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RESEARCH Open Access

The identification of novel immunogenic
antigens as potential Shigella vaccine
components
Ruklanthi de Alwis1,2, Li Liang3, Omid Taghavian3, Emma Werner4, Hao Chung The5, Trang Nguyen Hoang Thu5,
Vu Thuy Duong5, D. Huw Davies3, Philip L. Felgner3 and Stephen Baker6*

Abstract

Background: Shigella is a major diarrheal pathogen for which there is presently no vaccine. Whole genome
sequencing provides the ability to predict and derive novel antigens for use as vaccines. Here, we aimed to identify
novel immunogenic Shigella antigens that could serve as Shigella vaccine candidates, either alone, or when
conjugated to Shigella O-antigen.

Methods: Using a reverse vaccinology approach, where genomic analysis informed the Shigella immunome via an
antigen microarray, we aimed to identify novel immunogenic Shigella antigens. A core genome analysis of Shigella
species, pathogenic and non-pathogenic Escherichia coli, led to the selection of 234 predicted immunogenic
Shigella antigens. These antigens were expressed and probed with acute and convalescent serum from
microbiologically confirmed Shigella infections.

Results: Several Shigella antigens displayed IgG and IgA seroconversion, with no difference in sero-reactivity across
by sex or age. IgG sero-reactivity to key Shigella antigens was observed at birth, indicating transplacental antibody
transfer. Six antigens (FepA, EmrK, FhuA, MdtA, NlpB, and CjrA) were identified in in vivo testing as capable of
producing binding IgG and complement-mediated bactericidal antibody.

Conclusions: These findings provide six novel immunogenic Shigella proteins that could serve as candidate vaccine
antigens, species-specific carrier proteins, or targeted adjuvants.

Background
Shigella is the causative agent of shigellosis, a severe
acute gastrointestinal infection that frequently presents
as bloody diarrhea, fever, and severe abdominal pain [1].
In 2016, Shigella was estimated to cause > 250 million
cases and > 200,000 deaths globally [2]. Higher income
countries experience Shigella infections among travelers,
aging populations, deployed military personnel, and men
who have sex with men (MSM) [2, 3]. However, the

preponderance of the Shigella disease burden is in chil-
dren aged under 5 years residing in low-middle income
countries (LMICs). Infection in this vulnerable group can
also result in significant long-term consequences such as
severe stunting and impaired cognitive development [2, 4].
The global epidemiology of Shigella is worsened by the
emergence and spread of multi- and extensively drug
resistant (MDR and XDR) variants, making infections
increasingly difficult to treat [5]. The principal method of
Shigella prevention has been improvements in water, sani-
tation, and hygiene (WASH) [6]. However, due to the low
infectious dose, the standard of WASH required to break
transmission is difficult to attain in many LMICs [7]. Fur-
thermore, recent application of molecular techniques to
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identify Shigella infections found a severe underestimation
of the global Shigella burden [8, 9], highlighting the need
for new low-cost prevention techniques.
There is currently no licensed vaccine against Shigella

[10]. However, studies in animals and controlled human
infection models (CHIMs) have shown that protection
through immunization is feasible [11, 12]. Natural disease
epidemiology in humans and non-human primate infection
studies show complete protection from re-infection with a
homologous Shigella species. Long-term homologous
protection has been attributed to serotype-specific
systemic (serum IgG) and mucosal (IgA) antibody
responses [12, 13]. The most immunodominant target
of the Shigella IgG and IgA response is the O-antigen
component of lipopolysaccharide (LPS) [14, 15]. LPS/
O-antigen-specific antibodies elicit protection through
antibody-mediated opsonization, phagocytosis, and
intracellular cytotoxicity [13]. However, antibodies
against Shigella O-antigen are highly specific for the
infecting species only [11, 13], and do not provide pro-
tection against heterologous Shigella species. Since the
Shigella genus consists of four species and > 50 sero-
types, a lack of cross-protection against heterologous
species and serotypes poses a major challenge for
vaccine development [16]. This challenge may be over-
come by a vaccine that elicits either a broadly reactive
immune response or numerous species-specific re-
sponses against the globally dominant Shigella species
(i.e., S. flexneri and S. sonnei) [17].
The primary strategy of developing an efficacious

Shigella vaccine has been to elicit antibody responses
targeting Shigella O-antigen [10]. Live-attenuated vac-
cines with genetically attenuated Shigella [18–20], or the
expression of Shigella O-antigen on live-attenuated
vectors [21], have been shown to induce good antibody
responses against O-antigen. Multivalent killed-vaccines
also induce high titers of serum IgG and mucosal IgA
targeting Shigella O-antigens and have shown protection
in early clinical development [22, 23]. Recombinant
forms of Shigella O-antigen have also been pursued as
vaccine candidates [10], with a Shigella O-antigen conju-
gated to a carrier protein [24–26], which engages T cell
help and produces a longer lasting antibody response to
the polysaccharide antigen [27]. Various immunogenic
proteins, such as the toxins from other pathogens, have
been used as carrier proteins [28, 29]. However, protein
antigens from Shigella have not been evaluated as a
carrier protein for Shigella O-antigen.
Whole genome sequencing provided the ability to

predict and derive novel antigens for use as vaccines,
and this approach ultimately gave rise to the meningo-
coccal B vaccine [30–32]. Further technological advances
in immunology and protein engineering to study the
interaction of pathogens with the immune system can

aid in reverse engineering of protective immunogens
[33–35]. Here, we aimed to identify novel immunogenic
Shigella antigens that could serve as Shigella vaccine
candidates, either alone, or when conjugated to Shigella
O-antigen. Therefore, we conducted immunogen predic-
tion using bioinformatic analysis, then created a protein
microarray of predicted immunogenic Shigella antigens.
These expressed antigens were screened for immuno-
genicity using polyclonal antibodies from patients who
recovered from confirmed Shigella infections, to identify
a novel set of proteins which may facilitate the develop-
ment of novel Shigella vaccines.

Methods
Ethics
Human serum samples for the purposes of this investi-
gation were collected from an observational study of
children with diarrheal disease and a cohort study of
healthy infants, both conducted in Ho Chi Minh City
(HCMC), Vietnam [36, 37]. Both studies were approved
by the institutional review boards of collaborating insti-
tutions HCMC and the Oxford Tropical Research Ethics
Committee (OxTREC No. 1045-13) in the UK. Written
informed consent by a legal guardian was a prerequisite
for enrolment into the studies.

Serum samples
Paired acute-convalescent serum samples were collected
as a component of a prospective, observational, multi-
center, cross-sectional study conducted in HCMC,
Vietnam. The clinical and microbiological data from this
study has been published previously [37]. For this inves-
tigation, we utilized acute serum samples collected from
microbiologically confirmed Shigella (n = 33) or Salmon-
ella (n = 24) cases when they first presented at hospital
with acute diarrheal disease (patients bled prior to diag-
nostic testing) (Table 1). Convalescent (follow-up) serum
samples collected at a follow-up visit, 4 weeks (± 1 week)
after being enrolled in the study. Umbilical cord blood
was collected from a large prospective birth cohort
study, where healthy pregnant mothers who visited
Hung Vuong Obstetrics Hospital in HCMC, Vietnam,
were recruited prior to birth and cord blood sampled
after delivery [36, 38]. Serum extracted from maternal
blood during pregnancy has previously been subjected to
ELISA to measure S. sonnei O-antigen IgG [39]; the cord
blood samples screened here were from mothers with
high (n = 45) and low (n = 40) S. sonnei O-antigen IgG
titers (Table 1).

Bioinformatic analysis
The complete chromosomal sequences of 10 Shigella
and 47 Escherichia coli (E. coli) were retrieved from
GenBank (accessed in July 2014 using an in-house script
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described in Supplementary file 1). The incorporated
Shigella sequences included 2 S. boydii, 2 S. dysenteriae,
4 S. flexneri, and 2 S. sonnei. The collection of E. coli
genomes used included both pathogenic (n = 32) and
non-pathogenic variants (n = 15). A complete list of E.
coli and Shigella genome sequences utilized in the
present study is indicated in Additional File 2 Table S1.
The CMG-Biotools (Comparative Microbial Genomics)
workbench was used to identify the core genome of all
sequences [40]. Protein sequences were extracted based
on published annotations for all genomes. To identify
conserved and unique regions of the genomes, we
performed pairwise reciprocal BLASTP on all extracted
protein sequences. Sequences were clustered into one
orthologous group using the criteria of alignment of at
least 50% similarity matches and alignment length of at
least 50% of the longest sequence in the comparison.
By comparing the genomes, several protein subsets of

interest were considered: (1) sequences present in all S.
sonnei and absent from all E. coli, (2) sequences present
in all S. flexneri and absent from all E. coli, and (3)
sequences present in all S. sonnei and S. flexneri and
absent from all E. coli. The output identified from each
subset was manually curated by performing a BLASTN
search of their sequences against the NCBI database.
Since Shigella is phylogenetically nested within the E.
coli species, they show a very low level of divergence in

chromosomal genetic makeup. Hence, the number of
proteins that fulfilled the above criteria (i.e., in groups 1
to 3) was limited (all are shown in Additional file 3
Table S2) and was not sufficient to develop downstream
immunogenic assays.
We additionally included a subset of potentially im-

munogenic proteins present in both S. sonnei and S.
flexneri genomes, notwithstanding their presence in
the examined E. coli genomes. In brief, the annotation
and protein sequences of each orthologous group
were retrieved from the input Shigella genomes (using
an in-house script described in Supplementary File 2).
Sequences associated with mobile genetic elements (IS
elements, transposases, and prophages, excluding patho-
genicity islands) were manually checked and removed.
Other proteins predicted to not be targets of antibody, by
annotation of cellular function and location, were further
excluded. These include proteins in toxin-antitoxin sys-
tems, bacterial conjugation, plasmid inheritance, genome
replication, transcription or protein expression, cellular
metabolism, and other cytoplasmic proteins of unspecified
function. The retaining subset mostly consists of predicted
outer membrane, secreted, periplasmic, and cell wall pro-
teins (Additional file 5 Table S3). Unannotated (hypothet-
ical) proteins were subjected to characterization in Pfam
[41], the transmembrane domain prediction server TMHM
M [42], and the signal peptide prediction server SignalP4.1
[43] (using default Gram-negative prokaryote settings).
Proteins which may show potential immunogenicity (i.e.,
due to their location on the outer membrane, cell wall,
possessing transmembrane domain(s), or possessing a sig-
nal peptide) were retained. Unannotated proteins identified
by Pfam as bacteriophage-related were discarded.

Protein microarray
Proteins selected through the bioinformatics pipeline are
shown in Additional file 5 Table S3. These targets were
expressed, printed, and probed as described previously
for other protein microarray projects [44–46]. Briefly,
the corresponding coding sequences from selected
Shigella proteins were amplified, cloned into a pXT7
vector, and expressed using a high-throughput in vitro
transcription/translation (IVTT) E. coli system (Biote-
chRabbit, GmbH). Controls lacking DNA were included
to account for background reactivity with E. coli, where
IVTT was conducted without plasmid DNA. Expressed
Shigella antigens from IVTT reactions were printed onto
nitrocellulose-coated glass GraceBio slides using an
Omni Grid 100 microarray printer (Genomic Solutions).
LPS from Shigella (Sigma) was also printed on the micro-
array slides to act as positive control. Slides (with E. coli
lysate (McLab) at a final concentration of 1 mg/ml) were
probed with human serum (diluted 1:200), followed by
biotin-conjugated secondary antibodies specific for human

Table 1 Summary of genomes compared, serum samples
tested, Shigella antigens studied, and in vivo immunogenicity
testing conducted in present “reverse vaccinology 2.0” study

Category Number

Genome comparison Number of genomes 57

S. sonnei 2

S. flexneri 4

S. dysenteriae 2

S. boydii 2

Pathogenic E. coli 32

Non-pathogenic E. coli 15

No. of subjects Shigella patients 33

S. flexneri 2

S. sonnei 31

Salmonella patients 24

Newborn (cord serum) 85

Low LPS titer 40

High LPS titer 45

Antigen microarray Number of expressed antigens 234

S. flexneri-specific 22

S. sonnei-specific 8

Shigella orthologs 102 (× 2)

Immunogenicity in vivo Number of antigens tested 8
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IgM, IgG, and IgA (Jackson ImmunoResearch). Binding
antibody was detected using streptavidin-conjugated
SureLightH P-3 (Columbia Biosciences), measured using
Perkin Elmer ScanArray Express HT microarray scanner.
Spot intensities were quantified using the ScanArray
software.

Data analysis
Fold-over-control (FOC) normalizations were conducted
to reduce assay to assay variation by dividing the mean
spot intensities for each antigen by the intensity for the
no DNA control IVTT. Positive serum reactivity to an
antigen was defined as a FOC > 2 (i.e., > 2-fold increase
in the mean intensity over the background control).
Log2-transformed FOC values from paired acute and
convalescent samples were compared using a Bayes reg-
ularized t test adapted from Cyber-T for protein arrays
[47–49]. p values were subjected to Benjamini and
Hochberg (BH) correction to control for false discovery
rate [50]. Data were graphed using the R statistical
software (http://www.r-project.org) and packages “Super-
heat,” “ggplot2,” “rgl,” and “fmsb.”

Protein immunization
His-tagged variants of selected proteins (NmpC, FepA,
HtrB, EmrK, NlpB, FhuA, CjrA, andMdtA) (Additional file 6
Table S4) were successfully expressed in a BacPowerTM E.
coli protein expression system and purified using nickel af-
finity chromatography (GenScript Limited, Hong Kong).
Four months old, male New Zealand rabbits (n = 2 per
protein) were immunized with 0.2mg of the successfully
expressed and purified protein, and serum drawn at 1-week
post-immunization of the third dose. The immunogenicity
of each protein was assayed by testing the pre-immune and
post-immune rabbit sera for sero-positivity using indirect
enzyme-linked immunosorbent assay (ELISA) and immu-
noblot. For ELISA, plates were coated with protein at 4 μg/
ml, blocked, incubated with sera (at 1mg/ml IgG concen-
tration), and detected using anti-rabbit IgG Fc-HRP sec-
ondary antibody. For western blots, 50 ng/well of purified
proteins was run on SDS-PAGE, transferred to nitrocellu-
lose membrane, blocked, probed with pre-immune and
post-immune rabbit sera, and detected with goat anti-
rabbit IgG-IRDye800cw secondary antibody.

Serum bactericidal assay
Purified serum antibody from immunized rabbits was
tested for serum bactericidal activity (SBA) against S.
flexneri 2a (strain EG 0478), S. sonnei (strain DE 1404,
containing a cat chloramphenicol resistance gene on the
virulence plasmid), and S. Typhimurium (strain ATCC
14028) using a previously described SBA protocol [51, 52].
Heat-inactivated sera were serially diluted from 50 to
0.07 μg/ml, then combined with bacteria (250 CFU/well)

and 5 μl of baby rabbit complement and incubated at
37 °C for 90min. Viable bacterial cells were estimated at
time 0min (T0) and at 90min post-incubation (T90) by
plating on nutrient agar plates. Bactericidal activity was
calculated as a ratio of CFU at T90 over T0, from which
SBA titers were estimated at 50% bactericidal activity.
Convalescent immune serum from a confirmed Shigella-
infected patient was used as a positive control [38]. All
serum samples were tested in triplicate and the SBA titers
averaged. The SBA assays with S. sonnei DE 1404 were
performed with and without the supplementation of
10 μg/ml chloramphenicol. S. sonnei has the propensity to
lose the virulence plasmid and O-antigen culture during
culture, and the addition of 10 μg/ml chloramphenicol
was to ensure the maintenance of plasmid and O-antigen
during the SBA assay via the added cat gene. These data
were compared to assess potential killing differences
between plasmid+ and plasmid− organisms.

Results
Bioinformatic analysis identifies potential immunogenic
Shigella core antigens
Genomic comparison of Shigella and E. coli core
genomes was conducted with the aim of selecting both
species-specific and species cross-reactive Shigella pro-
teins common to the most globally dominant species, S.
flexneri and S. sonnei. Protein sequences were extracted
from the annotated chromosomes of various Shigella
species (n = 10), pathogenic (n = 32) and non-pathogenic
(n = 15) E. coli (Table 1 and Additional File 2 Table S1),
and a list of potentially immunogenic antigens was se-
lected using bioinformatic comparison, a list of poten-
tially immunogenic antigens was selected (Table 2 and
Additional File 5 Table S3). Our analysis was restricted
to chromosomal proteins to identify novel immuno-
genic targets, as several proteins on Shigella virulence
plasmids have already been extensively studied for
their immunogenicity [53]. The analysis identified 22
S. flexneri-specific, 8 S. sonnei-specific, and 2 Shigella-
specific proteins (IpaH3.1, IpaH4.5). Another 100 poten-
tially immunogenic orthologs, from both S. sonnei and S.
flexneri, were further included to expand the downstream
immunogenic assays. Shigella LPS (O-antigen) was in-
cluded as a positive control. This resulted in a total of 235
proteins that were expressed in vitro, and successfully
printed on an antigen microarray for downstream analysis
(Additional File 5 Table S3).

Antigen microarray reveals broad seroconversion
following Shigella infections
The Shigella antigen microarray allowed us to assess the
IgM, IgA, and IgG responses against the selected antigens
following symptomatic Shigella infections. The antigen
microarray was probed for sero-reactivity with pairs of
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acute and early convalescent (i.e., 3- to 4-week follow-up)
sera from microbiologically confirmed Shigella-infected
diarrheal patients (n = 34) (Table 1). The present study
used samples from patients infected with the two current
globally dominant Shigella species, S. flexneri (n = 2) and
S. sonnei (n = 32).
Shigella infection led to widespread seroconversion in

all measured antibody isotypes (IgG, IgA, and IgM)
among individuals and across multiple tested antigens,
as observed by the increase in sero-reactivity (i.e., measured
as fold change over control greater than 2, FOC > 2) from
acute to early convalescence (Fig. 1). IgG sero-reactivity
(i.e., FOC > 2) analysis showed that at least one individual
(3% of all patients) during acute and convalescent phase
reacted to a maximum of 35 and 166 antigens, respectively
(Fig. 1a). Additionally, 50% of the individuals (i.e., 17 pa-
tients) in acute and early convalescent phase sero-reacted
(IgG) to 2 and 7 antigens, respectively (Fig. 1a).
The IgA responses were markedly higher than the IgG

responses, with at least one individual generating a de-
tectable IgA response to 209 and 227 antigens during
acute disease and convalescence, respectively (Fig. 1b).
We also observed that > 50% of cases in acute and con-
valescence produced a reactive IgA response to 3 and 44
antigens, respectively. IgM against the antigens also
markedly increased between acute Shigella infections
and convalescence (with 214 to 230 reactive antigens de-
tected in at least 1 patient and 9 to 38 reactive antigens
in > 50% of patients) (Fig. 1c).
We additionally observed that antibody responses were

on average higher in patients with inflammatory (i.e.,
bloody diarrhea) as compared to non-inflammatory (i.e.,
watery diarrhea) disease (as can be seen in the scatter

plots comparing mean IgG, IgA, and IgM responses at
early convalescence, Additional File 7 Fig. S1). As a con-
trol for the assay, the antigen array was probed with
paired acute and convalescent serum (n = 24) from
diarrheal patients infected with an alternative genus of
diarrheal pathogen, Salmonella. Notably, there were no
significant increases in IgG, IgA, or IgM responses be-
tween the acute and convalescence in Salmonella-in-
fected diarrheal cases, indicating that the antibody
reactivity observed with the serum from the Shigella-in-
fected patients was specific to Shigella (Additional File 8
Fig. S2).

Shigella core antigen microarray identifies novel
immunogenic antigens
As has been previously observed, the highest antibody re-
sponses at early convalescence following Shigella infections
were against the Shigella LPS O-antigen. Additionally, we
selected a subset of 12 immunogenic protein antigens using
data generated by the antigen array microarray results; the
criteria for this selection were the smallest p value (Benja-
mini-Hochberg corrected Cyber-T test) from comparison
between acute and convalescent antibody responses, and
the highest mean antibody responses (i.e., Log2(FOC)
values) at early convalescence, etc. The twelve selected anti-
gens were NmpC (SF_nmpC) and FepA (SF_fepA) from S.
flexneri, and HtrB (SSON_htrB), EmrK (SSON_emrK),
NlpB (SSON_nlpB), FhuA (SSON_fhuA), CjrA (SSON_
cjrA), MdtA (SSON_mdtA), SbmA (SSON_sbmA), MviN
(SSON_mviN), PldA (SSON_pldA), and 3803 (SSON_
3803) from S. sonnei. Sero-reactivity between acute and
early convalescence was compared using the Benjamini-
Hochberg corrected Cyber-T test. For all 12 antigens, we

Table 2 Description of the protein subsets of interests studied during chromosomal genome comparison between S. sonnei, S.
flexneri, and pathogenic and non-pathogenic E. coli

Protein
subset of
interest

Excluded proteins Primary
result

Following first
filtrationa

Final selected
proteinsb

Chromosome-encoded
proteins

Proteins found in S. sonnei 1 Excluding proteins found
in non-pathogenic E. coli

63 37 11

2 Excluding proteins found
in any other Shigella or
E. coli spp.

25 16 8

Proteins found in S. flexneri 3 Excluding proteins found
in non-pathogenic E. coli

48 29 20

4 Excluding proteins found
in any other Shigella or
E. coli spp.

25 25 18

Proteins shared between
S. sonnei and S. flexneri

5 Excluding proteins found
in non-pathogenic E. coli
chromosomes

8 1 1

Other predicted immunogenic
Shigella proteins

6 114

aFirst filtration: removal of insertion sequence (IS) elements, transposases, transposons, and bacteriophage-related proteins etc.
bSecond filtration: removal of unspecific proteins (according to BLASTn), cytoplasmic and hypothetical proteins with bacteriophage domain
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observed a statistically significant (p < 0.05) increase in
mean sero-reactivity between acute to early convalescence
in all three antibody isotypes (Fig. 2). Furthermore, > 50%
of the Shigella-infected cases at convalescence (or follow-
up) had positive IgG, IgA, and IgM (i.e., FOC > 2) responses
to all selected antigens, with the exception of SSON_mdtA
and SSON_fhuA (Fig. 3).
Shigella poses the greatest health burden in children

under the age of 2 years; therefore, an effective vaccine
against Shigella needs to induce a protective immune
response in young children. Hence, we assessed the

antibody responses to the 12 selected antigens in chil-
dren aged < 2 years (n = 8) in comparison to those aged
> 2 years (n = 26). At early convalescence, there were no
significant differences in both the mean antibody (IgG
and IgA) sero-reactivity (Additional File 9 Fig. S3A and
B) or the percentage of cases that showed positive anti-
body (IgG and IgA) responses (Fig. S3), when compared
between age groups. These data demonstrate that youn-
ger children generate antibody responses to the 12 se-
lected antigens. Additionally, we also compared sero-
reactivity between male and females; all selected antigens

Fig. 1 Sero-reactivity of Shigella antigens following Shigella infections. a IgG, b IgA, and c IgM reactivity was assessed in gastrointestinal disease
patients during acute Shigella infection and at follow-up. IgG, IgA, and IgM responses (Log2 FOC) were graphically represented as heat maps,
where Shigella antigens were ordered from bottom to top by increasing average responses and Shigella-infected patients were ordered from left
to right by increasing average responses
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elicited similar antibody responses (IgG and IgA) at early
convalescence in both female (n = 20) and male (n =
14) patients with diarrhea (Fig. S3C and D).

Transplacentally transferred antibodies
A potential mechanism for protecting young children
and neonates is the prenatal vaccination of pregnant
mothers [54]. Prenatal vaccines require the mother to
mount a protective IgG response that can be efficiently
transferred transplacentally to the unborn fetus [54].
Therefore, we measured the transplacental transfer of

IgG as an indirect assessment of whether the selected
immunogenic antigens could serve as potential prenatal
vaccine candidates. We compared the IgG sero-reactivity
at birth (cord blood serum) between infants from mothers
with high (n = 45) and low (n = 40) antibody titers (to Shi-
gella O-antigen) (Fig. 3). In general, infants from mothers
with high antibody titers demonstrated greater IgG sero-
reactivity against tested Shigella antigens in comparison to
infants born to mothers with low IgG titers (Fig. 3). Spe-
cifically, with the exception of antigen SSON_mdtA, IgG
sero-reactivity for the remaining 11 selected antigens was

Fig. 2 Sero-reactivity of twelve highly reactive Shigella antigens. Microarrays with Shigella antigens were probed for IgG, IgA, and IgM responses
(Log2-transformed fold-over-control (FOC)) with acute and convalescent (or follow-up) sera from gastrointestinal patients with laboratory-
confirmed Shigella infections. Mean IgG (a), IgA (b), and IgM (c) responses were compared between acute and follow-up samples from Shigella-
infected patients, with p values (represented in gray drop-down pin heads) calculated using the Benjamini-Hochberg corrected Cyber-T test. Error
bars (black) represent 95% confidence interval around the mean. The dashed horizontal line (red) indicates the position where p value = 0.05
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significantly greater (p < 0.05) in infants born to mothers
with high antibody titers, than those with low antibody ti-
ters (Fig. 3c). These data show that 11/12 selected Shigella
antigens are capable of generating IgG antibodies that can
successfully transfer across the placenta in a concentration-
dependent manner and may serve as good candidates for
prenatal Shigella vaccines.

Immunogenic testing of Shigella antigens
We then proceeded to conduct preclinical testing of the
top sero-reactive antigens. A BacPowerTM E. coli pro-
tein expression system was used to express SF_nmpC,
SF_fepA, and SSON_htrB, SSON_emrK, SSON_nlpB,

SSON_fhuA, SSON_cjrA, SSON_mdtA, SSON_sbmA,
SSON_mviN, SSON_pldA, and SSON_3803. We were
unsuccessful in expressing SSON_sbmA, SSON_mviN,
SSON_3803, and SSON_pldA using this system (Additional
File 6 Table S4). Therefore, we proceeded to test the
remaining eight antigens (i.e., SF_nmpC, SF_fepA, and
SSON_htrB, SSON_emrK, SSON_nlpB, SSON_fhuA,
SSON_cjrA, and SSON_mdtA) in rabbits to ensure they
could induce an antibody response when immunized as re-
combinant antigens. Rabbits were immunized separately
with the eight antigens, and the serum was screened to
measure binding IgG antibodies. All eight of the purified
antigens induced robust IgG responses in vivo, which was

Fig. 3 Reactivity of cord blood from mothers with high or low IgG titers to Shigella antigens. a, b IgG reactivity of cord blood to all tested Shigella
antigens. In the heat maps, Shigella antigens were ordered from bottom to top by increasing average IgG reactivity and cord blood samples were
ordered from left to right by increasing average IgG reactivity. c IgG reactivity to the top twelve highly reactive Shigella antigens was compared
between cord blood from high and low IgG titer mothers using the Benjamini-Hochberg corrected Cyber-T test (p values represented in gray drop-
down pin heads). Error bars (black) represent 95% confidence interval around the mean. The red dashed horizontal line is at p value = 0.05
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detectable by immunoblot and ELISA (Fig. 4). We next
tested the immunized rabbit sera for the potential to induce
bacterial killing in an antibody-dependent complement-
mediated serum bactericidal assay. We measured the killing
potential of the purified rabbit serum against S. flexneri, S.
sonnei, and Salmonella Typhimurium to ensure that the
serum bactericidal activity (SBA) induced by the immu-
nized antigens was Shigella specific. The SBA assay was un-
able to detect bactericidal activity below 50 μg/ml against S.
sonnei (Table 1 and Additional File 10 Table S5) whether
grown with or without chloramphenicol, which was used to
maintain the virulence plasmid and O-antigen cluster in S.
Sonnei due to the plasmid containing a cat resistance gene.
However, six of the eight Shigella immunogens (i.e., SF_
fepA, SSON_cjrA, SSON_emrK, SSON_fhuA, SSON_
mdtA, and SSON_nlpB) induced antibody responses with
strong serum bactericidal activity against S. flexneri (i.e.,
50% SBA titer < 50 μg/ml) (Table 1); the lowest 50% SBA
titer was induced by the immunogen SSON_cjrA (Table 3).
Our results show that the antigen SSON_cjrA was the most
potent inducer of bactericidal antibodies against Shigella
and the best antigen to take forward into future testing as a
potential vaccine antigen.

Discussion
In the current study, we exploited reverse vaccinology
2.0 to integrate both comparative genomics and human
immuno-proteome analysis to identify novel immuno-
genic chromosomal Shigella proteins. Genomic compari-
son and bioinformatic analysis of 57 Shigella and E. coli
genomes allowed us to narrow down to 235 predicted im-
munogenic antigens. The predicted antigens were then
expressed and printed onto a microarray, probed with a
panel of sera from Shigella-infected individuals, to narrow
the selection to 12 highly sero-reactive antigens. We
confirmed that antibody responses to these 12 antigens
were similar across sex (i.e., males and females) and two
age groups (i.e., < 2 years and > 2 years). Using cord blood
samples, we additionally observed that IgG responses to
11 of these 12 antigens could be transmitted transplacen-
tally, hence suggesting the possible application of these
antigens as prenatal vaccine candidates. Among the 12
antigens, 8 were successfully expressed as recombinant
proteins. Six of these antigens were both immunogenic in
animal models and generated functionally protective
antibody responses against Shigella. These were SF_fepA,
SSON_cjrA, SSON_emrK, SSON_fhuA, SSON_mdtA,

Fig. 4 Immunogenicity testing of selected Shigella proteins in vivo. Rabbits were immunized with top reactive Shigella proteins, fepA, nmpC, cjrA,
emrK, fhuA, htrB, mdtA, and nlpB. Positive antibody responses to respective Shigella antigen or immunogen in the immunized rabbits were tested
using a western blot and b ELISA

Table 3 Immunization with highly reactive Shigella proteins elicits protective antibody responses. Rabbits were immunized with 0.2
mg of Shigella proteins, and sera (at 1 week post-immunization) were tested in vitro for serum bactericidal activity (SBA) against
Shigella flexneri, Shigella sonnei, and Shigella Typhimurium. SBA titers presented below are estimated at 50% bactericidal activity

Post-immunization SBA titer (μg/ml) SBA titer (dilution)

fepA nmpC cjrA emrK fhuA htrB mdtA nlpB Shigella-immune sera

Shigella flexneri 0.4 > 50 0.0046 0.7 4.8 > 50 10.2 0.92 44,321

Shigella sonnei > 50 > 50 > 50 > 50 > 50 > 50 > 50 > 50 29,561

Salmonella Typhimurium > 50 > 50 > 50 > 50 > 50 > 50 > 50 > 50 > 50
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and SSON_nlpB, with SSON_cjrA being the most im-
munogenic in terms of eliciting antibody-mediated bac-
tericidal responses. Such bactericidal effects against S.
sonnei were not observed in vitro, probably due to the
protection against complement-mediated killing afforded
by its high molecular weight capsule [55]. However, the
immunogenicity of these antigens suggests that during S.
sonnei infections, the capsule can be modulated to expose
these functional proteins in vivo. This highlights the
complex pathogenesis of S. sonnei and the difficulty in
developing a suitable vaccine candidate.
The biological functions of these six Shigella immuno-

genic proteins have been characterized previously. FepA
and FhuA serve as outer membrane proteins which bind
and transport siderophores (ferric enterobactin and ferri-
chrome, respectively) [56, 57]. CjrA shares substantial
homology to Pseudomonas aeruginosa PhuW and poten-
tially acts to sequester iron from heme, the most com-
mon iron source in mammals [58]. EmrK and MdtA are
subunits of the multidrug efflux pump EmrKY and
MdtABC, respectively [59, 60], which contribute to resist-
ance to bile salt and antimicrobials in E. coli. In addition,
EmrKY has been shown to confer Shigella survival in in-
fected macrophages, facilitating its invasive pathogenesis
in the human host [59]. NlpB forms part of the outer
membrane protein (OMP) assembly complex, which as-
sembles and inserts beta-barrel proteins into the outer
membrane [61, 62]. The immunogenicity of these proteins
points to their potentially high expression during Shigella
infections, concurring with the survival strategies of
pathogenic bacteria. Particularly, within-host iron is key to
bacterial replication, and the ability to sequester and
transport host iron is pivotal to the pathogenesis of Klebsi-
ella pneumoniae [63] and Staphylococcus aureus [64].
None of the Shigella antigens (i.e., FepA, CjrA, EmrK,

FhuA, MdtA, and NlpB) identified as immunogenic in
the present study has been previously characterized for
immunogenicity either in the context of natural Shigella
infections or vaccination. Five of these antigens (i.e.,
FepA, CjrA, EmrK, FhuA, MdtA, and NlpB) are con-
served in pathogenic E. coli, but they have not been
tested for immunogenicity following pathogenic E. coli
infection either. However, the presence of the genetic
cluster cjrABC-senB has been previously linked to uro-
pathogenic E. coli [65]. The immunogenicity of these six
proteins may be predictable, since they are either surface
exposed outer membrane or periplasmic proteins. Outer
membrane particles of Shigella (Generalized Modules of
Membrane Antigens—GMMA) have historically been
thought to be highly virulent and immunomodulatory
and are currently being developed as a vaccine immuno-
gen [66]. GMMA-based Shigella vaccine, 1790GAHB,
was shown to be immunogenic in human clinical trials
[67]. Immunogenicity of GMMA vesicles has been

attributed to the presence of LPS. However, proteomic
analysis of the GMMA detected FepA and FhuA [68].
Based on our findings, it is plausible that other Shigella
antigens, such as those identified in our current study,
are may be partly responsible for the immunogenic
properties of GMMA.
Development of a vaccine against Shigella faces many

challenges, including the ability to protect against
multiple Shigella species and to raise sustained mucosal
immunity [10]. Fortunately, all the antigens, with the ex-
ception of CjrA, are conserved between S. flexneri and S.
sonnei. Therefore, these antigens could be used to create
a vaccine that protects against the two globally dominant
Shigella species, which accounted for almost 90% of all
Shigella cases in the Global Enteric Multicenter study
(GEMS) [17]. Furthermore, in addition to strong IgG re-
sponses, all six antigens raised significant IgA responses,
which is the dominant immunoglobulin at the mucosa.
IgA-mediated protection has been explained by both
preventing Shigella infection of host cells and downregu-
lating inflammation and intestinal tissue pathology at
infected sites [69, 70]. Although the current study mea-
sured IgA in serum, it has been previously shown that
Shigella-specific serum IgA positively correlates with
mucosal IgA in the stool [14]. Additionally, we observed
that IgG specific to the six immunogenic Shigella anti-
gens were capable of transplacental transfer, indicating
that the antigens could additionally serve as prenatal
vaccine candidates to protect neonates.

Conclusions
Shigella infections cause over a quarter of a billion
gastrointestinal infection cases globally per annum [2].
Despite the high public health burden, there is currently
no licensed vaccine available to prevent Shigella diseases.
At present, LPS is a key antigen for the development of
a vaccine against Shigella [10, 71]. Here, we identified
six novel immunogenic Shigella proteins that could serve
as additional vaccine candidates or could be conjugated
to O-antigens to provide some cross-protection. Future
Shigella challenge studies in animal models or human
controlled infection models are needed to test the
potency of these identified six antigens as vaccine candi-
dates alone or as new generation glycoconjugates.
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