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Using the thermal Gaussian approximation for the

Boltzmann operator in semiclassical initial value

time correlation functions

Jian Liu and William H. Miller

Department of Chemistry and K. S. Pitzer Center for Theoretical Chemistry
University of California,

and Chemical Science Division, Lawrence Berkeley National Laboratory
Berkeley, California 94720-1460

Abstract

The thermal Gaussian approximation (TGA) recently developed by Mandelshtam et al [Chem. Phys. Lett.
381, 117 (2003)] has been demonstrated to be a practical way for approximating the Boltzmann operator

( )ˆexp H!−  for multidimensional systems. In this paper the TGA is combined with semiclassical (SC)

initial value representations (IVRs) for thermal time correlation functions.  Specifically, it is used with the
linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the ‘forward-backward
semiclassical dynamics’ (FBSD) approximation developed by Makri et al.  Use of the TGA with both of
these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly,
providing an extremely simple result that is readily applicable to large molecular systems.   Calculation of
the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and of the
velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its
applicability.



I. Introduction

 There is currently a great deal of effort focused on developing ways1-7 for adding quantum
mechanical effects to classical molecular dynamics (MD) simulations of chemical reactions, and other
dynamical processes, in large molecular systems.  Though purely classical MD simulations are adequate
for many purposes, there is no doubt that quantum aspects of the dynamics will sometimes be important,
and one will not know whether or not this is the case unless one has the ability of including them in the
treatment, even if only approximately.  Applications to a wide variety of molecular phenomena are
obvious.

Semiclassical (SC) theory8-12 provides one way for adding quantum effects to classical MD
simulations, and there is ample evidence that the SC approximation is a usefully accurate description of
essentially all quantum effects in molecular dynamics2,7,13-18.  For systems with many degrees of freedom,
various initial value representations (IVRs) of SC theory provide the first step toward a practical way for
carrying out SC calculations; this effectively replaces the non-linear boundary value problem of
traditional SC theory with a Monte Carlo average over the initial conditions of classical trajectories9-12, a
procedure much akin to what is done in classical MD simulations, allowing one to borrow from the great
deal of computational development in that field.   The added difficulty of an SC-IVR calculation,
compared to a classical MD one, is the phase of the integrand, which carries all the quantum coherence
information; thus all of the special techniques3-5,14,19,20  developed for carrying out SC-IVR calculations
are concerned with this phase.

In this paper we focus of two of the simplest SC-IVR’s, the ‘linearized’ approximation to the SC-
IVR (LSC-IVR) 3,6,14, which yields the ‘classical Wigner model’, and Makri et al’s simplified version of a
forward-backward approximation to the SC-IVR, which they refer to as ‘forward-backward semiclassical
dynamics’ (FBSD) 4,5.   Both of these approaches deal with the ‘phase problem’ by assuming that the two
classical trajectories inherent to a time correlation function (see Section II) are close to one another.   The
only remaining issue is the quantum Boltzmann operator which appears in a thermal correlation function
(see Section II).  In the first applications of the LSC-IVR (to reactive flux correlation functions, and thus
reaction rates) the Boltzmann operator was approximated as harmonic about the saddle point (transition
state) on the potential surface3; this worked fine so long as the temperature was not too low.  Geva et al
later developed a more general ‘local harmonic’ approximation7 for the Boltzmann operator that allowed
them to carry out very impressive LSC-IVR calculations for vibrational relaxation in liquids (involving
force-force autocorrelation functions)7,21.  Similarly, Rossky et al have used a variationally optimized
local harmonic approximation6 for the Boltzmann operator in carrying out LSC-IVR calculations, and
Coker et al have extended this latter approach to also be able to describe electronically non-adiabatic
dynamics22.

More recently, Mandelshtam et al have developed a very interesting ‘thermal Gaussian
approximation’ (TGA) 23,24 for the Boltzmann operator.  It is itself a SC approximation, based on Heller’s
earlier ‘frozen Gaussian’ approximation25 (except that it involves imaginary time propagation); it is also a
type of ‘local harmonic’ approximation, but one about the classically evolving trajectory (in imaginary
time).   Metiu et al applied such approaches earlier26, and more recently Pollak et al extended the TGA by
showing how quantum corrections can be added to it27.  Other imaginary time SC approximations for the
Boltzmann operator that have been applied to thermal time correlation functions are an imaginary
Herman-Kluk-type SC-IVR by Makri and Miller28, and the imaginary time Van Vleck SC-IVR of Zhao
and Miller29.  These latter two approaches provide more accurate approximations for the Boltzmann
operator but are not as easy to implement as the TGA.

The purpose of this paper is to use the TGA of Mandelshtam et al within the LSC-IVR and FBSD
approximations for thermal time correlation functions, to see how well it works and to demonstrate its
potential for application to large molecular systems.  Section II describes the SC-IVR theory of time
correlation functions, including the LSC-IVR and the FBSD methods. A brief review of the TGA is given
in section III. Combinations of the TGA with the SC-IVR methods (TGA-LSC-IVR and TGA-FBSD) and
their numerical advantages are discussed in section IV. Several numerical applications of the TGA-LSC-



IVR and TGA-FBSD methods are presented in section V, including a strong anharmonic one-dimensional
model system and a complex system (liquid neon). Finally, some concluding remarks appear in section
VI.

II. SC-IVR Calculation of Time Correlation Functions

Most quantities of interest in the dynamics of complex systems can be expressed in terms of time
correlation functions30.  For example, dipole moment correlation functions are related to absorption
spectra, flux correlation functions yield reaction rates, velocity correlation functions can be used to
calculate diffusion constants, and vibrational energy relaxation rate constants can be expressed in terms of
force correlation functions.  The standard real time correlation function is of the form

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ/ / / /1
0

ˆ ˆˆ ˆˆTr TrH iHt iHt iHt iHt

AB ZC t e Ae Be Ae Be! "− − −= =h h h h (2.1)

or sometimes it is convenient to use the following symmetrized version31

( ) ( )ˆ ˆ ˆ ˆ/ 2 / 2 / /1 ˆ ˆTr H H iHt iHt

AB ZC t e Ae e Be! !− − −= h h (2.2)

Here Ĥ  is the (time-independent) Hamiltonian for the system, which for large molecular systems is
usually expressed in terms of its Cartesian coordinates and momenta

� ( ) ( )T
11

02
ˆH V H V−= + = +p M p q q$ $ $ $ (2.3)

where M  is the (diagonal) mass matrix and p$ , q$  are the momentum and coordinate operators,

respectively. Also, in Eq 2.1 and 2.2 , ( )ˆ
Tr 1/H

BZ e k T! !−= =  is the partition function, 
ˆ

0ˆ /He Z!" −= is

the equilibrium density operator, and Â and B̂  are operators relevant to the specific property of interest.

The SC-IVR approximates the time evolution operator 
ˆ /iHte− h  by a phase space average over the

initial conditions of classical trajectories9,10,32,33. The original, Van Vleck version of the IVR is

( ) ( )0 0
ˆ 3 , //

0 0 0/ 2 t
N iSiHt

qp te d d M i eπ− = ∫ ∫ p qp q q qhh h (2.4)

where ( )0 0,q p  is the set of initial conditions (i.e., coordinates and momenta) for a classical trajectory,

( ) ( )( )0 0 0 0, , ,t tp q p q q p  the phase point at time t  which evolves from that trajectory, ( )0 0,tS q p  the

classical action along it, and qpM the determinant of the Jacobian matrix relating the final position and

initial momentum,

( )( )0 0 0det , /qp tM = ∂ ∂q q p p (2.5)

For the correlation function in Eq. (2.1) or (2.2), one needs to insert two such representations of the
evolution propagator, yielding the following double phase space average for the correlation function,



( ) ( ) ( )
( ) ( )0 0 0 0

1/ 23 1

0 0 0 0 0 0
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N

AB qp qp
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t t
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!π
− −
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$ $ $ $=
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∫ ∫ ∫ ∫
p q p q

p q p q q q

q qh h

h
(2.6)

where 
ˆˆ ˆHA e A! !−=  for Eq. (2.1) or 

ˆ ˆ/ 2 / 2ˆ ˆH HA e Ae! ! !− −=  for Eq. (2.2). The primary difficulty in evaluating
this expression is the oscillatory character coming from the difference between the action integrals of the
trajectories with initial conditions ( )0 0,q p  and ( )0 0,! !q p .

One way to deal with this ‘phase problem’, proposed by Miller and coworkers3,14 , is to make the
(rather drastic) approximation of assuming that the dominant contribution to the double phase space
average comes from phase points ( )0 0,q p  and ( )0 0,! !q p  that are close to one another.   Changing to sum

and difference variables,

( ) ( )0 0 0 0 0 0

0 0 0 0 0

1 1
, ,

2 2
,

! != + = +

! != − = −

p p p q q q

Äp p p Äq q q

(2.7)

and expanding all quantities in the integrand of Eq. (2.6) to first order in 0Äp  and 0Äq , gives the
linearized SC-IVR (LSC-IVR), or classical Wigner model for the correlation function,

( ) ( ) ( )1

0 0 0 0, ,LSC IVR

AB w w t tC t Z d d A B!− −= ∫ ∫p q q p q p (2.8)

where here ( ) ( )0 0 0 0, ,!q p q p    (i.e., the ‘bars’ have been removed), and wA
!  and wB  are the Wigner

functions corresponding to these operators,

( ) ( ) 3 /ˆ, 2 / 2 / 2
TN i

wO d O eπ
−

= ∆ − ∆ + ∆∫ p Äqq p q q q q q hh (2.9)

for any operator Ô .  I.e., the integrals over 0Äp  and 0Äq  have become the two Fourier integrals that
produce the Wigner functions of the two operators. Eq. (2.8), with the remaining (single) phase space
average, now has the form of the classical correlation function, the only difference being that the Wigner

functions corresponding to operators Â  and B̂  appear rather than the classical functions.  The LSC-IVR
result in Eq (2.9), also termed the ‘classical Wigner’ model, has been obtained by a variety of
formulations, so the result itself is not new.   What is interesting, though, is to realize that it is contained
with the overall SC-IVR description, as a well-defined approximation to it.

Calculation of the Wigner function for operator B̂  in Eq 2.8 is usually straight-forward; in fact,
B̂  is often a function only of coordinates or only of momenta, in which case its Wigner functions is

simply the classical function itself.  Calculating the Wigner function for operator Â! , however, involves
the Boltzmann operator with the total Hamiltonian of the complete system, so that carrying out the
multidimensional Fourier transform to obtain it is far from trivial.  Furthermore, it is necessary to do this
in order obtain the distribution of initial conditions of momenta 0p  for the real time trajectories. A
rigorous way to treat the Boltzmaan operator is via a Feynman path integral expansion, but it is then in
general not possible to evaluate the multidimensional Fourier transform explicitly to obtain the Wigner

function for Â!  (and thus the distribution of initial conditions of the momenta 0p ; Appendix A discusses

and analyzes this situation in more detail.  The inability to calculate the Wigner function of Â!  exactly is



in fact the reason for the various harmonic and local harmonic approximations to the Boltzmann operator
noted above, and the TGA discussed below in Section III.

Another SC-IVR approach for the time evolution operators 
ˆ /iHte− h  is the Herman-Kluk, or

coherent state IVR12

( ) ( ) ( )0 0
ˆ 3 , //

0 0 0 0 0 02 , ,, t
N iSiHt

t t te d d C eπ
−− = ∫ ∫ p qq p q p q p q phh h (2.10)

where the pre-exponential factor is given by

( )
1/ 2

3 / 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

0 0

0 0 0 0

1
2 det 2

2
, N t t t t

tC i
i

− − − − −∂ ∂ ∂ ∂
= + − −

∂ ∂ ∂ ∂

# $% &
' () *
+ ,- .

q p q p
q p Ã Ã Ã Ã Ã Ã Ã Ã

q p p q
h

h
(2.11)

and 0 0,q p   and ,t tq p are coherent states, the wavefunctions for which are given by

( ) ( ) ( ) ( )
3 / 4

1/ 4

0 0 0 0 0 0

2
, det exp

N
T Ti

x
π

= − − − + −# $ # $
% & % &
' ( ' (

q p Ã x q Ã x q p x q
h

(2.12)

Here Ã is a (positive definite) width matrix.
Inserting two such Herman-Kluk representations for the propagator into Eq. (2.1) or (2.2) leads to

the following double phase space average for the correlation function

( ) ( ) ( ) ( )
( ) ( )0 0 0 0

3 1 *

0 0 0 0 0 0 0 0 0 0 0 0

, / , /

ˆ2 , , ,

ˆ, ,

,

t t

N

AB t t

iS iS

t t t t

C t Z d d d d C C A

e e B

!π
− −

$ $−

$ $ $ $ $ $=

$ $%
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p q p q

p q p q q p q p q p q p

q p q ph h

h
(2.13)

The phase cancellation here is as severe in this integrand as it is in Eq. (2.6).  Shao and Makri4,5

introduced an approximate way to evaluate to it by assuming  that the dominant contribution to the double
phase space average comes from two trajectories, one starting from ( )0 0,q p  and another from( )0 0,! !q p ,

that satisfy the following ‘jumps’ in coordinates and momenta at time t

( ) ( )
;

, ,t t t t
t t t t

t t

B B∂ ∂
" "= − = +

∂ ∂

q p q p
q q p p

p q
h h (2.14)

This assumption yields the Forward-Backward Semiclassical Dynamics (FBSD) method for the
correlation function,

( ) ( ) ( ){

( ) ( ) } ( )

3 1 3
0 0 0 0 0 02

0 0 0 0 0 0

ˆ2 1 , ,

ˆˆ ˆ2 , , ,

NFBSD N
AB

T

t t

C t Z d d A

A B

!

!

π
− −= + −

− −

∫ ∫q p q p q p

q p x q Ã x q q p q p

h
(2.15)

The essential remaining task here is to evaluate the coherent state matrix elements of operator
Â! , which is non-trivial because Â!  involves the Boltzmann operator with the total Hamiltonian of the
complete system.  This is analogous to the problem of computing the multidimensional Fourier transform

to obtain the Wigner function for operator Â!  in the LSC-IVR approach described above.  As in the



LSC-IVR approach, if the Boltzmann operator is treated exactly, i.e., by Feynman path integration, the
coherent matrix cannot be easily evaluated, as in necessary to obtain the distribution of initial conditions
for the real time trajectories; Appendix A also discusses this in more detail.   Just as for the LSC-IVR
approach, it is these various local harmonic approximations to the Boltzmann that allows these matrix
elements (or multidimensional Fourier transforms) to computed analytically and thus obtain an explicit
result to the distribution of initial conditions ( )0 0,q p  for the real time trajectories.

III. Thermal Gaussian Approximation

For an N-particle system described in Eq. (2.3), the thermal (imaginary time) propagator (i.e.,

coordinate representation of the Boltzmann operator) Ĥe !−  is approximated by Frantsuzov and
Mandelshtam as a multi-dimensional Gaussian form23,24:

( )( )
( )( ) ( ) ( )( ) ( )

3 / 2
ˆ 1

1/ 2

1 1 1
exp

2 2det

N
THe ! ! ! ! " !

π !

− −% & % &= − − − +' ( ' (
) * ) *

0x q x q G x q
G

(3.1)

where ( )!G  is an imaginary-time dependent 3 3N N×  real symmetric and positive-definite matrix,

( )!q  the center of the Gaussian, and ( )! "  a real scalar function. The parameters are governed by the

equations of motion:

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

2 1

1

4

T

T

d
V

d
d

V
d
d

Tr V V
d

! ! ! !
!

! ! !
!

" ! ! ! !
!

−= − $$ +

= − $

= − $$ −

G G q G M

q G q

q G q

h

(3.2)

with the notation

( )
( )( )

( )( ) ( ) ( )( )( ) ( )
3 / 2

1

1/ 2

1 1

det

N
T

h h! ! !
π !

∞
−

−∞

= − − −% &
' (
) * ∫q dx x q G x q x

G
(3.3)

The initial conditions for the imaginary time propagation are

( ) ( ) ( ) ( )2 1

0 00 ; 0 ; 0 V! ! ! " ! !−= = = −q q G M q� � h � (3.4)

To insure that the element of the Boltzmann operator Ĥe !− #x x  is symmetric, Frantsuzov and

Mandelshtam compound the approximation in Eq. (3.1) twice to obtain



( )( )
( )( )
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2
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2 2 2 2
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0

exp 21
exp

2 det
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N
T

T
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!
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!

! ! !

"

π
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−

−

% %=
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' (
) *
+ ,

∫

∫

x x dq x q q x

dq x q G x q
G

x q G x q

(3.5)

The expression for a partition function, for example, becomes

( )
( )( )
( )

ˆ ˆ 2/ 2 / 2

3 / 2 1/ 2

2

0 0 0 0

exp 21

4 det

H H

N
Z d d e e d

!
! !

!

"

π

− −= =∫ ∫ ∫x q x q q x q
G

(3.6)

Frantsuzov and Mandelshtam23 originally utilized the variational principle to obtain the equations of
motion Eq (3.2). Shao and Pollak later rederived these equations by expanding the potential function in
terms of the Gaussian averaged potential and its derivatives. In doing so, they showed the TGA to be a
harmonic approximation about the imaginary time dependent path ( )!q , and gave its more generalized

version27.
In order to make it feasible to apply the TGA to complex systems, one must be able to evaluate

the quantities ( )( )V !q , ( )( )V !" q  and ( )( )TV !"" q  in Eq. (3.2) efficiently. To do so, the

potential is usually expressed as a sum of Gaussion functions or polynomial functions so that these
quantities are evaluated analytically. Recent applications have shown the TGA to be a good
approximation for the thermodynamics properties of some complex systems (neon clusters) even at very
low temperature23,34.

IV. SC-IVR methods with TGA 

The SC-IVR description of real time dynamics can be combined with any type of method for
evaluating elements of Boltzmann operator; what one uses for it is a question of accuracy and ease of
application.  Here we consider the TGA for the Boltzman operator, showing how it leads to particularly
simple ways for carrying out semiclassical dynamics calculations for complex systems with the two
approximate SC-IVR’s, the LSC-IVR and the FBSD  (TGA-LSC-IVR or TGA-FBSD), summarized in
the preceding Section.

(a) TGA-LSC-IVR

The TGA for the Boltzmann operator, Eq. (3.5), makes it possible to analytically integrate out the
phase term in the Wigner transform of the Boltzmann operator of the LSC-IVR; i.e., substituting Eq. (3.5)
into Eq. (2.9) gives

( ) ( )

( )

( )
( )( )
( )

( )( )

( )( ) ( ) ( )( )( )

ˆ ˆ3 /

ˆ ˆ3 / 2 / 2 /
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π

π
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− − −

−
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= −
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. /
0 1

∫
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∫

p Äx

p Äx

x p x x x x x

x q x x q q x x

q p G p
G

x q G x q

h

h

h

h

h h
(4.1)



Eq. (4.1) contains no oscillatory term, so the integrand can be naturally used as the sampling function for
Monte Carlo calculations of the LSC-IVR correlation functions of complex systems.  In the high
temperature limit, 0! " , it is straightforward to verify that Eq. (4.1) reduces to its classical limit, the

classical Boltzmann distribution, which was also pointed out by Shao and Pollak27 by considering the
limit 0!h .

To obtain the Wigner function for operator Â! [Eq 2.8] with the TGA, it is more convenient to

use the symmetrized version 
ˆ ˆ/ 2 / 2ˆ ˆH HA e Ae! ! !− −=  if ( )ˆ ˆA A= x  is a local operator; however the

form
ˆˆ ˆHA e A! !−=  is preferred if ˆ ˆA = p , since evaluating derivatives of 

ˆ / 2

0 / 2He !− + ∆q x x with respect

to 0q  in Eq (4.1) would require considerably more work in the imaginary time propagation with the

TGA, i.e., extra equations of motion for ( ) ( )0 0/ , /! !∂ ∂ ∂ ∂G qq q etc., would be required in Eq (3.2).

Applying the TGA within Eq. (2.9), TGA-LSC-IVR auto-correlation functions are expressed as

( )
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=
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∫

∫

∫

q
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G

G
p p G p

x p q

h
h

(4.2)

where

( )( ) ( ) ( )( )0 0 0 02 0, , ; ,TGA LSC IVR

AA tf t A A!− − =x p q q x x p (4.3)

for local operators with ( )ˆ ˆ/ 2 / 2ˆ ˆH HA e A e! ! !− −= x , and

( )( ) ( ) ( )( ) ( ) ( )1

0 0 0 0 0 0 0 02 2 2
, , ; , ,

TTGA LSC IVR T

AA t tf t i! ! !− − −= − −x p q p p x p x q G p x ph (4.4)

for the momentum operator ˆ ˆA = p  with 
ˆˆ ˆHA e! !−= p .

       Monte Carlo (MC) evaluation of Eq. (4.2) for complex systems is now straightforward:

(1) Generate an imaginary time trajectory governed by the TGA equations of motion, Eq. (3.2), the

weight of which is sampled by the function ( )( ) ( )1/ 22 2
exp 2 / det! !" G .

(2)  The imaginary time trajectory produces Gaussian distributions in both position and momentum

space, ( )( ) ( ) ( )( )( )1

0 02 2 2
exp

T! ! !−− − −x q G x q  and ( )( )20 02
exp /T !−p G p h , respectively, which

can be use to sample initial conditions ( )0 0,x p  for the real time trajectory very efficiently.



(3) Run real time trajectories from phase space points ( )0 0,x p  and estimate the

property ( )( )0 0 2
, , ;TGA LSC IVR

AAf t!− − x p q  of the corresponding time correlation function.

A schematic representation of Eq. (4.2) for the TGA-LSC-IVR is given in Fig. 1.  Provided that

( )( )0 0 2
, , ;TGA LSC IVR

AAf t!− − x p q  does not vary rapidly, the MC sampling of Eq. (4.2) is much more

efficient for high-dimensional system than one might expect.  Our applications of the TGA-LSC-IVR
to large systems show that only a few phase space points ( )0 0,x p  (i.e., real time trajectories) are

necessary for each imaginary time trajectory to yield converged results so long as the number of
imaginary time trajectories is sufficient to guarantee the convergence of the thermodynamic
properties. For example, when enough imaginary time trajectories have been propagated for the

quantity 2< >p  to converge, only a few real time trajectories for each imaginary time trajectory are

necessary to obtain the real time correlation function 0

T

t< >p p accurately.

             It should be noted that Borgis and collaborators35 have recently expressed the Wigner function of
the Boltzmann operator using an imaginary time Gaussian wavepacket approximation that, though
formulated differently, can be shown to be equivalent to the TGA treatment (i.e., Eq. (4.1)), and have
used it to compute thermal time correlation functions.  The essential difference of this work from the
present is that ref. 35 uses the Gaussian approximation to compute the Wigner function of the Boltzmann

operator itself, and makes the further approximation that the Wigner function of operator Â!  is the

product of the separate Wigner functions of the Boltzmann opertor and that of operator Â .  The TGA-

LSC-IVR approach described above deals directly with the Wigner function of operator Â! .

(b) TGA-FBSD

The Husimi transform of the Boltzmann operator, 
ˆ

0 0 0 0, ,He !−x p x p , plays the analogous role

in the FBSD method as the Wigner function of operator Â!  does in the LSC-IVR; i.e., it is the quantity
used to sample initial conditions ( )0 0,x p  for the real time trajectories.  Using the TGA [Eq 3.5] to

approximate the Boltzmann operator allows the Husimi transform to be evaluated analytically, giving the
following result
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The integrand in Eq. (4.5) can thus be used as the Monte Carlo sampling function for the real time initial
conditions( )0 0,x p . One can show that Eq. (4.5) reduces to its classical limit—the Boltzmann

distribution—in the high temperature limit, 0! " , i.e. when Eq. (3.4) holds.



Combining the TGA with the FBSD expression for the correlation [Eq. (2.15)] gives the
following TGA-FBSD result for correlation functions of complex systems
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where
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for local operators with ( )ˆ ˆ/ 2 / 2ˆ ˆH HA e A e! ! !− −= x , and
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for the momentum operator ˆ ˆA = p  with 
ˆˆ ˆHA e! !−= p . To obtain better convergence, the partition function

Z  is calculated by using ( )( ) ( )0 0 2
, , ; ˆ 1TGA FBSD

AAf t A!− =x p q  as the estimator for the Monte Carlo sampling.

The Monte Carlo procedure for evaluating the TGA-FBSD is similar to that of the TGA-LSC-

IVR described in the previous section. However since ( )( )0 0 2
, , ;FBSD

AAf t!x p q  typically involves more

cancellation than does the analogous quantity in the TGA-LSC-IVR, the number of real time trajectories
required for each imaginary trajectory to obtain convergence is considerably larger than for the TGA-
LSC-IVR.



Fig. 1 Schematic representation of the TGA-LSC-IVR representation of the density (Boltzmann operator) for 2 particles.

Black solid circles represent positions of 2 particles at the beginning and end of the imaginary time propagation, black

curves indicate imaginary time trajectories, purple solid circles demonstrate Wigner density phase points generated

upon imaginary time trajectories according to Eq.(4.2), red wavy lines illustrate spring potentials (from Gaussian

distributions) between final points of imaginary time trajectories and phase points and green straight lines depict

intermolecular interactions. The generated phase points (purple solid circles) are not involved in the intermolecular

interaction directly in the imaginary time, which is different from that in Fig. 5.

The schematic representation of the TGA-FBSD representation of the density (Boltzmann operator) for 2 particles is

exactly the same as that of the TGA-LSC-IVR, except purple sold circles depict coherent state phase points and the

corresponding Gaussian distribution parameters are different.

A schematic representation of Eq. (4.6) for the TGA-FBSD is also given in Fig. 1, which is the
same as that of the TGA-LSC-IVR.   The TGA-LSC-IVR and the TGA-FBSD are in fact closely related
to one another (and give very similar results in most applications).  For example, the Gaussian
distributions in position and momentum are the same for the two approximations in the limit !∞Ã  in

Eq. (4.6) or (4.5), provided one rescales 0p  by the squared root of the matrix ( )( )
1

22 !
−

+ÃG 1 .

Furthermore, the Wigner function and the Husimi function of the density with the TGA representation are
equivalent in the limit !∞Ã , i.e., the coherent state becomes the position eigenstate, though,

( )( ) ( )( )0 0 0 02 2
, , ; , , ;TGA FBSD TGA LSC IVR

AA AAf t f t! !− − −≠x p q x p q  even in that limit. This arises from the fact that

the FBSD density is not the same as the Husimi function 0 0 0 00, ,!̂x p x p , but is instead

( ) ( ) ( )0 0 0 0
3

0 0 0 0 0 0 0 02 , ,ˆ ˆˆ ˆ1 2 , ,
TN ! !−+ − −x p x p x p x x Ã x x x p , a narrower one. It is straightforward to

show that both the TGA-LSC-IVR and the TGA-FBSD reduce to the classical limit at high temperature.

V. Numerical Applications 

(a) Anharmonic Oscillator

0q

( )0 0,q p

( )/ 2!q

( )/ 2!"q

0!q

( )0 0,! !q p



The first example is a calculation of the force-force autocorrelation function for an asymmetric
anharmonic oscillator

( ) 2 2 3 41
2 0.10 0.10V x m x x x!= − + (5.1)

with 1m =  and 2! = . This potential has been used as a test model and discussed previously in the
literature4,16,36. Both the LSC-IVR and the FBSD methods are able to describe the dephasing accurately
for short times and semiquantitatively for longer times, but fail to capture the rephrasing at longer times
due to coherence effects.   In many cases in complex systems one expects such long time re-phasing
effects to be quenched by coupling among the various degrees of freedom10,20,37.
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Fig. 2 The symmetrized force autocorrelation function for the one-dimensional anharmonic oscillator given in Eq. (5.1) for

2 /10! " =h . Black line: Exact quantum mechanical result. Green hollow square with dashed line: Classical result.
Red solid triangle: TGA-LSC-IVR result. Blue solid circle: TGA-FBSD result.
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Fig. 3 As in Fig. 2, but for a much lower temperature 8 2! " =h . Panel (b) shows a blowup of the curves shown in (a).

In order to explore how well the TGA-LSC-IVR and the TGA-FBSD perform, we test them at a

high temperature 2 /10! " =h and a very low temperature 8 2! " =h , comparing the results to the
classical and the exact quantum results. At both temperatures, we use 21 imaginary trajectories with the
imaginary time step of 0.01, and a large number of real time trajectories generated from each imaginary
trajectories with a real time step of 0.02. The velocity Verlet integrator was used for both real and
imaginary time dynamics.

Fig. 2 shows the force autocorrelation function at the temperature 2 /10! " =h . All four results
are in good agreement. This is not surprising since both the TGA-LSC-IVR and the TGA-FBSD
correlation functions approach the classical result in the high temperature regime where classical
mechanics is a good approximation to the exact quantum correlation function. However, at the very low

temperature ( 8 2! " =h ) shown in Fig. 3, the classical results depart from quantum results with regard
to both the amplitude of the oscillation (drastically) and frequency (noticeably). It is encouraging to see
that the TGA-LSC-IVR and the TGA-FBSD are able to describe these semiquantitatively over several
vibrational periods.

(b) Liquid Neon

Another example is application of the TGA-LSC-IVR and the TGA-FBSD methods to calculate
the quantum dynamics with a simulation of liquid neon. Although fully quantum mechanical results on
liquids are not available, the FBSD velocity autocorrelation function with the PP approximation (PP-
FBSD) which accurately describes the zero-time property and satisfies the detailed balance18,38 provides a

good comparison.  The system is treated as a Lennard-Jones fluid with parameters 2.749A! °= ,
/ 35.6KBk! =  and 263.35 10 kgm −= × , at a reduced density * 0.78! =  and temperature * 0.84T = .  This

state point is at a fairly low temperature, while still in the liquid region of both the Lennard-Jones and
experimental phase diagrams 39,40.  Quantum effects are significant under these conditions: the kinetic
energy computed by path integral Monte Carlo methods is about 55.15 0.27± K, amounting to a 20%
quantum correction to the classical kinetic energy of 44.85 K. These sizable quantum mechanical effects
arise from the large zero-point energy of the light neon atoms.  The dynamical consequences of these
quantum effects are even greater: the momentum correlation function computed by FBSD was found to
differ substantially from that obtained by classical molecular dynamics methods, and various quantum
correction factor prescriptions give rise to different results, none of which is in good agreement with the
FBSD results 40.

In this application, we used 512,000 imaginary trajectories with 20 imaginary time propagation
steps, and one real time trajectory per imaginary time trajectory for the TGA-LSC-IVR (10 real time
trajectories per imaginary time trajectory for the TGA-FBSD) with 800 real time propagation steps.
During the imaginary time propagation the Lennard-Jones potential is fit by three Gaussian functions the
parameters of which are described in the literature23. Since liquid neon is treated as an isotropic system,
we choose the coherent state parameter !=Ã 1 , where 1  is the identity matrix and 6! = , for both the PP-

FBSD and the TGA-FBSD simulations. The average kinetic energy computed by the TGA methods is
about 54.53 0.07± K.

Fig. 4 shows the velocity correlation function for liquid neon obtained by the PP-FBSD, the
TGA-LSC-IVR and the TGA-FBSD. Both the real and imaginary parts of the correlation function are in
good agreement with the PP-FBSD method. The TGA-LSC-IVR correlation function (real part) decays to
a somewhat lower well in comparison to the TGA-FBSD and the PP-FBSD results. The comparison of
the semiclassical correlation function to the classical result has been shown in Fig. 4. Note that the
classical correlation function has no imaginary part, i.e., it is purely real.



As reported in ref 23, the total number of the imaginary time trajectories in the TGA can be
substantially decreased if a classical distribution of 0q  is generated at a reference temperature (which can
be the same temperature 29.90T K= in this case), and in every thousand classical MC steps or so, choose
one point 0q for the TGA imaginary time propagation, because the classical Metropolis walk is easy to

achieve and thus helps the successive points 0q  to sample the space efficiently.  As a consequence, it
should also greatly accelerate the sampling efficiency in the TGA-LSC-IVR and the TGA-FBSD. We
would like to apply this technique in the future.
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Fig. 4 The velocity autocorrelation function of liquid neon. Panel (a) shows the real part of the correlation function while
Panel (b) depicts the imaginary part. Black solid line: PP-FBSD result. Blue solid circle with dashed line: TGA-LSC-
IVR result. Red solid square with dotted line: TGA-FBSD result. Green solid line: Classical result.

VI. Concluding remarks

In this paper, we have shown how the TGA can be combined with the SC-IVR to construct time
correlation functions in a fully semiclassical scheme, using both real and imaginary time propagations.
Specially, we have shown that both the TGA-LSC-IVR and the TGA-FBSD allow one to integrate out the
oscillatory term inherent in the LSC-IVR or FBSD, and thus make them practical for descriptions of
quantum dynamical effects in large molecular systems. The Kubo-tranformed correlation function can
also be calculated in the same fashion without additional work, as shown in Appendix B.

Numerical simulations of an anharmonic oscillator and a low temperature liquid (liquid neon)
show that the TGA-LSC-IVR and the TGA-FBSD are good approximations for time correlation
functions. Work is continuing to see how well they do in more challenging applications in the condensed
matter phase, such as clusters23,34 and more quantum mechanical liquids (hydrogen or helium). It will also
be interesting in future work to see how application of the TGA can be used with a more rigorous
treatment of the real time dynamics in an SC-IVR, such as Miller’s version of the forward-backward
IVR41, or the exact forward-backward semiclassical IVR expression (EFB-IVR)33.

We note, however, that the TGA does not provide a good description for the Boltzmann operator
in barrier problems, as is typical for the reactive flux correlation functions that determine chemical
reaction rates.  Current calculations, along with analytical studies (Appendix C), show that the TGA fails
to capture the character of the Boltzmann operator at a low temperature:  at low temperature, coordinate
matrix elements of the Boltzmann operator bifurcate into a dual saddle point structure described by the
quantum instanton model.   No Gaussian model is able to capture the nature of this bifurcation.  The more
rigorous imaginary time Van Vleck and the coherent state propagators in imaginary time, however, are



able to describe this bifurcation semiquantitively42. Further effort is thus being devoted to the goal of
finding efficient ways of using these more rigorous SC imaginary time approximations for the Boltzmann
operator within the overall SC-IVR approach to time correlation functions.
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Appendix A

As discussed in Section II, the Wigner function for operator Â!  is non-trivial since it involves a

multi-dimensional Fourier transform involving the Boltzmann operator Ĥe !− of the complete system.  One
what to proceed is to express the Boltzmann operator as a Feynman path integral. By inserting path
integral beads ( )1 2, , , nq q qL  for the Boltzmann operator, the path integral representation of the LSC-

IVR (Eq. (2.8)) may be written as
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where ( )0 0 1, , , ,AB n! p q q qL  is function related with the operators Â  and B̂ , and the sampling function

( )0 0 1, , , , n! p q q qL  is the Fourier transform of the integrand of 
ˆ

0 0 0 0/ 2 / 2He !−− +q Äq q Äq  after

inserting the beads ( )1 2, , , nq q qL into the elements of the Boltzmann operator, which gives
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where ( )/ 1n! !∆ = + . Fig. 5 shows a schematic representation of Eq. (A.2).

For complex systems, generally it is not possible to explicitly evaluate the Fourier transform in
Eq. (2.9) or Eq. (A.2) because of the sign problem (the phase cancellation is severe).  Some kinds of
harmonic approximation3,6,7 for the elements of the Boltzmann operator is necessary. These
approximations have been successfully applied to some complex systems15,21.   They all, however,
encounter problems at low temperature when the potential energy has negative curvature; this shows up
most strikingly in regions of potential barriers, but also in the long range region of bounded potentials.



Fig. 5 Schematic representation of combined path integral LSC-IVR representation of the density (Boltzmann operator) for 2
particles for 4n =  inserting beads. Black solid circles represent the path integral beads, red wavy lines indicate spring
potentials between neighbour beads, green straight lines depict intermolecular interactions and blue dotted lines
demonstrate the connection between the end beads via the Fourier transform. The open rings illustrate the integrand in
Eq. (A.2), while the close ones the Wigner function of the Boltzmann operator. Note the two end beads of the open
rings merge into single beads (purple solid circles) at their average positions associated with the momenta coming from
the Fourier transform of the difference between the two end beads, thus in this way it constructs the initial phase space
in the LSC-IVR.

        A similar difficulty arises in the FBSD if one uses a Feynman path integral representation of the
Boltzmann operator.  Introducing the path integral representation of the Boltzmann operator into Eq.
(2.15) yields the following form44 for the correlation function
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where ( )0 0 1, , , ,AB n! p q q qL  is a function related to the operators Â  and B̂ , and ( )0 0 1, , , , n! p q q qL  is the

integrand of 
ˆ

0 0 0 0, ,He !−q p q p  after inserting the beads ( )1 2, , , nq q qL into the Boltzmann operator,

which has the explicit form
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Usually ( )0 0 1, , , , n! p q q qL  would be used as the sampling function for the Monte Carlo evaluation of the

integral in Eq. (A.3). However, the phase in Eq. (A.4) only vanishes when inserting one bead is sufficient
for evaluating the Boltzmann operator, and thus becomes a bottleneck at low temperature for complex
systems. Nakayama and Makri therefore introduced the pair-product (PP) approximation so that one bead
is accurate enough for low-temperature pure isotropic liquids17. Fig. 6 gives a schematic representation of
Eq. (A.4).

Fig. 6 Schematic representation of combined path integral FBSD representation of the density (Boltzmann operator) for 2
particles for 4n =  inserting beads based on an early version16. Black solid circles represent the path integral beads,
purple solid circles demonstrate the coherent state beads, red solid wavy lines indicate spring potentials between
neighbor path integral beads while red dashed wavy lines illustrate the spring potential between the coherent state bead
and its neighbor path integral beads, green straight lines depict intermolecular interactions and blue dotted lines shows
the interaction between the two path integral beads that are neighbors to the coherent state bead from the phase term in
Eq. (A.4). The coherent state beads are not involved in the intermolecular interaction directly in the imaginary time.
Note the coherent state beads define the initial phase space in the FBSD.

To summarize, for general complex systems, the rigorous path integral treatment of the
Boltzmann operator in both the LSC-IVR and the FBSD methods encounters the problem—the inability
to explicitly obtain the initial phase distribution for the real time trajectories, as shown in Fig. 5 and Fig.
6.
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Appendix B

The Kubo-transformed real-time correlation function45 is given as

( ) ( )ˆ ˆ/ /1 ˆ ˆTr iHt iHtKubo
AB KuboZC t A e Be! −= h h (B.1)

where ( ) ˆ ˆ1

0

ˆ ˆd H H
KuboA e Ae

! ! "! "
! " − − −= ∫  is the Kubo-transformed operator. The Kubo-transformed versions of

the TGA-LSC-IVR and TGA-FBSD can both be expressed in a similar form as Eq. (4.2) or Eq. (4.6).
Here we take the momentum and the force auto correlation functions as examples. Since the momentum

and force operators can be expressed as ˆˆ ˆ,i H! "= # $p M xh  and ( ) ( ) ˆ ˆˆ ˆ ,iV H! "#= − = % &F x x ph , their Kubo

transforms are given by

ˆˆ ˆ , Hi
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−# $= % &p M xh

(B.2)

and

ˆˆ ˆ , Hi
Kubo e! !

!
−# $= % &F ph

(B.3)

Eq. (B.2) and (B.3) directly connect the standard real-time correlation function (Eq. (2.1)) with the Kubo-
transformed correlation function (Eq. (B.1)), which shows another way to calculate the Kubo-transformed
correlation function.

The Wigner function and the Husimi function of ˆ Kubo
!p  or ˆKubo

!F  can be obtained analytically using
the TGA in the same way as in Eq. (4.1) and Eq. (4.5) respectively.  The final form of the TGA-LSC-IVR
of the Kubo-transformed real time correlation function can be shown to be
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for the momentum ˆ ˆA = p , and
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for the force ˆ ˆA = F .

The formula of ( ),

TGA LSC IVR

AA KuboC t− −  and that of ( )TGA LSC IVR

AAC t− −  in Eq. (4.2) show that they share exactly the

same MC sampling, except that the estimator function ( )( ), 0 0 2
, , ;TGA LSC IVR

AA Kubof t!− − x p q  is different from

( )( )0 0 2
, , ;TGA LSC IVR

AAf t!− − x p q , so they are able to be calculated simultaneously.

Similarly, we obtain the following result for the TGA-FBSD version of the Kubo-transformed
correlation function
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where
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for the momentum ˆ ˆA = p , and
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for the force ˆ ˆA = F .



Appendix C

It can be shown that the matrix ( )!G  in Eq. (3.2) is always positive definite for a physical

system (for which the second derivative of the potential is zero or positive in the asymptotic region).
Therefore, since matrix elements of the Boltzmann operator are given within the TGA by
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and since ( )2!G  is positive definite, the matrix element along the off-diagonal direction Äx  is always a

Gaussian centered at 0.  This is qualitatively wrong, however, for a barrier potential (i.e. Eckart barrier) at

low temperature, where the element 
ˆ

/ 2 / 2He !−−Äx Äx  is typically bimodal; i.e., the TGA is intrinsically

incapable of capturing the two saddle points (along the off-diagonal directionÄx ) of the coordinate
Boltzmann matrix element for a barrier potential, which is characteristic of the low temperature regime,
as shown in Fig. 1(a) in ref 46.   This bimodal character, however, is described semiquantitively by the
more rigorous imaginary time Van Vleck and the Herman-Kluk propagators in imaginary times42.
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