the fly typically moves 2-3px per 0.02 sec.
# Therefore , I set the maximum speed threshold in 0.02s duration to be 30px (10 times the

usual speed)
# chamber_end_thres - How close (in ) a position to one end of the chamber to be treated

as part of the end

# Get File Info

file_path = unlist(strsplit(input_file , "/"))
Experimenter = file_path [2]
file_name = unlist(strsplit(file_path [4], "_"))
file_session = file_name [3]
genotype = unlist(strsplit(file_name [4],". csv"))[1]
fly_num = as.integer(unlist (( strsplit(file_name [2], "Fly")))[2])

# Load data

tryCatch ({
x = read.table(input_file , header = T, sep = ",", stringsAsFactors = F)

}, error = function(e) {
stop(paste0 ("Input file is empty !:\n"," Input files is: ", input_file , "\n\n"))

})
if (nrow(x) < 10) {stop(paste0 (" Input file is empty !:\n", " Input files is: ", input_file

, "\n\n"))}
x = as.numeric(x[[1]])
data_start = 31
fly_pos = x[data_start:min (600 * framerate , length(x))]
set_time = length(fly_pos)
experiment_time = length(fly_pos)

# Remove system noise using speed threshold
fly_speed = diff(c(x[data_start - 1], fly_pos))
for (i in 1: length(fly_pos)) {

if (abs(fly_speed[i]) >= speed_max_thres) {
fly_speed[i] = 0

}
}

# Activity
pause_df = get_pause_df(fly_pos , fly_speed)

# Real pause is the pauses with duration longer than pause_frame_thres
real_pause_df = subset(pause_df , Pause_Duration >= pause_frame_thres)

# Pauses not at the end
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mid_pause_df = subset(real_pause_df , (Start_Position >= chamber_end_thres) & (
Start_Position <= 767 - chamber_end_thres))

pause_middle_dur = mid_pause_df$Pause_Duration

num_pause = length(real_pause_df$Start_Index)
num_mid_pause = length(mid_pause_df$Start_Index)

md_pause_dur = median(real_pause_df$Pause_Duration) / framerate
md_pause_middle_dur = (median(pause_middle_dur)) / framerate
avg_pause_dur = mean(real_pause_df$Pause_Duration) / framerate
avg_pause_middle_dur = (mean(pause_middle_dur)) / framerate

frac_pause = sum(real_pause_df$Pause_Duration) / experiment_time
frac_pause_middle = (sum(pause_middle_dur)) / experiment_time

max_pause = max(real_pause_df$Pause_Duration) / framerate
max_pause_middle = (max(pause_middle_dur)) / framerate

# First_pause_duration: first real pause or first real pause not at the end
first_pause = real_pause_df$Pause_Duration [1] / framerate
first_pause_middle = (pause_middle_dur [1]) / framerate

# Turns

# Step 0 - smoothing
ma = function(x, bin_size){filter(x, rep (1/ bin_size , bin_size), sides =2)}
bin_size = 150
fly_pos_sm = ma(fly_pos , bin_size)
fly_speed_sm = diff(fly_pos_sm)

# Step 1 - get the moving direction (speed sign)
bin_positive_frac = NULL
t = bin_size
while (t < experiment_time) {

bin_fly_speed = fly_speed_sm[t - 1: bin_size + 1]
frac = sum(bin_fly_speed > 0, na.rm = T) / sum(bin_fly_speed != 0, na.rm = T)
bin_positive_frac = c(bin_positive_frac , frac)
t = t + bin_size

}

# Step 2 - get the turns
turns = find_intersect_points(bin_positive_frac , rep(0.5, length(bin_positive_frac)))
turns = ceiling(turns * bin_size - bin_size / 2)
position_turns = (fly_pos[turns] + fly_pos[turns - 1]) / 2 # Use original fly_pos value as

the actual position
mid_turns = turns[position_turns > chamber_end_thres & position_turns < 767 -

chamber_end_thres]
position_mid_turns = position_turns[position_turns > chamber_end_thres & position_turns <

767 - chamber_end_thres]

# Step 3 - get turn numbers
num_turns = length(turns)
num_mid_turns = length(mid_turns)

if (num_turns == 0){
frac_mid_turns = 0

} else{
frac_mid_turns = num_mid_turns / num_turns

}

#Return output

ret = data.frame(cbind(
Experimenter ,
genotype ,
fly_num ,
file_session ,
num_pause ,
num_mid_pause ,
1 - frac_pause , #unit: percentage
1 - frac_pause_middle ,
md_pause_dur ,
md_pause_middle_dur ,
max_pause ,
max_pause_middle ,
first_pause ,
first_pause_middle ,
num_turns ,
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num_mid_turns ,
frac_mid_turns ,
avg_pause_dur ,
avg_pause_middle_dur

), stringsAsFactors=FALSE)

colnames(ret) = c(
"experimenter", #1
"genotype", #2
"flynum", #3
"session", #4
"num of pause", #5
"num of middle pause", #6
"percentage time active", #7
"percentage time active - pause not at the end", #8
"median pause duration",#9
"median middle mause duration", #10
"max pause duration", #11
"max middle pause duration", #12
"first pause duration", #13
"first middle pause duration", #14
"number of turns",#15
"number of middle turns",#16
"fraction of middle turns out of total turns",#17
"average pause duration", #18
"average middle pause duration" #19

)
return(ret)

}

# Find intersect points in order to define a turn
find_intersect_points = function(x1 , x2){

##Adapted from code by nograpes
##http :// stackoverflow.com/questions /20519431/ finding -point -of-intersection -in -r
## Find points where x1 is above x2.
above = x1 > x2
## Points always intersect when above=TRUE , then FALSE or reverse
intersect.points = which(diff(above) != 0)
## Find the slopes for each line segment.
x1.slopes = x1[intersect.points + 1] - x1[intersect.points]
x2.slopes = x2[intersect.points + 1] - x2[intersect.points]
## Find the intersection for each segment.
x.points = intersect.points + ((x2[intersect.points] - x1[intersect.points ]) / (x1.slopes

- x2.slopes))
return(x.points)

}

shuffle_is_pause = function(is_pause) {
if (max(is_pause) == 0) {

return(is_pause)
}
r = rle(is_pause)
## Prepare sequence for shuffling
folded_is_pause = NULL
for (i in 1: length(r$values)) {

if (r$values[i] == 1) {
## Pause
## Fold
folded_is_pause = c(folded_is_pause , i)

} else{
## Move
## Do not fold
folded_is_pause = c(folded_is_pause , rep(0, r$lengths[i]))

}
}

}

# Find the yoked flies for every training fly
Use_T_find_R = function(fly.info , Tindex){

if (fly.info[Tindex , ]$Category != "T"){
return(c())

}else{
Rlst = c()
setup_T = fly.info[Tindex , ]$Setup
for (i in (( Tindex - setup_T + 1):( Tindex + 4 - setup_T))){

if ((i < 1) | (i > nrow(fly.info))){
next

}
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if (fly.info[i, ]$Category == "R" &
fly.info[i, ]$Genotype == fly.info[Tindex , ]$Genotype &
fly.info[i, ]$Exp.date == fly.info[Tindex , ]$Exp.date &
fly.info[i, ]$Experimenter == fly.info[Tindex , ]$Experimenter &
fly.info[i, ]$Setup != fly.info[Tindex , ]$Setup){

Rlst = c(Rlst , i)
}

}
return (Rlst)

}
}

# Find the blank flies for every training fly
Use_T_find_N = function(fly.info , Tindex){

if (fly.info[Tindex , ]$category != "T"){
return(c())

}else{
Nlst = c()
setup_T = fly.info[Tindex , ]$setup
for (i in (( Tindex - setup_T + 1):( Tindex + 4 - setup_T))){

if ((i < 1) | (i > nrow(fly.info))){
next

}
if (fly.info[i, ]$category == "N" &

fly.info[i, ]$genotype == fly.info[Tindex , ]$genotype &
fly.info[i, ]$exp_date == fly.info[Tindex , ]$exp_date &
fly.info[i, ]$experimenter == fly.info[Tindex , ]$experimenter &
fly.info[i, ]$setup != fly.info[Tindex , ]$setup){

Nlst = c(Nlst , i)
}

}
return (Nlst)

}
}

# Computing the laser exposure details of a fly during Train sessions
get_laser_df = function(fly_laser , framerate){

laser_ON = rle(fly_laser)$length[rle(fly_laser)$values == 1]
laser_OFF = rle(fly_laser)$length[rle(fly_laser)$values == 0]
label_for_laser = rep(0, length(fly_laser))
for (i in 1:( length(label_for_laser) - 1)) {

if (( fly_laser[i] == 0) & (fly_laser[i + 1] > 0)) {
label_for_laser[i + 1] = 1

}
if (( fly_laser[i] > 0) & (fly_laser[i + 1] == 0)) {

label_for_laser[i + 1] = 2
}

}
laser_df = data.frame()
if (laser_OFF [1] == length(fly_laser)) {

laser_df = data.frame(0,
0,
0,
(laser_OFF [1]) / framerate ,
(laser_OFF [1] - 0) / framerate ,
TRUE)

} else{
laser_df = data.frame (which(label_for_laser == 1),

which(label_for_laser == 2),
laser_ON / framerate ,
(laser_OFF [2: length(laser_OFF)]) / framerate ,
(laser_OFF [2: length(laser_OFF)] - laser_ON) / framerate ,
laser_OFF [2: length(laser_OFF)] >= 8 * 60 * framerate

)
}
colnames(laser_df) = c(

"Laser_On",
"Laser_Off",
"ON_duration",
"OFF_duration",
"Difference",
"eight_min_OFF"

)
return(laser_df)

}
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# Computing the amount of laser exposure a fly receives during the Train sessions based on
the get_laser_df function

one_fly_laser_statistics = function(input_file , framerate){
file_path = unlist(strsplit(input_file , "/"))
Experimenter = file_path [2]
file_name = unlist(strsplit(file_path [4], "_"))
file_session = file_name [3]
genotype = unlist(strsplit(file_name [4],". csv"))[1]
fly_num = as.integer(unlist (( strsplit(file_name [2], "Fly")))[2])

fly.file = read.csv(input_file , header = T, stringsAsFactors = F)
fly.position.raw = as.numeric(fly.file [[1]])
fly.laser.raw = as.numeric(fly.file [[2]])
if (is.na(fly.laser.raw [1]) == T) {

number_of_laser_clicks = -1
total_laser_ON = -1
ret = data.frame(cbind(

Experimenter ,
genotype ,
fly_num ,
file_session ,
number_of_laser_clicks ,
total_laser_ON #in seconds

))
colnames(ret) = c(

"experimenter",
"genotype",
"flynum",
"session",
"laser_count",
"laser_exposure"

)
return(ret)

}else{
data_start = 31
fly_pos = fly.position.raw[data_start:length(fly.position.raw)]
fly_laser = fly.laser.raw[data_start:length(fly.laser.raw)]
if (fly_laser[length(fly_laser)] > 0) {

fly_laser[length(fly_laser)] = 0
}
if (fly_laser [1] > 0) {

fly_laser [1] = 0
}
for (i in 1: length(fly_laser)) {

if (fly_laser[i] > 0) {
fly_laser[i] = 1

}
}
laser_df = get_laser_df(fly_laser , framerate)
number_of_laser_clicks = length(laser_df$Laser_On)
total_laser_ON = sum(laser_df$ON_duration)
if (number_of_laser_clicks == 1) {

if (laser_df$ON_duration == 0) {
number_of_laser_clicks = 0

}
}
ret = data.frame(cbind(

Experimenter ,
genotype ,
fly_num ,
file_session ,
number_of_laser_clicks ,
total_laser_ON

))
colnames(ret) = c(

"experimenter",
"genotype",
"flynum",
"session",
"laser_count",
"laser_exposure ")

return(ret)
}

}

#Quantify percentage of time being hit by laser both during walking and during pause
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chance_of_being_hit_by_laser = function(input_file){

fly.file = read.csv(input_file , header = T, stringsAsFactors = F)
fly.position.raw = fly.file$fly_pos.framerate .50
fly.laser.raw = fly.file$laser_status
# If laser status not recorded , return NA
if (is.na(fly.laser.raw [1]) == T) {

return(c(NA,NA,NA))
}else{

fly.moving.status.raw = fly_pos_to_moving_status(fly.position.raw)
starting_point = 21
fly.position = fly.position.raw[starting_point:length(fly.position.raw)]
fly.laser.status = fly.laser.raw[starting_point:length(fly.laser.raw)]
fly.moving.status = fly.moving.status.raw[( starting_point -1):length(fly.moving.status.

raw)]
if (sum(fly.position.raw)==0){

fly.moving.status = rep(0, length(fly.moving.status))

}else{
for (i in 1: length(fly.moving.status)){

if (fly.position[i] < 60){
fly.moving.status[i] = 1

}
if (fly.position[i] > 708){

fly.moving.status[i] = 1
}

}
}
moving_status_summary = rle(fly.moving.status)

total_frame_moving = sum(moving_status_summary$lengths[moving_status_summary$values !=0])
total_frame_pause = sum(moving_status_summary$lengths[moving_status_summary$values ==0])

moving_laser_status.df = data.frame(fly.moving.status ,fly.laser.status)
moving_status_during_laser_ON =

rle(moving_laser_status.df$fly.moving.status[moving_laser_status.df$fly.laser.status
!=0])

moving_laser_ON = sum(moving_status_during_laser_ON$lengths[
moving_status_during_laser_ON$values ==1])

pause_laser_ON = sum(moving_status_during_laser_ON$lengths[
moving_status_during_laser_ON$values ==0])

if (total_frame_moving == 0){
chance_of_being_hit_by_laser_during_moving = 0
chance_of_being_hit_by_laser_during_pause = pause_laser_ON/total_frame_pause
laser_on_percentage =

length(moving_laser_status.df$fly.moving.status[moving_laser_status.df$fly.laser.
status !=0])/

length(fly.moving.status)
}else{

chance_of_being_hit_by_laser_during_moving = moving_laser_ON/total_frame_moving
chance_of_being_hit_by_laser_during_pause = pause_laser_ON/total_frame_pause
laser_on_percentage =

length(moving_laser_status.df$fly.moving.status[moving_laser_status.df$fly.laser.
status !=0])/

length(fly.moving.status)
}
return(c(chance_of_being_hit_by_laser_during_moving ,

chance_of_being_hit_by_laser_during_pause ,
laser_on_percentage))

}
}

# Computing all the flies ’ chance of being hit by types (T/R)
Hit_by_laser = function(file_name_filter , fly.info.movement) {

laser_chance = data.frame ()
for (ind in 1:nrow(fly.info.movement)) {

if(fly.info.movement$genotype[ind ]=="WT"){
input.file = list.files(

path = paste0 ("data/",fly.info.movement$experimenter[ind],"/CS/"),
pattern = paste0 (" ProcessedData_Fly", fly.info.movement$fly[ind], "_",

file_name_filter , "_WT", ".csv"),
full.names = T)

if(length(input.file)==0){next()}
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}else if(fly.info.movement$genotype[ind ]=="CS"){
input.file = list.files(

path = paste0 ("data/", fly.info.movement$experimenter[ind], "/ mutants /"),
pattern = paste0 (" ProcessedData_Fly", fly.info.movement$fly[ind], "_",

file_name_filter , "_CS", ".csv"),
full.names = T)

if(length(input.file)==0){next()}
}else{

input.file = list.files(
path = paste0 ("data/", fly.info.movement$experimenter[ind], "/ mutants /"),
pattern = paste0 (" ProcessedData_Fly", fly.info.movement$fly[ind], "_",

file_name_filter ,"_", fly.info.movement[ind ,]$genotype , ".csv"),
full.names = T)

if(length(input.file)==0){next()}
print(input.file)

}
laser_profile = chance_of_being_hit_by_laser(input.file)
print(laser_profile)
temp = cbind(fly.info.movement[ind , ], laser_profile [1], laser_profile [2], laser_profile

[3])
laser_chance = rbind(laser_chance , temp)

}
names(laser_chance) = c(names(fly.info.movement[ind , ]), "Hit_W", "Hit_P", "Hit_All ")
return(laser_chance)

}

#Calculating all the flies ’ chance of being hit by types (T/R)
fly_pos_to_moving_status = function(fly_pos){

# This is determined by quantile(abs(fly_moving_status),c(0.97, 0.975, 0.98)), and the
97.5%

# corresponds to 28.6
speed_threshold = 30
fly_moving_status = diff(fly_pos)
# Finding out the fly ’s moving status by two criteria: velocity = 0 or velocity much

larger than
# a speed threshold
fly_moving_status_discretized = replace(fly_moving_status , fly_moving_status >

speed_threshold , 0)
fly_moving_status_discretized = replace(fly_moving_status_discretized ,

fly_moving_status_discretized != 0,
1)

return(fly_moving_status_discretized)
}
# Labelling each frame from a recording of a fly ’s walking behavior as walking or pause
moving_status = function(input_file) {

a = read.csv(input_file , header = T, stringsAsFactors = F)
if(is.na(a$laser_status [1])){

return(NA)
}else{

fly_pos = a$fly_pos.framerate .50
fly_moving_status = fly_pos_to_moving_status(fly_pos)
starting_point = 31
fly_moving_status = fly_moving_status [( starting_point -1):length(fly_moving_status)]
return(cumsum(fly_moving_status))

}
}

# Get all CS flies ’ cumulated moving status grouped by types
get_sequence_length = function(file_name) {

if (sum(is.na(moving_status(file_name)))==0){
return (length(moving_status(file_name)))

}else{return(NA)}
}

# Computing the cumulative activity duration of a group of flies
get_cumsums_total = function(file_name_filter , fly.info.movement) {

file_names = c()
for (ind in 1:nrow(fly.info.movement)) {

if (fly.info.movement$Genotype[ind] == "WT"){
input.file = list.files(

path = paste0 ("data/", fly.info.movement$Experimenter[ind], "/CS/"),
pattern = paste0 (" ProcessedData_Fly", fly.info.movement$Fly[ind], "_",

file_name_filter , "_", fly.info.movement$Genotype[ind], ".csv"),
full.names = T)

} else if (fly.info.movement$Genotype[ind] == "CS"){
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input.file = list.files(
path = paste0 ("data/", fly.info.movement$Experimenter[ind], "/ mutants /"),
pattern = paste0 (" ProcessedData_Fly", fly.info.movement$Fly[ind], "_",

file_name_filter , "_", fly.info.movement$Genotype[ind], ".csv"),
full.names = T)

}

if(length(input.file)==0){
print( paste0 (" ProcessedData_Fly", fly.info.movement$Fly[ind], "_",

file_name_filter , "_", fly.info.movement$Genotype[ind], ".csv"))
next()

}
if (!is.na(get_sequence_length(input.file))){

# print(input.file)
file_names = c(file_names , input.file)

}else{
next()

}
}
# Get min sequence length
sequence_lengths = unlist(lapply(file_names , get_sequence_length))
min_sequence_length = min(sequence_lengths)
# Concat cumsums to matirx
cumsums = matrix(nrow = min_sequence_length , ncol = 0)
for (file_name in file_names) {

cumsums = cbind(cumsums , moving_status(file_name)[1: min_sequence_length ])
}
return(cumsums)

}

# Bootstrapping the 95% confidence interval from raw data
get_Wald_CI = function(data){

Mboot = boot(data ,
function(x,i) median(x[i]),
R=10000)

CI = boot.ci(Mboot ,
conf = 0.95,
type = c("norm")

)
return(c(CI$t0 , CI$normal [2], CI$normal [3]))

}
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Chapter 4

The Mechanisms of Anti-Instinctive

Learning in Fruit Flies

4.1 Introduction

Over the past several decades, many genetic and molecular tools have been developed

for Drosophila melanogaster [135, 76, 108, 42, 34, 80, 62, 6]. These tools allow researchers to

interrogate the cellular and molecular mechanisms underlying a biological phenomenon. As

an example, our understanding of molecular and cellular processes underlying the olfactory

learning and memory behavior of fruit flies were built upon these powerful tools [119, 143,

149, 62, 7, 6]. And using the spatially targeted manipulation of specific genes, different

genes and neurons have been identified in the learning and memory process [149, 103, 164,

163, 6]). Using these molecular and genetic tools, in this chapter, we investigate what the

neural circuits and molecules are involved in fruit fly’s anti-instinctive learning behavior.

Particularly, this exploratory investigation focuses on a neurotransmitter, dopamine, and

two central neuropils in the fly brain, ellipsoid body and mushroom bodies, as they have

been reported to be involved in various learning paradigms.
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4.1.1 Dopamine

Dopamine is an evolutionarily-conserved neurotransmitter capable of modifying mo-

tor behaviors [66, 13]. In higher organisms, dopamine is also involved in behaviors such as

reward-seeking, executive control, mood regulation, and learning [113, 10, 154, 96]. Previous

studies have found that the dopamine signaling pathway is highly conserved between the

fruit fly’s brain and mammals, and that fruit flies also employ dopamine for a variety of

behaviors, including learning [161, 148, 121, 18, 150].

Four types dopamine receptors are found in the fly’s brain: dopamine 1-like receptor

1 (Dop1R1), dopamine 1-like receptor 2 (Dop1R2), dopamine 2-like receptor (Dop2R), and

dopamine/ecdysteroid receptor (DopEcR) [49]. All 4 types of receptors are expressed in

the mushroom bodies[31]. Previous studies showed that Dop1R1 is involved in aversive and

appetitive olfactory learning, arousal level regulation, and temperature preference behaviors

[70, 46, 11]. Dop1R2 plays a role in olfactory memory formation and courtship drive [18, 166].

Dop2R has been reported to be important in memory formation and olfactory learning [36,

112, 102]. Lastly, DopEcR modulates memories of courtship conditioning and sensitization

to ethanol [57, 100, 54]. Given the ample evidence of the importance of dopamine receptors in

learning, it is worth exploring the roles of dopamine receptors in the anti-instinctive learning

process.

4.1.2 Ring Neurons in the Ellipsoid Body

The ellipsoid body (EB), located in the central complex of the fly brain, is a donut-

shaped structure that has been found involved in visual and spatial orientation memory,

maintaining heading direction, and flight control [74, 114, 56, 156, 165]. The EB can be fur-

ther divided into rings with 4 ring-like layers: R1, R2, R3, R4 [47], or into 16 wedges that tile

the entire EB. As anti-instinctive learning behavior involves changes in locomotion, whether

the EB is involved in the locomotion changes seen in the training flies will be important to

our understanding of the neural mechanisms underlying anti-instinctive learning.
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4.1.3 Mushroom Bodies γ Lobes

The mushroom bodies (MB), known for their crucial role in associative memory in

fruit flies, are a pair of mushroom-shaped neuropils located at the center of the fly’s brain

[51, 30, 86, 7]. Each of the two MBs is comprised of Kenyon cells whose axons form three

distinct lobes within MB: α/β, α′/β′, and γ lobes [58, 29, 7]. All three lobes have been

reported to be involved in associative memory. Particularly, the neurons in the γ lobes have

been found to mediate aversive associative olfactory learning [103]. As the anti-instinctive

learning paradigm (described in Chapter 3) involves recurring aversive stimuli (mild heat

stress), it would be interesting to see whether neurons in γ lobes are involved in the process

of anti-instinctive learning. In γ lobes of MB, two layers exist: main layer and dorsal (d)

layer [7]. The γ main layer processes olfactory signals that are relayed from the antennal

lobes’ projection neurons (which receive information from olfactory sensory neurons in the

antennae), while inputs to the γ d layer have been largely elusive [7]. If γ lobes are required

for flies to perform anti-instinctive learning, it is then necessary to investigate which part of

the γ lobes are responsive.

4.2 Materials and Methods

4.2.1 Fly Strains

For details about fly rearing, see the methods section 3.2.1. A complete list of trans-

genic flies and their origins are listed in Table 4.1. In the 4.1, BDSC stands for Bloomington

Drosophila Stock Center and JFRC stands for Janelia Farm Research Campus.

4.2.2 Immunohistochemistry and Confocal Imaging

Adult fly brains are dissected following a previously described protocol [158]. The

dissected brains are subsequently stained according to the Janelia Farm Research Campus’

FlyLight IHC-Anti-GFP protocol (https://www.janelia.org/project-team/flylight/
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Table 4.1: Fly strains

Figure Genotype Source
4.1 D2Rf06521/;+/+;

DopR1attP,DopEcRc02142/
DopR1attP,DopEcRc02142

Michael Crickmore lab

4.2 Dop1R1attP/Dop1R1attP Michael Crickmore lab
4.3 nSyb-Gal4/UAS-Dop2R-RNAi BDSC (51635, 78804)
4.4 nSyb-Gal4/10XUAS-IVS-myr::GFP BDSC (51635, 32197)
4.5 Dop1R2attP/Dop1R2attP Michael Crickmore lab
4.6, 4.7 R60D05-Gal4/10XUAS-IVS-myr::GFP BDSC (39247, 32197)
4.8 R60D05-Gal4/UAS-Kir2.1 BDSC(39247),

Greenspan lab
4.9 189Y-Gal4/10XUAS-IVS-myr::GFP Greenspan lab, BDSC

(32197)
4.10 189Y-Gal4/UAS-Kir2.1 Greenspan lab
4.11 MB009B-Gal4/10XUAS-IVS-myr::GFP JFRC, BDSC (32197)
4.12 MB009B-Gal4/UAS-Kir2.1 JFRC, Greenspan lab
4.13 MB009B-Gal4/+ JFRC, Greenspan lab
4.14 +/UAS-Kir2.1 Greenspan lab
4.15 MB131B-Gal4/10XUAS-IVS-myr::GFP JFRC, BDSC (32197)
4.16 MB131B-Gal4/UAS-Kir2.1 JFRC, Greenspan lab
4.17 MB131B-Gal4/+ JFRC, Greenspan lab
4.18 MB419B-Gal4/10XUAS-IVS-myr::GFP JFRC, BDSC (32197)
4.19 MB419B-Gal4/UAS-Kir2.1 JFRC, Greenspan lab
4.20 MB419B-Gal4/+ JFRC, Greenspan lab
4.21 MB607B-Gal4/10XUAS-IVS-myr::GFP JFRC, BDSC (32197)
4.22 MB607B-Gal4/UAS-Kir2.1 JFRC, Greenspan lab
4.23 MB607B-Gal4/+ JFRC, Greenspan lab
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protocols). Brains were imaged immediately following staining with dual color (488 nm

and 561 nm) using ZEISS LSM 800 with Airyscan system. Maximum intensity projection is

used for all confocal images.

4.2.3 Statistical Analysis

The Kruskal–Wallis test followed by pairwise Wilcoxon rank sum tests (with Ben-

jamini Hochberg correction) is used for all statistical comparisons. Confidence intervals are

calculated using permutation tests with 10,000 permutations of the raw data. Interpretation

of p values are shown in Table 3.1.

4.3 Results

4.3.1 Lack of Dopamine Receptors Alters Flies’ Anti-Instinctive

Learning

Dopamine receptors have been reported to be important in fruit fly olfactory learning

[70, 18, 112, 57]. It is highly likely that dopamine receptors are also involved in anti-

instinctive learning behaviors. To test this hypothesis, we tested the anti-instinctive learning

behaviors in homozygous mutants of the Dop1R1, Dop2R, and DopEcR dopamine receptors.

The triple mutants’ walking ability was not affected by the disruption of the three dopamine

receptor genes, as shown in the blank flies activity level during the Pre-Test and the Test 2

session (Figure 4.1). Interestingly, after 2 Train sessions, training flies with defective Dop1R1,

Dop2R, and DopEcR receptors showed a higher activity level compared to yoked flies of the

same genotype (Figure 4.1). As wild type training flies showed a more pronounced decrease

in activity in Test 2 than their yoked counterparts, the reverse trend seen in the Dop1R1,

Dop2R, and DopEcR triple mutants indicates that the abnormal learning behavior may be

due to the lack of any of (or any combinations of) the three dopamine receptors.

Therefore, we set out to test the individual dopamine receptor’s involvement in the
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Figure 4.1: Dop1R1, Dop2R, DopEcR triple mutants’ showed no significant learning

Table 4.2: P values from Dop1R1, Dop2R, DopEcR Triple Mutants Kruskal-Wallis Test,
Followed by Mann-Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Value Test 2 P Value
Krusal-Wallis Test 0.08 7.754e-06
Training vs Yoked, Mann-Whitney U Test N/A 0.0248
Training vs Blank, Mann-Whitney U Test N/A 0.0017
Yoked vs Blank, Mann-Whitney U Test N/A 1.8e-05
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Figure 4.2: Dop1R1 mutants showed no significant learning
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Table 4.3: P Values from Dop1R1 Single Mutants Kruskal-Wallis Test, Followed by Mann-
Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.7427 3.607e-05
Training vs Yoked, Mann-Whitney U Test N/A 0.1432
Training vs Blank, Mann-Whitney U Test N/A 7.7e-06
Yoked vs Blank, Mann-Whitney U Test N/A 0.0012
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Figure 4.3: nSyb-Gal4/UAS-Dop2R-RNAi flies showed significant learning

Table 4.4: P Values from nSyb-Gal4/UAS-Dop2R-RNAi Flies Kruskal-Wallis Test, Fol-
lowed by Mann-Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.1511 0.0001158
Training vs Yoked, Mann-Whitney U Test N/A 0.028
Training vs Blank, Mann-Whitney U Test N/A 4.4e-05
Yoked vs Blank, Mann-Whitney U Test N/A 0.046

Figure 4.4: nSyb-Gal4 expression pattern. Green areas represent the green fluorescent
protein (GFP) expressed in the targeted neurons. Scale bar: 100µm
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Figure 4.5: Dop1R2 mutants’ normal anti-instinctive learning behavior

Table 4.5: P Values from Dop1R2 Single Mutants Kruskal-Wallis Test, Followed by Mann-
Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.5273 3.607e-05
Training vs Yoked, Mann-Whitney U Test N/A 0.014
Training vs Blank, Mann-Whitney U Test N/A 8.8e-13
Yoked vs Blank, Mann-Whitney U Test N/A 9.1e-09
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anti-instinctive learning process. We first assayed the Dop1R1 homozygous mutants (Fig-

ure 4.2, previously described in [68]). The Dop1R1 training flies’ activity level decrease after

2 Train sessions, similar to the pattern seen in the wild type fruit flies. Yet, Dop1R1 mutants’

activity levels do not differ significantly with the Dop1R1 yoked flies’ activity level either in

the Pre-Test session and the Test 2 session. This indicates that disrupting the Dop1R1 gene

may reduce learning phenotype seen in wild type flies.

We then used nSyb-Gal4/UAS-Dop2R-RNAi flies to test if using RNA interference

technology to knock down the expression of Dop2R receptor will affect flies’ anti-instinctive

learning behavior (Figure 4.3, [36]). The nSyb-Gal4 targets all neurons in the fly brain,

allowing the whole brain Dop2R expression knockdown when crossed with UAS-Dop2R-

RNAi strains (Figure 4.4). Our result showed that the whole brain knockdown of Dop2R

preferentially reduced the training flies’ activity level, indicating that general knocking down

Dop2R receptor in the fly brain does not affect anti-instinctive learning behavior (Figure 4.3).

As we do not have the DopEcR specific mutants in a wild type genetic background,

it would be interesting to investigate the role of DopEcR in the anti-instinctive learning

process.

In addition to the three dopamine receptors mentioned earlier, we also tested the

Dop1R2 mutant’ anti-instinctive learning behaviors. Dop1R2 mutant training flies’ activity

level is low after 2 Train sessions, and its yoked counterpart also shows low activity in Test

2 (Figure 4.5, Dop1R2 mutant previously described in [68]). In Test 2, activity levels of

training Dop1R2 mutant flies and yoked Dop1R2 flies show a significant difference, similar

to that of the wild type flies, indicating the lack of Dop1R2 receptors do not affect learning.

It is interesting to note that the degree with of Dop1R2 reduce their activity level after

experiencing 2 Train sessions are the largest among all dopamine receptor mutants tested.

Thus, it would be interesting to see if the lack of Dop1R2 receptors affects renders the flies

more sensitive to stress in general.
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Figure 4.6: R60D05-Gal4 expression pattern (dorsal view). Magenta areas represent con-
tour of the fly brain while green areas represent the green fluorescent protein (GFP) expressed
in the targeted neurons. Scale bar: 100µm

4.3.2 Columnar Wedge Neurons and R3 Neurons in Ellipsoid Body

Are Not Required for Anti-Instinctive Learning Behavior

Next, we investigated the role of the EB in anti-instinctive learning behavior by selec-

tively expressing Kir2.1, an inward-rectifying potassium channel inhibiting normal functions

of the neurons expressing it, in different regions of the EB using the R60D05-Gal4 and

189Y-Gal4 lines [20] (Figure 4.6, 4.7, 4.9). The R60D05-Gal4 targets the columnar wedge

neurons whose dendrites tile all wedges in the EB [115, 62]. The 189Y-Gal4 targets the R3

neurons in EB [64]. The reason for choosing these two Gal4 lines is that most of the other

EB-targeting Gal4 lines produce few or no viable progeny when crossed with UAS-Kir2.1

lines, presumably due to the importance of EB in development.

Both R60D05-Gal4/UAS-Kir2.1 and 189Y-Gal4/UAS-Kir2.1 flies show walking be-

havior in Pre-Test, and, in Test 2, the training flies’ activity level is significantly lower than

that of their yoked counterparts for both genotypes (Figure 4.8, 4.10). This results indi-

cate that anti-instinctive learning behavior does not require participation from either the

columnar wedge neurons or the R3 neurons in the EB.
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Figure 4.7: R60D05-Gal4 expression pattern (ventral view). Magenta areas represent con-
tour of the fly brain while green areas represent the green fluorescent protein (GFP) expressed
in the targeted neurons. Scale bar: 100µm
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Figure 4.8: R60D05-Gal4/UAS-Kir2.1 flies showed significant learning

Table 4.6: P Values from R60D05-Gal4/UAS-Kir2.1 Flies Kruskal-Wallis Test, Followed by
Mann-Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.6051 0.001556
Training vs Yoked, Mann-Whitney U Test N/A 0.0031
Training vs Blank, Mann-Whitney U Test N/A 0.0031
Yoked vs Blank, Mann-Whitney U Test N/A 0.2254
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Figure 4.9: 189Y-Gal4 expression pattern. Magenta areas represent contour of the fly brain
while green areas represent the green fluorescent protein (GFP) expressed in the targeted
neurons. Scale bar: 100µm
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Figure 4.10: 189Y-Gal4/UAS-Kir2.1 flies showed significant learning

Table 4.7: P Values from 189Y-Gal4/UAS-Kir2.1 Flies Kruskal-Wallis Test, Followed by
Mann-Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.113 0.0098
Training vs Yoked, Mann-Whitney U Test N/A 0.01
Training vs Blank, Mann-Whitney U Test N/A 0.01
Yoked vs Blank, Mann-Whitney U Test N/A 0.60
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4.3.3 Mushroom Bodies γ lobes’ Role in Anti-Instinctive Learning

Behavior is Unclear

To investigate whether MB γ lobes are involved in anti-instinctive learning behavior,

we again employed the Gal4/UAS system and used four split Gal4 lines: MB009B-Gal4,

MB131B-Gal4, MB419B-Gal4, and MB607-Gal4 from the Fly Light Split-Gal4 Driver Col-

lection to selectively express Kir2.1, in the MB γ lobes (Table 4.1) [20, 7, 6]. Most of the

previously described MB-targeting Gal4 lines were either not specific enough or their trans-

heterozygous progenies with UAS-Kir2.1 were unhealthy or lethal, leaving split Gal4 lines

as our only alternative in this project. Also, the anti-instinctive learning assay uses heat

as a recurring stressor, thus methods requiring temperature control for disrupting neuronal

function disruption (such as expressing shibire or dTrpA protein in targeted neurons), are

not suitable for this study [44, 91]. Each of these split Gal4 transgenic fly lines targets a

specific areas in the MB γ lobes in the fly brain, with MB009B-Gal4 and MB131B-Gal4

target the entire γ lobe (both the main and d layers), whereas MB419B-Gal4 and MB607B-

Gal4 target only the main layer in the γ lobe [7] (Figure 4.11, 4.15, 4.18. 4.21). The

specificity of these γ lobe neuron-targeting Gal4 lines enables local functional disruption in

these neurons while leaving other brain areas intact. When the MB009B-Gal4/UAS-Kir2.1

trans-heterozygous files were tested in the LaserSync system, the training flies’ activity is

lower than that of the yoked flies in Test 2 (Figure 4.12). However, the two groups of flies

do not differ significantly after receiving two Train sessions, indicating MB009B-Gal4/UAS-

Kir2.1 flies’ anti-instinctive learning ability is reduced compared to that of the wild type

flies, whose training flies show significantly lower activity levels after training than their

yoked counterparts. The functional disruption of neurons in the γ lobes is done via MB γ

lobe-specific expression Gal4 proteins which leads to expression of Kir2.1 proteins in these

neurons. Therefore, the reduction in learning may be due to the specific functional disrup-

tion mediated by Gal4 activated Kir2.1 expression in the entire γ lobes, or it could be due

to expressing exogenous Gal4 proteins in the γ lobes alone. In order to find out which one is
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Figure 4.11: MB009B-Gal4 expression pattern. Magenta areas represent contour of the
fly brain while green areas represent the green fluorescent protein (GFP) expressed in the
targeted neurons. Scale bar: 100µm

the case, we then assay the anti-instinctive learning behavior in MB009B-Gal4/+ heterozy-

gous flies and +/UAS-Kir2.1 heterozygous flies (Figure 4.13, 4.14). The MB009B-Gal4/+

flies express Gal4 proteins in MB γ lobes without incurring functional disruption due to the

lack of UAS-Kir2.1. The +/UAS-Kir2.1 flies do not express either Gal4 proteins or Kir2.1

proteins as it does not has the Gal4 transgene, and that the Kir2.1 expression can only be

activated by Gal4 protein [20].

MB009B-Gal4/+ heterozygous flies showed no learning phenotype, while +/UAS-

Kir2.1 flies show normal learning behavior (Figure 4.13, 4.14). This result indicates that

expression of Gal4 transgene in the MB γ lobe neurons has a dominant effect, i.e. affecting

the normal function of the MB γ lobe neurons, while the UAS-Kir2.1 transgene does not affect

the phenotype of interest. Therefore, our results indicate that the heterozygous MB009B-

Gal4/+ is not a suitable control.

We then tested the anti-instinctive learning behavior of MB131B-Gal4/UAS-Kir2.1,

MB419B-Gal4/UAS-Kir2.1, and MB607B-Gal4/UAS-Kir2.1 flies, along with their respective

controls: MB131B-Gal4/+, MB419B-Gal4/+, and MB607B-Gal4/+ flies. In all 6 strains of

flies, no anti-instinctive learning behaviors was found (Figure 4.16, 4.17, 4.19, 4.20, 4.22,

4.23). These results, taken together, indicates that the role of MB γ lobes in anti-instinctive

learning behavior requires further investigation.
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Figure 4.12: MB009B-Gal4/UAS-Kir2.1 flies showed no learning

Table 4.8: P Values from MB009B-Gal4/UAS-Kir2.1 Flies Kruskal-Wallis Test, Followed
by Mann-Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.02411 0.09253
Training vs Yoked, Mann-Whitney U Test 0.269 N/A
Training vs Blank, Mann-Whitney U Test 0.269 N/A
Yoked vs Blank, Mann-Whitney U Test 0.018 N/A
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Figure 4.13: MB009B-Gal4/+ flies showed no learning
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Table 4.9: P Values from MB009B-Gal4/+ Flies Kruskal-Wallis Test, Followed by Mann-
Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.0534 0.91
Training vs Yoked, Mann-Whitney U Test N/A N/A
Training vs Blank, Mann-Whitney U Test N/A N/A
Yoked vs Blank, Mann-Whitney U Test N/A N/A
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Figure 4.14: +/UAS-Kir2.1 showed significant learning

Table 4.10: P Values from +/UAS-Kir2.1 Flies Kruskal-Wallis Test, Followed by Mann-
Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.00428 0.0002009
Training vs Yoked, Mann-Whitney U Test 0.3582 0.012
Training vs Blank, Mann-Whitney U Test 0.0024 5.7e-05
Yoked vs Blank, Mann-Whitney U Test 0.0334 0.147
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Figure 4.15: MB131B-Gal4 expression pattern. Magenta areas represent contour of the
fly brain while green areas represent the green fluorescent protein (GFP) expressed in the
targeted neurons. Scale bar: 100µm
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Figure 4.16: MB131B-Gal4/UAS-Kir2.1 flies showed no learning

Table 4.11: P Values from MB131B-Gal4/UAS-Kir2.1 Flies Kruskal-Wallis Test, Followed
by Mann-Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.02686 0.5881
Training vs Yoked, Mann-Whitney U Test 0.067 N/A
Training vs Blank, Mann-Whitney U Test 0.895 N/A
Yoked vs Blank, Mann-Whitney U Test 0.049 N/A
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Figure 4.17: MB131B-Gal4/+ flies showed no significant learning

Table 4.12: P Values from MB131B-Gal4/+ Flies Kruskal-Wallis Test, Followed by Mann-
Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.006132 0.1187
Training vs Yoked, Mann-Whitney U Test 0.0076 N/A
Training vs Blank, Mann-Whitney U Test 0.4441 N/A
Yoked vs Blank, Mann-Whitney U Test 0.0371 N/A

Figure 4.18: MB419B-Gal4 expression pattern. Magenta areas represent contour of the
fly brain while green areas represent the green fluorescent protein (GFP) expressed in the
targeted neurons. Scale bar: 100µm
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Figure 4.19: MB419B-Gal4/UAS-Kir2.1 flies showed no significant learning

Table 4.13: P Values from MB419B-Gal4/UAS-Kir2.1 Flies Kruskal-Wallis Test, Followed
by Mann-Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.0139 0.4048
Training vs Yoked, Mann-Whitney U Test 0.4556 N/A
Training vs Blank, Mann-Whitney U Test 0.1347 N/A
Yoked vs Blank, Mann-Whitney U Test 0.0094 N/A
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Figure 4.20: MB419B-Gal4/+ flies showed no significant learning
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Table 4.14: P Values from MB419B-Gal4/+ Flies Kruskal-Wallis Test, Followed by Mann-
Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.01742 0.006578
Training vs Yoked, Mann-Whitney U Test 0.364 0.93
Training vs Blank, Mann-Whitney U Test 0.061 0.01
Yoked vs Blank, Mann-Whitney U Test 0.025 0.01

Figure 4.21: MB607B-Gal4 expression pattern. Magenta areas represent contour of the
fly brain while green areas represent the green fluorescent protein (GFP) expressed in the
targeted neurons. Scale bar: 100µm
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Figure 4.22: MB607B-Gal4/UAS-Kir2.1 flies showed no significant learning
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Table 4.15: P Values from MB607B-Gal4/UAS-Kir2.1 Flies Kruskal-Wallis Test, Followed
by Mann-Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.004041 0.1726
Training vs Yoked, Mann-Whitney U Test 0.2122 N/A
Training vs Blank, Mann-Whitney U Test 0.2122 N/A
Yoked vs Blank, Mann-Whitney U Test 0.0019 N/A
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Figure 4.23: MB607B-Gal4/+ flies showed no significant learning

Table 4.16: P Values from MB607B-Gal4/+ Flies Kruskal-Wallis Test, Followed by Mann-
Whitney U Test with Benjamini-Hochberg correction

Test Groups Pre-Test P Values Test 2 P Values
Krusal-Wallis Test 0.001376 0.0007024
Training vs Yoked, Mann-Whitney U Test 0.7317 0.0970
Training vs Blank, Mann-Whitney U Test 0.0040 0.0009
Yoked vs Blank, Mann-Whitney U Test 0.0036 0.0157
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4.4 Discussion

The results presented in this chapter provide an exploration of the mechanisms under-

lying anti-instinctive learning behavior described in 3. Specifically, the role of the previously

reported learning-relevant dopamine receptors, ellipsoid body and the mushroom body γ

lobes in anti-instinctive learning behavior were investigated in this study. Our results show

that Dop1R1, one of the 4 types of dopamine receptors exist in the fruit fly brain, is involved

in the anti-instinctive learning process, while Dop1R2 and Dop2R do not seem to be involved

in this process. DopEcR’s role in learning is unclear. Our results also show that the learn-

ing effect does not require EB, a brain region previously reported involved in motor control

and visual memory, as flies with their EB functionally disrupted show normal learning. In

addition, MB γ lobes’ role in the anti-instinctive learning process is currently unclear, as

both flies with the MB γ lobes functionally disrupted and flies expressing exogenous Gal4

proteins in MB γ lobes show comparable activity levels between the training and yoked flies

after receiving 2 Train sessions. It is still likely that MB γ lobes are still relevant to the

anti-instinctive learning behavior, as both flies with the MB γ lobes functionally disrupted

and flies expressing exogenous Gal4 proteins in MB γ lobes have their MB γ lobes affected

at the cellular level.

Future works may build upon our existing results in the following areas. First, what

is the role of DopEcR in the anti-instinctive learning process? Second, what are the roles

of neurons in other MB lobes (α/β and α′/β′ lobes) are in the anti-instinctive learning

process? Lastly, as the LaserSync system uses heat as stressor when training flies, which

making temporal control of neuronal function disruption unfeasible, future technology using

non-heat based temporal control of gene expression, such as optogenetics, may elucidate the

details of how learning happens in action [81, 101].
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