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a b s t r a c t

Global efforts are focused on discussing effective measures for minimizing the impact of COVID-19
on global community. It is clear that the ongoing pandemic of this virus caused an immense threat
to public health and economic development. Mathematical models with real data simulations are
powerful tools that can identify key factors of pandemic and improve control or mitigation strategies.
Compared with integer-order and left-hand side fractional models, two-side fractional models can
better capture the state of pandemic spreading. In this paper, two-side fractional models are first
proposed to qualitative and quantitative analysis of the COVID-19 pandemic. A basic framework are
given for the prediction and analysis of infectious diseases by these types of models. By means
of asymptotic stability analysis of disease-free and endemic equilibrium points, basic reproduction
number R0 can be obtained, which is helpful for estimating the severity of an outbreak qualitatively.
Sensitivity analysis of R0 is performed to identify and rank key epidemiological parameters. Based
on the real data of the United States, numerical tests reveal that the model with both left-hand side
fractional derivative and right-hand side fractional integral terms has a better forecast ability for the
epidemic trend in the next ten days. Our extensive computational results also quantitatively reveal that
non-pharmaceutical interventions, such as isolation, stay at home, strict control of social distancing,
and rapid testing can play an important role in preventing the pandemic of the disease. Thus, the
two-side fractional models are proposed in this paper can successfully capture the change rule of
COVID-19, which provide a strong tool for understanding and analyzing the trend of the outbreak.

© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

On December 8, 2019, the first case of COVID-19, which was
aused by a new kind of cluster acute respiratory illness, was
onfirmed in Wuhan, China. The disease spread quickly in China.
n February 2020, the epidemic in China passed its peak and
as gradually under control. However, new cases began to ap-
ear throughout the world. Then the number of the disease has
kyrocketed, and the World Heath Organization (WHO) declared
OVID-19 as a global pandemic. As of June 21, 2020, more than
million confirmed cases of COVID-19, including about 461,000
eaths, were reported to the WHO [1]. Among them, more than

✩ This work was supported by the Alianza UCMX Special Funding for Bi-
national Collaboration Addressing COVID-19, the Fundamental Research Funds
for the Central Universities (No. 31920210018), and the Innovation Team
of Intelligent Computing and Dynamical System Analysis and Application of
Northwest Minzu University.

∗ Corresponding author.
E-mail address: jsmwy@xbmu.edu.cn (W. Ma).
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2 million cases were confirmed in the United States, more than
1 million cases were confirmed in Brazil, 584,680 cases were
confirmed in the Russian Federation, and 410,461 cases were
confirmed in India. The COVID-19 poses a great threat to health
and safety of people throughout the world.

With the number of confirmed and deaths cases soared, coun-
tries or regions took many different measures to combat COVID-
19. But the disease still has a serious impact on global economies
and trade. Governments face the urgent challenge of determining
an appropriate response. When will the spread of disease peak or
stabilize? Which measures can effectively prevent the spread of
the disease? When is the right time to adjust the current policy?
Qualitative and quantitative analysis of the spread trends and
possible measures are extremely important for prevention and
control of COVID-19.

A reliable epidemiological model, which consists of a set
of coupled differential equations, is a strong tool for simulat-
ing mechanism of the spreading trend and how to control the
spread of the disease. Many scholars investigated COVID-19 from

https://doi.org/10.1016/j.isatra.2022.01.008
http://www.elsevier.com/locate/isatrans
http://www.elsevier.com/locate/isatrans
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2022.01.008&domain=pdf
mailto:jsmwy@xbmu.edu.cn
https://doi.org/10.1016/j.isatra.2022.01.008
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ifferent perspectives by classical integer order models [2,3].
eng et al. [4] developed a generalized Susceptible–Exposed–
nfectious–Recovered (SEIR) model to make prediction about the
nflection point in China. Yang et al. [5] explored the epidemics
rend of COVID-19 in China by modified SEIR model and artificial
ntelligence. Li et al. [6] estimated the effect of control measures
nd city lockdowns by conceptual models. Many other models
ere proposed for COVID-19, such as metapopulation disease
ransmission model [7] and transmission model [8].

In the above epidemic models, they are assumed that con-
act rates, transmission and recovery coefficients are constants.
ence the current states do not depend on past historical states
t each time, that is, they are memoryless and are called as
arkovian processes. However, it was found that the spread and
ontrol of infectious diseases cannot be considered as Markovian
rocesses [9,10]. When a disease spreads in population, individ-
al’s experience and knowledge of the disease can affect their
esponse. Furthermore, the experience and knowledge do not
ave the same effect on all stages of the disease transmission. In
ther words, the earlier memory has less impact on the present
ituation, while the recent memory has more impact on the
resent situation. It can be expected that the long memory effect
eclines more slowly than an exponential decay, more like a
ower-law decay. Fractional calculus is a powerful tool to observe
he effects of long memory effects [11,12]. Fractional calculus has
een applied to capture the characteristics of many diseases, such
s chronic wasting disease [13] and human respiratory syncytial
irus disease [14]. Most recently, fractional calculus has also been
sed for modeling COVID-19. Xu et al. [15] used a generalized
ractional SEIR model to predict the spread trend of COVID-19 in
he United States. Lu et al. [16] investigated the dynamic behavior
f COVID-19 with the help of a fractional model with inter-city
etworked coupling effects.
In general, an epidemiological model is described by integer-

rder differential equations. By transforming the differential equa-
ions into Volterra-integral equations, and then adding power law
unction κ (t − τ) =

1
Γ (α) (t − τ)α−1 , α > 0 into integral terms,

he current states of the system depend on all past states and
xactly how much depend on the size of α. More realistically,
ifferent state variables have different power law decay rates α

hich will lead to two-side fractional models. Therefore, the two-
ide fractional model can more accurately describe long memory
n the macroscopic behavior of epidemic outbreaks. The purpose
f this paper is to first propose and study a model with two-
ide fractional calculus for qualitative and quantitative analysis of
he COVID-19. We give a basic framework to design and analyze
wo-side fractional models. By transforming the integer-order
eneralized SEIR model into the Volterra-integral equations, and
ultiplying integrand by power law function, a two-side frac-

ional generalized SEIR model is established. Transformations are
esigned to convert the two-side fractional system into left-hand
ide incommensurate fractional systems. The disease free and
ndemic equilibrium points are computed. Afterwards, the basic
eproduction number R0 is obtained by a locally asymptotically
table analysis and a threshold that determines whether the
quilibrium point is stable or not. The Partial Rank Correlation
oefficient (PRCC) values for R0 show that increasing protection
ate is the most effective way to combat COVID-19. By the real
ata of the United States, the model with both left-hand side frac-
ional derivative and right-hand side fractional integral terms is
alidated to have a better prediction performance compared with
nteger order and left-hand side fractional models. Furthermore,
e discuss and estimate reasonableness of measures which are
aken by governments to control the spreading of the disease.

This paper is arranged as follows. In Section 2, some basic
efinitions of fractional operators and mathematical properties
145
are given. In Section 3, an augmented SEIR model is briefly
introduced, and a two-side fractional model is established. In Sec-
tion 4, the dynamical analysis and R0 are discussed. In Section 5,
the prediction performance of the model is tested, and measures
are analyzed by real data. Conclusions are given in Section 6 .

2. Preliminary definitions and lemmas

Definition 1 ([11]). The fractional integral of order α > 0 for a
unction f (t) is defined as

α
t0,t f (t) =

1
Γ (α)

∫ t

t0

(t − τ )α−1f (τ )dτ ,

here t > t0 and Γ (·) is the Gamma function.

efinition 2 ([11]). For a given function f (t), t > t0, the αth-order
aputo fractional derivative is defined by

Dα
t0,t f (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ (m−α)

∫ t
t0
(t − τ )m−α−1f (m)(τ )dτ ,

for m − 1 < α < m ∈ Z+,

dmf (t)
dtm ,

for α = m.

Let x(t) ∈ Rn be the solution of the following fractional
ystem:

Dα
t0,tx(t) = f (t, x(t)), x (t0) = x0, (1)

where t ∈ [t0, T ] (T ≤ +∞), x(t) ∈ Ω ⊆ Rn, CDα
t0,tx(t) =

CD
α1
t0,tx1(t), CD

α2
t0,tx2(t), . . . , CD

αn
t0,txn(t)

)⊤
, 0 < αi < 1 and f :

[t0, T ] × Ω → Rn.

Definition 3 ([17]). If α1 = α2 = · · · = αn = α, then we refer to
(1) as a commensurate fractional system; otherwise, we refer to
(1) as an incommensurate fractional system.

Definition 4 ([18]). If the vector x∗
∈ Rn satisfies f (t, x∗) = 0,

then x∗ is said to an equilibrium point of system (1).

Lemma 1 ([19]). Consider a linear incommensurate fractional sys-
tem:

CDα
0,tx(t) = Ax(t), x(0) = x0, (2)

where x ∈ Rn, A ∈ Rn×n and α = (α1, α2, . . . , αn)
T , 0 < αi ≤ 1

with αi =
ni
di

, gcd (ni, di) = 1. Let M be the lowest common
multiple of the denominators di. If all roots λ of the equation ∆(λ) =

det
(
diag

(
λMαi

)
− A

)
= 0 satisfy | arg(λ)| > π

2M , then the zero
solution of system (2) is globally asymptotically stable.

Lemma 2 ([20]). Let α1 = α2 = · · · = αn = α ≤ 1 in
system (2). If all eigenvalues λi, i = 1, 2, . . . , n of equation ∆(λ) =

det (diag(λ) − A) = 0 satisfy either the Routh–Hurwitz stability
conditions or the conditions |arg (λi)| > απ

2 , i = 1, 2, . . . , n, then
the zero solution of system (2) is asymptotically stable.

Remark 1. Stability region of equilibrium point of fractional
system (2) is larger than the corresponding integer-order system.
For example,{

CDα
0,tx1(t) = 0.1x1(t) − x2(t),

CDα
0,tx2(t) = x1(t) + 0.1x2(t),

(3)

where α ∈ R, x1(0) = 1, and x2(0) = −1. Eigenvalues of the
characteristic matrix is λ1,2 = 0.1 ± i. When α = 1, system
(3) is an integer-order system and does not satisfy the stability
condition in Lemma 2, so it is not asymptotically stable, as shown
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Fig. 1. Comparison with asymptotically stable of the integer-order system and the fractional system.
Fig. 2. Flow chart of the model involving seven population classes.

in Fig. 1(a). However, when α = 0.8, by Lemma 2, fractional
ystem (3) is asymptotically stable, as shown in Fig. 1(b). Thus,
ractional systems are more flexible and consistent with actual
ituations.

emma 3 ([18]). For any x0 =
(
x01, . . . , x

0
n

)⊤
∈ Rn, if the function

f (t, x) is continuous and satisfies Lipschitz condition with respect to
x. Then fractional system (1) has a unique solution.

3. Model formulation

The pandemic of COVID-19 has had a substantial impact on
many aspects of all countries. To control and prevent ongoing out-
break of the diseases, establishing an appropriate model is very
important. The total population N is divided into seven classes,
i.e., S(t), E(t), I(t),Q (t), R(t) and P(t). Here, S(t) is proportion of
the populace that is able to contact the disease, E(t) is proportion
of the populace that has been infected but is in a latent period,
I(t) is proportion of the populace that has an infectious capacity
and has not quarantined, Q (t) is proportion of the populace that
is confirmed and infected, R(t) is proportion of the populace that
has recovered and become immune, and P(t) is proportion of
the populace that is protected from infection. In addition, D(t) is
proportion of the populace that has died from the disease.

The flow chart of the generalized SEIR model for COVID-19
and other epidemic diseases is shown in Fig. 2. They represent
the interaction rate constants of the different compartments. The
146
Table 1
Description parameters of the generalized SEIR model (4).
Parameter Biological meaning

Λ Inflow rate of susceptible individuals
β1 Infection rate of the exposed individuals
β2 Infection rate of the infected individuals
µ Protection rate
ρ Natural mortality rate
γ −1 Average latent time
δ−1 Average quarantine time
η Death rate caused by the disease
θ Average cure rate

model has nine parameters that can be estimated in numerical
simulations and extends the previous model [4,15]. A proportion,
µ, of susceptible people are protected from the virus. And the
susceptible people (S) move into the exposed people (E) when
they are infected by exposed people at the transition rate β1
or infected people at the transition rate β2. After that, the ex-
posed individuals (E) move into the infectious people (I) with the
transition rate γ . Then, the group I moves into the quarantined
individuals (Q) with the transition rate δ. Finally, quarantined
people can move into the compartment R at the rate θ due to
recovery and may die with the transition rates η. The dynamic be-
havior of disease can be characterized by the following nonlinear
system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= Λ − β1S(t)E(t) − β2S(t)I(t) − (µ + ρ)S(t),

dE(t)
dt

= β1S(t)E(t) + β2S(t)I(t) − (γ + ρ)E(t),

dI(t)
dt

= γ E(t) − (δ + ρ)I(t),

dQ (t)
dt

= δI(t) − (θ + ρ + η)Q (t),

dR(t)
dt

= θQ (t) − ρR(t),

dP(t)
dt

= µS(t) − ρP(t),

dD(t)
dt

= ηQ (t),

(4)

where meanings of the biological parameters are given in Table 1.
All the initial conditions S(0), E(0), I(0),Q (0), R(0), P(0),D(0) are
nonnegative.

To observe influence of memory effects, by integrating both
side of system (4), and then a system of integral equations is
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Table 2
Four cases in model (8).
Name Condition Derivative or integral terms

Left-hand Right-hand

Model 1 α1 = α2 = 1 Integer-order derivatives No
Model 2 0 < α1 = α2 < 1 Fractional derivatives No
Model 3 0 < α1 < 1, 0 < α2 − α1 < 1 Fractional derivatives Fractional integrals
Model 4 0 < α2 < α1 < 1 Fractional derivatives Fractional derivatives
L

obtained. After that, we fractionalize the integrals with time-
dependent functions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t) − S(0) =

∫ t

0
κ1(t − τ ) [Λ − β1S(τ )E(τ )

− β2S(τ )I(τ ) − (µ + ρ)S(τ )] dτ ,

E(t) − E(0) =

∫ t

0
κ1(t − τ ) [β1S(τ )E(τ ) + β2S(τ )I(τ )

− (γ + ρ)E(τ )] dτ ,

I(t) − I(0) =

∫ t

0
κ1(t − τ ) [γ E(τ ) − (δ + ρ)I(τ )] dτ ,

Q (t) − Q (0) =

∫ t

0
κ1(t − τ ) [δI(τ ) − (ρ + η)Q (τ )] dτ

− θ

∫ t

0
κ2(t − τ )Q (τ )dτ ,

R(t) − R(0) = θ

∫ t

0
κ2(t − τ )Q (τ )dτ − ρ

∫ t

0
κ1(t − τ )R(τ )dτ ,

P(t) − P(0) = µ

∫ t

0
κ1(t − τ )S(τ )dτ − ρ

∫ t

0
κ1(t − τ )P(τ )dτ ,

D(t) − D(0) = η

∫ t

0
κ1(t − τ )Q (τ )dτ ,

(5)

where time-dependent kernels κi(t − τ ), i = 1, 2 have an impor-
tant role in describing long memory effects. When κi(t − τ ) = 1,
the model is classical Markov processes and memoryless. In fact,
kernel functions can be replaced by any arbitrary function. A
proper choice is power-law function which exhibits a slow decay
such that early states also contribute to evolution of the model.
It is obvious that the living quarantined cases Q (t) have differ-
ent memory effects. Thus, time-dependent kernels can naturally
choose as the following power law functions:

κi (t − τ) =
1

Γ (αi)
(t − τ)αi−1 , i = 1, 2, (6)

where αi > 0. Substituting (6) into (5) and using Definition 1, we
obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t) − S(0) = Iα1
0,t [Λ − β1S(t)E(t) − β2S(t)I(t) − (µ + ρ)S(t)] ,

E(t) − E(0) = Iα1
0,t [β1S(t)E(t) + β2S(t)I(t) − (γ + ρ)E(t)] ,

I(t) − I(0) = Iα1
0,t [γ E(t) − (δ + ρ)I(t)] ,

Q (t) − Q (0) = Iα1
0,t [δI(t) − (ρ + η)Q (t)] − θIα2

0,tQ (t),

R(t) − R(0) = θIα2
0,tQ (t) − ρIα1

0,tR(t),

P(t) − P(0) = Iα1
0,t (µS(t) − ρP(t)) ,

D(t) − D(0) = ηIα1
0,tQ (t).

(7)

The decaying rate of the memory kernel depends on order αi. A
smaller value of αi corresponds to a slower decay rate. Taking the

Caputo fractional derivative of order α1 on both sides of system
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(7), we derive a two-side fractional generalized SEIR model as
follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CD
α1
0,tS(t) = Λ − β1S(t)E(t) − β2S(t)I(t) − (µ + ρ)S(t),

CD
α1
0,tE(t) = β1S(t)E(t) + β2S(t)I(t) − (γ + ρ)E(t),

CD
α1
0,t I(t) = γ E(t) − (δ + ρ)I(t),

CD
α1
0,tQ (t) = δI(t) − θD

α1−α2
0,t Q (t) − (ρ + η)Q (t),

CD
α1
0,tR(t) = θD

α1−α2
0,t Q (t) − ρR(t),

CD
α1
0,tP(t) = µS(t) − ρP(t),

CD
α1
0,tD(t) = ηQ (t),

(8)

where D
α1−α2
0,t = CD

α1
0,tI

α2
0,t and 0 < αi < 1, i = 1, 2.

When α1 < α2, equation D
α1−α2
0,t Q (t) = CD

α1
0,tI

α2
0,tQ (t) =

CD
α1
0,tI

α1
0,tI

α2−α1
0,t Q (t) = Iα2−α1

0,t Q (t) is a fractional integral term,
then system (8) includes fractional derivative terms on left and
fractional integral terms on right. When α2 = α1, that is
D

α1−α2
0,t Q (t) = Q (t), system (8) is a fractional generalized SEIR

model with the same memory. When α1 > α2, equation
D

α1−α2
0,t Q (t) = CD

α1−α2
0,t

(
CD

α2
0,tI

α2
0,tQ (t)

)
= CD

α1−α2
0,t Q (t) is a

Caputo fractional derivative term, then system (8) includes frac-
tional derivative terms. Thus, the model (8) includes four cases,
which are listed in Table 2.

4. Dynamical analysis

To qualitatively analyze characteristics of the infectious dis-
eases, we examine dynamic behaviors of the model (8). Because
right-hand side of the model (8) also contains fractional deriva-
tives or integrals, it is not easy to analyze its dynamical behavior.
We convert the system to a class of equivalent systems that
only includes fractional derivatives on left-hand side. Dynamical
analysis is subsequently discussed for the equivalent systems. The
last equation in (8) is removed temporarily because it is only a
receiver and is not involved in the remainder.

Basic reproduction number can predict whether the disease
will become an epidemic or not, and is a critical value that
depends on some parameters inherent in the disease. In model
(8), the basic reproduction number is defined as

R0 =
β1Λ(δ + ρ) + β2Λγ

(γ + ρ)(δ + ρ)(µ + ρ)
. (9)

In the subsequent discussion, assume that α1 =
k1
m1

and α2 =

k2
m2

are rational numbers, where (ki,mi) = 1, ki,mi ∈ Z+, i = 1, 2.
Let M be lowest common multiple of the denominators m1 and
m2, and

(λ) =

⏐⏐⏐⏐⏐⏐
λMα1 + β1E∗

+ β2I∗ + (µ + ρ) β1S∗ β2S∗

−β1E∗
− β2I∗ λMα1 − β1S∗

+ γ + ρ −β2S∗

0 −γ λMα1 + δ + ρ

⏐⏐⏐⏐⏐⏐ .
4.1. Equivalent system and asymptotically stability analysis

Based on the discussion in Table 2, model (8) includes four
submodels. Since stability analysis methods of the four models
are almost the same, we only give detailed derivation process of
Model 3.
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.1.1. Stability of model 3
If α1 < α2, we apply the following transformation:

Q̃ (t) = D
α1−α2
0,t Q (t) = Iα2−α1

0,t Q (t), (10)

hen

Dα2−α1
0,t Q̃ (t) = Q (t). (11)

ystem (8) is equivalent to the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CD
α2−α1
0,t Q̃ (t) = Q (t),

CD
α1
0,tS(t) = Λ − β1S(t)E(t) − β2S(t)I(t) − (µ + ρ)S(t),

CD
α1
0,tE(t) = β1S(t)E(t) + β2S(t)I(t) − (γ + ρ)E(t),

CD
α1
0,t I(t) = γ E(t) − (δ + ρ)I(t),

CD
α1
0,tQ (t) = δI(t) − (ρ + η)Q (t) − θ Q̃ (t),

CD
α1
0,tR(t) = θ Q̃ (t) − ρR(t),

CD
α1
0,tP(t) = µS(t) − ρP(t),

CD
α1
0,tD(t) = ηQ (t).

(12)

Under α1 < α2 case, let

CD
α1
0,t Q̃ (t) = CD

α1
0,tS(t) = CD

α1
0,tE(t) = CD

α1
0,t I(t) = CD

α1
0,tQ (t)

= CD
α1
0,tR(t) = CD

α1
0,tP(t) = 0,

we can obtain equilibrium points. Fractional GSEIR model (12) has
at most two equilibrium points:

1. Disease free equilibrium PF = (Q̃ ∗, S∗, E∗, I∗,Q ∗, R∗, P∗) =

(0, Λ
µ+ρ

, 0, 0, 0, 0, µΛ

ρ(µ+ρ) ).
2. Endemic equilibrium point PE = (Q̃ ∗, S∗, E∗, I∗,Q ∗, R∗, P∗),

where

Q̃ ∗
=

δγ

θ (δ + ρ)
E∗, S∗

=
Λ − (γ + ρ)E∗

µ + ρ
, I∗ =

γ

δ + ρ
E∗,

Q ∗
= 0, R∗

=
δγ

ρ(δ + ρ)
E∗, P∗

=
µ[Λ − (γ + ρ)E∗

]

ρ(µ + ρ)
.

and from the third equation of (12),

E∗
=

(µ + ρ)(δ + ρ)
β1(δ + ρ) + β2γ

(R0 − 1) .

From (9), the endemic equilibrium point PE = (Q̃ ∗, S∗, E∗, I∗,
Q ∗, R∗, P∗) exists if and only if R0 > 1.

Theorem 1. If R0 < 1, all eigenvalues obtained from equations

λMα2 + (ρ + η)λM(α2−α1) + θ = 0 (13)

and

λ2Mα1 +
(
−β1S∗

+ γ + 2ρ + δ
)
λMα1

+ (−β1S∗
+ γ + ρ)(δ + ρ) − β2γ S∗

= 0 (14)

satisfy conditions |arg(λ)| > π
2M , the disease free equilibrium point

PF of model (12) is locally asymptotically stable. If R0 > 1, the
disease-free equilibrium point PE is unstable.

Proof. The Jacobian matrix of model (12) is given by

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0
0 −β1E − β2I − (µ + ρ) −β1S −β2S 0 0 0
0 β1E + β2I β1S − (γ + ρ) β2S 0 0 0
0 0 γ −(δ + ρ) 0 0 0

−θ 0 0 δ −(ρ + η) 0 0
θ 0 0 0 0 −ρ 0
0 µ 0 0 0 0 −ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(15)
 i
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The Jacobian matrix is evaluated at PF ,

J∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0
0 −(µ + ρ) −β1S∗

−β2S∗ 0 0 0
0 0 β1S∗

− (γ + ρ) β2S∗ 0 0 0
0 0 γ −(δ + ρ) 0 0 0

−θ 0 0 δ −(ρ + η) 0 0
θ 0 0 0 0 −ρ 0
0 µ 0 0 0 0 −ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(16)

From Lemma 1, the characteristic equation is obtained from

det
(
diag

(
λM(α2−α1), λMα1 , λMα1 , λMα1 , λMα1 , λMα1 , λMα1

)
− J∗

)
=(λMα1 + ρ)2(λMα1 + µ + ρ)[λMα2 + (ρ + η)λM(α2−α1) + θ ]

· [(λMα1 − β1S∗
+ γ + ρ)(λMα1 + δ + ρ) − β2γ S∗

]

=0. (17)

Eigenvalues are obtained from the following equations:

λMα1 = −ρ, (18)

λMα1 = −µ − ρ, (19)

λMα2 + (ρ + η)λM(α2−α1) + θ = 0, (20)

and

(λMα1 − β1S∗
+ γ + ρ)(λMα1 + δ + ρ) − β2γ S∗

=λ2Mα1 +
(
−β1S∗

+ γ + 2ρ + δ
)
λMα1

+ (−βS∗ + γ + ρ)(δ + ρ) − β2γ S∗

=λ2Mα1 +
(
−β1S∗

+ γ + 2ρ + δ
)
λMα1

+ (γ + ρ)(δ + ρ)(1 − R0)

=0. (21)

By De-Moivre formulas, arguments of roots of (18) and (19) have
the form

arg(λn) =
π

Mα1
+

2nπ
Mα1

, n = 0, 1, 2, . . . ,Mα1 − 1.

Hence, arg(λn) > π
2M . If R0 < 1, according to Descartes’ rule

of sign [21], all coefficients of (20) and (21) are positive real
numbers. Eqs. (20) and (21) do not have positive real roots,
and roots are composed of negative real numbers and/or com-
plex conjugate numbers. Furthermore, from (13) and (14), by
Lemma 1, the disease-free equilibrium PF of system (12) is locally
asymptotically stable. □

Theorem 2. With regard to model (12), assume that R0 > 1, and
ll roots of equations

Mα2 + (δ + ρ)λM(α2−α1) + θ = 0 and L(λ) = 0

atisfy conditions |arg(λ)| > π
2M , the endemic equilibrium point PF

of system (12) is locally asymptotically stable.

Proof. When (15) is evaluated at PF , eigenvalues are derived from
he following equation:

λMα1 + ρ)2[λMα2 + (δ + ρ)λM(α2−α1) + θ ] · L(λ) = 0. (22)

herefore, eigenvalues are obtained from λMα1 = −ρ. By De-
oivre formulas, eigenvalues λMα1 do not influence the stability
onditions of PF . Consequently, the endemic equilibrium point PF
s asymptotically stable in terms of Lemma 1. □
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.1.2. Stability of models 1 and 2
If α1 = α2 ≤ 1, system (8) is equivalent to the following

ystem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CD
α1
0,tS(t) = Λ − β1S(t)E(t) − β2S(t)I(t) − (µ + ρ)S(t),

CD
α1
0,tE(t) = β1S(t)E(t) + β2S(t)I(t) − (γ + ρ)E(t),

CD
α1
0,t I(t) = γ E(t) − (δ + ρ)I(t),

CD
α1
0,tQ (t) = δI(t) − (ρ + η)Q (t) − θQ (t),

CD
α1
0,tR(t) = θQ (t) − ρR(t),

CD
α1
0,tP(t) = µS(t) − ρP(t),

CD
α1
0,tD(t) = ηQ (t).

(23)

Let

CD
α1
0,tS(t) = CD

α1
0,tE(t) = CD

α1
0,t I(t) = CD

α1
0,tQ (t)

= CD
α1
0,tR(t) = CD

α1
0,tP(t) = 0,

we can get that the fractional GSEIR model (23) has at most two
equilibrium points:

1. Disease free equilibrium point PF = (S∗, E∗, I∗,Q ∗, R∗, P∗) =

( Λ
µ+ρ

, 0, 0, 0, 0, µΛ

ρ(µ+ρ) ).
2. Endemic equilibrium point PE = (S∗, E∗, I∗,Q ∗, R∗, P∗),

where

S∗
=

Λ − (γ + ρ)E∗

µ + ρ
, E∗

=
(µ + ρ)(δ + ρ)

β1(δ + ρ) + β2γ
(R0 − 1) ,

∗
=

γ

δ + ρ
E∗,

Q ∗
=

γ δ

(η + θ + ρ)(δ + ρ)
E∗, R∗

=
γ δθ

ρ(η + θ + ρ)(δ + ρ)
E∗,

∗
=

µ[Λ − (γ + ρ)E∗
]

ρ(µ + ρ)
.

he endemic equilibrium point exists when R0 > 1.
Similar to α1 < α2 case, using Lemma 2, we could get the

ollowing two theorems.

heorem 3. If R0 < 1, the disease-free equilibrium point PF of
ystem (23) is locally asymptotic stability. If R0 > 1, the disease-free
quilibrium point PF of system (23) is unstable.

heorem 4. With regard to model (23), assume that R0 > 1, and
igenvalues λ from equation

λ + β1E∗
+ β2I∗ + (µ + ρ) β1S∗ β2S∗

−β1E∗
− β2I∗ λ − β1S∗

+ γ + ρ −β2S∗

0 −γ λ + δ + ρ

⏐⏐⏐⏐⏐ = 0

atisfy conditions |arg(λ)| > π
2M , the endemic equilibrium point PF

of model (23) is locally asymptotically stable.

4.1.3. Stability of model 4
Similar to α1 < α2 case, we could obtain the following results.

If α1 > α2, we apply the following transformations:

Q̃ (t) = CD
α2
0,tQ (t) + θQ (t),

R̃(t) = CD
α2
0,tR(t) − θQ (t),

(24)

hen

Dα1−α2
0,t Q̃ (t) = CD

α1
0,tQ (t) + θ CD

α1−α2
0,t Q (t) = δI(t) − (ρ + η)Q (t),

CD
α1−α2
0,t R̃(t) = CD

α1
0,tR(t) − θ CD

α1−α2
0,t Q (t) = −ρR(t).

(25)
149
From (24) and (25), (8) is equivalent to the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CD
α1−α2
0,t Q̃ (t) = δI(t) − (η + ρ)Q (t),

CD
α1−α2
0,t R̃(t) = −ρR(t),

CD
α1
0,tS(t) = Λ − β1S(t)E(t) − β2S(t)I(t) − (µ + ρ)S(t),

CD
α1
0,tE(t) = β1S(t)E(t) + β2S(t)I(t) − (γ + ρ)E(t),

CD
α1
0,t I(t) = γ E(t) − (δ + ρ)I(t),

CD
α2
0,tQ (t) = Q̃ (t) − θQ (t),

CD
α2
0,tR(t) = R̃(t) + θQ (t),

CD
α1
0,tP(t) = µS(t) − ρP(t),

CD
α1
0,tD(t) = ηQ (t).

(26)

Let

CD
α1−α2
0,t Q̃ (t) = CD

α1−α2
0,t R̃(t) = CD

α1
0,tS(t) = CD

α1
0,tE(t)

= CD
α1
0,t I(t) = CD

α2
0,tQ (t) = CD

α2
0,tR(t)

= CD
α1
0,tP(t) = 0,

we can get that the fractional GSEIR model (23) has at most two
equilibrium points:

1. Disease free equilibrium point PF = (Q̃ ∗, R̃∗, S∗, E∗, I∗,Q ∗,

R∗, P∗) = (0, 0, Λ
µ+ρ

, 0, 0, 0, 0, µΛ

ρ(µ+ρ) ).
2. Endemic equilibrium point PE = (Q̃ ∗, R̃∗, S∗, E∗, I∗,Q ∗,

R∗, P∗), where

Q̃ ∗
=

θγ δ

(η + ρ)(δ + ρ)
E∗, R̃∗

= −
θγ δ

(η + ρ)(δ + ρ)
E∗,

∗
=

Λ − (γ + ρ)E∗

µ + ρ
, I∗ =

γ

δ + ρ
E∗,

E∗
=

(µ + ρ)(δ + ρ)
β1(δ + ρ) + β2γ

(R0 − 1) ,Q ∗
=

γ δ

(η + ρ)(δ + ρ)
E∗,

R∗
= 0, P∗

=
µ[Λ − (γ + ρ)E∗

]

ρ(µ + ρ)
.

he endemic equilibrium point exists when R0 > 1.

heorem 5. If R0 < 1, all roots from equations

Mα1 + θλM(α1−α2) + ρ + η = 0 (27)

and

λ2Mα1 +
(
−β1S∗

+ γ + δ + 2ρ
)
λMα1

+ (−β1S∗
+ γ + ρ)(δ + ρ) − β2γ S∗

= 0 (28)

atisfy conditions |arg(λ)| > π
2M , the disease free equilibrium point

PF of system (23) is locally asymptotically stable. If R0 > 1, the
isease-free equilibrium point PE is unstable.

heorem 6. With regard to system (26), assume that R0 > 1 and
ll roots from equations

Mα1 + θλM(α1−α2) + ρ + η = 0 and L(λ) = 0

satisfy conditions |arg(λ)| > π
2M , the endemic equilibrium point PF

of system (12) is locally asymptotically stable.

4.2. Positivity and boundedness

In what follows, positivity and boundedness of the solution are
given.
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heorem 7. The model (8) with initial condition (S(0), E(0), I(0),
Q (0), R(0), P(0)) ∈ R6

+
has a unique nonnegative solution. More-

over, the compact set

Ω =

{
(S, E, I,Q , R, P) ∈ R6

+
: 0 ≤ S + I + R + Q + R + P ≤

Λ

ρ

}
(29)

s a positively invariant set that attracts all solutions of system (8)
in R6

+
.

Proof. Obviously, the right hand side of equivalent systems (12),
(23) and (26) satisfy the local Lipschitz condition, respectively. By
Lemma 3, systems (12), (23) and (26) all have unique solutions.
These results indicate that system (8) has a unique solution.

Based on the fractional comparison theorem [22], it is obvious
that the solution of system (8) satisfies S(t) ≥ 0, E(t) ≥ 0, I(t) ≥

0,Q (t) ≥ 0, R(t) ≥ 0 and P(t) ≥ 0. Let N(t) = S(t)+ E(t)+ I(t)+
Q (t)+ R(t)+ P(t). Adding the first six equations in the model (8)
gives

CD
α1
0,tN(t) = Λ − ρN(t) − ηQ (t) ≤ Λ − ρN(t). (30)

By re-applying the fractional comparison theorem, we get

N(t) ≤

(
−

Λ

ρ
+ N(0)

)
Eα1 (−ρtα1) +

Λ

ρ
. (31)

f N(0) ≤
Λ
ρ
, and noting that Eα1 (−ρtα1) ≥ 0, one has

(t) ≤
Λ

ρ

hus, Ω is a positively invariant set.
By limt→∞ Eα1 (−ρtα) = 0 and (31), we determine that

imt→∞ N(t) =
Λ
ρ
. Hence, Ω attract the solution of model (8).

The proof is completed. □

4.3. Sensitivity analysis

The basic reproduction number R0 is employed to measure
transmission potential of the disease. It is obvious that relation-
ship between R0 and each parameter is expressed as follows,
∂R0

∂Λ
> 0,

∂R0

∂β1
> 0,

∂R0

∂β2
> 0,

∂R0

∂µ
< 0,

∂R0

∂γ
< 0,

∂R0

∂δ
< 0,

∂R0

∂ρ
< 0.

herefore R0 is increasing with Λ, β1, β2 and is decreasing with
, γ , δ, ρ.
Partial Rank Correlation Coefficient (PRCC) [23] is employed

o further study sensitivity analysis of R0. The magnitude of the
RCC indicates significance or importance of the parameter in
ontribution to the spread of newly infected population. PRCC and
he corresponding p-values are calculated, and a total of 20,000
imulations per the Latin Hypercube Sampling run are carried out.
hen performing parameter sampling, a uniform distribution is

hosen as prior distribution. The parameters and R0 in (9) are set
s input variables and output variable, respectively. The larger
s absolute value of the PRCC, the greater is influence of the
arameter in R0. If the p value is greater than 0.05, the parameter
s not significant for R0.

The PRCC values of the estimated parameters associated with
0 are listed in Table 3. From Table 3 and Fig. 3, the values
eflect correlation between the parameters Λ, β1, β2, µ, ρ, γ , δ

nd R0. It is obvious that Λ, β1, β2 are positively correlated,
hile µ, ρ, γ , δ are negatively correlated. When the infection
ates β1, β2, the average latent time γ −1, and the average quar-
ntine time δ−1 increase, the value of R0 increase, and then
ore individuals become infected. Furthermore, we can deter-
ine that |PRCC(µ)| > |PRCC(δ)| > |PRCC(β )| > |PRCC(Λ)| >
2

150
Table 3
The PRCC values and p-values of the estimated parameters with respect to R0 .
Input parameter Range PRCC values p-value

Λ (0.001,0.02) 0.1637 3.49e−120
β1 (0.001,1) 0.1209 4.75e−66
β2 (1,3) 0.2171 6.56e−212
µ (0.001,0.5) −0.6669 0
ρ (0.0001,0.0004) −0.0040 0.57
γ (0.07,0.5) −0.0852 1.61e−33
δ (0.001,0.5) −0.5606 0

Fig. 3. The sensitivity analysis of R0 .

|PRCC(β1)| > |PRCC(γ )| > |PRCC(ρ)|, namely, µ is the most in-
luential parameters in reducing R0. The protection rate µ has the
reatest negative impact on R0, which indicates that the value of
0 decreases quickly if large number of individuals are protected
rom contact with infected people. That is, the most effective way
o combat COVID-19 is to increase rate of the protection µ, such
s isolation and staying at home.

. Analysis and results

.1. Data sources

In this paper, the data of COVID-19 is from the Johns Hopkins
niversity Center for Systems Science and Engineering (https:
/github.com/CSSEGISandData/COVID-19). The data include accu-
ulated and newly confirmed cases, recovered cases and death
ases worldwide since January 22, 2020. In order to further il-
ustrate the effectiveness of the model, we add SEIR [5] and
EIR+PO [24] models to compare with our model.
The initial values of models are obtained from the data beside

he total population. We calculate parameters and numerical
pproximate solutions of model (8) by Simulink Design Optimiza-
ion of MATLAB. We can identify the parameters in the model (8)
ia fractional Adams–Bashforth–Moulton method and nonlinear
east squares. The program is available at: https://github.com/
eiyuanMa/matlab-program.git.

.2. Epidemic progression and analysis in the United States

Based on the reported data from February 24 to May 30, 2020
n the United States, the best-fit values of the parameters are
isted in Table 4. The R0 values of Models 1, 2, 3 and 4 are 1.0268,
.0008, 0.8771 and 0.9199, respectively. Clearly, the disease is still
n the midst of an outbreak, and the model can fit the real data
ell. For comparison, the newly reported data from May 31 to

une 9, 2020 are marked differently in Fig. 4. As shown in Figs. 4

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/WeiyuanMa/matlab-program.git
https://github.com/WeiyuanMa/matlab-program.git
https://github.com/WeiyuanMa/matlab-program.git
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Fig. 4. Forecast of COVID-19 epidemics in the United States (data from February 24 to May 30, 2020 are used for modeling fitting, while the rest 10 data form
May 31 to June 9 are used for validation).
Table 4
Identified parameters by least squares fitting in the United States.
Parameter Model 1 Model 2 Model 3 Model 4

Λ 0.0092 0.0057 0.02347 0.0148
β1 1.6594 2.310 0.2480 0.1473
β2 0.6145 0.6373 1.0504 1.0411
µ 0.1048 0.1221 0.0507 0.1071
ρ 0.0001 0.0001 0.0644 1.0674e−05
γ 0.1848 0.1335 0.1632 0.1753
δ 0.2296 0.1534 0.1702 0.1800
η 0.0024 0.0024 0.0025 0.0024
θ 0.0077 0.0079 0.0008 0.0078
α1 1.0000 0.9012 0.5832 0.9273
α2 1.0000 0.9012 0.7495 0.8702

and 5, the predicted values of cumulative confirmed cases fall
within range of 95%–105% of the real values by model (8) from
May 31 to June 9. However, the prediction accuracy of models
151
SEIR and SEIR is relatively poor. Particularly, average relative
errors of Models 1, 2, 3, 4, SEIR and SEIR+PO are 4.19%, 2.16%,
1.08%, 2.96%, 15.19% and 13.94%, respectively. It should be note
that the number of quarantined cases (Q) is equal to the number
of cumulative confirmed cases minus the cumulative cases of
recovered (R) and deaths (D). It can be shown that the model
3 can more accurately predict the number of infected people
in the next ten days. According to a large number of numerical
experiments, forecasting capability of Model 3 is the best one for
both the quarantined cases and the cumulative confirmed cases.
In addition, We can use model 3 and its parameters to fit and
predict disease transmission trends in other countries.

In the current situation, there is a very delicate trade-off
between public health and economic impact of COVID-19. We
use the model 3 to discuss effectiveness of non-pharmaceutical
interventions. We employ 6 levels of regulation policy [25], which
increase or reduces the contact rate by 10%, 25%, 40%, as shown
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Fig. 5. Relative errors of cumulative confirmed cases from May 31 to June 9,
2020 in the United States.

Table 5
Policy regulation levels in the United States.
Regulations level ∆ from level 1 β1 β2 µ δ

1 – 0.2480 1.0504 0.0507 0.1702
2 10% 0.2728 1.1554 0.0558 0.1872
3 −10% 0.2232 0.9454 0.0456 0.1532
4 25% 0.3100 1.3130 0.0634 0.2127
5 −25% 0.1860 0.7878 0.0380 0.1276
6 40% 0.3472 1.4706 0.0710 0.2383
7 −40% 0.1488 0.6302 0.0304 0.1021

in Table 5. The remaining parameters are the same as above. In
Fig. 6, the predicted evolution of the quarantined cases are plot-
ted with different infection rates β1, β2 levels and intervention
implementation time. There is a very large difference in final
number of cases predicted by the varying levels. This finding
shows that relaxing current control policies can cause an alarming
number of infection cases. The diffusion rate is substantially faster
than deceleration rate for measures with the same magnitude.
This suggests that we need to be more cautious about relaxed
policy. It is visible from Fig. 7 that the quarantined cases with
five protection rates µ levels and two intervention implemen-
tation times. As the rate of protection increases, the number of
confirmed cases declines. When the rate of protection decreases,
the number of confirmed cases increases significantly. It is also
shows that increasing the rate of protection is the most effective
non-pharmaceutical intervention measure. Fig. 8 shows simula-
tion results of the different δ levels and two intervention start
imes. When we speed up detection, δ increases, the number of
nfections increase rapidly in the short term, but it speed up the
nd time of the disease.

.3. Epidemic progression and analysis in Brazil

In this part, we use COVID-19 data from Brazil to further
nalyze validity of the model. The best-fit values of the identified
arameters are listed in Table 6 by the data from February 24
o May 30, 2020. The R0 values of the Models 1, 2, 3 and 4 are
.3571, 1.3267, 1.7414 and 1.3704, respectively. The R0 values
reater than 1 indicates that COVID-19 is in a period of rapid
pread in Brazil. As shown in Figs. 9 and 10, the models 1, 2, 3 and
fit really well with the real-time data. Average relative errors of
odels 1, 2, 3, 4, SEIR and SEIR+PO are 4.19%, 2.16%, 1.08%, 2.96%,
5.19% and 13.94%, respectively. Obviously, model 3 has better
hort-term forecasting ability. Therefore, we can use Model 3 to
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Table 6
Identified parameters by least squares fitting in Brazil.
Parameter Model 1 Model 2 Model 3 Model 4

Λ 0.0200 0.0280 0.0271 0.0307
β1 1.3909 0.0705 0.2389 0.2871
β2 0.9789 0.9691 1.0011 1.1489
µ 0.2000 0.1361 0.0782 0.1795
ρ 2.3437e−06 0.0001 0.0537 0.0001
γ 0.1892 0.1756 0.1528 0.2034
δ 0.1575 0.1602 0.0474 0.1736
η 0.0026 0.0025 0.0026 0.0026
θ 0.0224 0.0222 0.0024 0.3863
α1 1.0000 0.9676 0.5948 0.9954
α2 1.0000 0.9676 0.8998 0.5795

Table 7
Policy regulation levels in Brazil.
Regulations level ∆ from level 1 β1 β2 µ δ

1 – 0.2389 1.0011 0.0782 0.0474
2 10% 0.2628 1.1012 0.0860 0.0521
3 −10% 0.2150 0.9010 0.0704 0.0427
4 25% 0.2986 1.2514 0.0978 0.0592
5 −25% 0.1792 0.7508 0.0587 0.0355
6 40% 0.3345 1.4015 0.1095 0.0664
7 −40% 0.1433 0.6007 0.0469 0.0284

further study the spread trends and possible policy adjustments
of COVID-19.

The COVID-19 outbreak put forward a new challenge: how
and when to implement control strategies. Based on the model
3, we give some further discussion. As shown in Table 7, we give
6 levels of regulation policy. The remaining parameters are the
same as Table 6 in Model 3. In Fig. 11, the predicted number of
infections are plotted with different infection rates β1, β2 levels
nd intervention implementation time. It is obvious that relaxing
olicies can lead to a sharp increase in the number of infections.
he sooner strict control policies are implemented, the sooner the
isease is controlled. In Fig. 12, quarantined cases are given with
ive protection rates µ levels and two intervention implementa-
ion times. When the protection rate increases, the number of
nfections goes down. In Fig. 13, simulation results are given with
he different δ levels and two intervention start times. One of the
hings that we can conclude is that speeding up the test helps
ring the end of the disease earlier.
The numerical results reveal that isolation, stay at home, strict

ontrol of social distancing, and rapid testing play a very im-
ortant role in preventing the pandemic of the disease. It also
urns out that when we use relaxation, the disease spreads faster.
oreover, the earlier restriction measures are used, the peak
umber of infections can be reduced and the disease can be
ontrolled earlier.

. Conclusion and discussion

In this paper, a two-side fractional generalized SEIR model
8) is proposed to investigate spread and dynamics of COVID-
9. The local stability of disease-free equilibrium and endemic
quilibrium are explored by the basic reproduction number R0.
oreover, existence, uniqueness, and positivity solution of the
odel with initial values are established. The sensitivity analysis
f R0 to the other parameters is studied, which provides a theoret-
cal basis for the disease control. And it also reveals that the most
ffective way to combat COVID-19 is to increase protection rate.
ased on the least squares method and the fractional predictor–
orrectors algorithm, we solve inverse problem to get the best fit
arameters of the model by the real data. The model suggests that
e need more cautious when we take the relax measures.
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Fig. 6. Quarantined cases with different infection rates β1, β2 levels and intervention implementation times in the United States.
Fig. 7. Quarantined cases with different protection rates µ levels and intervention implementation times in the United States.
Fig. 8. Quarantined cases with different δ levels and two intervention start times in the United States.
Finally, the advantages and disadvantages of the model are
iven as follows:
(a). The application of fractional calculus to infectious disease

odels stems from the fact that the spread of disease depends not
153
only on the current state but also on the past state. Furthermore,
the model with two-side fractional calculus has a better forecast-
ing capabilities than the corresponding integer-order model and
left-hand fractional model. Two-side fractional model can better
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Fig. 9. Forecast of COVID-19 epidemics in Brazil (data from February 24 to May 30, 2020 are used for modeling fitting, while the rest 10 data form May 31 to June

9 are used for validation).
Fig. 10. Relative errors of cumulative confirmed cases from May 31 to June 9,

2020 in Brazil.

154
describe the heterogeneity of power-law distribution of different
state variables in the model. That is the model reduces errors
resulting from neglect of parameters.

(b). Due to the global dependence of fractional calculus, the
computational cost of our model is higher than the corresponding
integer-order model and left-hand fractional model. Besides, to
get better estimation results, we build a two-side fractional model
and also need to obtain the optimal parameters for the model. The
parameter values and R0 value of the model change over time due
to the constant adjustment of control strategy.

(c). Due to constant adjustment of national policies, the pro-
posed model is only suitable for short-term prediction of COVID-
19 and cannot be used for long-term prediction.

With adjustment of policy and development of medical level,
prediction and analysis need more elaborate models, such as,
fractional age structure models, fractional models with vaccine.
We will discuss it in the future work.
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Fig. 11. Quarantined cases with different infection rates β1, β2 levels and intervention implementation times in Brazil.

Fig. 12. Quarantined cases with different protection rates µ levels and intervention implementation times in Brazil.

Fig. 13. Quarantined cases with different δ levels and two intervention start times in Brazil.
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