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021801-3
We present results for the branching fractions and charge asymmetries in B� ! h��0 (where h� �
��; K�) and a search for the decay B0 ! �0�0 using a sample of approximately 88 � 106 BB pairs
collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We measure
B�B� ! ���0� � �5:5�1:0

	0:9 � 0:6� � 10	6, where the first error is statistical and the second is system-
atic. The B� ! ���0 signal has a significance of 7:7� including systematic uncertainties. We
simultaneously measure the K��0 branching fraction to be B�B� ! K��0� � �12:8�1:2

	1:1 � 1:0� �
10	6. The charge asymmetries are A���0 � 	0:03�0:18

	0:17 � 0:02 and AK��0 � 	0:09 � 0:09 � 0:01.
We place a 90% confidence-level upper limit on the branching fraction B�B0 ! �0�0� of 3:6 � 10	6 .

DOI: 10.1103/PhysRevLett.91.021801 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
of CP violation in the B system. In the standard model,
CP violation arises from a single complex phase in the

asymmetry in the B ! � � decay mode by the
BABAR and Belle collaborations [2] provide information
The study of B meson decays into charmless hadronic
final states plays an important role in the understanding
Cabibbo-Kobayashi-Maskawa quark-mixing matrix Vij
[1]. Measurements of the time-dependent CP-violating

0 � 	
021801-3
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on the angle � 
 arg�	VtdV
�
tb=VudV

�
ub of the unitarity

triangle. However, in contrast to the theoretically clean
determination of the angle � in B0 decays to charmonium
final states [3,4], the extraction of � in B0 ! ���	 is
complicated by the interference of tree and penguin am-
plitudes with different weak phases. The shift between
�eff , derived from the measured B0 ! ���	 asymmetry,
and � may be evaluated or constrained using measure-
ments of the isospin-related decays B0�B0� ! �0�0 and
B� ! ���0 [5].

The CP-violating charge asymmetry for B� modes,
defined as ACP 
 �j �AAj2 	 jAj2�=�j �AAj2 � jAj2�, where A
( �AA) is the B� (B	) decay amplitude, will deviate from
zero if the tree and penguin amplitudes each have differ-
ent weak and strong phases. In the standard model the
decay B� ! ���0 has only a tree amplitude, so no
charge asymmetry is expected. Both the rate and asym-
metry of the decay B� ! K��0 may constrain the value
of the unitarity triangle angle �. In particular, the ratio of
B�B� ! K��0� and B�B� ! K0��� provides a lower
bound for � [6]. The decay B� ! K��0 can also exhibit a
significant charge asymmetry; different models for had-
ronic B decays predict a range of values [7].

In this paper, we report on an observation of the decays
B� ! ���0 and B� ! K��0, a measurement of their
CP-violating charge asymmetries, and a search for the
decay B0 ! �0�0, using �87:9 � 1:0� � 106 BB pairs
collected with the BABAR detector.

BABAR is a solenoidal detector optimized for the
asymmetric-energy beams at PEP-II and is described in
detail in Ref. [8]. Charged particle (track) momenta are
measured with a 5-layer double-sided silicon vertex
tracker and a 40-layer drift chamber (DCH) inside a
1.5 T superconducting solenoidal magnet. Photon (neutral
cluster) positions and energies are measured with an
electromagnetic calorimeter (EMC) consisting of 6580
CsI (Tl) crystals. Tracks are identified as pions or kaons
by the Cherenkov angle �c measured with a detector of
internally reflected Cherenkov light (DIRC).

Candidate �0 mesons are reconstructed as pairs of
photons, spatially separated in the EMC, with an invari-
ant mass within 3� of the �0 mass. The resolution is
approximately 8 MeV=c2 for high momentum �0’s.
Photon candidates are required to be consistent with the
expected lateral shower shape, not be matched to a track,
and have a minimum energy of 30 MeV. To reduce the
background from false �0 candidates, the angle �� be-
tween the photon momentum vector in the �0 rest frame
and the �0 momentum vector in the laboratory frame is
required to satisfy j cos��j< 0:95.

Candidate tracks are required to be within the tracking
fiducial volume, originate from the interaction point,
consist of at least 12 DCH hits, and be associated with
at least six Cherenkov photons in the DIRC.

B meson candidates are reconstructed by combining a
�0 with a pion or kaon (h�) or by combining two �0
021801-4
mesons. Backgrounds arise from two sources: B ! ��
decays in which one pion is emitted nearly at rest in the B
frame so that the remaining decay products are kinemati-
cally consistent with a B� ! ���0 or B0 ! �0�0 decay,
and e�e	 ! qq �q � u; d; s; c� events where an h� or �0

from each quark randomly combine to mimic a B decay.
Both backgrounds are separated from the signal using

the kinematic constraints of B mesons produced at the
��4S�. The first kinematic variable is the beam-energy

substituted mass mES �
�����������������������������������������������������
�s=2 � pi � pB�

2=E2
i 	 p2

B

q
,

where
���
s

p
is the total center-of-mass (c.m.) energy.

�Ei;pi� is the four momentum of the initial e�e	 system
and pB is the B momentum, both measured in the labo-
ratory frame. The second variable is �E � EB 	

���
s

p
=2,

where EB is the B candidate energy in the c.m. frame. The
pion mass is assigned to all h� candidates for the �E
calculation.

The B� ! ���0 background to B0 ! �0�0 is re-
duced by using only candidates with j�Ej< 0:2 GeV.
Remaining B� ! ���0 background is further sup-
pressed by removing candidates in which the addi-
tional �� is identified. The track that gives a ���0

invariant mass and mES of the ���0�0 combination
most consistent with the � and B mass is selected.
Requirements on the resulting ���0 invariant mass and
on the �E of the ���0�0 combination remove roughly
50% of the remaining B� ! ���0 background, with
93% efficiency for B0 ! �0�0. Only �0:40 � 0:04�%
of B� ! ���0 decays, and a negligible fraction of non-
resonant B� ! ���0�0 decays, remain after all cuts.
For B� ! h��0 the B ! �� background is suppressed
by selecting candidates with 	0:11 < �E< 0:15 GeV.

The jetlike qq background is suppressed by requiring
that the angle �S between the sphericity [9] axes of the B
candidate and of the remaining tracks and neutral clusters
in the event, in the c.m. frame, satisfies j cos�Sj < 0:8
(0.7) for B� ! h��0 (B0 ! �0�0). Also, we require
mES > 5:2 GeV=c2. The number of B� ! h��0 and
B0 ! �0�0 candidates satisfying these requirements
and the estimated efficiencies, obtained from simulated
data, are shown in Table I. The error in the estimated
efficiency is dominated by the 5% systematic uncertainty
in the single �0 reconstruction efficiency.

The number of signal B candidates is determined in
an extended unbinned maximum likelihood fit. The
probability P i� ~xxj; ~��i� for a signal or background hy-
pothesis is the product of probability density func-
tions (PDFs) for the variables ~xxj given the set of
parameters ~��i. The likelihood function is given by a
product over all N events and the M signal and back-
ground hypotheses:

L � exp

 
	
XM
i�1

ni

!YN
j�1

"XM
i�1

NiP i� ~xxj; ~��i�

#
: (1)
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TABLE I. The results for both B� ! h��0 and B0 ! �0�0 are summarized. The number of B candidates N, total detection
efficiencies &, fitted signal yields NS, significances S, charge-averaged branching fractions B, asymmetries A, and 90% C.L.
asymmetry limits are shown. Errors are statistical and systematic, respectively, with the exception of & whose error is purely
systematic. The upper limit for the B0 ! �0�0 branching fraction corresponds to the 90% C.L., and the central value is shown in
parentheses.

Mode N & (%) NS S��� B (10	6) A A (90% C.L.)

���0 

21752

26:1 � 1:7 125�23
	21 � 10 7.7 5:5�1:0

	0:9 � 0:6 	0:03�0:18
	0:17 � 0:02 �	0:32; 0:27

K��0 28:0 � 2:0 239�21
	22 � 6 17.4 12:8�1:2

	1:1 � 1:0 	0:09 � 0:09 � 0:01 �	0:24; 0:06

�0�0 3020 16:5 � 1:7 23�10
	9

�8
	4 2.5 <3:6 �1:6�0:7

	0:6
�0:6
	0:3�
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For B� ! h��0 the probability coefficients are Ni �
1
2 �1 	 qjAi�ni, where qj is the charge of the track h,
and the fit parameters ni and Ai are the number of events
and asymmetry for the four ���0 and K��0 signal and
background components. For B0 ! �0�0the coefficients
are Ni � ni where the three ni are the number of signal
candidates, B� ! ���0 background, and qq background.
Monte Carlo simulations are used to verify that the
likelihood fits are unbiased.

The variables ~xxj used for B� ! h��0 are mES, �E, the
Cherenkov angle �c of the h� track, and a Fisher dis-
criminant F . The Fisher discriminant is given by an opti-
mized linear combination of

P
ipi and

P
ipij cos�ij2,

where pi is the momentum and �i is the angle with respect
to the thrust axis of the B candidate, both in the c.m.
frame, for all tracks and neutral clusters not used to
reconstruct the B meson.

The PDFs for mES, �E, �c, and F for the background
are determined using data, while the PDFs for signal are
found from a combination of simulated events and data.
The mES distribution for background is modeled as a
threshold function [10], whose shape parameter is a free
parameter of the fit. The �E distribution for background
is modeled as a quadratic function whose parameters are
determined from the mES sideband in the data. The mES

and �E distributions for the signal are modeled as
Gaussian distributions with a low-side power-law tail
whose parameters are found with simulated events. The
�E resolution is approximately 42 MeV based on simu-
lated events and B� ! D0����� ! ���0� events with
an energetic �0. To allow for EMC energy scale varia-
tions, the mean of the �E PDF is a free parameter of the
fit. To account for the use of the pion mass hypothesis, the
mean of �E is shifted for the K��0 PDFs. The F
distribution is modeled as a bifurcated Gaussian and a
double Gaussian for signal and background, respectively,
whose parameters are determined for the signal from
simulation and for the background from mES sidebands.
The difference of the measured and expected values of �c
for the pion or kaon hypothesis, divided by the uncer-
tainty on �c, is modeled as a double Gaussian function. A
control sample of kaon and pion tracks, from the decay
D�� ! D0��, D0 ! K	��, is used to parametrize ��c
as a function of the track polar angle.
021801-5
The variables ~xxj used for B0 ! �0�0 are mES, �E, and
another Fisher discriminant FT . The FT combines F
with information from the B tagging algorithm described
in Ref. [3]. The tagging algorithm uniquely classifies
events according to their lepton, kaon, and slow pion
(from D�� ! D0��

slow) content, using all tracks in the
event. Nine event classes, in decreasing order of their
background rejection, contain the following: a high mo-
mentum electron and a kaon, a high momentum muon
and a kaon, a high momentum electron, a high momen-
tum muon, a kaon and a slow pion, a well-identified
kaon, a slow pion, any kaon, or none of the above.
These event classes are assigned an index, which is a
new discriminating variable, and is combined with F
into a second Fisher discriminant FT , optimized using
simulated events.

The mES distribution for qq background is parame-
trized by the same threshold function used in the B� !
h��0 analysis, where the shape parameter is determined
from the data with j cos�Sj > 0:9. The �E distribution
for the qq background is modeled as a quadratic poly-
nomial with parameters found from on-resonance data in
the mES sidebands and off-resonance data. The mES and
�E variables in both B0 ! �0�0 and B� ! ���0 are
correlated, so a two dimensional PDF derived from a
smoothed simulated distribution is used. The �E resolu-
tion is approximately 80 MeV. The FT distribution for
qq, B� ! ���0, and B0 ! �0�0 is modeled as the sum
of three Gaussians. For qq the parameters are found using
both mES sideband and off-resonance data. For B0 !
�0�0 and B� ! ���0 the parameters are found using a
sample of fully reconstructed B0 ! D���n� �n � 1; 2; 3�
events.

The decay B� ! ���0 has not been observed; Ref. [11]
sets an upper limit of B�B� ! ���0�< 4:3 � 10	5 at
90% C.L. based on a measured central value of B�B� !
���0� � 2:4 � 10	5. Therefore we fix the number of
B� ! ���0 events in the fit to n��0 � 8:4, based on
this central value, and evaluate the systematic uncertainty
of allowing n��0 to vary from 4.2 to 15 events.

The results of the maximum likelihood fits are sum-
marized in Table I. Distributions of some of the variables
used in the fits are shown in Figs. 1 and 2 for B� ! h��0

and B0 ! �0�0, respectively. The data shown are for
021801-5
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FIG. 2. The (a) mES, (b) �E, and (c) FT distributions for
B0 ! �0�0 are shown, for candidates that satisfy optimized
requirements on probability ratios for signal to background
based on all variables except the one being plotted. The
fractions of signal events included in the plots are 20%, 20%,
and 63% for mES, �E and FT , respectively. The dashed lines
show the PDF projections for both qq and B� ! ���0 back-
ground, while the solid lines are the PDF projections for signal
plus background. The ratio 	2 ln�L=Lmax� is shown in (d),
where the dashed line is for statistical errors only and the solid
line is for statistical and systematic errors, as applied for the
calculation of significance.
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FIG. 1. The distributions of mES (left panels) and �E (right
panels) for B� ! ���0 (top panels) and B� ! K��0 (bottom
panels), for candidates that satisfy optimized requirements on
probability ratios for signal to background based on all vari-
ables except the one being plotted. The fraction of signal events
included in the plots is 24% (mES) and 35% (�E) for ���0, and
53% (mES) and 48% (�E) for K��0. Solid curves represent
projections of the complete maximum likelihood fit result;
dashed curves represent the background contribution. For the
B� ! ���0 �E distribution, the dotted curve shows the qq
background and the small B� ! K��0 cross feed; the dashed
curve includes the B ! �� background as well, so is the sum of
all backgrounds.

P H Y S I C A L R E V I E W L E T T E R S week ending
11 JULY 2003VOLUME 91, NUMBER 2
events that have passed a probability ratio cut optimized
to enhance the signal to background fraction. The like-
lihood function for B0 ! �0�0 is shown in Fig. 2(d). The
statistical errors on the number of events are given by the
change in signal yield ni that corresponds to an increase
in 	2 lnL of one unit. The systematic uncertainty in the
likelihood fit is estimated by varying the PDF parameters
by their statistical errors or by comparing the result with
an alternate parametrization.

For B� ! ���0, the dominant systematic uncertainty
is due to the F PDF for signal (� 6:2 events) and back-
ground (� 7:6 events) PDFs, while for B� ! K��0 it is
due to the mES PDF for signal (�2:7

	4:6events). Systematic
uncertainties on the CP asymmetries are evaluated from
PDF parameter variations, which mostly cancel in the
asymmetry ratio, and from the upper limit on intrinsic
charge bias in the detector (1.0%) [12].

For B0 ! �0�0, systematic uncertainties from the
PDFs are due to the FT PDF for q �qq back-
ground (�7:5

	2:4events), the mES PDF for q �qq background
(�1:2
	1:1events), and the �E PDF for q �qq background
021801-6
(�1:0
	0:2events). Additional systematic uncertainties for
B0 ! �0�0 arise from uncertainty in the EMC en-
ergy scale (�0:8

	1:1events), the B� ! ���0 rejection cut
(� 1:3 events), and uncertainty in the assumed B� !

���0 branching fraction (�1:6
	1:9events). The significance

of the event yield, also listed in Table I, is evaluated from
the square root of the change in 	2 lnL with the signal
yield fixed to zero. The upper limit for B0 ! �0�0 is
evaluated by finding n�0�0 where

Rn�0�0
0 L�n�dn=R

1
0 L�n�dn � 0:9. For both significance and upper limits,

systematic uncertainties are included with a worst case
assumption for efficiencies and PDF variations.

We observe B�B� ! ���0� � �5:5�1:0
	0:9 � 0:6� � 10	6,

with a statistical significance of 7:7� from zero. This
result is consistent with several prior measurements re-
porting evidence for this decay [13–15]. We measure
B�B� ! K��0� � �12:8�1:2

	1:1 � 1:0� � 10	6. The charge
asymmetries are A���0 � 	0:03�0:18

	0:17 � 0:02 and
AK��0 � 	0:09 � 0:09 � 0:01; no evidence of direct
CP violation is observed. Our limit B�B0 ! �0�0�<
3:6 � 10	6 improves upon prior results [14,16].
Removing correlated systematic uncertainties from the
luminosity and �0 efficiency, we bound the ratio
021801-6
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B�B0 ! �0�0�=B�B� ! ���0�< 0:61 at a 90% confi-
dence level. Assuming isospin relations for B ! �� [5],
this corresponds to an upper limit of j�eff 	 �j< 51o.
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