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ABSTRACT OF THE DISSERTATION

Soft Materials meet Active Matter: Sticky Colloids in a Bacterial Bath

by

Daniel Grober

Doctor of Philosophy in Physics

University of California San Diego, 2023

Professor Jérémie Palacci, Chair

This thesis is an experimental work, investigating how active matter can control the

assembly of soft materials. We design a novel experimental system, combining sticky colloids

sedimented on the bottom surface of a glass capillary with a bath of motile E. coli. The colloids

diffuse and stick together, assembling into large, quasi - 2D aggregates. Motile E. coli generate

forces and flows in the surrounding media: an active bath which injects energy into the system

through mechanical work. In the active bath, aggregates exhibit a a persistent clockwise rotation,

leading to a non-conventional aggregation mechanism. These aggregates form structures which

are not accessible via conventional aggregation in a thermal bath. Aided by numerical simulation

of spinning, sticky beads, we elucidate that the rotation and folding of aggregates is the salient

xiv



feature driving the structural differences, and the activity of the bath controls the phase diagram

of aggregation. Further experiments indicate that the bacteria collide with and then swim through

the aggregates; additionally, the direction of rotation of the aggregates is correlated with the

direction of the circular trajectories made by the E. coli bacteria. Based on these insights, we

propose a simple model for the swimmer-aggregate interactions, and propose further experiments

to test its validity. As a whole, this work constitutes a proof of concept that active matter can be

harnessed to direct the assembly of soft materials. The experiments presented in this thesis lay

the groundwork for the development of a new class active, soft materials, whose structure and

mechanical properties are dictated by their assembly in an active bath.
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Introduction

Dating back to early civilization, artists and craftsmen have used repeated heating and

cooling cycles to hone the properties of metals. During the annealing process, energy is injected

into the system, re-arranging the microscopic structure of the material and controlling its

mechanical response. This thesis envisions the transfer of such concept to soft materials (i.e.

gels) using small, self propelled particles (active matter) contained inside the material to agitate

and re-organize the structure from within. From the outset, this thesis poses the question: can

we leverage active matter to exact microscopic control over soft materials? This approach is

supported by a scaling argument, comparing the typical elastic modulus of soft matter with the

pushing pressure of active matter.

Soft matter encompasses a wide range of materials, from hummus to the LCD screen on

your phone. These materials tend to have two things in common: a characteristic energy scale on

the order of kBT , and a mesoscopic length scale on the order of µm [1, 2]. Through dimensional

analysis, the elastic modulus (units energy per volume) can be estimated as G ∼ kBT/µm3

leading to typical values on the order Pa.

Active matter is a broad term, defining particles which convert energy into motion

[3]. Typical length scales of these particles are on the order ℓ ∼ µm, with swimming speeds

v ∼ 10µms−1. The pushing force of a micron scale particle can be estimated from Stokes drag,

F ∼ 6πηℓv, with typical values on the order pN. This leads to a pressure (F/ℓ2), once again on

the order Pa. Through the lens of this argument, it appears possible to leverage active matter to

shape soft materials. This scaling argument constitutes the motivation and thrust of this work.

The development of a soft material, where the material properties are tuned by controlling the

1



active matter within, would provide a new knob of control over material properties and represent

a major shift in Materials Science.

This thesis is an experimental work, and completion of this ambitious goal requires the

development of an experimental system, accompanied by techniques to study it. To this end,

we define the three key pieces of our experimental system. First are passive, micrometer scale

building blocks, which form the structure of the material. Second are interactions between the

building blocks; we leverage an attractive potential to bind the building blocks together, allowing

them to self-assemble into a macroscopic material. Finally, we need a source of energy; active

matter provides a means to inject energy into the material from within.

In the interest of developing an experimental system which has potential to upscale

at a later stage, we restrict ourselves to commonly available materials. We use micron scale

particles (colloids) for building blocks; colloids of a variety of shapes, sizes and materials can be

readily obtained (either commercially or synthesized in house) in macroscopic quantities. Long

polymers provide interactions between the building blocks, through the depletion interaction,

which is detailed later in the thesis. We use E. coli bacteria as an ideal active particle to inject

energy into the system, having a large toolbox of biological techniques to tune their activity.

This approach is novel and, by design, this experimental work sits at the interface between

a few different fields of science, borrowing elements from Physics, Chemistry and Biology. For

this reason, in the first chapters of this thesis we will build a foundation, onto which the main

findings can be presented and understood. Chapter 1 reviews meaningful concepts relevant to

designing the experimental system, and Chapter 2 describes control and calibration experiments,

used to develop a toolbox of techniques for studying the system. Having built a solid foundation,

the following chapters describe experiments studying the aggregation of sticky colloids in

a bacterial bath. Chapter 3 is a verbatim reprint of the paper “Non-conventional colloidal

aggregation in chiral bacterial baths”. Chapters 4 and 5 discuss in detail further experiments

which are presented in the supplemental text of the paper. The thesis concludes with Chapter

6, where we reflect on our work and propose future steps for this project. Chapter 7 contains

2



derivations to equations used throughout the work, and is included primarily as a reference

for future students. The end of each chapter contains a short summary, outlining the salient

information.
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Chapter 1

Conceptual motivation behind experimen-
tal design

To our knowledge, there are few experimental systems similar to the proposed experiment:

passive building blocks, self-assembled in an active suspension of E. coli bacteria. The following

section outlines the conceptual motivation behind our experimental design. Along the way we

borrow concepts from Physics, Chemistry and Biology, to design a system where we can study

the interplay between soft materials and active matter. This section begins by discussing the

properties of passive micro-scale matter (Section 1.1), followed by the interactions at play at this

length scale (Section 1.2). Section 1.3 discusses how E. coli cam be used as an active bath to

direct colloidal assembly. Finally, Section 1.4 reviews two conceptually similar experimental

works, each harnessing active matter to inject energy into a soft matter system.

1.1 Micro-metric building blocks: Colloids

Colloids are broadly defined as solid particle of size between 10nm to 10µm suspended in

a fluid [4]. They are available in a broad variety of shapes, sizes and materials; these properties

can be controlled during particle synthesis through an expanding library of chemical methods

[5]. We choose 2µm diameter spheres, made of 3-(trimethoxysilyl)propyl methacrylate (TPM),

as an ideal building block to start with, understanding that the size, shape and material can later

be specialized to fit specific needs or applications.
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The length scale in this case plays a crucial role, giving colloidal systems interesting

properties. Relevant to this work, colloids make an ideal building block because they are small

enough to diffuse significant distances due to thermal fluctuations (enabling their self-assembly

into aggregates at experimentally accessible timescales), yet large enough to be studied with

visible light. This makes colloidal systems both spatially and temporally accessible to study with

an optical microscope.

1.1.1 Limits of a microscope

The Abbe resolution limit is typically used to estimate the resolution limit of a micro-

scope:

R ∼ λ

2NA
(1.1)

where λ is the wavelength of light and NA the numerical aperture of the combined objective

and condenser [6]. The numerical aperture can be thought of as the angular size of the cone of

light which an objective can capture; values are less than 1 in air, with high end oil immersion

objectives reaching 1.6. Abbe’s equation is straightforward - to increase the resolution of a

microscope, there are only two options: decrease the wavelength of light, or increase the NA of

the objective. For visible light (∼ 400-700 nm) and NA ∼ 1 we find that the minimum resolution

of an optical microscope is of the order 200 nm. Thus, our micro-metric building blocks sit at

the edge of what can be resolved with visible light.

1.1.2 Diffusion at the micro-scale enables colloidal aggregation

In the classical picture of Brownian motion, particles suspended in a fluid are constantly

bombarded by molecules in the surrounding fluid, driven by thermal fluctuations [7, 8]; these

collisions lead to incessant motion, characterized by a random walk. The mean squared dis-

placement (⟨∆r2⟩) of a diffusing particle (in d dimensions) is proportional to the amount of

elapsed time: ⟨∆r2⟩= 2dD∆t . For a a spherical particle of radius R, the diffusion coefficient in
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equilibrium with a thermal bath is given by the Stokes-Einstein equation:

D =
kBT

6πηR
(1.2)

where η is the viscosity of the surrounding media, kB the Boltzmann constant, and T the

temperature. A 1µm sphere in water diffuses roughly 1 µm2 per second. This thermal motion

allows colloids to explore their surroundings, sporadically colliding with one another. In the

presence of a sufficiently large, attractive potential, they irreversibly bind and form aggregates.

The following section (Interactions, section 1.2) describes how we create a large attractive

potential between colloids without inhibiting their diffusion.

Summary: micro-metric building blocks

Micro-metric colloids are large enough to resolve with an optical microscope, yet small

enough to diffuse significant distances, enabling them to explore their surroundings in experi-

mentally accessible timescales. In the presence of a large, attractive potential, diffusing colloids

will irreversibly bind to form aggregates.
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1.2 Interactions

The next necessary piece of the puzzle are interactions. In the experimental system, we

use an attractive potential to bind the building blocks (colloids) together, such that they assemble

into aggregates. Relevant to this work, we will focus on four potentials: electrostatics, Van

der Waals, steric repulsion, and depletion. In the interest of brevity, most of the equations will

be presented without a derivation; a more thorough discussion can be found in the appendix

(Chapter 7).
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Figure 1.1. Intro to DLVO (A) Positively charged ions are attracted to the negatively charged TPM colloid. This
results in a diffuse double layer of ions, which screens the electric potential from the charged colloid. (B, C) Plots
of the repulsive electrostatic potential (red) and attractive Van der Waals potential (blue) for two colloids. The sum
of the two potentials (DLVO theory) is plotted in black. As the ion concentration increases (i.e. decreasing λD),
the repulsive barrier between colloids collapses, destabilizing the colloidal system. Equations, derivations, and
parameters can be found in the supplement.

1.2.1 Electrostatics: repulsive potential

Consider the case of TPM colloids in solution with ions, confined in a glass capillary. The

TPM colloids carry a negative charge in aqueous solution at neutral pH, due to de-protonation of

a silonal moiety [9, 10]. Therefore, the electrostatic potential between two colloids is generally

repulsive, as the colloids are both negatively charged. The glass substrate below is similarly

negatively charged [11]. The negative charge attracts a diffuse double layer of positively charged

ions near the surface, which effectively screens the charge of the colloid [Fig. 1.1A]. It results

that the electric potential from a charged sphere & diffuse double layer combination decays
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exponentially with distance from the colloid surface, with a characteristic length termed the

Debye length (λd) [12, 13, 14]; Following the Debye-Huckel approximation for monovalent ions,

the Debye length is given by:

λD =

[
e2

∑i n0
i z2

i
εkBT

]−1/2

(1.3)

with ε the electric permittivity, e the elementary charge, and n0
i the bulk concentration of ion

species i, with charge zi. A derivation of this equation, following Chapter 7 of Robert J. Hunter

Foundations of Colloid Science, can be found in the supplemental materials (Section SI.1.2.3

Debye-Hückel approximation). We notice that 1
2 ∑i n0

i z2
i gives the ionic strength of the solution

(i.e. in a solution of 10mM NaCl dissolved in water, the ionic strength is 10mM); thus the Debye

length is inversely proportional to the square root of the ionic strength. A useful formula is given

by [14], where c is the ionic strength in units of mM:

λD(nm)∼ 10√
c

(1.4)

In the experimental system (c ∼ 32mM) , we estimate the Debye length is ∼ 2 nm. In

order to remain bio-compatible, we have limited latitude to lower the ionic strength, as a minimal

amount of buffer is required to maintain E. coli motility (see: Section 2.2.1 , and Section 2.1.3).

Since the electrostatics act over such a short distance in the experimental system (1-5 nm), the

Van der Waals potential becomes relevant.

1.2.2 Van der Waals: attractive potential

Van der Waals potentials are attractive, originating from attraction between molecular

dipoles. For a pair of dipoles separated by a distance r, the potential is extremely short range

V dipole
A (r)∼−r−6 (1.5)

For macroscopic bodies, the total potential due to Van der Waals is obtained by integrating
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over the volume [12]. For two spheres of radius R, the Van der Waals potential (as a function of

r, the distance between them) is given by:

V sphere
A (r) =−Ai jkR

12πr
(1.6)

where Ai jk is the Hamaker constant, a material property which describes the interaction of

material i with material j in media k [12]. Typical values for the Hamaker constant in water for

various materials are between 10−21 J and 10−20 J [13, 14].

1.2.3 DLVO theory : Electrostatics + Van der Waals

In the standard treatment (DLVO theory), the combined electrostatic and Van der Waals

potentials are considered as a function of increasing ion concentration. As the ionic concentration

increases, the repulsive electrostatics are increasingly screened while attractive Van der Waals

are unaffected; eventually, the repulsive barrier from the electrostatics collapses, and colloids are

able to come close enough for Van der Waals to take over [12]. A graphical representation of

this can be seen in Fig. 1.1B and Fig. 1.1C, and in depth derivation of the relevant equations can

be found in the appendix.

Once the repulsive potential barrier collapses, the colloidal suspension becomes unstable

and begins to aggregate. This is a standard method to induce aggregation in a 3D colloidal

system (see [15], for example). In our 2D experiments, this results in colloids sticking to the

glass substrate, inhibiting their diffusion. As described in the previous section, diffusion is key

to enabling colloidal aggregation. In the following section we introduce a polymer brush to the

surface of the colloids, which stops them from getting close enough to stick to the glass.

Summary: DLVO

In the experimental system, ions screen the electrostatic repulsion to short range (λD ∼

2nm), allowing the Van der Waals attractive potential to take over. This causes colloids to stick

to the glass substrate, inhibiting their diffusion.
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1.2.4 Steric repulsion via polymer brush

To stabilize the colloidal suspension (i.e. stop colloids from sticking to the glass substrate),

we use steric repulsion via a polymer brush (Pluronic F-108, see Fig. 1.2A). Before two colloids

can come into contact with one another (or, before colloids can touch the glass surface) the

polymer brush must be either collapsed or displaced. In effect, this creates an additional repulsive

potential barrier, on the length scale of the polymer brush. The polymer brush enables diffusion

of the colloids by setting a minimum distance between the colloids and the glass.

PEO

PPOTPM

PEO

~ 13 nm

A. B. 

TPM

Glass substrate

Side view

TPMTPM

Figure 1.2. Steric stabilization via polymer brush (A) F-108 triblock polymer brush self assembled on surface
of TPM colloid (purple) in water (blue). The middle section of F-108 (PPO, red), is hydrophobic, and prefers the
hydrophobic TPM. The first and third section (PEO, green, ∼ 13 nm) are hydrophilic, and prefer to orient towards
the water. (B) The polymer brush keeps the colloids from sticking to the glass via Van der Waals, allowing them to
diffuse on the surface.

In practice, we add F-108, a pluronic triblock copolymer made up of three sections (PEO-

PPO-PEO) in solution with the TPM colloids. The first and third sections of F-108 are PEO

(each ∼ 13 nm long [16]), a hydrophilic polymer which prefers to orient towards the aqueous

solution [13]. The middle section (PPO) is hydrophobic. Due to the hydrophobic nature of TPM,

PPO prefers binding to the TPM surface and PEO prefers facing towards the aqueous solution

[10], as depicted in Fig. 1.2A. We observe that the addition of 0.1% F-108 stops the colloids

from adhering to the glass surface; the colloids behave as a 2D gas, diffusing and colliding on

the glass substrate. In order to induce aggregation of the diffusing colloids, we use the depletion

interaction to irreversibly bind colloids together.
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Summary: Steric stabilization

We add a polymer brush to the surface of the TPM colloids which stops the short range,

attractive Van der Waals potential from taking over. This enables their diffusion, by keeping

the colloids from sticking to the glass substrate. But, now we need a strong attractive potential

between colloids to enable aggregation.

1.2.5 Depletion interaction

We use a non-absorbing polymer (termed “depletants”, 600K PEO, radius (a) ∼ 50nm

[17]) to create an attractive potential between TPM colloids, via the depletion interaction. The

depletion interaction is entropic in origin. A qualitative description begins by recognizing that,

surrounding each colloid (purple circles, Fig. 1.3A), there is an excluded region (red region,

Fig. 1.3A) where the center of mass of the depletants (blue circles, Fig. 1.3A) cannot enter. By

forcing the colloids together, part of this excluded region overlaps; this results in more available

space for the depletants [Fig. 1.3B], maximizing their entropy. The depletants vastly outnumber

the colloids; thus, forcing the colloids together maximizes the entropy of the system. For a closed

system in thermal equilibrium, F =U −T S, with F the free energy, U the internal energy, T the

temperature and S the entropy. For hard spheres, U = 0 outside of contact. Thus, maximizing

the entropy of the system (S) minimizes the free energy (F).

A. B.50 nm

2 µm Overlap volume (ΔV) 

Figure 1.3. Depletion interaction (A) Colloids (purple), and depletants (blue) in solution. Surrounding each
colloids is an excluded region (red), where the center of the depletant cannot enter. (B) Forcing the colloids together
causes part of the excluded region to overlap. This maximizes the available space for the depletants. Since the
depletants vastly outnumber the colloids, this maximizes the entropy of the system.
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Starting with the partition function for an ideal gas, we derive the free energy from adding

an available volume ∆V to the depletants. A full derivation can be found in the appendix; the

relevant equation being:

∆F ∼−kBT np2πa2R (1.7)

for np the number density of particles in solution, a the radius of the depletant (50nm), and R

the radius of the colloid (1µm) [18]. We estimate the strength of attraction to be ∼ 75kBT at a

depletant concentration of 3.25 g/L. The excluded volume begins to overlap when the colloids

are separated by a distance of twice the radius of a depletant (roughly 100nm) [18, 17]; thus,

the size of the depletant sets the length scale of the depletion interaction. Notably, there is no

entropic cost to colloids translating on the surface of the glass, thus the colloids are still able to

diffuse. Having engineered a system where colloids can both diffuse and stick together, we can

now discuss the structures they form.

Summary: Depletion interaction

We harness the depletion interaction to create a strong, short range attractive potential

between the colloids. The size of the depletant sets the length scale of the interaction (∼ 50nm),

and the concentration of depletant is linearly proportional to the strength of attraction.

1.2.6 Colloidal aggregation

The phase diagram of systems of colloidal spheres is generally classified by the interaction

(i.e. length scale and strength), as well as the volume fraction of colloids. At high volume

fractions, systems are categorized as either glasses or crystals, depending on the order (crystals)

or disorder (glasses) of the structure [4]. Within the space of relatively low volume fraction

and strong, short ranged attraction, aggregates form structures characterized by a scale invariant

fractal dimension (ν), termed fractal colloidal aggregates. For the purposes of this thesis, we

will focus on fractal colloidal aggregates.
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The study of colloidal aggregation finds its roots in the early study of aerosols – a general

term, describing aggregates of small particles suspended in air [19] (note that, by our broad

definition of colloids, aerosols can be considered as a colloidal aggregate). These systems

represent a broad range of scientific interests from atmospheric, environmental, industrial and

medical sciences; as it would turn out, colloidal aggregates share much of the same physics as

aerosols. Early work from Forrest and Witten observed that smoke-aggregates appear as thin,

branched structures, with sizes varying over many orders of magnitude [20]. Surprisingly, these

aggregates displayed a universal power law relationship between mass and length, describing a

scale invariant fractal dimension (more on this below). The link to colloids came a few years

later with the work of Weitz and Oliveria, who observed a similar scale invariant fractal structure

in systems of charged gold particles, destabilized by increasing the ion concentration of the

surrounding media [21] (as seen in Fig. 1.4). This has sparked nearly 5 decades of experiments,

simulations, and analytical theory in the field of colloidal aggregation [22].

A. B. C.

Figure 1.4. Colloidal Aggregates (A) Aggregates of gold colloids (radius 7.5nm), formed via DLCA aggregation.
The structure is branched. (B) Aggregates of gold colloids formed via RLCA aggregation. Scale bar for both images
is 500 nm. (C) Log-Log plot of number of colloids (N) vs length of aggregate (L) for aggregates of gold colloids
formed via DLCA aggregation. The system displays a scale invariant fractal dimension. (A) & (B) Reprinted
figure with permission from D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, PRL, Volume 54, Number 13, 1985.
Copyright 1985 by the American Physical Society. (C) Reprinted figure with permission from D. A. Weitz and M.
Olivera, PRL, Volume 52, Number 16, 1984. Copyright 1984 by the American Physical Society.
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The characteristic length of an aggregate is typically given by the radius of gyration (RG)

R2
G =

1
N

N

∑
i=1

(ri − r0)
2 (1.8)

where ri is the position of colloid i and r0 the center of mass of the aggregate, containing N

colloids [19]. The fractal dimension (ν) is given by the relationship between length (RG) and

mass of the aggregate (M)

M ∼ (RG)
ν (1.9)

At first glance, the units appear to be an issue. This relationship can be made non-

dimensional by dividing the total mass (M) by the mass of a single colloid (m); henceforth, we

define M= M/m as the number of colloids in an aggregate. A similar non-dimensional length

is given by dividing RG by the radius of a single colloid (R), such that RG = RG/R [22]. The

fractal dimension is thus given by the relationship

M∼ (RG)
ν (1.10)

Colloidal aggregation in a thermal bath can be broken into two regimes: diffusion-limited

cluster aggregation (DLCA), and reaction-limited cluster aggregation (RLCA) [23]. In the former

(DLCA), the attractive potential is so strong that as soon as colloids come into contact, they

become irreversibly bound; therefore, the aggregation kinetics are only limited by the rate of

diffusion [2]. In this regime, free colloids are immediately arrested whenever they encounter

an aggregate, which makes it unlikely for them to penetrate to the center of an aggregate. The

aggregates form branched, ramified networks [Fig 1.4A]. Both simulations and experiments

confirm that for a 2D system, DLCA results in a fractal dimension ν ∼ 1.4 [24, 25].

RLCA, on the other hand, takes place under conditions where there is a small repulsive

barrier between colloids before they can irreversibly bind; as a result, the kinetics are slower and

determined by the the probability for a colloid to bind, hence reaction limited [2]. In this regime,
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free colloids are not immediately immobilized when encountering an aggregate and can explore

a more possible configurations before binding; this leads to more compact, denser aggregates

[Fig 1.4B]. Aggregates formed in RLCA have a larger fractal dimension (1.4 < ν < 2) [24].

1.2.7 Scaling argument: Gel vs. Cluster phase

Fractal aggregates can be classified as either a gel or a cluster, depending on their size

with respect to the system [Fig. 1.5]. We define a “gel” as an aggregate that contains all colloids

in the system, and forms a space spanning network (RG ≥ L, with L the system size). This

aggregate is expected to have solid-like properties, as colloids cannot freely re-arrange with

respect to every other colloid in the system [2]. Similarly, we define a “cluster” as an aggregate

which does not form a space spanning network (RG < L); these systems are expected to have

fluid-like properties, as the aggregate can freely translate [2]. A graphical representation of this

can be seen in Fig. 1.5.

Cluster: compact Gel: branched, space spanning network

A. B.

Figure 1.5. (A) Cluster phase A compact aggregate, formed of 60 colloids, which does not span the size of the
system. Systems in the cluster phase exhibit fluid-like mechanical properties, as the aggregate can freely translate.
(B) Gel phase A branched aggregate of 60 colloids, forming a space spanning network. Colloidal gels exhibit
solid-like mechanical properties.

A scaling argument can be made whether the an aggregate is capable of spanning the

size of the system, based on the volume fraction of colloids (φ ) and the fractal dimensions (ν)

[22, 2]. In d dimensions, the number of colloids in the system (N )is given by
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N ∼ φLd

Rd (1.11)

with R, the radius of a single colloid. Postulating that the system eventually aggregate such that

every colloid is contained in a single aggregate (such that, M= N), we can define the size of

this aggregate using Eq. 1.10: M∼ (RG)
ν (for M the number of colloids in the aggregate and

RG = RG
R the radius of gyration of the aggregate normalized by the radius of a colloid).

N ∼Rν
G (1.12)

To be system spanning, the size of the aggregate must be equal the size of system.

Inserting RG = L, we come up with the relationship

φ
∗ ∼

(
L
R

)ν−d

(1.13)

Such that, at a given fractal dimension, there is a critical volume fraction (φ∗), above which the

system is able to form a space spanning aggregate (i.e. colloidal gel). Taken the other way, at a

given volume fraction we can define a critical fractal dimension, below which the system is able

to form a space spanning aggregate (i.e. Gel phase, with solid-like mechanical properties); above

this critical fractal dimension, the aggregates are too dense to span the system (i.e. Cluster phase,

with fluid-like mechanical properties).

Summary: Colloidal aggregates

Taken together, we have discussed how the aggregation mechanism (DLCA vs RLCA,

in a thermal bath) determines the fractal dimension of the colloidal aggregate. Furthermore,

we have laid out a scaling argument describing how the fractal dimension determines the

phase behavior of the system (i.e. gel or cluster). These phases are expected to have different

mechanical properties, with a gel acting as a visco-elastic solid, and clusters acting as a fluid.
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The aggregation mechanism is key to controlling the structural and mechanical properties of

the colloidal system. My work centers around controlling these features with the activity of a

bacterial bath.
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1.3 E. Coli : an active particle of choice

Active particles are particles that convert energy into mechanical work. Motile E. coli

present themselves as an ideal active particle in many respects, due to their abundance and the

vast biological tools designed to work with them. In the following section, we describe concepts

and previous work motivating our use of a bath of motile E. coli to inject energy into the system.

1.3.1 Swimming at the micro scale

E. coli live at low Reynolds number (RE). RE is a dimensionless quantity, representing

the ratio of inertial forces to viscous drag. The Reynolds number is given by RE = ρV L/η , with

V is the typical velocity, L the typical length, ρ the density and η the viscosity.

Using rough numbers for an Olympic Swimmer (V ∼ 1 m/s, L ∼ 2 meter ) in water

(η ∼ 10−3 Pa · s , ρ = 1000 kg/m3 ) we find RE ∼ 106 - inertial forces are greater than viscous

drag (i.e. RE > 1 ). This makes sense, as we know from experience that diving headfirst into a

pool, we can glide for some distance.

By contrast, for E. coli bacteria (V ∼ 20 µm/s, L ∼ 1 µm ), we find RE ∼ 10−5 [26].

Low RE has important consequences on the swimming dynamics. For example, momentum is

irrelevant for the swimming E. coli – if it stops pushing, it will almost immediately stop moving

(RE << 1). At every moment, the propulsive force is balanced by viscous drag, making E. coli

force and torque free swimmers. Additionally, at low RE, any reciprocal motion results in zero

net displacement, the classic example being a clam opening and closing its shell [26].

Flagella
Body

5 − 10 %& ~ 2.5 %&

~0.8%&

Anatomy
Far-field 
hydrodynamics

A. B.

Figure 1.6. (A) Minimal anatomy of an E. coli bacteria, consisting of a body connected to a long flagella tail.
Measurements from [27]. (B) Approximate far - field hydrodynamics of swimming E. coli. Fluid is pushed out the
front and back, and sucked in from the sides. Experimental measurements of this reported in [28].
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E. coli circumvent this constraint by spinning a long helical tail of proteins - the “flagella”

- thus avoiding reciprocal motion. Measurements show the body is 2.4 µm long, .85 µm wide,

and the flagella are ∼ 10 µm long [27][Fig. 1.6A]. Each flagella is connected to a motor (BFM,

or bacterial flagellar motor ), powered by exchanging protons across the cell membrane [29, 30].

When all BMF spin counter clockwise (as viewed from behind), the flagella bundles together and

propels the E. coli forward, termed a “run” [31]. When all BMF do not spin in the same direction,

the E. coli rotates and changes direction - termed a “tumble”. Runs last for roughly 1s, but can

last longer when the cell senses a favorable chemical gradient (i.e. increasing concentration of an

“attractant”, such as food) [32]. The E. coli can modify their run-tumble dynamics to navigate

chemical gradients in their environment - a process termed chemotaxis.

E. coli are approximated as a hydrodynamic dipole, with the propulsive force and viscous

drag balanced at every moment, as measured experimentally by Drescher et al. [28]. Fluid is

pushed from the front and back; due to the incompressibility of the surrounding fluid, there is a

net flow of fluid inwards from the sides [Fig. 1.6B]. This leads to a hydrodynamic attraction of E.

coli to flat surfaces, as they are sucked in from the sides [33].

1.3.2 E. coli suspension as a “hot” bath

In 2000, Wu and Libchaber studied the diffusion of passive tracer colloids in a suspension

of motile E. coli. Experiments were performed on a thin film at a bacteria concentration of

5 · 1010 cells/mL [34]. They coined the term “hot” bacterial bath, reporting enhanced tracer

diffusion at timescales >∼ 1 s, akin to raising the temperature of the bath. Below 1s, they

reported ballistic-like motion, with ∆r2(t)∼ tα for 1.5 < α < 2. This seminal work has sparked

a field of studies, generally interested in the interplay between active swimmers and passive

tracers.

Nearly a decade later, Minõ et al., built upon the work of Wu and Libchaber, performing

an experiment with passive colloids sedimented in a glass chamber, surrounded by a suspension

of active swimmers [35]. They perform experiments both with self propelled rods, whose speed
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can be tuned with the concentration of H2O2, and E. coli bacteria whose concentration is varied

between 109 and 1010 cells/mL. Further experiments, published by Minõ et al in 2013, repeat

the experiment with E. coli whose speed can be tuned by the pH of the surrounding media [36].

In this low-concentration regime (i.e. below the onset of collective motion), the authors showed

that the increased diffusivity of tracers is proportional to the “active flux” - the concentration of

active swimmers (nA) times the speed of the active swimmers (VA) .

De f f = D0 +βnAVA

with β determining the rate of increase of the effective diffusion. This scaling for effective

diffusion in a suspension of active swimmers seems to be quite general; namely, it has been

reported in 3D using similar E. coli bacteria [37] as well in quasi-2D experiments using C.

Reinhardt swimmers [38, 39].

1.3.3 E. coli suspension: more than a “hot” bath

The picture of a bacterial bath as a “hot” thermal bath is conceptually useful, but it is

important to stress that it is not the end of the story. A bath of motile bacteria is intrinsically

nonequilibrium: E. coli are constant injecting energy into the system through mechanical work.

As such, the bacterial bath is more than a hot bath.

For example, motile E. coli can induce persistent rotation of asymmetric gears, effectively

constituting a micron-sized motor [40, 41]. Recent work, built upon the ratchet design, combines

a ramp which collects cells from the bottom and guides them into an elevated rotating micro

chamber; each micro chamber fits a single cell, and each motor contains 15 chambers [42]. These

motors are able to achieve speeds up to 20 rotations per minute. Additionally, these experiments

utilize genetically modified E. coli, which are only motile in the presence of green light [43, 44].

This constitutes a micro-scale motor, whose rotation rate can be controlled by the intensity of

green light.
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Additionally, it has been show that motile bacteria induce effective attractive interactions

between particles [45, 46, 47]. As evidenced by Angelani et al., tracer particles in a bacteria bath

spend extended periods of time in contact, which can be interpreted as an effective attraction. This

attraction is, however, intermittent, as the tracer particles do not remain in contact indefinitely.

While these results hint at the possibility for a bacterial bath to drive colloidal assembly, the use

of an external attractive potential is necessary to achieve large, stable aggregates. This notably

inspires the present work, combining passive building blocks, an attractive potential between the

building blocks, and an active bath of motile E. coli.
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1.4 Review of conceptually similar experimental works by
other groups

The proposed experiment, studying the aggregation of sticky colloids in a bath of bacteria,

is novel; there are, however, some published works which share conceptual similarities to our

proposed experiment. In the following section we describe two such experiments, each leveraging

active matter to inject energy into a soft matter system.

Adkins et al. [48] investigate the injection of energy into a system undergoing liquid-

liquid phase separation. They combine a mixture of dextran and PEG polymer – a solution which,

in equilibrium, phase separates into a dextran rich phase and a PEG rich phase (similar to an

oil-water mixture). Through the addition of microtubules and kinesin motors, Adkins et al. create

an active fluid, where energy is injected into the system through mechanical work of kinesin

motors moving the microtubules. They discover rich dynamics – at intermediate activity (i.e.

concentration of kinesin motors), the additional fluctuations increase droplet mobility, speeding

up the phase separation. Above a critical concentration of kinesin, the droplets continually

coalesce and fragment, similar to shaking a vinaigrette salad dressing. These experiments show

the promise for active matter to control the behavior of passive constituents, driving the system

to unconventional phases which are non-accessible to a passive system.

Michael Solomon’s group has published three experimental works studying 3D colloidal

gels, formed via DLCA aggregation, imbedded with Janus particles. Janus particles are colloids

coated with half a surface of platinum. In solution with H2O2, the particles swim using

diffusiophoresis due to a chemical reaction between the metal and H2O2. Initial work by

Szakastis et al. [49] showed that the moderate addition of active Janus particles into the colloidal

gel (ratio 1:1200) increased the dynamics within the gel, promoting re-structuring and aging.

Further work from Solomon’s group tested the mechanical properties of these gels; both the

elastic modulus [50] as well as the yield stress [51] of the active gel reduce with increased activity,

resulting in a maximum reduction of 3x compared to the passive gel. Taken together, these works

22



directly highlight the power of active matter to direct the mechanical properties of soft materials.

The experiments proposed in this thesis are similar in that they leverage active matter to tune

the properties of a colloidal gel. While the work from Solomon’s group investigates how active

matter can modify the properties of an aggregated structure, our work leverages an active bath to

direct the aggregation process, resulting in novel structures.

Summary: Chapter I

Chapter I has laid the conceptual groundwork and motivation for the experiments to

come. Micron sized colloids, small enough to diffuse yet large enough to study with an optical

microscope, form the building blocks of the soft materials. Using the depletion interaction we

create a strong, short range attractive potential between the colloids, irreversibly binding them

together. Finally, a suspension of motile E. coli inject energy into the system through mechanical

work.
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Chapter 2

Control and calibration experiments

Chapter 1 of this thesis focused on building up a base of background knowledge, mo-

tivating our experimental design. Chapter 2 describes the control and calibration experiments

performed while developing the experimental system. We begin by studying colloidal aggre-

gation in a thermal bath (Section 2.1), and later characterize the active suspension of E. coli

(Section 2.2).

2.1 Colloidal aggregation in a thermal bath

In the following section, we describe a series of experiments to calibrate the system,

investigating colloidal aggregation in a thermal bath (i.e. without E. coli). Using the data from

these experiments, we develop data processing techniques to analyze the fractal dimension and

mass distribution of aggregates; these techniques will be used later to evaluate the morphology

of aggregates is the active bath. This section concludes with a general materials and methods

section for colloidal aggregation experiments, applicable to both this section and the following

chapter.

2.1.1 Fractal dimension in thermal bath at varying concentrations of
depletant

To establish a baseline for future work, we perform a series of experiments analyzing

the aggregation of colloids in a thermal bath at varying concentrations of depletant. For these
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experiments, colloids (building blocks, 2.2 µm diameter TPM spheres), F-108 (polymer brush),

and PEO (depletant, MW 600K) are combined in a glass capillary. To maintain consistency

with experiments using E. coli, these components are suspended in Motility Medium, a minimal

media designed to promote E. coli motility (10mM Potassium Phosphate buffer, 0.1mM EDTA,

see: Section 2.2.1). The concentration of PEO is varied from 0.6 g/L to 3.25 g/L, which varies

the strength of the attractive potential between colloids. A more in depth materials and methods

section, describing how the experiment is set up, can be found below in Section 2.1.3.

The capillary is placed on the motorized stage of an inverted microscope and observed

automatically for 8 hours, capturing one frame every minute at 5 locations along the capillary.

Zoomed in images of the aggregates after 7 hours can be found in Fig. 2.1A and Fig. 2.1B.

Aggregates in Fig. 2.1A are formed in 0.6g/L PEO (low binding energy), and are more compact,

typical of RLCA aggregation (compare with Fig. 1.4B). Aggregates in Fig. 2.1B are formed in

3.25g/L PEO (high binding energy) and form ramified, branched structures, typical of DLCA

aggregation (compare with Fig. 1.4A). We further quantify the morphology of aggregates using

the fractal dimension.
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Figure 2.1. (A) Cropped image of colloidal aggregates in a thermal bath after 7 hours with 0.6 g/L of PEO
(depletant). Aggregates are identified using image processing techniques described below, and outlined in yellow.
Scale bar 100µm. Same scale for (A) and (B). (B) Cropped image of colloidal aggregates in a thermal bath after 7
hours with 3.25 g/L of PEO (depletant); aggregates outlined in purple. (C) Example of how fractal dimension is
calculated, using full images from (A) (yellow) and (B) (purple). Dashed line is a fit to the data M∼Rν

G. Yellow
data points are offset vertically from purple. (D) Fractal dimension as a function of time, for aggregates formed in
thermal baths at various concentrations of PEO (depletant). Concentrations of PEO are: 3.25 g/L (purple), 1.6g/L
(blue), 0.8g/L (green) and 0.6g/L (yellow). Fractal dimension reaches a steady state after approximately one hour;
the steady state fractal dimension increases with decreasing PEO concentration.

Image processing techniques: Fractal dimension

We employ image processing to quantify the morphology of colloidal aggregates. Gener-

ally, we first apply a gaussian filter to the image, with a standard deviation equal to the radius

of a single colloid. Next, we binarize the image, and remove any regions touching the edge of

the frame, to avoid analyzing the morphology of a partial aggregate. Finally, we remove any

aggregates less than 5 colloids in size; as discussed in [24], small aggregates do not contain

meaningful information regarding the fractal dimensions. After binarization, we can readily

access the list of pixels contained in each binary region; this will be used to calculate a radius of

gyration and area of the aggregate.

Using the list of pixels in each binary region, we calculate the radius of gyration (RG) of

each aggregate using the following formula:

R2
g =

1
n ∑

n
i=1(xi − xcm)

2 +(yi − ycm)
2
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where (xi,yi) specifies the location of each pixel, and (xcm,ycm) specifies the center of mass of

the binary region.

For clarity, we repeat Eq.1.10, defining the fractal dimension (ν). As a reminder, M

is the mass of an aggregate in units of number of colloids, RG is the radius of gyration of the

aggregate, normalized by the radius of a single colloid.

M∼ (RG)
ν (2.1)

To calculate the average fractal dimension in a frame, we plot on log-log the normalized

radius of gyration (RG) and normalized area (M) for each aggregate; the slope gives the fractal

dimension, as depicted in Fig. 2.1C.

Results and comparison to literature: Fractal dimension

We observe that, after about an hour of aggregation, the fractal dimension evolves to

a steady state value [Fig. 2.1D]. Additionally, as the attractive potential between colloids is

increased (i.e. increasing concentration of PEO), the steady state fractal dimension lowers to a

minimum of ν ∼ 1.4; these findings are in line with DLCA simulations performed by Cerda et

al. [24], as well as experiments performed by Griffiths et al. [25].

2.1.2 Aggregate mass distribution in thermal bath

In addition to the fractal dimension, we analyze the mass distribution of aggregates

formed in the thermal bath. We investigate the mass distribution as a function of increasing

PEO concentration, as well as how it evolves in time. These experiments follow the same set up

as described previously; the experiment containing 3.25g/L PEO is observed for 40 hours, to

analyze how the mass distribution evolves in time.

27



Image processing techniques: Mass distribution

Using the binary image processing techniques described previously, we calculate a

empirical cumulative distribution function (or, eCDF).

eCDF(M) =
number of aggregates with mass <M

total number of aggregates

In Fig. 2.2, we display P , the complementary cumulative distribution function, equal to 1-

eCDF(M). P constitutes the probability of an aggregate to be of size larger than M.

Results and comparison to literature: Mass distribution

P at different times P at different binding energies
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Figure 2.2. (A) and (B) Complementary cumulative distribution function (P) of (A) aggregate mass, and (B)
normalized aggregate mass, for the experimental conditions ρB = 0 and 3.25g/L PEO (MW 600k). Different times
during the experiment are plotted on a gray to purple color palette : 2.5 hours (gray), 5 hours, 10 hours, 24 hours,
and 40 hours (purple). (C) and (D) Complementary cumulative distribution function (P) of (A) aggregate mass,
and (B) normalized aggregate mass after 24 hours, for varying concentrations of PEO depletant (MW 600k), with
ρB = 0. Concentrations of PEO are: 3.25 g/L (purple), 1.6g/L (blue), 0.8g/L (green) and 0.6g/L (yellow). In both (B)
and (D) the same data is plotted on a Log-Lin scale in the inset. The black dashed line corresponds to a log-normal
distribution with µ = 0.3 and σ = 0.75
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In Fig. 2.2A and Fig. 2.2B, we analyze the experiment with 3.25g/L PEO at various time-

steps (2.5 hours, 5 hours, 10 hours, 25 hours, and 40 hours). We find that the mass distribution

follows approximately a log-normal distribution [Fig. 2.2A]. Furthermore, this distribution can be

made self-similar when normalized by the average aggregate mass [Fig. 2.2B]. In Fig. 2.2C and

Fig. 2.2D, we extend these result to experiments at lower depletant concentrations, corresponding

a concentration of PEO of 1.6g/L, 0.8 g/L, and 0.6 g/L; again, we find the mass distribution is

approximately log-normal [Fig. 2.2C] and can be made self-similar when normalized by the

average aggregate mass [Fig. 2.2B].

These results are in line with previous theory [52], and simulations [53] predicting that the

mass distribution of aerosols aggregating via brownian coagulation (i.e. cluster-cluster merging

mediated by diffusion) approaches a log normal distribution after sufficient time. Recently, this

theory has been generalized to describe tissue cells, which slowly diffuse due to collisions with

their surroundings, leading to aggregation via merging and fragmentation events [54]. Notably,

Rulands et al., [54] find that cell lines which deviate from the identified merging-fragmenting

aggregation do not exhibit the same scaling behavior. The log-normal size dependence and

rescaling in Fig. 2.2 is characteristic of a universality class of systems which undergo aggregation

via merging, fragmentation and diffusion [52].

2.1.3 Materials and methods for colloidal aggregation experiments

Here we document the materials and methods used for the colloidal aggregation experi-

ments. This section applies to the experiments in the thermal bath, described previously, as well

as the experiments in the active bath described in the following chapters. The general scheme

is to combine colloids, depletants and E. coli in a sealed glass capillary, and observe it during

aggregation. Images are captured automatically using a motorized stage, to enable observation

over long times.

We describe the set up for 3 experiments. To investigate the short-time dynamics of

aggregates, we perform experiments at low colloid concentrations (surface fraction ∼ 10%)
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using a high frame rate and high magnification. To study the long-time dynamics, we observe

aggregates over a period of four hours; these experiments use a higher colloid concentration

(surface fraction ∼ 18%), a slower frame rate and a larger field of view (to observe large

structures). Finally, we study the morphology of space spanning 2D colloidal gels formed in a

high colloid concentration (surface fraction ∼ 38%).

The specifics of setting up these experiments are not relevant to understand the key

findings of this thesis. This section has been included as a reference for future students, but can

be skipped (until Section 2.2) by most readers.

Colloidal aggregation solution

Colloids (diameter 2.2 µm TPM Spheres) are diluted into solution containing Motility

Medium (MM), 10mM NaCl, 0.1% F108, and 1% Glucose. The Motility Medium contains

10mM Potassium Phosphate buffer (pH 7) and 0.1mM EDTA (pH 8); thus we estimate the total

ion concentration to be 32mM [25]. Unless otherwise stated, the concentration of depletant

is 3.25 g/L PEO (MW 600K). E. coli cells are added from the high concentration sample of

cells suspended in MM, described previously. To vary the strength of the active bath, we repeat

the experiment with different bacteria concentrations. Bacteria concentrations are reported in

fractions of the maximum concentration: ρ∗ = 6×108 cells/mL. The solution is confined in a

3mm x 0.3mm x 50mm rectangular glass capillary, utilizing capillarity, placed on a glass slide

and sealed with a wax pen.

Short-time dynamics: experiment set up

First, we design experiments to measure the diffusion of aggregates over minutes. For

these experiments, the concentration of colloids is chosen such that the surface area fraction is

10% ± 2%, once the colloids have sedimented onto the bottom surface of the glass capillary. We

repeat the experiments at four E. coli concentrations: ρB = ρ∗,ρB = 0.5ρ∗,ρB = 0.1ρ∗, and ρB =

0. The aggregates are observed using a 40x Nikon objective (NA = 0.6) for approximately 1 hour.
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During this time, we capture a series of 3000 frame videos at 20fps along the capillary.

Long-time dynamics: experiment set up

Next, we aim to measure the long-time dynamics and morphology of colloidal aggregates,

over a period of 4 hour. For these experiments, the concentration of colloids is chosen such

that, once the colloids have sedimented the surface area fraction is 18%±3%. We repeat the

experiments at 6 E. coli concentrations: ρB = ρ∗,ρB = 0.5ρ∗,ρB = 0.2ρ∗,ρB = 0.1ρ∗,ρB =

0.05ρ∗ and ρB = 0. The aggregates are observed using a 20x Nikon objective (Na = 0.45) for 4

hours; we capture one frame per minute time-lapses at 5 locations along the capillary.

Colloidal gel: experiment set-up

We investigate 2D colloidal gels assembled in the active bath, at surface area fraction

38%± 2%. We repeat the experiments at 3 E. coli concentrations: ρB = 0.1ρ∗,ρB = 0.05ρ∗

and ρB = 0. The aggregates are observed using a 10x Nikon objective (NA = 0.3); we capture

one frame per minute time-lapses at 5 locations along the capillary. Gels in the active bath are

observed for 20 hours, but typically percolate before 4 hours. Aggregates in the thermal bath are

observed for 120 hours.

Microscopy for colloidal aggregation experiments

All data for the colloidal aggregation experiments is taken on a Nikon TI Eclipse micro-

scope equipped a motorized stage, controlled using Micro-Manager software. The microscope

is equipped with two cameras. A Hamamatsu Orca Flash 4.0 CMOS, utilizing a 2048 x 2048

pixel Field of View (FOV) and 16bits, is used for taking time-lapses with a frame rate of 1 frame

per minute (Long-time dynamics and Colloidal gel experiments). For videos requiring a faster

frame-rate, we utilize an Edmunds Optics USB 3.0 CMOS camera, with a 480 x 752 pixel FOV

and 8bits (Short-time dynamics).
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Stock Solutions

In all stock solutions, chemicals are dissolved in 18 M-Ohm DI water from a Milli-Q

EQ 7000 water purification system. A stock solution of 200mM NaCl (Sigma-Aldrich, MW

58.4) is prepared by dissolving .12g NaCl in 10mL of DI water. A stock solution of 2% w/v

F108 (Sigma-Aldrich Synperonic F108 surfactant, MW 14600) is prepared by dissolving 0.2g of

F108 in 10mL of DI water. Stock solution of 25 g/L PEO (Sigma-Aldrich, Poly(ethylene oxide),

MW 600k) is prepared by dissolving 0.25g PEO in 10mL DI water, and stirred overnight using

a magnetic stirring rod until dissolved. A stock solution of 0.1M Potassium Phosphate Buffer,

used to prepare the Motility Medium, is prepared by dissolving 9.34g K2HPO4 (Sigma-Aldrich,

MW 174.2) and 6.31g KH2PO4 (Sigma-Aldrich, MW 136.1) in 1L DI water. 0.5M EDTA stock

solution is prepared by dissolving 186.1g EDTA dihydrate (Sigma-Aldrich, MW 372.2) into 1L

DI water. The pH is adjusted to 8 using NaOH pellets, to dissolve the EDTA.
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2.2 Characterizing the active suspension of E. coli bacteria

Section 1.3 lays out the conceptual motivation behind using a suspension of E. coli

bacteria to inject energy into a soft material. In the following section, we tackle some of the

practical aspects of working with the active suspension. We begin by quantifying the speed of

the bacteria using the differential dynamic microscopy (DDM) technique. These experiments

show that the E. coli speed decays over ∼60 minutes in the sealed glass capillary, and the

addition of 1% w/v Glucose is required to maintain a constant speed in anaerobic conditions

over 4 hours [Fig. 2.3]. Next, we investigate the trajectories of motile E. coli near the surface

of the glass capillary using green fluorescent protein labeled cells, finding that they swim in

circular trajectories of radius ∼ 50µm [Fig. 2.5B]. Finally, we perform a series of cell counting

experiments to determine the concentration of cells in the active suspension.

2.2.1 Quantifying the speed of E. coli

Here we summarize the experiments to quantify the speed of the E. coli. We begin by

reviewing the environmental conditions required for E. coli motility. Then, we perform experi-

ments measuring the average speed over time of a suspension of E. coli in various environmental

conditions relevant to the colloidal aggregation experiments described in the previous section.

The final section describes the differential dynamic microscopy technique used to measure the

speed of the E. coli.

Literature review: The effect of environmental conditions on the motility
of E. coli

The seminal work of J. Adler and Bonnie Templeton lays the groundwork for under-

standing the environmental conditions required for E. coli motility [55]. Three important

environmental conditions should be noted from this paper. First, Adler et al. describe that the

addition of a chelating agent such as EDTA at µM concentrations induces motility in E. coli,

even without the addition of a food source; it is hypothesized that heavy metals, even in trace

33



amounts, suppress motility. Next, Adler et al. report the effect each of 20 amino acids, as well

as Glucose; Only Glucose and L-serine are identified as giving rise to motility in both aerobic

and anerobic conditions. Finally, Adler et al. report that motility is dependent on the pH of the

surrounding media, with E. coli only motile within a range of 6 < pH < 8. Subsequent work has

shown that the speed of E. coli can be tuned via changing the pH in the presence of Potassium

Acetate, but requires a more sophisticated growth procedure [56]. As a direct result of work of

J. Adler and Bonnie Templeton, most modern experiments using E. coli as an active particle

[34, 40, 41, 35, 43, 37, 27, 57, 58, 59, 45] suspend their E. coli in a media containing EDTA,

buffer near pH 7, and an optional attractant.

Growth & re-suspension in motility media

E. coli (strain MG1655) are grown overnight until saturation at 33C, shaken at 200 RPM,

in Tryptone Broth containing 10g/L Tryptone, and 5g/L NaCl. The saturated culture is diluted

1:100 into fresh Tryptone Broth and grown at 33C until optical density = 0.5, corresponding to

mid-exponential growth phase. 1mL of cells are centrifuged at 2200 rpm for 10 min until a pellet

forms.

Following the results of [55], the supernatant is removed and the cells are gently re-

suspended in Motility Medium (MM), containing 10mM Potassium Phosphate buffer (pH 7)

and 0.1mM EDTA (pH 8). This process is repeated twice more, to ensure the growth media is

sufficiently diluted. In the final step, the cells are re-suspended in 10% of the volume of the

supernatant, to create a highly concentrated sample of cells.

Experiments: environmental conditions for E. coli motility in colloidal
aggregation solution

The goal of these experiments is to engineer the environmental conditions such that

the active bath gives a constant injection of energy into the system during the 4 hour colloidal

aggregation experiment. Based on the findings of Miño et al. [35] (i.e. effective diffusion is
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proportional to number of swimmers times their speed, see Section 1.3.2), we require a constant

speed and constant motile fraction of E. coli. In each experiment, E. coli cells are suspended

in MM at a concentration of 6×108 cells/mL. 10mM NaCl and 0.1% F-108 and are added, in

agreement with solution used for Colloidal Aggregation; the solution is sealed a glass capillary.

We find that this solution is not sufficient to maintain constant motility, as the average E.

coli speed decays over ∼ 60 minutes [Fig. 2.3A, red line]. We then add 1% w/v Glucose and

observe that E. coli maintain a constant speed of 16µm/s±1µm/s and constant fraction alive

for at least 4 hours in these conditions [Fig. 2.3A and Fig. 2.3B, green line]. Finally, we add

both 1% w/v Glucose and 3.25g/L PEO, identical to the conditions in the colloidal aggregation

experiment; we observe an increase in the average E. coli swim speed to 23µm/s± 2µm/s,

while the speed and fraction alive remain relatively constant over the four hours [Fig. 2.3A and

Fig. 2.3B, blue line]. An increase in speed is consistent with previous literature regarding the

effect of polymers on E. coli motility [60].
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Figure 2.3. (A) E. coli swim speed as a function of time, analyzed using the DDM technique. E. coli motility
is analyzed in three environmental conditions: Motility Medium (Red), Motility Medium and 1% w/v Glucose
(Green), or Motility Medium, 1% w/v Glucose, and 3.25g/L PEO (Blue). (B) Fraction of motile E. coli as a function
of time, analyzed using the DDM technique. The E. coli are suspended in Motility Medium and 1% w/v Glucose
(Green), or Motility Medium, 1% w/v Glucose, and 3.25g/L PEO (Blue).
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DDM technique to measure dynamics of the active suspension

We use differential dynamic microscopy (DDM) to characterize the dynamics of our

active suspension of E. coli [Fig. 2.3]. DDM is a high throughput method which relies on

taking the difference in intensity between pairs of images, and extracting information about

the dynamics from the intensity auto-correlation function [61]. It was originally developed by

Cerbino et al. [61], to analyze the dynamics of colloids undergoing Brownian motion, but has

been expanded to characterize an active suspensions of E. coli bacteria [62, 63]. This technique

provides many advantages over single cell tracking techniques, as each particle does not need to

be individually resolved.

During the experiments displayed in Fig. 2.3, we capture 3000 frames at 20fps using a

10x Nikon objective (NA = 0.3) in the focal plane of the bottom of the glass capillary, using

phase contrast microscopy. Videos are captured automatically every 30 minutes, for 4 hours. We

calculate a radially averaged intensity auto-correlation function from the difference in intensity

between pairs of images. The dynamics of the physical system are extracted by fitting the

intensity auto-correlation function (calculated from the data) to the density auto-correlation

function for self propelled swimmers, as described in [62, 63]. The average velocity and fraction

of E. coli moving ballistically are reported in Fig. S2A and Fig. S2B, respectively. Error

bars represent the standard deviation in average velocity (or, fraction of motile E. coli ) over 6

realizations of the experiment.

Summary: Quantifying the speed of E. coli

We add 1% Glucose to the colloidal aggregation solution (developed in section 2.1), such

the active suspension of E. coli maintain a constant speed and fraction motile for 4 hours. The

dynamics of the active suspension are quantified using the DDM technique.
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2.2.2 E. coli swimming near a flat surface

Having characterized the average dynamics of the active suspension, we now focus in

on the swimming trajectories of single E. coli. The motion of E. coli near a flat surface is of

particular importance to this thesis, as the experiment is quasi-2D, taking place in the bottom

plane of a glass capillary. We being by reviewing the literature, and then perform experiments

using green fluorescent protein labeled E. coli, to investigate their motion.

Literature review: Swimming in circles

As described by Lauga et al. [58], E. coli swim in clockwise, circular trajectories when

swimming near a solid surface. The qualitative description of this begins by recalling that,

whenever the E. coli swims forward (during a “run”), all flagella spin counter clockwise. The

spinning flagella induces an opposite, clockwise rotation of the body [Fig. 2.4A]. At the interface

between the fluid and the solid surface (glass substrate) is a no-slip boundary condition: the fluid

must have zero speed relative to the boundary. The no-slip boundary condition results in viscous

forces on the spinning body and the flagella, similar to friction acting on a ball as it rolls across

a table. The viscous forces acting on the body and flagella act laterally, in opposite directions

[Fig. 2.4B], causing the E. coli to swim in clockwise, circular trajectories [58]. The direction of

rotation can be reversed by replacing the no-slip boundary with a near perfect-slip boundary (i.e.

performing the experiment on a pendant drop, thus a fluid-air interface) [57].

Rotation of flagella (CCW) Rotation of body 
(CW)

Side view - Rotation No-slip boundary Top view - Forces

Viscous force on spinning flagella

Viscous force on spinning body

A. B.

Figure 2.4. (A) Counter-clockwise rotation of flagella induces an opposite rotation of the head while swimming.
(B) Due to the no-slip boundary condition at the solid surface, rotation of the flagella and head result in viscous
forces on the swimming E. coli, acting perpendicular to swimming direction. It results that E. coli swim in circles
near a solid surface. Adapted from [58].
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Additionally, the radius of the circular trajectories is dependent on the distance between

the E. coli and the interface [58]. It has been shown that the radius can be decreased by increasing

the salt concentration of the surrounding media [64]. This effect can be explained using our

previous knowledge of DLVO theory: the E. coli carry a negative zeta potential on the order of

-30mV at pH 7 [65], and are thus repelled from the glass substrate due to electrostatics; increasing

the ionic concentration screens the electrostatics, causing the E. coli to swim closer to the wall.

In the following section, we quantify the radius of the circular trajectories made by E. coli in our

experimental system.

Fluorescence microscopy of GFP labeled E. coli

We use green fluorescent protein (GFP) labeled E. coli to further investigate the dynamics

of motile E. coli. For all experiments in Fig. 2.5, E. coli are suspended in Motility Medium (MM),

3.25g/L PEO, 10mM NaCl, 0.1% F108, and 1% Glucose (the standard colloidal aggregation

solution, without colloids).

Fig.2.5A shows a 3 second exposure of E. coli swimming above the surface of the glass

capillary. The E. coli swim in curved trajectories. We fit each arc to a circle [red line, Fig.2.5A],

and extract a radius of curvature for each trajectory; the distribution of radii of curvature in

Fig.2.5B is obtained by fitting the trajectories in 100 images. We find a median radius of 43 µm.

Fig.2.5D shows the distribution of E. coli as a function of the distance from the bottom of

the glass capillary. We observe a high probability for E. coli to be located in the bottom ∼ 5µm

of the glass capillary, as well as a peak in probability in the top ∼ 5µm [Fig. 2.5]. These results

are reminiscent of the work by Berke et al. [33], finding that the E. coli are hydrodynamically

attracted to flat surfaces [Fig.1.6B].
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Figure 2.5. (A) 3s exposure images of GFP E. coli swimming near the bottom plane of the the glass capillary.
Trajectories are fit to a circle (red line). Scale bar 50 µm. (B) Distribution of radius of curvature of E. coli trajectories;
median radius is 43 µm (C) E. coli trajectories swimming through a colloidal aggregate. Trajectories are captured
using confocal microscopy and overlaid on a bright-field image of the aggregate. Within each trajectory, color
indicates time, with blue the initial position. Scale bar 50 µm (D) Probability density function of E. coli as a function
of distance from the bottom of the glass capillary. Inset shows the same data in the region near the bottom.

Finally, in Fig.2.5C, we add colloids to the active suspension of E. coli. Fig.2.5C displays

trajectories of GFP labeled E. coli as they interact with an aggregate; time is indicated by the color

of the trajectory, with blue the initial position of the E. coli and red the final position. We observe

that the E. coli swim through the aggregates, and while inside they swim in approximately

straight trajectories. These results are reminiscent of [66], who find that E. coli trajectories are

rectified from circular to straight as they navigate through a crystal of large, spherical colloids.
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Methods: Fluorescent microscopy

GFP labeled E. coli are made in house by transforming the MG-1655 strain with a

DNA plasmid containing both the GFP gene and an ampicillin-resistance gene, using a standard

electroporation protocol.

Figs. 2.5A-B are obtained using episcopic fluorescence microscopy on a Nikon Ti2E

inverted microscope equipped with a CoolLed pE-300 light source (460nm), and a GFP-4050B

filter cube. All images are captured using a Teledyne Photometrics BSI sCMOS camera with a

2048 x 2048 pixel field of view. By adding an ND filter, we are able to achieve a dark backfield,

as seen in Fig. 2.5A. In Fig. 2.5A, we image the motile bacteria at the bottom surface of the

capillary using a Nikon 40x water immersion objective (NA 1.15), ND filter, and 3 second

exposure. E. coli show circular clockwise trajectories. The distribution of radii of curvature are

obtained by fitting each trajectory to a circle, using 100 images [Fig. 2.5B]. We find a median

radius of 43 µm.

Confocal microscopy is used to obtain the data in Figs. 2.5C and 2.5D. Confocality is

achieved on the same Nikon Ti2E microscope, through the addition of a Yokogawa CSU-W1

spinning disk with 25 µm pinhole; the sample is excited using an Omicron LightHUB Ultra laser

system at 488nm. Fig. 2.5C is constructed through a combination of bright-field microscopy

and confocal microscopy. First, a bright-field image of the aggregate is captured using a 20x

water immersion objective (NA 0.95). Immediately after, we switch to confocal microscopy and

capture a 30s video at 5fps using the same objective and field of view, focused in the bottom

plane of the glass capillary. E. coli trajectories are tracked using the confocal data, where only

the fluorescent E. coli are visible; trajectories are overlaid on the bright-field image to create

Fig. 2.5C. Tracking is performed semi-manually; the user assigns an approximate position of the

center of the bacteria in each frame, and image analysis software determines an exact location

by finding the center of the nearest bright region. We see that the trajectories are approximately

straight as they move through the aggregate, and return to curved trajectories before and after
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exiting the aggregate.

Finally, we use confocal microscopy to create a probability distribution of E. coli as a

function of height from the bottom surface. Z-stack images are taken every 0.25 µm, starting

below capillary and extending above using a 20x water immersion objective (NA 0.95). The data

in Fig. 2.5D is averaged over 3 z-stacks. We observe a high probability for E. coli to be located

in the bottom ∼ 5µm of the glass capillary.

2.2.3 Cell counting

Optical Density is used to quantify the concentration of cells in a sample. This measure-

ment is made by shining light through a cuvette of known size containing a suspension of cells.

The optical density is obtained from the ratio of the light intensity output and the light intensity

input, and related to the density of cells in the suspension through the below equation:

OD = log10(
I
I0
) = ε ∗ l ∗ρ

Where ρ is the density of cells in suspension, l is the path length of the light and ε a constant

which must be calibrated experimentally using cell counting experiments.

We conducted cell counting experiments by diluting a sample of E. coli at a known Optical

Density one part per million into Phosphate Buffered Saline Solution (PBS); 100uL of the diluted

sample is then spread on an LB agar plate and left overnight at 33C. The following morning,

individual colonies, originating from a single cell, are counted by eye. These experiments

are repeated three times for each bacteria concentration. The results of these experiments are

summarized in Fig. 2.6; based on the data, we measure OD1 = 7×108 cells/mL.
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Figure 2.6. Results of the cell counting experiments, used to quantify the number of cells at a specific optical
density. Data is binned, and the averages and standard deviations of those bins are displayed in red. The black line
is an approximate fit to the data; we determine that OD(1) = 7 ·108 cells/mL.

Summary: Chapter 2

In Chapter 2, we have laid the groundwork for the following experiments. Section

2.1 began by studying colloidal aggregation in a thermal bath, calibrating our experimental

system against the literature. We have designed an experimental system with automatic, high-

throughput image acquisition, allowing us to observe aggregates over many hours. Analyzing

these experiments, we developed image processing techniques to quantify the fractal dimension

and mass distribution of aggregates. Section 2.2, focuses on the active suspension of motile E.

coli. Using the DDM technique, we quantified the speed and fraction of motile E. coli in the

active suspension. We found that adding 1% Glucose results in a constant speed and motile

fraction for 4 hours, amounting to a constant injection of energy into the system for the duration

of the colloidal aggregation experiment. Additional experiments using GFP labeled E. coli were

performed, identifying that they swim in circles of radius ∼ 50µm, and are able to navigate

through colloidal aggregates. Finally, we used a series of cell counting experiments to quantify

the number of E. coli in the suspension. The following chapter merges Section 2.1 and 2.2,

investigating colloidal aggregation in a bacterial bath.
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Chapter 2, in part, contains material as it may appear in Nature Physics, 2023. Daniel

Grober, Ivan Palaia, Mehmet Can Ucar, Edouard Hannezo, Andela Šarić, Jérémie Palacci. The

dissertation author was the primary investigator and author of this paper.
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Chapter 3

Unconventional colloidal aggregation in
chiral bacterial baths

The following chapter is a verbatim reprint of the paper “Unconventional colloidal

aggregation in chiral bacterial baths”, Daniel Grober, Ivan Palaia, Mehmet Can Ucar, Edouard

Hannezo, Andela Šarić, Jérémie Palacci, in press Nature Physics 2023.
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Unconventional colloidal aggregation in chiral bacterial
baths

Daniel Grober, Ivan Palaia, Mehmet Can Ucar, Edouard Hannezo, Andela Šarić, Jérémie Palacci

Abstract

In equilibrium, thermal forces agitate molecules that diffuse, collide, and bind to

form materials. However, the space of accessible structures in which micron-scale

particles can be organized by thermal forces is limited, owing to slow dynamics

and metastable states. Active agents present in a passive fluid generate forces and

flows: a bath with active fluctuations. An unanswered question is whether those

active agents can drive the assembly of passive components into unconventional

states, and which material properties they will exhibit. Here, we show that passive,

sticky beads immersed in a bath of swimming E. coli bacteria aggregate into

unconventional clusters and gels that are controlled by the activity of the bath.

We observe a slow but persistent rotation of the aggregates that originates in the

chirality of the E. coli flagella and directs aggregation into structures that are not

accessible thermally. We elucidate the aggregation mechanism with a numerical

model of spinning, sticky beads and reproduce quantitatively the experimental

results. We show that internal activity controls the phase diagram and the structure

of the aggregates. Taken together, our results highlight the promising role of

active baths in designing structural and mechanical properties of materials into

unconventional phases.
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In the classical picture of Brownian motion, the incessant motion of microscopic particles

results from collisions with the fluid molecules. The particles and solvent are passive, driven by

thermal fluctuations [8, 7]. Agitated molecules diffuse, interact and collide, building materials.

This view on assembly constituted an elemental inspiration for colloidal science, aiming to

translate the versatility of chemistry to the microscale.

It led to the design of a broad library of building blocks (1-10 µm in size) with various

shapes and chemical properties to mimic the chemical bonds [5]. A major obstacle remains, that

thermal energy is not sufficient to allow micrometric particles to explore the conformational

space efficiently, making assembly challenging and often elusive. In living systems, assembly is

assisted by molecular motors that generate active fluctuations [67, 68] and enhance intracellular

transport [69, 70]. Active agents present in a solvent generate forces and flows, adding active

noise to thermal fluctuations. They constitute an effective medium, an active bath, that can,

in principle, overcome kinetic barriers and control the (non-equilibrium) assembly of passive

building blocks. Libchaber coined the term bacterial bath to describe the effect of swimming E.

coli on the positional fluctuations of micron-scale tracers [34], later extended to suspensions of

self-propelled particles: nanorods or bacteria at different concentration and speed [35]. Active

baths can be defined with an effective temperature as hot thermal systems under certain condi-

tions [71] but remain intrinsically non-equilibrium, featuring properties prohibited by thermal

physics. Active baths produce work[72], power asymmetric gears [40, 41] and modulate effective

interparticle interactions [45, 47]. Yet, the use of active baths to control assembly is largely

unexplored.

Here, we investigate the aggregation of sticky colloids in an active bath of swimming E.

coli bacteria. We show that the bacterial bath presents features of a hot thermal bath, effectively

enhancing the dynamics of assembly. We further report that the aggregates exhibit a slow and

persistent clockwise rotation, which makes the bacterial bath effectively chiral, and controls

the morphology and phase diagram of aggregation. Our results are quantitatively reproduced
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by a minimal numerical model of attractive spinners, demonstrating the importance of the non-

equilibrium rotation and folding in the reshaping of aggregates and the structuring of gels. We

further highlight how the mechanical properties of such materials, assembled in active baths,

differ from conventional, thermal ones.

The experiment consists of colloidal beads (2.2 µm TPM spheres) immersed in a sus-

pension of swimming E. coli bacteria. Short-range attraction between the beads is obtained

using conventional depletion interaction with non-absorbing polymer as depletant (PEO, 600K).

We perform our experiments with an attraction strength ∼ 75kBT , that effectively leads to

irreversible binding of the colloidal beads after collisions, dubbed sticky colloids. The solution

of sticky colloids, i.e. colloidal beads and depletants ([PEO]= 3.25g/L), is added to either

pure motility medium (the thermal bath) or swimming E. coli bacteria suspended in motility

medium, at concentration ρB (the active bath) and sealed in a glass capillary [SI]. In order to

keep the activity of the bath constant in anaerobic conditions, we add 1% w/v glucose to the

suspension, enabling constant E. coli swimming velocity, V = 23 µm/s ±2 µm/s through the

duration (4h) of an experiment [Fig. 2.3] [61, 62]. The concentration ρB of E. coli bacteria of the

bath is controlled via optical density and adjusted by centrifugation and resuspension for each

experiment [Fig. 2.6]. We consider active baths of varying bacterial concentrations ρB, where

the maximal value ρ∗ = 6 ·108 cells/mL is an order of magnitude below the onset of bacterial

turbulence [73].

The glass capillary containing the sticky beads is laid on the programmable stage of

an optical microscope and observed [Fig. 3.1A]. Particles sediment to form a near 2D system,

at constant surface fraction ΦS ∼ 18± 3%. Colloidal beads in the passive bath are agitated

thermally. They collide and bind, forming ramified aggregates resemblant to those obtained

in Diffusion Limited Colloidal Aggregation (DLCA, [4]). The system reaches a near steady

state in experiments as large clusters diffuse too slowly to further grow. Similar experiments
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performed in the active bath of swimming E. coli bacteria reveal an entirely different dynamical

state. Aggregates appear more agitated and grow faster than in the thermal experiments. They

are also visually distinct: more compact than the ramified aggregates of the thermal experiment

and presenting cavities [Fig. 3.1B, Movie S1].

We first compare the dynamics of the aggregates in the thermal and active bath by track-

ing the aggregates. Collisions between aggregates are notably identified by abrupt changes in

area and perimeter, and lead to novel aggregates. In addition to the translational dynamics of the

center of mass, we take advantage of the anisotropy of the aggregates to track orientation and

quantify angular dynamics [SI].

The complex and evolving shapes of the aggregates require a coarse-grained approach

to perform meaningful comparisons. To this end, we characterize the size of the aggregates by

their radius of gyration RG, as conventionally performed for fluctuating polymers [SI]. Dynamics

are averaged in time and isotropically in space over long trajectories (> 1min); this allows us to

characterize the dynamics of aggregates, in both translation and rotation, by their size RG and

the concentration of the bacteria suspension ρB [Fig. 3.2].

In both thermal and active baths, the Mean Squared Displacement of the aggregates

is linear at short times (∆t < 5s), ∆R2(∆t) = 4Deff∆t, indicative of diffusive motion with ef-

fective diffusivity Deff [Fig. 3.2A-inset]. The diffusivity in the thermal bath is lower than the

Stokes-Einstein prediction for bulk diffusivity in water, a result of the increased viscosity of

the motility medium with suspended depletant polymers [74] and the added hydrodynamic

dissipation from the proximal glass substrate of the capillary [75]. We further observe that

Deff increases with bacterial concentration ρB, up to 8-fold larger than in the thermal bath. At

fixed bacterial concentration ρB, the diffusivity decreases with RG, following the Stokes-Einstein

scaling for a thermal system Deff = α(ρB)/RG [Fig. 3.2A]. Though non-monotonic behavior
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of the diffusivity of spheres in bacterial suspension has been previously reported [76], it was

studied over a narrow range of sizes and remains compatible with our experimental results for

aggregates of complex shapes and varying sizes. Next, we turn to the orientational dynamics

of aggregates and report that the dynamics of the orientation θ is similarly diffusive at short

times, with ∆θ 2(∆t) = 2Dθ
eff∆t, and Dθ

eff the angular diffusivity [Fig. 3.2B-inset]. As for trans-

lational diffusion, Dθ
eff increases with increasing bacterial concentration ρB and follows the

Stokes-Einstein scaling: Dθ
eff = β (ρB)/R3

G [Fig. 3.2B].

In order to compare the amplitude of the fluctuations that lead to translational and rota-

tional diffusion in the active bath, we normalize the measured diffusivities by the value in the

thermal bath and report α(ρB)/α0 and β (ρB)/β0, where the subscript 0 refers to the thermal

system [Fig. 3.2C]. Two comments are in order: (i) normalized fluctuations α/α0 and β/β0

collapse, highlighting the fluctuations of the active bath as common origin of the observed trans-

lational and rotational diffusion and (ii) scale linearly with bacterial concentration ρB. Those

results are in line with previous reports of enhanced translational diffusivity of individual spheres

in an active suspension [35], and extend the conclusions to tracers of complex shapes with a

broader range of size. The same holds for rotational dynamics. This sets ρB as the relevant

experimental parameter to control the activity of the bacterial bath.

The observation of the aggregates over the course of tens of minutes reveals a small but

persistent angular rotation, Ω < 10−2rad/s, that was previously imperceptible at shorter times

[Fig. 3.2D, Movie S2]. The rotation is consistently clockwise in experiments performed in the

capillary [Fig. 3.2E-H], at a rate that increases with bacterial concentration ρB and decreases

with aggregate radius RG [Fig. 3.2I-inset]. Remarkably, the data collapses onto a master curve,

Ω/(M·ρB) ∝ 1/R3
G, where M is the mass of the aggregate [Fig. 3.2I]. It indicates a net torque

τ ∝ M·ρB imparted from the active bath to the aggregate and balanced by a viscous torque

∝ 1/R3
G. This linear dependence of the torque with the bacterial concentration ρB shows a
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cumulative effect of the bacteria bath leading to the rotation of the aggregates in a persistent

(clockwise) direction. It notably departs from the non-chiral rotation that arises from the sum-

mation of randomly contributing bacteria in an aggregate [77]. Extracting the mobility µR from

the measurements of rotational diffusivity in the thermal bath [Fig. 3.2B], we estimate the net

torque exerted by the bacterial bath, τRG = µR ·Ω(RG)∼ 0.4pN·µm for RG ∼ 7µm. This minute

torque becomes significant in experiments of aggregations lasting a few hours. We intuit that

the rotational symmetry-breaking originates from the native chirality of E. coli flagella, that

leads to clockwise circular trajectories, with typical radius of curvature RB ∼ 43 µm [Fig. 2.5],

near the no-slip boundary of the glass capillary [58]. Indeed, we can reverse the direction of

rotation of the aggregates by performing experiments at the air-water interface of a pendant drop,

where bacteria reverse direction of rotation into counterclockwise circles [57] [Fig. 4.1]. This

corroborates that the chirality of E. coli flagella breaks the rotational symmetry and makes the

bacterial bath effectively chiral.

In order to better understand the phenomenon, we consider a toy-model of a circular

aggregate of radius a, in an active bath of persistent self-propelled rods. For simplicity, the

self-propelled particles exert a constant force F0 aligned with their propulsion direction [SI;

Fig. 4.3]. When the self-propelled particles navigate along straight segments, no net torque is

exerted by symmetry, and the circular aggregate does not show persistent rotation [40, 41]. In

contrast, when the self-propelled particles move along along circular clockwise trajectories, a

wedge of unbalanced collisions appears. Its opening angle 2θ is controlled by the curvature

1/RB of the trajectories, θ ∼ 1/RB, [Fig. 4.3]. The asymmetric collisions lead to a tangential

force of amplitude F// ∝ 2θ ·F0 exerting a torque onto the circular aggregate. The total torque,

τRB ∝
F0
RB

·ρBa2, is obtained by integration over the perimeter and multiple collisions, leading

to clockwise rotation of the circular aggregate. Hereby, this simple toy model highlights that

an active chiral bath exerts an active torque onto a circular aggregate, which is absent for an

active bath of straight swimmers. We further extend this result, showing that an active bath
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that results in constant tangential forces along the boundary of an aggregate produces a torque

∝ ρ ·A, proportional to the surface area A of the aggregate [SI]. Remarkably, this scaling, valid

for aggregates of arbitrary shapes, agrees with the experimental results [Fig. 3.2I]. We however

stress that the quantitative description of the rotation of the aggregates in the experiment certainly

lies beyond this simple model, superimposing effects of complex shape of the aggregates, which

can be locally asymmetric, as well as the forces exerted by the bacteria navigating inside the

aggregate, as visible on [Fig. 2.5C]. The quantitative description of those effects lies beyond the

scope of this paper and constitutes further work.

We now turn to the morphology and statistical properties of the colloidal aggregates

formed in the thermal and active bath. In order to account for the accelerated dynamics of the

active bath, we rescale time so that aggregates in the thermal and active bath reach the same

average size. Aggregates formed after 25h (thermal bath) or 1h15 (active bath) reach comparable

size, M = 150 colloids, but are distinct to the naked eye [Fig. 5.2]. Thermal aggregates are

ramified, as typical of DLCA, and a result of the low probability for a diffusing particle to reach

the center of the aggregate. In contrast, aggregates of the active bath are compact and present

cavities. Remarkably, aggregates formed in the thermal or active baths fall into distinct groups

when representing the fraction of colloids on the perimeter, a salient control parameter in the

mechanical response of gels [15][Fig. 5.5]. In order to further quantify morphological changes,

we compute the fractal dimensions ν of an ensemble of aggregates, as Mi ∝ Rν
G,i, where Mi is

the mass in units of colloids (or, number of colloids in the aggregate i) and RG,i the radius of

gyration of aggregate i [See Fig. 3.3A]. Aggregates for which ν = 1 are elongated, ν = 2 are

compact and intermediate values for ν are indicative of ramified, fractal structures. The fractal

dimensions of the aggregates in the thermal as well as the active bath evolve in time before

reaching a plateau after approximately 2 hours [Fig. 5.3]. The value of the fractal dimension

measured in the thermal bath, ν0 ∼ 1.4, are in line with reported values for DLCA in 2D [24].

As observed to the naked eye, aggregates in the active bath are more compact than in the thermal
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bath, reaching ν(ρ∗)∼ 1.8 at the highest performed activity.

Aggregate morphology is further quantified via the normalized complementary cumu-

lative size distribution, P [SI]. In the thermal bath, the size distribution of aggregates can be

rescaled by the mean value, such that at all times the distributions collapse onto a single log-

normal distribution [Fig. 2.2]; a universal feature of merging/fragmenting systems [52, 54]. In

contrast, the size distribution of aggregates formed in the active baths cannot be collapsed and

exhibits significant deviations from log-normal. Notably, tails become more prominent with

increasing activity [Fig. 3.3B]. It results that aggregation in the thermal and active baths do not

belong to the same universality class, highlighting a profound effect of the bacterial bath on the

properties of aggregation[52, 54]. We intuit that those non-equilibrium properties originate in

the compaction and folding of the aggregates that arise from the observed rotation [Fig. 3.4A].

In order to better understand the mechanism, we develop a minimal physical model aimed to

capture the chirality of the bacterial bath without explicitly considering the swimming bacteria.

We expect the chiral bath to cause aggregates of colloids to rotate and we model the system as

an ensemble of attractive rotating beads coupled to each other by friction [Fig. 3.3C][SI]. The

rotation is implemented in a mean-field fashion, attributing a constant torque to each bead. The

simulations are similar in spirit to previous models of internally driven gears [78, 79] with the

addition of strong attraction between the spinners. The latter leads to irreversible aggregation,

a notable difference from crystals of rotating cells reported at moderate attraction [80]. The

clockwise rotation of the beads is implemented via an internal driving torque whose amplitude

controls the internal activity of the system, allowing comparison between the simulations and our

experimental results. The numerical simulations capture visually the difference between aggre-

gation in the thermal and active bath [Fig. 3.3D-E, Movies S3-S5]. They furthermore reproduce

quantitatively the experimental increase in fractal dimensions and distributions of size of the

aggregates [Fig. 3.3F-G], thus validating the predictive power of the model. Aggregates rotate

and grow faster than thermal aggregation, in line with a simple model of aggregation-collision,

52



accounting for the sweeping effect from rotation on the collision rate [Fig. 4.4]. The simulations,

as the experiment, show two different effects of the rotation: (i) the mentioned sweeping motion

of spinning aggregates and (ii) the self-folding of the aggregates [Fig. 3.4B, Movie S6]. In order

to disentangle their role, we compare our initial set of simulations, where aggregates can deform

as a result of the internal torques [Fig. 3.4C], with another set where aggregates are treated

as rigid objects [Fig. 3.4D]. At low internal torque, both simulations of deformable and rigid

aggregates form 2D gels [Fig. 3.4C,D]. The obtained structures are, however, markedly different.

The gels formed by the percolation of deformable aggregates are structurally heterogeneous, with

both compact and ramified regions [Fig. 3.4E]; the gels built from rigid aggregates appear more

uniform in structure [Fig. 3.4G]. At sufficient internal torque, simulations of rigid aggregates

lead to space-spanning networks that resemble thermal DLCA gels [Fig. 3.4G,H]. In contrast,

simulations of deformable aggregates at high internal torques do not percolate; the internal torque

folds the large, deformable aggregate onto themselves. This leads to large compact clusters with

internal cavities [Fig. 3.4F] and prevents the formation of a percolated network [Fig. 3.4C]. The

rotation enhances the dynamics of aggregation while the self-folding of the ramified aggregates

controls their fractal dimension. This mechanism highlights the difference in the nature of the

reported aggregation with conventional Reaction Limited Colloidal Aggregation, and leads to

different morphologies [4]. We next investigate the phase behavior of aggregation for varying

surface fraction Φ and internal torque and observe the existence of a gel and a cluster phase

controlled by activity [Fig. 3.5A]. The (ν ,Φ) diagram is obtained by measuring the fractal

dimension of the aggregates and allows us to characterize the experimental data in bacterial

baths [Fig. 3.4A-inset, Fig. 5.1]. The gel phase is separated from the cluster phase by a critical

fractal dimension νC ∼ d +α logΦ, where d = 2 is the dimension of space and α ∼ 0.29 is

phenomenologically adjusted to the data – the scaling in logΦ originating from the definition

of Φ ∝M [2]. Overall, sufficient activity suppresses the gel phase in favor of compact aggregates.

Having established that the activity of the bath controls the phase behavior of aggregation
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into a cluster phase or a gel phase, we next investigate the structural and mechanical properties

within each phase. In the cluster phase, we observe that the porosity of aggregates is controlled

by the internal activity. Increased internal torque augments the compaction of the aggregates,

leading to dense and compact structures [Fig. 3.5B]. We next consider 2D gels (at Φ = 0.31),

that differ on whether they are assembled in a thermal bath or with internal activity. We probe

those passive gels mechanically by performing numerically stress-strain measurements [Movies

S7, S8]. Gels obtained by aggregation in the thermal bath exhibit a conventional elastic behavior

in the limited range of considered strain ∼ 10%. In contrast, gels assembled with internal activity

are highly non-linear and behave like mechanical diodes: elastic in compression and stiffening

under extension [Fig. 3.5C]. The onset of the plastic regime also appears controlled by the activity

of the assembly. In order to gain insight in the origin of this unconventional mechanical behavior,

we perform additional experiments and simulations, at Φ = 0.39, a surface fraction, for which we

can experimentally achieve a 2D percolated network, greater than 1mm x 1mm in size in both the

thermal or the bacterial baths. We use bacterial concentration up to ρB = 0.1ρ∗ , beyond which

the gel phase is replaced by the cluster phase, showing once again a solid agreement between our

experiments and the phase diagram predicted numerically [Fig. 3.5A]. The gels achieved in the

active baths display significant structural differences compared to those achieved thermally [Fig

6A-B]; this could, at first, be seen as surprising, considering that the added fluctuations of the

bacterial bath are comparable to the thermal energy itself [Fig. 3.2C]. It simply highlights that

the bacterial bath is more than a mere hot bath, and that the acquired rotation of the aggregates

has profound effect on the dynamics and structure of the aggregates, as already apparent on the

anomalous size distributions [Fig. 3.3B, G]. We quantify the structural differences by measuring

number fluctuations of density in the gels [Fig. 3.6C]. We can define extract a typical length-scale

for the gel structure by identifying the local maximum of the number fluctuations σ2(N)/⟨N⟩

[81]. As visible to the naked eye, the length scale grows from ∼ 10 colloid diameter in the

thermal gel to ∼ 30−40 colloid diameters in the gels assembled in bacterial bath. Additionally,

the emergence of giant number fluctuations (GNF) for gels assembled in the active bath highlight
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more heterogeneous structures compared to the passive bath. To further quantify this aspect,

we characterize the pores of the 2D gels by computing the distance from points in the pore

to the nearest colloid in the network backbone [82]; this distribution is plotted in [Fig. 3.6D].

Gels assembled in the active baths show broader distributions than gels assembled thermally,

indicative of large heterogeneous voids in the structure. These structural heterogeneities arise

from the rotation of aggregates induced by the chiral bacterial bath. The rotation results in the

jamming of ramified aggregates into each other and the formation of large isostatic structures

[Fig. 3.6B-inset]. Remarkably, our simple numerical model of rotating aggregates with internal

torques once again show good agreement with the experimental realization of gels [Fig. 3.6F-G].

This highlights how rotation and folding of the aggregates is the key ingredient in shaping and

forming heterogeneous structures and driving exotic mechanical responses. These results should

be taken in relationship with the role of structural heterogeneities in determining the breaking and

re-structuring of gels [83, 84]. Previous works reported that the moderate substitution of passive

particles by active particles facilitate the annealing of colloidal monolayers [85, 86] or control

the yield stress of gels [51, 87]. Our results highlight how the assembly in an active bath directs

the structural and mechanical properties of materials entirely made of passive constituents. We

are hopeful our results will stimulate future work to provide a complete microscopic model that

translates aggregation in bacterial baths into the design of gels with unconventional mechanical

response.

In summary, we demonstrate that active baths are a potent instrument to devise un-

conventional aggregates and gels and that activity is a salient parameter for phases of matter

out-of-equilibrium. It is noticeable that simulations of a purely active system of spinners repro-

duce quantitatively experimental results of passive particles in a chiral bacterial bath, possibly

highlighting generic features between these two classes of systems. The importance of chirality

in morphogenesis [88, 89, 90] further hints to the potential of chiral active baths to achieve

materials beyond thermal. While our study is limited to 2D, it is a proof of concept for materials
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powered from within, in phases and structures not achieved via thermal treatments, as also

recently highlighted in the effect of activity on liquid interfaces [48]. It will motivate efforts

to assemble 3D materials in active baths, while the characterization of their non-conventional

mechanical and rheological properties will drive further experimental and theoretical work.

This work effectively lays out a roadmap establishing the concept of bacterial forging, where

gels structures are controlled by the bacterial bath, the way forging in metallurgy controls

the properties of metals through sequences or annealing and quenching. Because activity can

in principle be controlled in time and space externally [43], our findings open up a branch of

materials science, where the properties of passive materials are tailored upon their assembly in ac-

tive baths and active materials are supplied with energy as desired, to induce healing or annealing.
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Figure 3.1. A) Sketch and components of the experiment of aggregation of sticky beads. Colloidal beads (purple)
are mixed with depletant (red) that controls the strong attraction between the colloidal beads. The suspension is
mixed with either pure motility medium (the thermal bath) or swimming E. coli bacteria (green) suspended in
motility medium (the bacterial bath). B) Bright-field images of the colloidal aggregation after 20mins, 4h and 24h
in a thermal bath (top, black) and after 20mins and 4h in an active bath (bottom, red) with bacterial concentration
ρB ∼ ρ∗ = 6 ·108cells/mL. Scale bars are 100µm.
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Figure 3.2. Short time dynamics of the aggregates (∆t < 5s). A-inset) Mean Squared Displacement (MSD) for
fixed bacterial concentration ρB = ρ∗ and increasing aggregates’ size RG (larger symbol for larger RG). The MSD
increases linearly with time allowing to measure an effective diffusivity Deff(ρB,RG). A) Translational diffusivity
Deff for various bacterial concentration ρB and aggregates’ size RG (black is thermal and hotter color represents
higher ρB). For each bacterial concentration, Deff = α(ρB)/RG as predicted by Stokes-Einstein relationship for a
thermal bath (dashed lines). Each point represents an average over at least 5 aggregates. B-inset) Mean Squared
Angular Displacement (MSAD) for fixed bacterial concentration ρB = ρ∗ and increasing aggregates’ size RG,
(larger symbol for larger RG). The MSAD increases linearly with time, allowing to measure an effective diffusivity
Dθ

eff(ρB,RG). B) Rotational diffusivity Dθ
eff for various bacterial concentration ρB and aggregates’ size RG (black

is thermal and hotter color represents higher ρB). For each bacterial concentration, Dθ
eff = β (ρB)/R3

G as predicted
for Stokes-Einstein relationship in a thermal bath (dashed lines). Each point represents an average over at least
5 aggregates. C) Normalized diffusivity in translation, α/α0 (circles) and in rotation, β/β0 (diamonds), where
subscript 0 refers to the thermal bath. Normalized translational and rotational diffusivity collapse. The symbols are
slightly offset on the horizontal axis for clarity. Long time dynamics of the aggregates. D) Persistent clockwise
rotation of aggregates observed at longer times (minutes to tens of minutes) in the glass capillary. The linear
dependence of the angle θ allows to extract a rotation rate Ω(ρB,RG). E-H) Histograms of rotation rates Ω for
different bacterial concentration ρB for all aggregates sizes RG. E) ρB = ρ∗, F) ρB = 0.5ρ∗, G) ρB = 0.2ρ∗, H)
ρB = 0, thermal. I-inset) Rotation rates Ω for different bacterial concentrations ( ρB ∼ 0.2ρ∗ (green), ρB ∼ 0.5ρ∗

(orange) and ρB ∼ ρ∗ (red), with ρ∗ = 6 ·108cells/mL) and aggregates sizes RG. I) Data collapse onto the master
curve Ω/(MρB) ∝ 1/R3

G, where M is the mass of the aggregate. Each point represents a measurement for an
aggregate.
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Figure 3.3. Aggregate morphology A, B: Experiments. A) Measurements of the fractal dimension, ν , with M ∝

R̃ν
G of aggregates of radii R̃G = RG/a, where a is the radius of a colloidal bead, and mass M and B) Complementary

cumulative size distributions P of the aggregates for increasing bacterial concentration ρB (black:thermal, ranging
from 0.05ρ∗ to ρ∗ - see colorbar). The black dashed line is the log-normal distribution predicted for passive colloidal
aggregation. In both A and B, aggregates are characterized after 4 hours. C-G: Simulations. C) Sketch of the
numerical model of active spinners with internal torque and attractive interactions coupled by tangential friction [SI].
D-E) Snapshots of the simulations of our minimal model for D) thermal (black) or E) active with an internal torque
(red) [see main text], resembling the experimental results of [Fig.1B]. F) Measurements of the fractal dimension
M= Rν

G of aggregates in simulations and G) Complementary cumulative size distributions P of the aggregates
with increasing internal torque (see colorbar). The black dashed line is the log-normal distribution predicted for
passive colloidal aggregation.
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C) Time evolution of the mass fraction of the largest aggregate in the system for increasing internal torque of the
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the thermal case and at low activity, the largest aggregate grows until incorporating all particles to form a percolated
structure and a space-spanning network as visible on the snapshot of the simulation presented on (E) (corresponding
to the purple triangle on panel C). At sufficient activity (red curve), large aggregates fold and the largest cluster
become more compact, exhibiting a plateau of growth (vertical dashed line). The gel phase is suppressed, replaced
by compact clusters, with cavities as visible on the snapshot of the simulation presented on (F) (corresponding to
the red star on panel C). D,G,H: Simulations of rigid aggregates (see main text) D) Time evolution of the mass
fraction of the largest aggregate in simulations of rotating rigid aggregates, without folding . (G, H) Snapshots of
the simulations as indicated by the symbols on panel D). They show the formation of a percolated structure for all
activity (internal torque). The folding is responsible for the suppression of the gel phase at higher activity.
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Figure 3.5. (A) Phase diagram of the colloidal aggregation for varying internal torques and surface fractions
showing the existence of a space-spanning gel phase (pink, squares are simulations data) and cluster phase (blue,
circles are simulations data) controlled by activity. (A-inset) Phase diagram in (ν ,Φ) variables obtained by
measuring the fractal dimension of the aggregates. A gel phase (pink) is separated from a cluster phase (blue) by a
critical fractal dimension νC ∼ 2+0.29logΦ (dashed line) [see main text for the scaling]. Triangle symbols are the
experimental data for different activity: thermal (black), ρB = 0.05ρ∗ (purple), ρB = 0.2ρ∗ (green) and ρB = 0.5ρ∗

(orange). (B) Activity control of the structure of aggregates. Simulations performed at constant Φ = 0.16. The
system is in a gel phase in the thermal bath (black circle) and, for all other represented activities, forms compact
clusters (shown as insets), whose porosity is set by the internal torque. (C) Mechanical stress-strain curves of
passive gels, whose initial structures are prepared through thermal (black) or active aggregation set by the amplitude
of the internal torque as indicated by the color of the curve: 1kBT (purple) and 3kBT (blue). All simulations are
performed for Φ = 0.31. The extensile response (positive strain) is markedly different for gels obtained via thermal
or active aggregation. The gels assembled in the thermal bath respond linearly and symmetrically, behaving as an
elastic solid in the considered range. The gels achieved through active aggregation are highly non-linear, elastic in
compression and stiffening under extension. Compression and extension curves are performed independently and
plotted on the same figure [see SI for the deformation protocol].
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Figure 3.6. A-D: Experiments. A, B) Bright-field image of a 2D colloidal gel aggregated in (A) a thermal bath
(ρB = 0) and (B) an active bath (ρB = 0.1 ρ∗). Scale bar is 200 µm. B-inset) Time-lapse showing the formation of
large heterogeneities via the rotation and jamming of large aggregates. Scale bar is 200 µm. C) Number fluctuations
σ2(N)/⟨N⟩ of colloidal gels aggregated in thermal bath and active bath of various strengths [SI]. D) Probability
density function of the distance from the colloidal backbone to points of the pores. Black is the thermal bath
(ρB = 0) and blue is the active bath (ρB = 0.1 ρ∗). E-H: Simulations. E, F) Snapshot of simulated 2D colloidal
gels, aggregated at (E) internal torque = 0 kBT and (F) internal torque = 5 kBT . G) Number fluctuations σ2(N)/⟨N⟩,
calculated from simulated colloidal gels. (H) Probability density function of distance to the nearest colloid for all
pixels in holes in the simulated colloidal gels. Black is a gel aggregated at internal torque = 0kBT and green is
internal torque = 5kBT . The simulations show again a solid agreement with the experiments.

62
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Chapter 4

Further discussion and results on the rota-
tion of aggregates

The persistent, clockwise rotation of aggregates is the salient feature of the unconventional

aggregation reported in the previous chapter; the following section expands upon this observation.

The chapter is broken up into 3 sections: Section 4.1 builds an intuition for the swimmer -

aggregate interactions, based on both additional experiments and a review of theoretical models

available in literature. Section 4.2 develops a microscopic model to explain the persistent

clockwise rotation, based on the knowledge built in the previous section. Finally, Section 4.3

discusses the effect of a clockwise persistent rotation of aggregates on the mass distribution and

growth rate.

4.1 Source of aggregate rotation: theory and experiments

This section begins by discussing additional colloidal aggregation experiments, performed

on an inverted drop. The experiments performed in Chapter 3 take place on the bottom surface

of a sealed glass capillary (solid-liquid interface), where E. coli swim in clockwise, circular

trajectories [58]. On a liquid-air interface (i.e. the bottom of an inverted drop) E. coli trajectories

reverse direction, swimming in counter clockwise circles [57]. These experiments establish

a positive correlation between the direction of rotation of the aggregates and the chirality of

E. coli trajectories. We further our understanding of the interactions between swimmers and
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aggregates by reviewing the experiments using green fluorescent protein labeled bacteria, as well

as a review of the literature, promoting a collision - based model for the swimmer - aggregate

interactions. This information motivates our model for how the aggregates in the bacterial bath

rotate, presented in the following section (Section 4.2).

4.1.1 Inverted drop experiments
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Figure 4.1. (A) Sketch of the experimental set up for the inverted drop experiment. (B) Distribution of angular
velocities for all clusters tracked during the aggregation experiment on an inverted drop; the bacteria concentration
is ρB = 6×108 cells/mL. The black dashed line is zero, and the green dashed line is the average angular velocity.

We perform colloidal aggregation experiments on the bottom surface of a hanging drop

[Fig. 4.1A]. In doing so, we are able reverse the fluid boundary condition at the interface where

the experiment takes place: a no-slip condition at the bottom of a glass capillary becomes a near

perfect-slip fluid-air interface at the bottom of a hanging drop. A 10 µL drop of the Colloidal

Aggregation Solution, described previously, is suspended between a coverslip and a circular

depression glass slide, as represented in Fig.4.1A. We observe the apex of the drop, capturing

a series of 3000 frame videos at 20 fps using a 20x Nikon objective (NA 0.45). We observe

that all colloids in the field of view are in focus, ensuring that the surface of the drop is locally

flat. Following the tracking protocol described in Chapter 5, we extract information about

the rotational dynamics of the aggregates from a linear fit between orientation and time for

trajectories longer than 100 frames. We observe that 86% of clusters rotate counter clockwise
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[Fig. 4.1B], reversing direction from the previous experiments. These results are reminiscent of

the findings of Di Leonardo et al. [57], who found that E. coli swim in counter-clockwise circles

at a liquid-air interface, due to the perfect-slip boundary conditions.

Summary: Inverted drop experiments

Performing experiments on an inverted drop (liquid-air interface), we find that aggregates

rotate counter clockwise, reversing direction from the previous experiments performed on a

solid-liquid interface. Di Leonardo et al. [57] found that E. coli reverse the chirality of their

trajectories on a liquid-air interface, swimming in counter clockwise circles. This establishes a

positive correlation between the direction of rotation of the aggregates, and the chirality of the

swimmer trajectories.

4.1.2 E. coli trajectories swimming through aggregates

In this section, we review Fig. 2.5C, originally introduced in Chapter 2. This figure

displays trajectories of E. coli interacting with a colloidal aggregate; trajectories are color coded,

such that blue represents the initial position of the bacterium and red the final position. We

observe that the E. coli swim through the aggregate, as opposed to scattering off the perimeter.

Additionally, we notice that the E. coli swim in clockwise, curved trajectories before entering

the aggregate, but approximately straight trajectories once inside.
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Figure 4.2. E. coli trajectories swimming through a colloidal aggregate. Trajectories are captured using confocal
microscopy and overlaid on a bright-field image of the aggregate. Within each trajectory, color indicates time, with
blue the initial position. Scale bar 50 µm. This figure originally appears in Chapter 1 as Fig. 2.5C.

4.1.3 Swimmer-tracer interactions (review of theoretical models)

The mechanism behind enhanced diffusion of passive tracers in a bath of active swimmers

(Section 1.3.2) is an active field of research, with a variety of mechanisms proposed. The literature

can be generally broken into three sections: far-field hydrodynamics, near-field hydrodynamics,

and collisions. We first review the relevant literature, and finally relate these models to the

experimental observations.

Experimental findings of Leptos et al. [38] reported that 1 µm tracers made large, looped

trajectories in a bath of C. reinhardtii. Many models, based on far-field hydrodynamic inter-

actions, have been developed to explain how these looped trajectories relate to the observed

enhanced diffusion. Dunkel et al. [91] proposed that the tracer is displaced by far-field hydro-

dynamic flows generated by the swimmer. The authors find that, in the limit of low Reynolds,

tracer particles execute large, quasi-closed loops as the swimmer passes, with the exact shape of

trajectory determined by the hydrodynamic model of swimmer. In the case of a hydrodynamic

pusher such as E. coli, the particle is first pushed away from the swimmer, and then pulled

back to nearly the same position as the swimmer passes. Minõ et al. adapted this to model the

enhanced diffusion of passive tracers interacting with motile E. coli near a wall [36]. Notably,
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the net displacement of the tracer over a quasi-closed loop is independent of the swimmer speed

(a result of low RE dynamics); the dependence on “active flux”, as measured experimentally,

manifests in the frequency of looping events (i.e. how often a tracer encounters a bacteria),

which is proportional to the swimmer concentration and the swimmer speed [36]. Several similar

models have been proposed, namely a general model for both 2D and 3D enhanced diffusion

[92], as well as incorporating run and tumble swimmer dynamics [93]. All of these models

approximate the tracer as a point particle, such that the tracer velocity can be interpreted at the

fluid velocity at its center of mass; it is unclear how this approximation fares in the case of

aggregates, orders of magnitude larger than the swimmer.

Other works have focused on hydrodynamic entrainment, the process by which a swimmer

moving near to a tracer deforms the fluid and drags the tracer along with it, similar to the wake

on a boat [94] [93]. Recent experimental and theoretical work [39], concerning the motion

of passive tracers in a bath of C. reinhardtii has built upon the work of Leptos et al. [38].

Jeanneret et al. [39], argue that the looping mechanism identified previously makes a negligible

contribution to the motion of tracers; rather, they propose that tracer dynamics are dominated by

rare ”jumping” events where tracers become directly entrained in the wake of a swimming algae.

Additional theory suggests that the size of the active swimmer determines the effectiveness of

hydrodynamic entrainment, with E. coli being too small to effectively entrain a 1µm tracer [95].

Recent work by Lagarde et al.[59] has provided experiments of single E. coli scattering

off 5 µm tracer particles, coupled with a minimal collision based model. They track the center

of mass of both the E. coli and the tracer during many individual scattering events; placing

the incoming E. coli along the x-axis, they determine that the displacement in the y-direction

of the tracer and E. coli typically opposite. This observation seems to rule out hydrodynamic

entrainment as a dominant effect. Additionally, they observe no average displacement of the

tracer if the incident bacterium never gets closer than 1 colloid radius from the center of the

colloidal tracer; this seems to rule out far-field hydrodnamics, via the previously described

looping mechanism. Lagarde et al. propose a simple model which credibly reproduces their
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experimental findings, only considering normal forces applied to the surface of the colloid.

Summary: theoretical models

While we cannot rule out near or far field hydrodynamic effects, the results of Lagarde

et al. [59] suggest that collisions are the dominant interactions between E. coli and large,

passive colloids. These results are in line with initial experiments, observing that E. coli collide

with and swim through aggregates [Fig. 2.5C]. In the following section we develop a collision

based model for the persistent rotation of aggregates, as observed in experiments.
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4.2 Collision-based model for rotation of aggregates

In the following section, we develop a model which explores the experimentally observed

rotation of the aggregates. The model is collision based, and predicts that the aggregate rotates

in the same direction as the chiral E. coli trajectory, in line with the findings in Section 4.1.

Notably, the model describes a torque applied to the aggregate proportional to the concentration

of bacteria times the surface area of the aggregate (τ ∝ ρM), in line with the experimental

observations [Fig. 3.2I].

We begin with a toy model describing the collisions between a chiral swimmer and a

circular aggregate. Later, we apply Stokes’ theorem to determine the applied torque from a

constant force per unit length applied along the perimeter of a 2D aggregate.

4.2.1 Toy Model: Net torque applied by an active chiral bath on a
circular aggregate
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Figure 4.3. Toy Model. A circular aggregate with radius a is surrounded by self-propelled particles of length ℓ,
whose center of mass follow circular clockwise trajectories with curvature radius RB > a. Due to the curvature of
the trajectories, a wedge of unbalanced collisions appears, with opening angle 2θ . The asymmetry of collisions lead
to a tangential component of the force: F// ∝ 2θF0. This leads to a net torque and the clockwise rotation of the
circular aggregate [see model below]. The scale of objects are magnified on the scheme for clarity.
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Self-propelled particles going along straight trajectories do not generate a net torque and

rotation of symmetric gears. In contrast, they exert a torque leading to the rotation of asymmetric

gears, a ratchet effect resulting from asymmetric collisions with the gears [40, 41]. Hereby, we

show that the collisions of active particles propelled along chiral curved trajectories lead to the

persistent rotation of a circular aggregate. This active torque exerted by the chiral active bath

onto a circular aggregate is absent from a conventional active bath of straight swimmers.

To provide an intuitive picture, we introduce a toy model of a circular aggregate of radius

a surrounded by self-propelled rods, of length ℓ. The center of mass of the self-propelled rods

follows clockwise curved trajectories of radius of curvature RB. The self-propelled particles

exert a constant force F0 aligned with the propulsion direction and applied to the point of contact

during collision with the circular aggregate. This effectively accounts for the existence of normal

and tangential forces between the self-propelled particles and the aggregate. The self-propelled

rods are homogeneously distributed with surface fraction σB. We consider situations where

typically RB > a, as on the Figure above [Fig. 4.3].

Case of straight swimmers. A point P on the perimeter of the circular aggregate can be hit by

self-propelled particles with all incoming angles. By symmetry and on average, the resultant of

the forces from the collisions in P is normal to the surface. It results that the net torque on the

circular aggregate vanishes: τ∞ = 0. The circular aggregate does not rotate in an active bath of

straight swimmers.

Case of swimmers with curved chiral trajectories. We now consider self-propelled rods,

whose center of mass follow clockwise curved trajectories (similar reasoning applies for a bath

of chiral, counter-clockwise self-propelled particles). Due to the curvature of the trajectories,

a wedge of unbalanced collisions appears, with opening angle 2θ [Fig. 4.3], where the angle

θ is controlled by the curvature of the trajectory and the steric hindrance of the self-propelled

particle: θ ∼ ℓ/RB. The deficit of collisions at point P from this region leads to the emergence

of a a tangential component of the force in addition to a normal component of the force. Only

this tangential component will contribute a torque onto the circular aggregate, so that we do not
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attempt to evaluate the normal component of the force. The tangential force is estimated to be

F// ∝ 2θ ·F0 u, where u is the unit tangent vector to the circle in P. Integrating over the perimeter

and in time (over multiple collisions), we estimate the net torque from the active chiral bath

τRB ∝
ℓ

RB
·F0 ·a2 ·σB. In effect, the circular aggregate rotates clockwise in a bath of bacteria with

curved clockwise trajectories. The salient feature of this toy model is to show the chiral bacterial

baths exerts an active torque onto a circular aggregate, a feature absent from a conventional

active baths of straight swimmers.

The scaling of the internal torque we obtain in this simple model is compatible with the

scaling observed experimentally on [Fig. 3.2I], with M∼ a2 for compact shapes and ρB ∝ σB,

by integration of the density in 2D. We however stress that the quantitative description of the

rotation of the aggregates in the experiment certainly lies beyond this toy model. The rotation

in the experiment is likely the superposition of multiples effects of (i) the complex shape of

the aggregates, which be locally symmetric/asymmetric or even chiral, (ii) the details of the

microscopic transmission of forces between the bacteria and the walls, notably friction with

the wall, (iii) the forces exerted by the bacteria navigating inside the aggregate, as visible on

[Fig.2.5C] and the (iv) steric effects of bacteria size or hindering of the motion of flagella due to

the walls. The quantitative description of those effects lies beyond the scope of this paper and

constitutes further work.

4.2.2 Torque applied by a constant tangential or normal force on each
point of the boundary of a 2D object

In the previous toy model, we described how chiral circular trajectories result in an

imbalance in collisions at every point along the boundary of a circle, resulting in a net torque on

the circle. Remarkably, the tangential force from collisions F// ∝ 2θ ·F0 u is constant along the

perimeter of the circular aggregate. The normal force is similarly constant along the perimeter

of the circular aggregate. Following, we aim to extend our results and investigate the effect of

constant tangential or normal forces applied on each point of of the boundary onto the rotation of
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an 2D aggregate of arbitrary shape. We first derive the implications of those (strong) assumptions,

before discussing their relevance in light of our experiments.

We place the center of mass of the object at the origin. The boundary is defined by the

curve C, oriented counter-clockwise, parameterized by x = x(t) and y = y(t) for a ≤ t ≤ b, such

that

r(t) = x(t)i+ y(t)j

where i, j and k are fixed unitary vectors in cartesian coordinates. The force per unit length

can be decomposed into a component normal to the boundary, as well as and a tangential

component parallel to the boundary. We consider here only the case of constant normal or

constant tangential forces. We start by analyzing the component acting parallel to the boundary.

Force parallel to the boundary

We consider the case where at each point along the boundary, a constant force per unit

length is applied parallel to the boundary. We note that the line element dr is oriented parallel

to the curve at every point along the curve C. Thus, we can write the infinitesimal force ( f p)

applied parallel to the object at each point along the boundary as

f p = β (dr) = β (dxi+dyj)

Where β is a constant of units force per unit length. The net force applied to the object (F p) is

written as an integral of the infinitesimal force over the curve C.

F p =
∮
C

f p = β

∮
C

dxi+dyj

The net force F p is zero, as the curve C is a closed loop. The net torque (T p) applied is given by

r× f p integrated over the curve C
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T p =
∮
C

r× f p = β

∮
C
(xi+ yj)× (dxi+dyj)

We recognize that the torque only acts in the k direction.

T p = (β
∮
C

xdy− ydx)k

And the magnitude of the torque (Tp) takes the form of a line integral. Defining the vector field

G =−yi+ xj, we can re-arrange the integral to take the form

Tp = β

∮
C

G ·dr

Applying Stokes’ theorem, the line integral for Tp can be related to an integral over the surface S

whose boundary is C. We note that the curve C is oriented counter clockwise in the (i, j) plane,

such that the surface S is oriented in the direction k.

Tp = β

∫∫
S

(curl G) ·k dA

Reminded that the vector field G =−yi+xj, we find that curl G = 2k. Thus, the surface integral

for Tp is written as

Tp = 2β

∫∫
S

dA (4.1)

Here, we show that a constant tangential force applied at each point of the boundary of

a 2D object produces a net torque that is proportional to the surface area A, irrespective of the

shape of the object! In addition, because, we expect the prefactor β to be proportional to the

density of self-propelled particles, this result shows an active torque proportional ∝ ρ ·M as

observed experimentally [Fig. 3.2I], since area, A, and mass M of an aggregate are proportional

to each other.
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Force normal to the boundary

We note that the line element dr×k is oriented normal to the curve at every point along

the curve C. Thus, we can write the infinitesimal force ( f n) applied normal to the object at each

point along the boundary as

f n = α(dr×k) = α(dyi−dxj)

Where α is a constant of units force per unit length. The net force (Fn) applied to the object is

written as an integral of the infinitesimal force over the curve C

Fn =
∮
C

f n = α

∮
C

dyi−dxj

We note that the net force Fn is zero, as the curve C is a closed loop. The net torque (T n) applied

is given by r× f n integrated over the curve C.

T n =
∮
C

r× f n = α

∮
C
(xi+ yj)× (dyi−dxj)

We find that the torque only acts in the k direction.

T n = (−α

∮
C

xdx+ ydy)k

And the magnitude of the torque (Tn) takes the form of a line integral. Defining the vector field

H = xi+ yj, we can re-arrange the integral to take the form

Tn =−α

∮
C

H ·dr

We note that H is a conservative vector field. It follows that we can define the potential

Q(x,y) =
x2

2
+

y2

2
in the region S, such that
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∇Q= H

Since the curve C is a closed loop, we find Tn = 0. A constant normal force applied at every

point on the boundary of a 2D object produces zero net torque.

Discussion

In a simple toy model (Secton 4.2.1), we showed that chiral circular trajectories lead to

an imbalance in collisions at every point along the boundary of a circular aggregate. It induced

constant normal and tangential forces at every point along the boundary. We then investigated

the effect of constant normal and tangential forces at every point along the boundary for 2D

solid objects of arbitrary shapes. We showed that, as long as the parallel component is non

zero, it results in a net torque proportional to the density of active particles and the surface area.

Specifically, these results apply to any 2D object, regardless of its shape or symmetry. In contrast,

we showed that normal forces applied constantly at every point of the boundary do not contribute

any active torque onto an aggregate.

While the aforementioned assumptions of constant normal or tangential forces are strong,

it is remarkable that they robustly produce the scaling observed in the experiment for the active

torque for aggregates of arbitrary shapes and over a wide range of size [Fig. 3.2I]. An important

feature of the experiment along this line, is that bacteria navigate across aggregates [Fig. 2.5C],

avoiding the accumulation of bacteria in wedges that are central to the rotation of asymmetric

gears [40, 41]. This could enable constant normal forces along the boundary of the aggregate, as

suggested by the experimental scaling and the above derivation. Validation of this model requires

further experiments, as described in Chapter 6, which lie beyond the scope of the work presented

in this thesis.
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4.3 Aggregation in the chiral active bath

In experiments [Fig. 3.2D-I], we observe a persistent clockwise rotation of aggregates.

The following section expands upon the effects of persistent rotation (spin) on the the aggregate

mass distribution (4.3.1) and the aggregate growth (4.3.2). These observations indicate that

aggregation in the active bath represents a significant departure from the conventional RLCA

and DLCA aggregation models.

The Smoluchoswki coagulation equation is a general master describing particle aggre-

gation processes. Theory [52], simulations [53], and experiments [54] show that solutions to

the Smoluchoswki equation, where aggregates move via diffusion and aggregate via merging

and fragmentation events, lead to a universal log-normal mass distribution. This log normal

distribution characterizes well our experiments for aggregation in the thermal bath [Fig. 2.2]. For

aggregates in the active bath, we observe significant deviations from the log-normal distribution

[Fig. 3.3B, G]; we intuit that these differences arise from aggregate spin, which modifies the

laws governing aggregation.

In addition, we observe that aggregates in the active bath grow much faster than aggregates

in the thermal bath [Fig. 3.1B]. This is to be expected, as aggregates in the active bath experience

increased effective diffusion [Fig. 3.2C], and also spin [Fig. 3.2I]. We quantify the effects of

increased diffusion and spin on aggregate growth through a mean-field growth model, and

compare the model to experimental results. Our results suggest that spin makes a significant

contribution to the growth rate of aggregates in the active bath.

4.3.1 Smoluchowski coagulation equation: Theory

In thermal (passive) systems of aggregation the growth dynamics of aggregates can be

typically described by the Smoluchowski coagulation equation [96], which is a kinetic master

equation for the formation and fragmentation probability of an aggregate or particle over time:

∂tρ(ν , t) = 1
2
∫

ν

0 β (ν ′,ν −ν ′)ρ(ν ′, t)ρ(ν −ν ′, t)dν ′− ∫ ∞

0 β (ν ,ν ′)ρ(ν , t)ρ(ν ′, t)dν ′
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where ρ(ν , t) denotes the size distribution function of aggregates of size (i.e. mass) ν at time t.

The key quantity that determines the kinetics of aggregate sizes is then given by the collision rate

β (νi,ν j) for the merging of two aggregates with masses νi and ν j, which depends generically on

the collision cross-sectional area and aggregate diffusivity [52]:

β (νi,ν j) ∝ (Ri +R j)(Di +D j) ,

where Ri and Di are the radius and diffusion coefficient of the i-th aggregate, respectively.

For passive aggregation processes, such as in Brownian coagulation, the aggregate mass

distribution calculated from the Smoluchowski equation attains a self-preserving, scale-

invariant form, which is well-described by a log-normal distribution [52] for the normalized

aggregate mass x ≡ m/⟨m⟩:

ρ(x) =
1

σx
√

2π
exp
(
−(lnx−µ)2

2σ2

)
(4.2)

with mean µ and standard deviation σ . Interestingly, this scaling solution appears to be a

universal feature in systems dominated by merging and fragmentation events, as it has been

shown to describe the evolution of precursor cells and their progeny during tissue development

[54], a biological process that is evidently far from equilibrium.

We find that, both in experiments and simulations, the size distribution of colloidal

aggregates in the absence of the bacterial bath is remarkably well-described by a log-normal

distribution [Figs. 3.3B,3.3G, black line]. Additionally, the distribution remains conserved over

time [Figs. 2.1A] and depletant concentration [Figs. 2.1B]. In contrast, we observe significant

deviations from this universal scaling for the active bath, where increasing activity leads to the

emergence of notable tails in the distribution [Figs. 3.3B,3.3G, colored lines]. We note that even

in thermal aggregation and fragmentation processes, the log-normal shape of the aggregate size

distribution can only be obtained by numerically evaluating the Smoluchowski rate equation

with suitable collision kernels and analytically by simplifying approximations [52]. However,
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for the active bath, a notable deviation from this log-normal form should be at least theoretically

expected because the collision rate β (νi,ν j) of two aggregates is now not only controlled by the

diffusion coefficient and collision diameter of the aggregates, but also by their active rotation,

which effectively increases their cross-sectional area and thus leads to an increased probability

for merging events. This effect, arising from the active rotation of aggregates, can be described

by modifying the effective radius R or diffusion coefficient D of a aggregate, which we address

below to describe the mean aggregate mass evolution over time (see section: 4.3.2). The spinning

kinetics induced by bacterial density thus provides a key microscopic departure from equilibrium

behavior that is reflected in the global statistics of aggregate growth.

4.3.2 Aggregate growth model

Here we provide simple dimensional arguments to estimate the dynamics of the mean

aggregate mass for both the thermal and active systems. First we start by considering the thermal

case and note that the rate of change of the mean aggregate mass M should generically follow

dM
dt

∝ M ∗D∗C (4.3)

where we assume the collision rate of two aggregates to be proportional to the density of

aggregates C times their diffusivity D. We can now re-write the density of aggregates as

C =
mφ

Ma2

where m and a are the mass and area of a single colloid, respectively, and φ ≡ nca2/L2 is the

surface fraction of colloids with the number of colloids nc and the system size L. With the

Stokes-Einstein relation for the diffusion coefficient of a single aggregate D ∝ kBT/Rg, where

Rg denotes the radius of gyration, we obtain

dM
dt

∝
mφ

a2
kBT
Rg
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using the scaling relationship M/m ∝ (Rg/a)ν , where ν denotes the fractal dimension of a typical

aggregate, we are able to rewrite the equation in terms of the average mass, M:

M1/νdM ∝

(
φkBT m(ν+1)/ν

a3

)
dt

from which, by integration we obtain:

M
m

∝

(
φkBT

a3 t
)α

with the scaling exponent α = ν

ν+1 . For the thermal case with a fractal dimension of ν ≃ 1.4,

this indicates that the average aggregate mass grows as M ∝ tα with α ≃ 0.58, in line with the

theory and simulations provided by Cerda et al. [24].

We now introduce a simple modification of the rate equation Eq. 4.3 to model aggregation

in the active bath. We note that aggregates in the active bath exhibit a persistent rotation with

an angular velocity that depends on the bacteria concentration [Fig. 3.2D-F]. The simplest

assumption one can make for the growth dynamics of a rotating aggregate is that it would

encounter and accumulate additional colloids from the bath due to its active rotation, which then

increases its collision rate. At a small time interval dt, an aggregate with angular velocity Ω

performs an angular displacement of θ = Ωdt, and thus sweeps an additional area of Ã = ΩR2
g dt

as a consequence of its active motion. From a dimensional perspective, we can thus introduce an

activity-dependent term λ ≡ ΩR2
g/D which would effectively increase the collision rate in Eq.

4.3. The simplest form of the aggregate mass rate equation could then be given by

dM
dt

∝ CDM(1+λ ) =
mφ

a2
kBT
Rg

(
1+

ΩR3
g

kBT

)
(4.4)

Next, we modify Eq. 4.4 to reflect the experimentally measured increase in effective

diffusion and angular velocity with bacteria concentration. First, we introduce an effective

diffusion coefficient which increases with the bacteria concentration, in line with Fig. 3.2C.
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De f f ∝
kBT
Rg

(1+7ρB/ρ
∗)

Additionally, we modify the angular velocity to reflect the experimentally obtained scaling in

Fig. 3.2I.

Ω ∝
ρB

ρ∗M
ν−3

ν

Thus, we obtain the equation determining the rate of growth of an aggregate as a function

of the bacteria concentration:

dM
dt

∝ A(1+7ρB/ρ
∗)M−1/ν

(
1+BM

ρB/ρ∗

1+7ρB/ρ∗

)
(4.5)

with the prefactors A and B controlling the relative strength of diffusion and angular velocity,

respectively.

In Fig. 4.4A, we plot the mean aggregate mass at increasing bacteria concentrations for

the 4-hour aggregation experiments. The experimental data shows a rapid increase in growth rate

at low and intermediate bacteria concentrations. At the highest bacteria concentrations, however,

the growth rate saturates, as evidenced by the crossing orange (ρB = 0.5ρ∗) and red (ρB = ρ∗)

curves. Our simulations show a similar saturation in aggregate growth, due to the deformation

and compaction of spinning aggregates [Fig. 3.4C, 3.4D]. This saturation is not captured by the

present aggregation model, built upon collisions of objects. In the present model, rotation and

collision rates increase with increasing bacteria concentration, leading to monotonic growth of

the aggregates.

Next, we numerically integrate Eq. 4.5, and compare the solutions to the experimental

data [Fig. 4.4A]. To determine A , we numerically solve Eq. 4.5 using the parameters ρB = 0,

ν = 1.4, and the initial condition that the numerical solution matches the experimental data at the

first time step (time = 10 minutes). We fit this numerical solution to the experimental data, and
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find good agreement for A= 1.6 [Fig. 4.4B - inset]. To model aggregation in the active bath,

we keep A fixed and use the experimentally measured values of ρB [Fig. 2.6], and the fractal

dimension ν(ρB) [Fig. 5.3].

In Fig. 4.4B, we plot solutions to Eq. 4.5 at increasing bacteria concentrations, using

the coefficients A = 1.6 and B = 0. In doing so, we increase diffusion proportional to the

experimentally measured value, but keep the angular velocity at zero. By comparing to the

experimental data in Fig. 4.4A, we see that this model systematically underestimates the growth

rate of aggregates observed in the experiment. In Fig. 4.4C, we add the effect of rotation to

the aggregation model, with the coefficient B = 0.15, thus allowing both diffusion and angular

velocity to scale with increasing activity of the bath. We find that the addition of rotation

allows the model to predict a growth comparatively closer to the experiment. Two comments

are in order. First, solutions to Eq. 4.5 diverge at long times, an effect of the linear increase

in collision rate added from the rotation; this is non-physical, as the effect should eventually

saturate at high rotation rates, and represents a limitation of our model. Additionally, we note

that the non-linear equation Eq. 4.5 did not allow us to extract a simple relationship between

time and activity.
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Figure 4.4. (A) Average aggregate mass over the 4-hour aggregation experiments. Different colors indicate different
bacteria concentrations (see legend). (B) Numerical solutions to Eq. 4.5, using the parameters A= 1.6 and B = 0.
Different colors represent different bacteria concentrations ρB, following the same colorscheme decribed in the
legend of Fig S11A. (B-Inset) Parameter A is determined by fitting the experimental data for ρB = 0 to the numerical
solution to Eq. 4.5; we find a good fit for A= 1.6 (C) Numerical solutions to Eq. 4.5, using the parameters A= 1.6
and B = .15. Different colors represent different bacteria concentrations ρB, following the same colorscheme
decribed in the legend of Fig. 4.4A.

82



Chapter 4, in part, contains material as it may appear in Nature Physics, 2023. Daniel

Grober, Ivan Palaia, Mehmet Can Ucar, Edouard Hannezo, Andela Šarić, Jérémie Palacci. The

dissertation author was the primary investigator and author of this paper.
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Chapter 5

Technical points of data processing and
simulations

In the following Chapter, we discuss the more technical aspects of Chapter 3. The first

section discusses data processing techniques used to analyze the morphology of aggregates. The

following section includes supplemental text describing the simulations. Finally, we include full

descriptions of the supplemental movies described in Chapter 3.

5.1 Technical data processing techniques

5.1.1 Aggregate tracking

To study the dynamics of colloidal aggregates, we develop tracking software in MATLAB.

In each frame, we extract the center of mass, surface area, and perimeter of each aggregate from

the binary image. Additionally, for aggregates where the major axis is significantly greater than

the minor axis, we can reliably track their orientation by taking the angle between the major

axis and the horizontal. Aggregates can be linked from one frame to the next by searching the

vicinity of their previous center of mass for an aggregate of similar shape and size; when a match

cannot be found, we assume a collision has occurred and treat it as a novel particle. In this way,

we are able to create a 2D trajectory for each aggregate.

To extract information about the diffusion and rotational diffusion of aggregates, we apply

the aggregate tracking software to the videos taken in the short-time dynamics experiments. Using
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the trajectories obtained from aggregate tracking, we calculate a Mean Squared Displacement

(MSD) and Mean Squared Angular Displacement (MSAD) up to ∆t = 5s using a sliding window.

To improve the statistics of the MSD and MSAD, we only consider trajectories longer than

1500 frames. For each particle, a diffusion coefficient, or rotational diffusion coefficient, is

extracted from a linear fit between time and MSD, or MSAD [Fig. 3.2A inset, Fig 3.2B inset].

These coefficients are binned by size RG; the averages and standard deviations of these bins

are reported in Fig 3.2A and Fig 3.2B; each bin contains more than 5 aggregates. For each

bacteria concentration in Fig 3.2A, we track more than 90 total aggregates; for each bacteria

concentration in Fig 3.2B, we track more than 50 total aggregates.

Similarly, we extract information of the angular velocity by tracking the aggregates

observed in the long-time dynamics experiments. Angular velocity is obtained through a linear

fit between the aggregate orientation and time [Fig 3.2D]. Each point in Fig 3.2I corresponds to

a single aggregate.

5.1.2 Aggregate comparison

To compare the morphology of aggregates assembled in the active and thermal baths, the

most basic thing would be to look at aggregates at the end of the experiments. Below, we observe

aggregates in the active bath at various bacteria concentrations after 4 hours. In the thermal bath,

experiments are extended to 40 hours. We observe that aggregates formed in the active bath at

the highest bacteria concentrations are largest after 4 hours, and get smaller with decreasing

bacteria concentration.
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A. B. C.

D. E. F.

ρB = ρ∗ ρB = 0.5ρ∗ ρB = 0.2ρ∗

ρB = 0.1ρ∗ ρB = 0.05ρ∗ ρB = 0
thermal bath

Figure 5.1. (A-E) Aggregates formed in the active bath after 4 hours, labeled with the corresponding bacteria
concentration. (F) Aggregates formed in the thermal bath after 40 hours. The scale bar is 100um. Same scale for all.

5.1.3 Compare aggregates with same average mass

This comparison can be improved upon by finding the frame where the average mass

of the aggregates is equivalent. In Fig. 5.2, we compare aggregates formed in the thermal bath

(ρB = 0) after 25 hours with aggregates formed in the highest activity bath ( ρB = ρ∗) after 1.25

hours. In both cases, the average aggregate mass is 150 colloids. We observe aggregates in the

thermal bath form ramified, branched structures. Aggregates in the active bath form compact

structures.

5.1.4 Fractal dimension in chiral bacterial bath

The qualitative observations made in the previous section can be expanded upon by

computing the fractal dimension of the aggregates as a function of time. Following the procedure

described in Section 2.1.1, we compute the fractal dimension in each frame at 5 positions along

the capillary, every 10 minutes for 4 hours. In Fig. 5.3 we display the average as a function of

time; the error bars represent the standard deviation of this measurement across 5 positions. We

observe that the fractal dimension reaches a steady state value after about 2 hours. The steady

state fractal dimension increases with increasing bacteria concentration.
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A. B.

Figure 5.2. (A) Aggregates formed in the thermal bath (ρB = 0) after 25 hours. (B) Aggregates formed in the
highest activity bath (ρB = ρ∗) after 1.25 hours. In both cases, the average aggregate mass is 150 colloids and the
scale bar indicates 100 µm
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Figure 5.3. Fractal dimension as a function of time, for aggregates formed in various active baths. The bacteria
concentrations are: ρB = ρ∗ (red) , ρB = 0.5ρ∗ (orange) , ρB = 0.2ρ∗ (green), ρB = 0.1ρ∗ (blue), ρB = 0.05ρ∗

(purple), and ρB = 0 (black)

5.1.5 Fraction of colloids on the boundary

We further quantify the morphology of the colloidal aggregates by analyzing the fraction

of colloids on the boundary. Before we can analyze the fraction of colloids on the boundary of

each aggregate, we must estimate the total number of colloids and the number of colloids on the

boundary.
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The number of colloids on the boundary is estimated from the perimeter of the binary

region. The length of the perimeter is calculated from the sum of the Euclidean distances

between each pair of neighboring pixels on the boundary of the binary region, including both

interior and exterior boundaries. We estimate the number of colloids on the boundary as the total

perimeter divided by the colloid diameter. Next, we estimate the total number of colloids to

be the number of pixels in the binary region divided by the area of the Wigner-Seitz primitive

cell for a hexagonal lattice with nearest neighbor distance equal to the diameter of a colloid. To

verify these estimates, we perform a case study on a handful of small aggregates where it is

possible to count the number of colloids manually [Fig. 5.4A]. We find good agreement between

the estimated value and the exact value for both the number of colloids on the boundary and the

total number of colloids in an aggregate [Fig. 5.4B and 5.4C]. The fraction of colloids on the

boundary, presented in Fig. 5.5, is the ratio of the estimated number of colloids on the boundary

and the estimated total number of colloids.

In Fig. 5.5, we compare the fraction of colloids on the boundary of aggregates assembled

in four different active baths, corresponding to ρB = ρ∗,ρB = 0.5ρ∗,ρB = 0.2ρ∗ , and, ρB = 0.

To maintain consistency, we analyze frames where the average aggregate mass is equal to 150

colloids. We find that the fraction of colloids on the boundary decreases with increasing bacteria

concentration.
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Figure 5.4. (A) Example of an aggregate where each colloid has been identified and labeled. The total number of
colloids and number of colloids on the perimeter are counted manually. (B) The number of colloids on the perimeter,
estimated from the perimeter of the binary region, compared with the exact value. (C) The total number of colloids
in a cluster, estimated from the area of the binary region, compared with the exact value.
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Figure 5.5. Fraction of colloids on the boundary for aggregates formed in various bacterial baths, estimated using
the perimeter (interior and exterior) and area of the binary region. The bacteria concentrations are: ρB = ρ∗ (red) ,
ρB = 0.5ρ∗ (orange) , ρB = 0.2ρ∗ (green), and ρB = 0 (black).

5.1.6 Number fluctuations

Number fluctuations are calculated by dividing the binarized image into as many inde-

pendent boxes of area n as possible. We define N to be the sum of the pixels values (0 or 1)

within a box of size n. For each box size, we calculate an average ⟨N⟩ and the variance σ2(N).

In Fig. 3.6C and Fig. 3.6G, we display σ2(N)/⟨N⟩ as a function of ⟨N⟩. As the size of the box

increases (i.e. for large ⟨N⟩), the number of realizations decreases; this is reflected in the error

bars in Fig. 3.6C and Fig. 3.6G.
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5.2 Simulation details

5.2.1 Computational model

In our computational model, colloids are modeled as two-dimensional particles, similarly

to [97]. They interact through a sum of a repulsive interaction, enforcing volume exclusion,

and an attractive interaction, representing the depletion force from experiments. The repulsive

interaction is obtained through a Weeks-Chandler-Anderson potential (first line in the equation

below), while attraction is obtained by a simple cosine-squared potential (second line):

Uc(R) =



εc

[(
σ

R

)12
−2
(

σ

R

)6
]

if R < σ

−εc cos2
(

π(R−σ)

2ra

)
if σ < R < σ + ra

0 if R ≥ σ + ra

. (5.1)

Here, εc is the attraction strength, σ is the particle diameter, R is the distance between the centers

of the two particles, and ra is the range of attraction. We choose εc = 20kBT and ra = 0.15σ :

these values correspond to a slightly softer potential than the one estimated for experiments, but,

while still representing a strong short-range interaction and leaving the physics unchanged, they

make simulations much more efficient and allow to simulate longer times.

To be able to define an angular velocity for the particles, and for the particles to be able to

exchange angular momentum, we introduce some friction along the surface of the particles (see

for instance [79]). We do so by coating each particle with 5 patches, positioned at distance 0.5σ

from the particle center and equally spaced on the circumference (see Fig. S13). The number

of patches, 5, was chosen so as to avoid any fictitious source of crystalline symmetry (namely,

triangular symmetry with 3 patches, square with 4, or hexagonal with 6). Friction takes the form
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of a patch-patch interaction, that we chose to be mildly repulsive and of cosine-squared shape:

Up(r) =


εp cos2

(
π

2
r
rp

)
if r < rp

0 if r ≥ rp

. (5.2)

Here, εp = 10kBT is the patch-patch repulsion strength, r is the distance between two

patches, and rp = ra = 0.15σ is the patch-patch interaction range. Note that when two patches

superimpose, the interaction energy between two colloids can stay negative as εc ≫ εp. Patches

move rigidly with the colloid they are attached to. This is ensured, at each time step, by summing

the the forces acting on the central particle and on the 5 patches of the rigid body to obtain a

force acting on their center of mass and a torque relative to their center of mass.

If the whole colloid has mass m, the central particle has mass 0.6m and each of the 5

patches has mass 0.08m. This makes the moment of inertia of the colloid equal to that of a

sphere, namely 2
5m(σ

2 )
2.

Colloids are made spin by applying to each of them independently a torque of magnitude

τ , between 0 and 15kBT . The torque results from a pair of forces of constant magnitude

f = τ/(0.5σ); one applied to the center of the colloid and one to one of the patches, as shown

in Fig. 5.6A. Fig. 5.6B shows all the forces applied to two colloids at contact (excluding thermal

noise, discussed below).

5.2.2 Simulation details

At the beginning of each simulation, particles are positioned at random sites of a square

lattice, defined such that the surface density of colloids is the desired one. The initial orientation

of particles is also randomized.

Two-dimensional molecular dynamics simulations are run in LAMMPS [98] and visu-

alised with OVITO [99]. A velocity-Verlet integrator is coupled with a Langevin thermostat,

mimicking an implicit solvent, so that the system is effectively in the NV T ensemble. The
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Figure 5.6. (a) Sketch of a colloid within our computational model. The 5 patches are rigidly attached to the central
body. Their size represents the repulsion range rp = 0.15σ . In black, the forces responsible for the active torque.
(b) Two colloids interacting through central interactions (Eq. 3, in red) and patch-patch friction (Eq. 4, in blue).
Those eventually result in an almost-rigid rotation of the two-body complex about their center of mass.

time step chosen for the integration of the 2D equations of motion is τs = 0.008τ0, where

τ0 =
√

mσ2/(kBT ) is the simulation unit of time. The Langevin thermostat has a friction coeffi-

cient γ = 0.08m/τ0, meaning that the momentum of a particle relaxes on a scale of the order of

10 time steps. Such fast relaxation brings simulations close to the fully Brownian regime and

favors computational stability.

Simulations of folding aggregates (Figs. 3.3D, 3.3E, 3.3F, 3.3G, 3.4B, 3.4C, 3.4E,

3.4F, 3.5A, 3.4B and Movies S3-S6) containing N = 10000 colloids were run in a square box

with periodic boundary conditions, applied along both Cartesian directions. For surface density

ρ = 0.20σ−2, corresponding to a packing fraction φ = ρ ·π(σ/2)2 ≃ 0.16, 16 realizations per

torque value, differing by the random number generator seed, were run for 5 ·106 time steps τs.

Fig. 3.3D and 3.3E are screenshots taken at times 8 ·103 and 1 ·105 τs. Figs. 3.3F and 3.3G refer

to time 3 ·104 τs, chosen so as to match approximately the sizes of the aggregates seen in the

experimental time range. The folding dynamics is best described by Movies S5 and S6 and by

Fig. 5.7. The clusters for Fig. 3.5B were extracted from all the 16 mentioned realizations, at the

end of the simulation time; at least 40 clusters per torque value were analyzed, as detailed in the

section ”Porosity” below.

Longer simulations were needed to fill the phase diagram of Fig. 3.5A, to ensure that at
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long times aggregates did not aggregate into percolating structures or, vice versa, that percolated

structures did not break down into isolated aggregates: for each value of packing fraction shown

(corresponding to density 0.10, 0.15, 0.20, 0.25, 0.40, 0.50 and 0.60 σ−2), 2 different realizations

were run for times between 2 and 9 ·107 τs (the largest times being needed for low densities or

when close to the transition).

Figure 5.7. Aggregation and folding of an aggregate in simulations, with an internal torque of 10kBT . Snapshots
are taken at equally spaced times between 1 and 6 ·104 time steps τs.

Simulations of non-folding aggregates (Figs. 3.4D, 3.4G, 3.4H) were performed running

a clustering algorithm every 100 time steps and freezing aggregates, so that once a new particle

binds it moves rigidly with the rest of the aggregate. The cutoff distance for the clustering

algorithm was R = σ +ra = 1.15σ , corresponding to the interaction range. Within our setup, this

procedure was incompatible with periodic boundary conditions in LAMMPS. As a consequence,

simulations were run in a box delimited by an impenetrable wall, modeled by a purely-repulsive

6-12 Lennard-Jones interaction, with parameters 20kBT and 1σ , cut and shifted at its minimum.

The number of colloids was however increased to N = 100000 to reduce the effect of hard

boundaries, which was checked for with the aid of additional simulations with N = 20000 only,

as shown in Fig. ??. In addition, data was discarded when the mass of the largest aggregate went

beyond 10% of the total mass in the system.

Finally, inhibiting folding necessarily means forbidding particles from rolling on each

other upon binding, akin to velcro-coated colloids. This makes the branches of the aggregate

look thinner (1 colloid thick) than in the folding case (2 colloid thick), as shown by a comparison

between Figs. 3.4G and 3.4E. To correct for the fact that comparable structures are now formed

with only half of the mass, surface density was reduced to ρ = 0.10σ−2.
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Stress-strain tests (Fig. 3.5C and Movies S7, S8) were run on gelled configuration taken

from folding-aggregates simulations at density ρ = 0.40σ−2 (i.e. φ = 0.31), N = 10000 and

time 1 · 107 τs. At such value of density, the system is in the gel phase for a wide range of

activities, allowing us to compare gels prepared in very different conditions (τ = 0, 1 and 3kBT ).

The initial box size is Lx = Ly =
√

N/ρ ≃ 158σ . We stretch or compress it by 2σ at a time, in

105 τs, then let the system equilibrate for 3 ·105 τs, and then average the measured stress tensor

for 1 · 105 τs. We repeat this for 20 iterations, until a final strain of 40σ (i.e. 24%). For each

value of internal torque used to prepare the initial gels, we use 3 different gel networks, deformed

both along x and y, with 4 different seeds, so that each point shown in Fig. 5C is an average of

24 measures. The deformation runs are performed at no activity.

Data analysis

We run a cluster analysis and compute gyration radii through OVITO [99]. Two

colloidal particles are considered in the same aggregate if their centers are within attraction range

(R < σ + ra = 1.15σ ).

Fractal dimension

The fractal dimension ν is computed by fitting masses M and gyration radii Rg to the

scaling law M ∼ Rν
g , as shown in Fig. 3F. When computing Rg, we assume colloidal particles

to be point-like, with (unit) mass concentrated at their center. For the inset of Fig. 3.5A, we

compute ν from the last 4 time frames of the simulations when the phase is cluster-like, and from

the last 4 time frames before percolation when the phase is gel-like. We then fit the boundary

between the two phases in the (ν ,φ) space to the curve ν = 2+α log(φ) and find α ≃ 0.29, as

described in the main text.

Porosity

Porosity of a material is defined as the area of the holes divided by the total area (area of

solid material plus area of holes). We calculate the total area of an aggregate by applying the
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flood-fill operation to a binarized image of the aggregate; total area is the number of pixels in

the binary region after the flood - fill operation. Area of the holes is calculated as the difference

between total area and area of the binarized image.
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5.3 Description of movies

Movie S1: (Experiment) Comparison of aggregation in thermal versus active baths. Sticky

colloids aggregate in either a thermal (ρB=0) or active bath of swimming E. coli (ρB = 0.5ρ∗)

- all other parameters being equal (same concentration of colloids, strength of attraction by

depletion, objective and speed of acquisition). The field of view in each video is 650 x 650 µm.

The dynamics appear much faster in the active bath than the thermal bath, and the morphology

of the aggregates differ. Real time of the movie is 4h.

Movie S2: (Experiment) Persistent clockwise rotation of aggregates in the active bath. An

accelerated video of sticky colloids in the active bath of swimming E. coli (ρB = ρ∗) , which

highlights the persistent clockwise motion of the aggregates. Real time of the movie is 2h.

Movie S3: (Simulation) Conventional aggregation in a thermal bath. Simulated aggregation

of colloids with no internal activity (the internal torque for each particle is set to 0kBT ). The

playback speed increases twice during the movie, at times 10000 and 50000, in order to capture

both the formation of small aggregates at short times and the formation of large structures and

gelification, occurring on long time scales. The time of each frame is indicated in the top right

corner. Packing fraction Φ = 0.16.

Movie S4: (Simulation) Aggregation at low activity. The internal torque for each particle

is set to 1kBT . Rotation and partial folding of the aggregates arise, resulting in faster and

morphologically different aggregation, compared to the thermal case. The system percolates

and forms a space-spanning network at large times. The playback speed increases twice during

the movie, at times 10000 and 50000, in order to capture both the formation of small aggre-

gates at short times and the formation of large structures and gelification, occurring on long

time scales. The time of each frame is indicated in the top right corner. Packing fraction Φ= 0.16.

96



Movie S5: (Simulation) Aggregation at high activity. The internal torque for each particle is

set to 10kBT . Rotation and folding of the aggregates arise, resulting in faster and morphologi-

cally different aggregation, compared to the thermal case. The system does not percolate and the

gel phase is replaced by compact clusters. The playback speed increases twice during the movie,

at times 10000 and 50000, in order to capture both the formation of small aggregates at short

times and the dynamics on long time scales. The time of each frame is indicated in the top right

corner. Packing fraction Φ = 0.16.

Movie S6: (Simulation) Zoomed in view of aggregation and folding at high activity. A

subsection of the simulation window, focusing on the non-conventional aggregation of particles;

the rotation and folding leads to the formation of a compact cluster (the internal torque for each

particle is set to 10kBT ). The playback speed is constant, and the time of each frame is indicated

in the top right corner. Packing fraction Φ = 0.16.

Movie S7 (Simulation) Mechanical test of a gel assembled in thermal conditions. The gel

was previously assembled with the internal torque for each particle is set to 0kBT , [see SI], and

the internal torque remains at 0kBT during the stretching experiment. The strain increases with

time, and the exact value is indicated in the top right. The gel exhibits an elastic response in the

considered regime of strain [see Main Text].

Movie S8 (Simulation) Mechanical test of a gel assembled in active conditions. The gel is

previously assembled in active conditions (the internal torque for each particle is set to 3kBT ),

and the internal torque is set to 0kBT during the stretching experiment. The strain increases with

time, and the exact value is indicated in the top right. The aggregation in active conditions results

in a gel with unconventional structure, as compared with the gel assembled in thermal conditions

(Movie S7); this results in a non-linear mechanical response, akin to a mechanical diode.
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Chapter 5, in part, contains material as it may appear in Nature Physics, 2023. Daniel

Grober, Ivan Palaia, Mehmet Can Ucar, Edouard Hannezo, Andela Šarić, Jérémie Palacci. The

dissertation author was the primary investigator and author of this paper.
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Chapter 6

Outlooks and Perspective

In the following chapter, we summarize the main findings of this thesis, and reflect

upon where we stand with respect to the initial vision of this work. We conclude this thesis by

proposing three experiments which constitute future directions for the project.

In Chapter 3, we showed that an active bath of motile E. coli directs the assembly

sticky colloids into structures which are not possible with conventional assembly in a thermal

bath. Through the assistance of simulations, we showed that the persistent clockwise rotation

of aggregates is the salient feature that drives their non-conventional aggregation. Crucially,

Fig. 3.5A establishes the activity of the bath as a lever of control over the phase diagram of

colloidal aggregates. This constitutes a proof of concept of the initial vision of this thesis: active

matter is capable of re-shaping the structure of soft materials from within. We view this work

as an important first step, although more experiments are needed to develop a material with

dynamic material properties that are tuned by active matter from within.

Chapter 4 discusses further the interactions between colloidal aggregates and motile

E. coli, focusing on a mechanism to describe the observed persistent rotation of aggregates.

Through additional experiments on an inverted droplet, which reverses the chirality of the E.

coli trajectory, we determined that the rotation of aggregates is correlated with the direction

of the E. coli trajectories [Fig. 4.1]. Experiments utilizing GFP fluorescent E. coli show that

the bacterium collide with the aggregate, and then swim through [Fig. 2.5C]. Based on these
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observations, we propose a collision based model where the chirality of the swimmer trajectories

leads to an imbalance in collisions along the perimeter, resulting in a force acting parallel to the

perimeter (see: Section 4.2.1). For a constant force per unit length applied along the perimeter of

the aggregate, the resulting applied torque is proportional to the surface area of the aggregate,

an important feature of the experimental measurements [Fig. 3.2I]. Further experiments to

unambiguously test the validity this model are outlined in Section 6.1.

From the outset, this thesis envisions leveraging active matter to sculpt the structure

of soft materials from within. Through experimental work we have proved that this vision is

possible, and laid the groundwork for the development of a new class of materials powered

by active matter. During the course of this research, new questions and opportunities have

arisen which need to be developed through further experimentation. Section 6.1, outlines future

experiments to determine a physical mechanism for the observed persistent clockwise rotation

of aggregates. Section 6.2 outlines the use of light-powered E. coli to create a spatially (and

temporally) heterogeneous active bath and its application to create novel 2D colloidal gels.

Section 6.3 proposes to create a spatially and temporally heterogeneous active bath using a

microfluidic device to vary the concentration of L-serine in the suspension.

6.1 Mechanism of aggregate rotation

Chapter 4 proposes a model for the persistent clockwise rotation of aggregates, as

observed in experiments. The proposed model states that the rotation arises from a force applied

along the perimeter of each aggregate, originating from collisions between the E. coli and

aggregates. This model faithfully accounts for many of the salient features of the experimental

observations, namely the scaling that the applied torque is proportional to the concentration of

bacteria times the surface area of the aggregate [Fig. 3.2I]. Notably, this model neglects the

contribution of E. coli as they swim through the aggregate. The question of whether the applied

torque arises from collisions with the perimeter of the aggregate, or while E. coli swim inside
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the aggregate, remains unanswered. Further experiments are required to validate this toy model,

and unambiguously determine a physical mechanism for the rotation of aggregates.

B. Time-series with colloidal cubes

Δt = 0s Δt = 0.2s Δt = 0.4s Δt = 0.6s

Δz = 0µm Δz = 0.4µm Δz = 0.8µm Δz = 1.2µm

A. Z-stack with fluorescent colloids

Figure 6.1. (A) Z-stack of GFP labeled E. coli swimming through aggregates of polystyrene colloids. The E. coli
swim between the colloids and the glass substrate. (B) Preliminary experiments studying aggregation of cubic
colloids in a bacterial bath. The E. coli cannot penetrate into the aggregate of colloidal cubes, but scatter off the
exterior.

As evidenced by Fig. 2.5C, the E. coli swim through the colloidal aggregates. Preliminary

experiments with fluorescent polystyrene colloids [Fig. 6.1A] indicate that the E. coli are between

the glass substrate and the layer of colloids. These results are in line with [66], who find that

E. coli can navigate a crystal of 10µm colloids, swimming in straight trajectories through the

space between the glass coverslip and the spherical colloids. To separate the contribution of the

torque from bacteria colliding with the exterior, as discussed in the toy model, from the torque of

bacteria while penetrating the interior of the aggregate, we propose experiments which inhibit E.

coli from entering the aggregate.

One method to inhibit E. coli from entering the aggregate is to use colloidal cubes,

thus minimizing the empty space between the spheres and the substrate. Fig. 6.1B displays

preliminary experiments using aggregates of 1µm cubic colloids. The time-series shows an
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incident E. coli colliding with a small aggregate of cubes; the kinetics appear much different

from aggregates of 2µm spheres, as the bacterium scatters off the perimeter aggregate rather than

penetrate inside. Further experimental design is required to grow aggregates large enough such

that their dynamics can be compared with the aggregates in [Fig. 3.2I].

Another method to inhibit E. coli from entering the object would be to 3D print a solid,

micron-scale object. One example would be a cylinder of radius 50 µm and height 5 µm with a

small defect such that the rotation can be tracked. Another interesting shape is a hollow cylinder

of similar size, such that we are sure there are no E. coli swimming above or below the interior

of the object. Such microprinted object can be achieved using the UpNano 3D printer, recently

acquired by IST Austria. A 3D printed object would allow us to track the rotation for long

periods of time, as the object cannot deform or change shape - a persistent issue with tracking

colloidal aggregates. Previous work [40, 41] showed that 3D printed objects with a ratcheted

exterior rotate in an active bath of E. coli bacteria. Di Leonardo et al. noted that on a solid -

liquid interface, all geared objects (symmetric or asymmetric) rotate with a clockwise rotation,

and postulated that the mechanism had to do with the bacteria’s clockwise trajectories [40].

The proposed experiments would could build upon their findings, and could elucidate a new

mechanism of rotation for objects in a chiral active bath.

6.2 Spatio-temporal control of active bath using green light
powered bacteria

Chapter 3 established the activity of the bath as a lever of control over the phase diagram of

aggregation. All of the experiments presented thus far take place at constant E. coli concentration

and swimming speed. In future work, we want to dynamically vary the activity of the bath (by

modulating the speed of the E. coli), in both space and time. The following section envisions the

use of green-light powered bacteria to achieve this goal.

Previous work [44, 43] has successfully made green-light powered E. coli by genetically
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modifying cells to express Proteorhodopsin (PR). PR is a light mediated ion channel which

opens and accepts H+ into the cell in the presence of green light. Recall that the the E. coli

flagella is powered by the protomotive force, pumping H+ out of the cell and across the charged

cell membrane. This process requires an electron acceptor inside the cell - in the absence of

external nutrients, cells typically use O2 [27]. In anerobic conditions (without O2), cells require

an alternative electron acceptor for the flagellar motor to function properly (typically these are

biproducts from metabolizing external nutrients, such as glucose). In the presence of green light,

Proteorhodopsin enables the flagellar motor to function in anerobic conditions.

Thermal 
bath

A. B. 

Figure 6.2. (A) Inhomogenous checkerboard activity pattern. (B) Colloidal gel assembled in the checkerboard
activity pattern described in A. Regions assembled in high activity are dense. The dense regions are sewn together
by branched structures assembled at lower activities.

We envision combining a pattern of green light and green-light powered bacteria to create

a spatially and temporally heterogeneous active bath. We will leverage this technique to grow a

2D colloidal gel, where certain sections of the gel are aggregated thermal baths (passive), while

other are aggregated in active baths where the activity is modulated in space and time. In sections

where the light is strong, colloids will aggregate via the chiral aggregation mechanism described

in Chapter 3, forming compact structures. Meanwhile, other parts can be formed via thermal
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aggregation, forming branched space spanning networks.

To test this idea, we leveraged the simulations of sticky rotors presented in Chapter

3, which previously showed consistent agreement our experiments. Preliminary simulations

by Lucas Floquet and Ivan Palaia using a checkerboard pattern of activity [Fig. 6.2A] show

promising results. The gel contains highly dense regions, where colloids are assembled at high

activity; the dense regions are sewn together by branched structures assembled at lower activities

[Fig. 6.2B]. The resulting structure is highly heterogeneous, and we expect it to exhibit novel

material properties.

6.3 Spatio-temporal control of active bath by varying L-
serine concentration

This section envisions the use of a microfluidic device to dynamically vary the concentra-

tion of L-serine in the active bath. Preliminary experiments show the addition of 1mM L-serine,

rather than Glucose, causes E. coli to swim for approximately 45 minutes and then abruptly stop

swimming [Fig. 6.3A]. In effect, this creates a chemical “on” and “off” switch for the activity of

the bath.

We perform aggregation experiments at low binding (0.8 g/L PEO, ∆E ∼ 18kBT ), in

a bacterial bath with 1mM L-serine. Under these conditions, we observe that aggregation is

inhibited while the activity is on, with small aggregates dynamically forming and fracturing

[Fig. 6.3B,C,D]. After the activity is turned off, large aggregates begin to grow [Fig. 6.3B,E,F].

Future experiments will integrate a microfluidic device and semi-permeable membrane, such that

the concentration of L-serine can be varied in time (cycling high and low E. coli swim speed),

and also in space using a gradient of concentration.
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Figure 6.3. (A). E. coli speed versus time with 1mM L-serine. We observe that the E. coli are motile for about
45 minutes, and then stop swimming. (B) Average mass as a function of time, for aggregates in a bacterial bath
with 1mM L-serine and .8g/L PEO. At this low depletant concentration, we observe that the active bath is strong
enough to inhibit binding, as evidenced by the limited aggregation during the first 45 minutes of experiment. After
45 minutes, the E. coli stop swimming (A), and the average aggregate mass slowly increases. (C) Snapshot of
aggregates after 5 minutes. Scale bar 200um. (D). Snapshot of aggregates after 45 minutes. Aggregates are
comparable size to C. (E) Aggregates after 90 minutes. (F). Aggregates after 6 hours. Same scale for C-F.

6.4 3D colloidal gel with dynamic material properties

The holy grail would be to develop a 3D colloidal gel with dynamic properties, powered

by active matter. The previous two sections outlined different experimental methods to dynami-

cally vary the speed of E. coli, modulating the energy injected into the soft material through the

active bath.

The experiments presented in Fig. 6.3 are a proof of concept that, at low binding energy,

the active bath is capable of breaking apart colloidal aggregates. We envision a 3D colloidal gel

in a dynamic E. coli suspension; at the flip of a switch, the gel structure can be ruptured and

reorganized, triggering a solid to liquid phase transition. Cycles of high and low E. coli speed will

allow the structure to break apart and then reform, thus repairing defects in the material. Ancient

Romans introduced lime into their concrete to create a material which would heal its cracks and
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therefore remain durable over thousands of years [100]. We hope to develop a colloidal gel with

similar self healing properties.
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Chapter 7

Appendix - derivations

The goal of the following chapter is to summarize the interactions between colloidal

particles, relevant to understanding the experimental system. The chapter is broken up into

four sections: Van Der Walls, Electrostatics, DLVO theory, and Depletion. This Chapter draw

heavily from three textbooks: Robert J Hunter Foundations of Colloid Science [12], John C Berg,

Introduction to Interfaces and Colloids: The Bridge to Nanoscience [14], and Tharwat F. Tadros,

Interacial Phenomena and Colloid Stability: Basic Principles [13]. These topics are covered

in greater detail within these books, and this chapter represents a synthesis of what I consider

to be the most important pieces, relevant to understanding the experimental system. Whenever

possible, I will include citations to the relevant chapters, for future readers.
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7.1 Derjaguin approximation

Before we begin, we review the Derjaguin approximation. This technique is used to

translate between planar geometry to spherical geometry - for many of the derivations, we will

first derive the energy between planes (the math is typically easier), and then apply the Derjaguin

approximation to get the energy between spheres (colloids are typically spheres!)

D

R

R-y y

x

𝑥!~ 2𝑅𝑦

D0

𝐷 = 𝐷" + 2𝑦 ∼ 𝐷" +
𝑥!

𝑅𝑑𝑉 = 𝑈 𝐷 2𝜋𝑥𝑑𝑥

D

𝑑𝑥

A. B.

Figure 7.1. Derjaguin approximation (A) The starting point is to approximate a sphere as a series of flat, parallel
facing disks of radius (x). (B) The distance between the disks (D) can be approximated as a function of the radius of
the disks (x).

The starting point is to approximate a sphere as a series of flat, parallel facing disks, as

depicted in Fig. 7.1A. We take U(D) to be the interaction energy per unit area between two

planes; thus, the interaction energy between each disk is given by dV =U(D)2πxdx for a disk of

radius x and thickness dx. The total energy between the spheres (V ) is given by integrating dV .

V =
∫

U(D)2πxdx (7.1)

In the following step, we approximate the distance between disks (D) as a function of the

radius of the disk (x). Thus is visualized in Fig. 7.1B for two spheres of radius R; the important

step is to write R2 = (R− y)2 + x2, and recognize that y2 is small. We arrive at:
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D ∼ D0 +
x2

R
(7.2)

such that

dD ∼ 2
R

xdx (7.3)

we substitute this into the previous integral, and obtain the Derjaguin approximation:

V sphere(D0) = πR
∫

∞

D0

U plane(D)dD (7.4)

A few comments are in order. First, the bounds of the integral (D0 < D < ∞) are only

relevant if U(D) recays rapidly with D. Second, geometrical approximation requires that the

distance between the spheres D0 be much less than the radius of the spheres R. As we will see in

the following sections, these are reasonable approximations for both Van der Waals and double

layer repulsive potential.

Throughout the following chapter, I will use V for a potential energy, U for potential

energy per unit area, and Ψ for electric potential. Van der Walls potentials are VA, since they are

generally attractive. Double layer potentials are VR, since they are generally repulsive.
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7.2 Depletion interaction

The depletion interaction is entropic in origin; an effective attractive potential between

the colloids arises from maximizing the entropy (available volume) of the depletants. For clarity,

we begin by repeating the qualitative description given in Chapter 1, along with Fig. 1.3.

A. B.50 nm

2 µm Overlap volume (ΔV) 

Figure 7.2. Depletion interaction (A) Colloids (purple), and depletants (blue) in solution. Surrounding each
colloids is an excluded region (red), where the center of the depletant cannot enter. (B) Forcing the colloids together
causes part of the excluded region to overlap. This maximizes the available space for the depletants. Since the
depletants vastly outnumber the colloids, this maximizes the entropy of the system.

A qualitative description of the depletion interaction begins by recognizing that, surround-

ing each colloid (purple circles, Fig. 7.2A), there is an excluded region (red region, Fig. 7.2A)

where the center of mass of the depletants (blue circles, Fig. 7.2A) cannot enter. By forcing

the colloids together, part of this excluded region overlaps; this results in more available space

for the depletants [Fig. 7.2B], maximizing their entropy. The depletants vastly outnumber the

colloids; thus, forcing the colloids together maximizes the entropy of the system. For a closed

system in thermal equilibrium, F =U −T S, with F the free energy, U the internal energy, T the

temperature and S the entropy. For hard spheres, U = 0 outside of contact. Thus, maximizing

the entropy of the system (S) minimizes the free energy (F).

7.2.1 Derivation of attractive potential

Starting with the partition function for an ideal gas (i.e. non-interacting depletants), we

derive the change in free energy from adding a volume ∆V . The partition function Z for an ideal
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gas of N particles at given volume V given as

Z =
V N

N!λ 3N (7.5)

With the free energy F given by

F =−kBT ln(Z) = kBT
(

ln(N!λ 3N)− ln(V N)

)
(7.6)

Consider the case where a volume ∆V is added to the ideal gas. The partition function

becomes

Z =
(V +∆V )N

N!λ 3N (7.7)

with free energy

F =−kBT ln(Z) = kBT
(

ln(N!λ 3N)− ln(V +∆V )N
)

(7.8)

we rearrange the term on the right such that

ln(V +∆V )N = N ln(V
(

1+
∆V
V

)
) (7.9)

now we apply the log rule ln(AB) = ln(A)+ ln(B) such that

N ln(V
(

1+
∆V
V

)
) = N ln(V )+N ln(1+

∆V
V

) (7.10)

when ∆V is small compared to V , we can apply the taylor expansion (ln(1+ x)∼ x for x << 1).

Thus, we find

N ln(V
(

1+
∆V
V

)
)∼ N ln(V )+

N∆V
V

(7.11)
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Thus, the free energy for an ideal gas of of volume V +∆V is given as

F = kBT
(

ln(N!λ 3N)− ln(V N)

)
−kBT

N∆V
V

(7.12)

We find the change in energy (∆F = F(V +∆V )−F(V ) ) from adding a volume ∆V is

given by

∆F =−kBT np∆V (7.13)

for np = N/V , the number density of particles (depletants) in the system. The next step is to

derive the size of the overlap volume ∆V , specific to the geometry of two spheres.

7.2.2 Overlap volume for two spheres using Derjaguin approximation

Borrowing from the previous section, we recognize that the radius of the spherical cap

(labeled x, Fig. 7.3) to be x ∼
√

2Ra. We approximate the overlap volume as a cylinder of radius

x ∼
√

2Ra and height a. This leads to an overlap volume ∆V ∼ 2πRa2. The interaction energy

between the colloids is given as:

∆E =−2πkBT npa2R (7.14)

R + a

R

x

Figure 7.3. We estimate the radius of the spherical cap using the Derjaguin approximation. The radius (x) the
spherical cap is x ∼

√
2Ra .
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An more in depth derivation, using the exact volume of the cap, can be found in [18].

They find the energy, as a function of h, the distance between the colloids, to be

∆E =−2πkBT npa2R(1− h
2r

)2 (7.15)

Taking the limit h = 0 (i.e. assuming the spheres are in contact), we recover Eq 7.14.
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7.3 DLVO Theory

7.3.1 Van der Waals

Van der Waals interactions arise from interactions between dipoles; these can be both

permanent dipoles or fluctuations in electron density. Polar, nonpolar, charged and uncharged

molecules can all experience Van der Waals interactions. The interactions are generally consid-

ered ”weak” forces, compared to Hydrogen bonding or covalent bonding. Nevertheless, they

play an important role in the forces between colloidal particles [13].

Short Range Van der Waals

The Van der Waals potential between two dipoles decays rapidly with distance (r)

V dipole
A (r)∼ r−6 (7.16)

A qualitative description picture for this begins by remembering that the electric field (E)

from a dipole, with dipole moment p, can be approximated as

E ∼ p
r3 (7.17)

The potential energy (V ) of a dipole interacting with an electric field is given by

V =−p ·E (7.18)

such that the energy is minimized when the dipole points in the direction of the electric field.

This result can be derived by integrating the torque (τ = p×E) applied to the dipole by an

electric field, such that V =
∫

τdΘ. The dipole tends to align with an electric field, such that the

direction of the moment is aligned with the applied field; we can define a susceptibility (α) of
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the dipole, such that

⟨p⟩= αE (7.19)

For the case of two dipole interacting with each other, we define the electric field of the

first dipole as

E1 ∼
p1
r3 (7.20)

This external field can be used to compute the dipole moment of the second dipole, such

that

⟨p2⟩ ∼ α2E1 ∼
α2p1

r3 (7.21)

Thus, the potential energy between dipoles 1 (with electric field E1) and dipole two (with

dipole moment p2) is given as

V dipole
A (r) =−p2 ·E1 ∼ r−6 (7.22)

A more exact treatment of this can be found in Hunter, section 11.2 [12]. For our

purposes, the scaling Vdipole(r)∼ r−6 is sufficient. The potential decays rapidly with distance -

hence, Van der Waals between two dipoles are sometimes referred to as ”short range” Van der

Waals.
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Long range Van der Waals

For two macroscopic bodies, the Van der Waals potential is integrated over the volume of

each body; for two planes, separated by a distance r, this results in a potential VD(r)∼ r−2. This

potential decays much slower than the potential for two dipoles. Hence, these are called ”long

range” Van der Waals.

The following derivation is adapted from Berg Chapter 2.2 [14]. A similar derivation is

given in Hunter Chapter 11.3 [12]. Consider a test dipole, located a vertical distance z = D from

an infinite plane. The plane contains a density of dipoles ρ , such that ring within the plane ( of

radius x, height dz and thickness dx) contains 2πρxdxdz number of dipoles.

dz

dx

Infinite half plane

z

x

𝑟 = 𝑥! + 𝑧!

−∞ < 𝑧 < 0

Dipole located at z	=	D0

Figure 7.4. Long range Van der Waals Consider a test dipole, located a vertical distance z = D0 from an infinite
plane. The plane contains a density of dipoles ρ , such that ring within the plane ( of radius x, height dz and thickness
dx) contains 2πρxdxdz number of dipoles. The distance from the test dipole to the ring within the infinite plane is
r2 = x2 + z2.

Following the previous section, the potential between a pair of dipoles is written as

V dipole
A (r) =− B

r6 (7.23)

The energy between the test dipole and the half plane (V dip−hp
A ) is the sum of the interactions

between the test dipole and each individual dipole in the half plane. It follows that the potential
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between the test dipole and the half plane can be written as

V dip−hp
A =−B2πρ

∫
∞

D0

∫
∞

0

x
r6 dxdz (7.24)

Recognizing that r2 = x2 + z2, this is re-written as

Vdip−hp =−B2πρ

∫
∞

D0

∫
∞

0

x
(x2 + z2)3 dxdz (7.25)

Evaluating the first integral over x, we find

Vdip−hp =−π

2
Bρ

∫
∞

D0

1
z4 dz (7.26)

Evaluating the second integral of z, where the minimum vertical distance between the test dipole

and the half plane is D0, we find

V dip−hp
A =−πBρ

6D3
0

(7.27)

This can be expanded to two half planes, separated by a distance D0. In each slice of the

upper half plane (of thickness dD and unit area), there are ρdD number of dipoles. Thus, the

potential between a unit area of the upper half plane and the lower half plane, is:

Uhp
A =−πBρ2

6

∫
∞

D0

dD
D3 =−πBρ2

12D2
0

(7.28)

We notice that the Van der Waals potential decays much slower between two macroscopic,

with U ∼ D−2
0 . A more through discussion of this can be found in Hunter Chapter 11.3-11.6.

For two planes separated by a distance D0, the Van der Waals potential energy per unit

area is given by (Hunter, 11.6.26)

U plane
A (D0) =− Ai jk

12πD2
0

(7.29)
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where Ai jk is the Hamaker constant, a material property which describes the interaction of plane

i with plane j in media k. This can be modified for the case of two spheres of radius R using

Deryaguin’s approximation

V sphere(D0) = πR
∫

∞

D0

U plane(x)dx (7.30)

such that the potential between two spheres of radius R, separated by a distance D0, is

V sphere
A (D0) =− Ai jkR

12πD0
(7.31)

We notice that the Van der Waals potential between two spheres decays even slower than

the potential between two plates. Typical values for the Hamaker constant of various materials in

water are between 10−21 J and 10−20 J [14, 13] .

7.3.2 Electrostatics

Most colloids, when dispersed in water, develop a charge at the surface. It follows that

Electrostatics play a key role in the interactions between colloids.

Colloids in Water

Most colloids, when dispersed in aqueous media, develop a charge at the surface. We

will describe in detail the case of Silica colloids, as many examples can be found in the literature.

The case for TPM colloids (as used in the experiments in this thesis) is expected to be quite

similar, and is discussed at the end of this section. The following derivation is adapted from Berg

Chapter 6.3; A more in depth discussion of the charge on the surface of silica can be found in

[ref: Charge on Glass and Silica, Grier].

In the case of Silica colloids suspended in water, the charge at the surface is generally

negative, due to the dissociation of a hydrogen.
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SiOH ⇋ SiO–+H+ (7.32)

The total number of sites on the surface remains fixed

Ns = [SiOH]+ [SiO–] (7.33)

while the surface charge is proportional to the concentration of SiO– groups on the surface.

σ0 =−e[SiO–] (7.34)

The equilibrium concentration of SiO– is determined by the relevant mass action law and

equilibrium constant K

[H+][SiO–]

[SiOH]
= K (7.35)

The concentration of free hydrogen at the surface can be further expanded upon. It is

expected to be in chemical equilibrium with free hydrogen in the bulk, which can be measured

through the pH.

µH+ = kBT ln([H+]b) = kBT ln([H+]s)+ eΨ0 (7.36)

with [H+]b the bulk concentration of free hydrogen and [H+]s the concentration at the surface,

and Ψ0 the potential at the surface. The concentration of free hydrogen at the surface is given by

the Boltzmann distribution:

[H+]s = [H+]b exp(−βeΨ0) (7.37)

To reasonable approximation, equations 7.34, 7.37, and 7.35 can be combined to describe

the total charge on the surface.
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σ0 =
−eNs

1+ [H+]
K exp(−βeΨ0)

(7.38)

We note that a more in accurate discussion of the charge of glass at the surface can

be found in [11]. Nevertheless, equation 7.38 leads to a useful approximate description of

the surface charge. At extremely high concentration of H+ (low pH), the charge goes to zero.

Meanwhile, in extremely basic conditions, the surface is entirely de-protonated and the charge is

maximally negative. In this way, H+ can be thought of as a potential determining ion. For metal

oxides, Polystyrene latex beads, and many proteins, the pH will determine the surface potential,

as discussed in Hunter Chapter 1.6 [12]. Colloids made of TPM polymer also carry a negative

surface potential [9], likely due to the de-protonation of a silanol moitey [10].

Ions density in solution

As previously discussed, the surface of a colloid typically becomes charged when sus-

pended in water. This creates an electric potential surrounding the colloid. In the following

section, we will describe the interactions between this electric potential and the ions in the

surrounding media.

Consider the case of a colloid with negative charge. When the surrounding media

contains ions (positively, or negatively charged), the electric potential from the colloid will either

attract or repel the surrounding ions, creating an inhomogenous distribution of charges in the

surrounding media (ρ(r)). Via Poisson’s Equation
(
∇2Ψ(r) =

−ρ(r)
ε

)
, the distribution of ions

in the surrounding media determines the total electric potential in the region (Ψ(r)).
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Figure 7.5. Diffuse double layer of ions Near the charged surface, a diffuse layer of oppositely charged ions forms.
The resulting ion cloud screens the electric potential from the charged colloid.

As described in Fig. 7.5, a layer of oppositely charged ions develops around the charged

colloids, termed the diffuse double layer. The ions near the charged surface are assumed to be in

chemical equilibrium with the ions in the bulk, having their chemical potential (µ) modified by

the electric potential. The concentration of ion of species i (ni(r)) can be written as a Boltzmann

distribution; the concentration depends linearly on the bulk concentration of ions (n0
i ), and

exponentially on electric potential (Ψ(r))

µi = kBT ln(n0
i ) = kBT ln(ni(r))+ eziΨ(r) (7.39)

ni(r) = n0
i exp(−β zieΨ(r)) (7.40)

Thus, the density of charge in solution is given by the charge per electron (e), times the valency

per ion (zi) times the concentration of ions (ni(r)).

ρ(r) = ∑
i

ezini = ∑
i

ezin0
i exp(−β zieΨ(r)) (7.41)

where n0
i gives the bulk concentration of ions of species i. This makes some assumptions about

the ions, primarily that they do not interact with each other; rather, it is assumed that ions are

primarily interacting with the charged surface. Now that we have the density of charges, we can
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invoke Poisson’s Equation, to solve for the potential.

∇
2
Ψ(r) =

−ρ(r)
ε

(7.42)

∇
2
Ψ(r) =

−1
ε

∑
i

n0
i zieexp(−β zieΨ(r)) (7.43)

This is known as the Poisson-Bolzmann equation. In general, this equation is very

difficult to solve in its full form, but assumptions can be made to find simple solutions. In the

following sections, I will discuss some of the relevant approximate solutions. A more detailed

look into this can be found in many of the standard textbooks, including Hunter Chapter 7 [12],

Berg Chapter 6.B [14] and Tadros Chapter 2 [13].

Debye-Hückel approximation

Assuming that the electrical potential is much smaller than the Thermal energy (ie:

|zieΨ≪ kBT | ), one can expand the exponential in Eq. 7.43 using the Taylor expansion (exp(ε)≃

1+ ε). This is the Debye-Hückel (DH) approximation:

−1
ε

∑
i

n0
i zieexp(−β zieΨ(r))≃ −1

ε
∑

i
n0

i zie+
1
ε

∑
i

n0
i z2

i e2Ψ

kBT
(7.44)

The first order terms cancel out, since the bulk must be charge neutral. Thus, the Poisson

Bolzmann equation is simplified to

∇
2
Ψ = κ

2
Ψ (7.45)

κ
2 =

e2
∑i n0

i z2
i

εkBT
(7.46)

κ−1, also known as the Debye Length (λD), sets the relevant length sale for the Elec-

trostatic forces, and the diffuse double layer of ions surrounding the charged colloid. It is

often interpreted as the ”screening length” since at distances greater than the Debye length, the
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potential is effectively screened by the surrounding ions [14]. The Debye length is dependent on

the ion concentration; a good number to remember is the Debye length in 1mM NaCl solution is

about 10nm.

λD(nm)∼ 10√
c

(7.47)

for c the ionic strength, in units of mM.

Finally, it is worth noting that this solution is only derived in the limit of |zieΨ ≪ kBT | .

For a monovalent ion (zi =±1), this means |Ψ| ≪ 25mV. Through experimental measurements

of the zeta potential [9] [16], we know that this is often not the case, with typical values between

-10 mV and -50 mV. For now, we will stay within the DH approximation, and solve for the

potential. Later, we will study the full solution to the Poisson - Boltzmann equation (see: Section

7.3.2, and 7.3.2), and compare the solutions of the DH approximation to confirm its validity.

Solutions to DH equation

Eq. 7.45 can be solved near a plane with relative ease. The general solution being:

Ψ = Aexp(−κr)+Bexp(κr) (7.48)

For r, the distance from surface. Invoking that the potential decays to zero at infinity requires

B = 0. To solve for A, there are two relevant boundary conditions.

Constant surface potential First, one could specify the condition Ψ(r = 0) = Ψ0

Ψ = Ψ0 exp(−κr) (7.49)

Additionally, one could specify that the potential at some point (x = δ ) in the diffuse layer is

held constant (Ψ(δ ) = Ψδ ). This comes from a more robust description of the diffuse double

layer (Stern Model, see Berg 6.6 [14]), which makes a a distinction between charges that are
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specifically absorbed at the surface, and charges that are freely diffusing.

Ψ = Ψδ exp(−κ(r−δ )) (7.50)

Constant surface charge Considering our understanding of the charge accumulated on

the surface of Silica coming from a chemical equilibrium with the surrounding free hydrogen, it

is also important to discuss the boundary condition where surface charge (σ0) is held constant,

rather than potential. The boundary condition at the surface (r=0) thus reads:

(
∂Ψ

∂ r

)
r=0

=−σ0

ε
(7.51)

and the potential distribution

Ψ(r) =
σ0

εκ
exp(−κr) (7.52)

As discussed in the previous section (see Eq. 7.38), the charge at the surface of Silica

depends not only on the concentration of free hydrogen, but also the surface potential. Thus,

neither the constant potential nor constant charge solutions should be treated as exact, rather

upper and lower limits for the solution. A more in depth discussion of how to treat these boundary

conditions can be found in Berg Chapter 6.3 [14], along with an example using the Carboxylic

Acid (-COOH) functional group.

Full Solution to Poisson- Boltzmann Equation

It is possible to derive a full solution for the Poisson-Bolzmann equation for a symmetric

1:1 electrolyte (ie: z1 =+1 and z2 =−1) near the surface of a plane. A partial derivation can

be found in Hunter chapter 7.3 [12], with many steps left as exercises for the reader. A full

derivation can be found below:

We start with the Poisson-Boltzmann equation (Eq. 7.43)
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∇
2
Ψ(r) =

−1
ε

∑
i

n0
i zieexp(−β zieΨ(r)) (7.53)

In the case of a symmetric 1:1 electrolyte, the summation on the right side of the Poisson-

Boltzmann equation can be written as:

∂ 2Ψ

∂ r2 =
n0e
ε

(exp(βeΨ)− exp(−βeΨ) (7.54)

Through the definition of hyperbolic sin function (i.e. 2sinh(x) = ex − e−x), this becomes

∂ 2Ψ

∂ r2 =
2n0e

ε
sinh(βeΨ) (7.55)

Which can be integrated by multiplying both sides by 2∂Ψ

∂x , such that

2
∂Ψ

∂ r
∂ 2Ψ

∂ r2 = 2
∂Ψ

∂ r
2n0e

ε
sinh(βeΨ) (7.56)

and recognizing the left hand side to be the ∂

∂ r (
∂Ψ

∂ r )
2. The right hand side is integrated, using the

boundary condition that ∂Ψ

∂ r = 0 when Ψ = 0. Thus we arrive at

(
∂Ψ

∂ r
)2 =

4n0e
ε

(cosh(βeΨ)−1) (7.57)

This is simplified with two subsitutions. First, the half angle rule for hyperbolic cosh (ie:

cosh(p) = 2sinh2(p/2)+1). Second, using the definition of the Debye Length (Eq. 7.45), n0/ε

is replaced with κ2/2βe2 . Thus:

∂Ψ

∂ r
=

−2κ

βe
sinh(

βeΨ

2
) (7.58)

The (−) sign is chosen when taking the square root, such that ∂Ψ

∂x < 0 when Ψ > 0. Using

the double angle rule for hyperbolic sine function (ie: sinh(p) = 2sinh(p/2)cosh(p/2) ), the

equation becomes:
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∂Ψ

∂ r
=

−4κ

βe
sinh(

βeΨ

4
)cosh(

βeΨ

4
) (7.59)

Multiplying both sides by sech2(βeΨ

4 ) = 1/cosh2(βeΨ

4 ) and recognizing ∂

∂x tanh p = sech2 p
∂ p
∂x

leads to the following equation:

∂ tanh(βeΨ

4 )

tanh(βeΨ

4 )
=−κ∂ r (7.60)

Finally, we recognize that this is differential equation takes the form

∂y
y

= ∂x (7.61)

which can be integrated (with conditions y(x0) = y0), to obtain

log(y/y0) = x− x0 (7.62)

Integrating from point in the diffuse layer, with conditions Ψ(d) = Ψd , gives the full solution:

tanh(βeΨ/4) = tanh(βeΨd/4)exp(−κ(r−d)) (7.63)

A few words are in order. First, notice that when both Ψ and Ψd are small compared

to 4kBT/e (about 100mV at room temperature), you recover the solution to the Debye-Huckle

model with a constant potential (using the expansion tanh(ε)∼ ε).

Additionally, if only Ψ is small, but Ψd is not (for example, far away from the charged

surface), then the solution can be approximated as:

Ψ = Z exp(−κ(r−d)) ; Z =
4kBT

e
tanh(βeΨd/4) (7.64)

Now, we have three solutions for the the Poisson Boltzmann equation near a plane

126



(considering the case of constant surface potential). In the following section, I will do my best to

compare the solutions.

Comparison of relevant approximations

We have identified three equations for the Electric potential near a plane, each using

different approximations. In each case, the boundary condition is that the potential at a position

within the double layer is held constant, such that Ψ(δ ) = Ψδ (For the case of a constant surface

potential, one can take δ = 0) For review, they are listed below:

(1) Debye-Hückel Approximation The DH approximation stems from stating that the

electrical potential is much smaller than the Thermal energy (ie: |zieΨ ≪ kBT |) . The relevant

equation is given by Eq. 7.50 :

Ψ(r) = Ψδ exp(−κ(r−δ )) (7.65)

(2) Full solution to the Poisson-Boltzmann Equation The Poisson-Boltzmann equation

can be solved in full for the case of symmetric 1:1 ions. This is gives Eq. 7.63:

tanh(βeΨ/4) = tanh(βeΨd/4)exp(−κ(r−d)) (7.66)

(3) Full solution to the Poisson-Boltzmann Equation, far away form the surface

Eq. 7.63 can be simplified in the case that you are far away from the surface (i.e. Ψ is small, but

Ψd is not). This yields Eq. 7.64:

Ψ = Z exp(−κ(r−d)) ; Z =
4kBT

e
tanh(βeΨd/4) (7.67)

I find the most intuitive way to understand the differences between these three solutions

is to plot them against each other (as seen in Fig. 7.6 ). We find that for Ψd ≤ 50mV, all three

solutions are comparable. For large values of Ψd , Equation Eq. 7.63 tends to underestimate the

potential (especially true for small r−δ ), while the DH approximation tends to overestimate.
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Experimental measurements of the zeta potential of TPM polymer colloids typically

range between -10 mV and -50 mV [16] [9]. This validates our use of the DH approximation.
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Figure 7.6. Solutions to the Poisson-Boltzmann equation The full solution to the Poisson-Boltzmann equation
(Eq. 7.63) is plotted as solid lines. An approximation to the full solution, valid far from the surface, (Eq. 7.64)
is plotted as a dotted line. The solution using the Debye-Hückel approximation (Eq. 7.50 ) is dashed lines. All
solutions assume a Debye length of 10nm. Different colors represent different surface potentials (see legend).
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Double Layer Forces

Having derived the potential near a charged surface in solution with ions, it is now

possible to discuss the energetic costs to bring two of these charged surfaces, and their associated

ion clouds, near each other - termed Double layer forces. Further reading can be found in Berg

Chapter 6.C.1 [14], and Hunter Chapter 12 [12].

Roadmap: The following derivation is quite tedious. To avoid getting lost along the way, we

include a general guide in the beginning.

1) Each charged plane carries with it a diffuse double layer of ions. When the planes are

brought close together, there is a higher concentration of ions between the planes than in the bulk

- creating an effective osmotic pressure. We will derive the pressure as a function of the electric

potential at the midpoint between the planes Ψmid

2) Solve the Poisson Bolzmann equation, with the relevant boundary conditions, to obtain

Ψmid as a function of the distance between the plates and the surface potential, Ψ0

3) Integrate the osmotic pressure, bringing the plates from infinity to a distance D0. This

gives the potential energy per unit area UR(D0) between two charged plates.

4) Apply the Derjaguin approximation, to obtain the repulsive potential energy between

two spheres VR

Osmotic pressure from ion cloud

Consider two charged planes, each with an associated ion cloud; the planes are separated

by a distance D and each plane has the same surface potential Ψ0. The standard derivation starts

with the osmotic pressure (Π) between two planes. As the planes come together, a high density

of ions builds between the two, due to the ion cloud associated with each plane. The osmotic

pressure is given as the difference in number density of ions in the region between the planes

versus in the bulk. For simplicity, we will restrict to ourselves to a system with a simple 1:1

electrolyte (ie: z1 = 1,z2 =−1).
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Π(D) = kBT (n+(D/2)+n−(D/2)−2n0) (7.68)

Where n0 equal to the bulk concentration of ions, far from the charged surface. The concentration

of ions near the plane is further defined using the Boltzmann equation (Eq. 7.40). The potential

at the midpoint between the planes is given as Ψmid . Thus, we have:

Π(D) = kBT n0(exp(βeΨmid)+ exp(−βeΨmid)−2) (7.69)

Using the identity 2cosh(x) = ex + e−x , this can be re-written as:

Π(D) = 2kBT n0(cosh(βeΨmid)−1) (7.70)

Applying the DH approximation (eΨmid ≪ kBT ), the cosh term can be expanded using

the Taylor expansion (i.e. : cosh(x)≃ 1+ x2/2).

Π(D) = kBT n0(βeΨmid)
2 (7.71)

Finally, we can simplify the constants in terms of the Debye length
(

1
κ2 =

εkBT
2n0e2

)

Π(D) =
κ2ε

2
Ψ

2
mid (7.72)

Now, we have the pressure as a function of the distance between two charged plates,

as given by Hunter (12.3.12) [12]. The repulsive potential energy per unit area is given by

integrating the pressure, bringing the planes from infinity to a distance of D0

UR(D0) =−
∫ D0

∞

Π(D)dD (7.73)

Determine the potential at midpoint between spheres Ψmid

The next step is to determine the potential between the plates, such that we know Ψmid .
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There are a few ways to proceed from here. To good approximation, the potential at the midpoint

(Ψmid) is given by the superposition of the potentials due to each plate - this treatment can be

found in Hunter Chapter 12.3.1 [12].
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Figure 7.7. Boundary conditions for electric potential between two planes. Graphical representation of the
electric potential between two charged plates at distance D. The potential from each plate (Ψi) is drawn in black,
and the combined potential Ψ in red. The combined potential is assumed to be symmetric, such that at the midway
point, ∂Ψ

∂ r = 0.

Another approximation would be to solve the Poisson Equation within the DH approxi-

mation, with the condition that ∂Ψ

∂ r = 0 at the midpoint between the plates (Ψ(D/2) = Ψmid) A

graphical representation is given in Fig. 7.7. Considering the previous section, discussing the

validity of the DH approximation, I will proceed with the second. This following derivation can

be found as Exercises 12.3.5, 12.3.5 and 12.5.1 in Hunter [12].

We begin with Eq. 7.45

∇
2
Ψ = κ

2
Ψ (7.74)

and multiply both sides by 2
∂Ψ

∂ r
, such that we have

2
∂Ψ

∂ r
∂ 2Ψ

∂ r2 = 2
∂Ψ

∂ r
κ

2
Ψ (7.75)
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We notice that the left side can be re-written as

2
∂Ψ

∂ r
∂ 2Ψ

∂ r2 =
∂

∂ r

(
∂Ψ

∂ r

)2

(7.76)

We insert this into Eq. 7.75, and integrate both sides over r

∫
∂

∂ r

(
∂Ψ

∂ r

)2

dr =
∫

2
∂Ψ

∂ r
κ

2
Ψdr (7.77)

the left side gives
(

∂Ψ

∂ r

)2

. The right side yields κ2Ψ2 +C, where C is a constant of integration.

Inserting the boundary condition
∂Ψ

∂ r
= 0 at Ψ = Ψmid , we have

(
∂Ψ

∂ r

)2

= κ
2(Ψ2 −Ψ

2
mid) (7.78)

leading to (
∂Ψ

∂ r

)
= κ(Ψ2 −Ψ

2
mid)

1/2 (7.79)

re-arranging terms we have

∫
Ψmid

Ψ0

∂Ψ

(Ψ2 −Ψ2
mid)

1/2 =
∫ D/2

0
κ∂ r (7.80)

Here, we ansatz that Ψ takes the form Ψ = Ψmid cosh(W ), for some function W .

Thus, ∂Ψ = Ψmid sinh(W )∂W . The left side can be re-written as:

∫
∂Ψ

(Ψ2 −Ψ2
mid)

1/2 =
∫

Ψmid sinh(W )

(Ψ2
mid cosh(W )2 −Ψ2

mid)
1/2

∂W =
∫

∂W (7.81)

Therefore, Eq. 7.80 yields W = κD/2 for Ψ = Ψmid cosh(W )

Thus, the potential at the midpoint between two charged planes separated by a distance

D (with surface potential Ψ0, within the limits of the DH approximation) is given by
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Ψmid =
Ψ0

cosh(κD
2 )

(7.82)

Determine potential energy to bring plates together

In the previous section, we determined that the osmotic pressure from the high density of

ions between the plates was given by

Π(D) =
κ2ε

2
Ψ

2
mid (7.83)

additionally, the potential energy per unit area to bring the planes from infinity to a distance of

D0 is given by

UR(D0) =−
∫ D0

∞

Π(D)dD (7.84)

Now we insert our equation for Ψmid (Eq. 7.82) to solve for the potential energy per unit area

UR(D0) =−κ2εΨ2
0

2

∫ D0

∞

cosh
(

κD
2

)−2

dD (7.85)

inserting cosh(x)−1 = sech(x), we have

UR(D0) =−κ2εΨ2
0

2

∫ D0

∞

sech
(

κD
2

)2

dD (7.86)

which yields

UR(D0) =−κ2εΨ2
0

2

(
2
κ

)[
tanh

(
κD
2

)]∣∣∣∣D0

∞

(7.87)

Thus, the repulsive potential energy per unit area for two charged planes at a distance D0

is given by: (equivalent to Hunter, 12.3.16)

U plane
R (D0) = κεΨ

2
0

[
1− tanh

(
κD0

2

)]
(7.88)
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Apply Deryaguin’s approximation to determine VR for two spheres

The final piece is to apply Deryaguin’s approximation to Eq. 7.88, to determine VR

between two spheres (of radius R). This is exercise 12.5.1 in Hunter [12]; for the interested

reader, Chapter 12.5 of Hunter discusses the use of other approximation methods, including the

case where the Debye length is of comparable size as the colloid.

Deryaguin’s approximation is given by

V sphere(D0) = πR
∫

∞

D0

U plane(x)dx (7.89)

For two spheres (with radius R, surface potential Ψ0, separated by a distance D0):

VR(D0) = πκεRΨ
2
0

∫
∞

D0

[
1− tanh

(
κx
2

)]
dx (7.90)

we insert the definition of tanh(z)

tanh(z) =
ez − e−z

ez + e−z (7.91)

thus, 1− tanh(z) can be re-written as

1− tanh(z) =
ez + e−z − (ez − e−z)

ez + e−z =
2e−z

ez + e−z =
2e−2z

1+ e−2z (7.92)

Allowing us to re write the repulsive potential energy as

VR(D0) = 2πκεRΨ
2
0

∫
∞

D0

e−κx

1+ e−κx dx (7.93)

next, we can say Y = 1+ e−κx, such that ∂Y
∂x =−κe−κx. The integral is re-written as

VR(D0) =−2πεRΨ
2
0

∫
∞

D0

dY
Y

=−2πεRΨ
2
0
[

ln(1+ e−κx)
]∣∣∣∣∞

D0

(7.94)

Finally, the repulsive potential energy between two charged spheres at a distance D0 (as given by
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Hunter, 12.5.2) is:

V sphere
R (D0) = 2πεRΨ

2
0 ln(1+ e−κD0) (7.95)

After some effort, we are now able to write down the repulsive potential energy between

two spheres (V sphere
R , Eq. 7.95). In the previous section on Van der Waals, we have determined

the attractive potential energy (V sphere
A , Eq. 7.31). We combine the two in the following section

on DLVO theory, analyzing the stability of colloids as a function of the ionic concentration.

7.3.3 DLVO Theory

The theories of Van der Waals attraction and double layer repulsion can be combined to

discuss the stability of colloidal systems as a function of ion concentration. This is commonly

referred to as DLVO theory, after the scientists who developed it: Deryaguin Landau Verwek and

Overbeek. The total potential energy between two charged colloids can be written as a function

of the distance between them (r)

VDLVO(r) =VA(r)+VR(r) (7.96)

with VD the attractive potential from Van der Waals interactions, and VR the repulsive potential

from the double layer. Using Eq. 7.31 and Eq. 7.95 , the full equation can be written as

VDLVO(r) =−Ai jkR
12πr

+2πεRΨ
2
0 ln(1+ e−κr) (7.97)

with R the radius of the colloid, Ψ0 the surface potential, κ−1 the Debye length, and Ai jk the

Hamaker constant. We understand that, as the ionic strength (c) increases. the repulsive potential

is increasingly screened (κ ∼√
c ). Meanwhile, the attractive Van der Waals potential remains

unchanged. It results that the potential energy barrier between the colloids collapses at sufficient

ion concentration (VDLVO < 0 for all r). The colloidal suspension is de-stabilized, and begins to
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aggregate. These dynamics are visualized in the following figure.
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Figure 7.8. DLVO theory Solutions to Eq. 7.97 for increasing ion concentrations. VD (Van der Waals) is plotted
in blue, VR (repulsive) is plotted in red, and the sum VDLVO in black. Ion concentrations (c) in each figure are: (A)
5mM, (B) 30mM and (C) 75mM. κ is determined using Eq. 7.47, such that κ ∼√

c. Constants are: R = 1µm, Ψ0=
-10mV, Ai jk = 10−20J, and ε = ε0εr with ε0 vacuum permittivity 8.85∗10−12 Fm−1 and relative permittivity εr =
80. As the ion concentration increases, the repulsive potential is increasingly screened. Meanwhile, the attractive
Van der Waals potential remains unchanged. It results that the net repulsive barrier between colloids collapses at
sufficient ion concentration.
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