
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Scheduling, Characterization and Prediction of HPC Workloads for Distributed Computing
Environments

Permalink
https://escholarship.org/uc/item/5n531208

Author
Naghshnejad, Mina

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5n531208
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Scheduling, Characterization and
Prediction of HPC Workloads for

Distributed Computing
Environments

A dissertation submitted in partial satisfaction of the requirements for the degree
Doctor of Philosophy

in

Electrical Engineering and Computer Science

by

Mina Naghshnejad

Committee in charge:

Professor Mukesh Singhal, Chair
Professor Florin Rusu
Professor Sugjin Im

2019

Copyright Notice

c©2019 Mina Naghshnejad
All Rights Reserved.

The Dissertation of Mina Naghshnejad is approved, and it is acceptable in quality
and form for publication on microfilm and electronically:

Florin Rusu

Sungjin Im

Mukesh Singhal, Chair

University of California, Merced

2019

iii

Dedication

To all friends, family members, teachers, professors and book authors and influencers
who taught me that there is a meaning in life and it worths to persist and pursue my
ambitions.

iv

Contents

List of Symbols ix

List of Figures ix

List of Tables xii

List of Algorithms xiii

Preface xiv

Acknowledgment xv

Curriculum Vita xvi

Abstract xviii

1 Introduction 1
1.1 Research Motivation and Objectives 1
1.2 Research Challenges . 2
1.3 Research Questions and Contributions 3
1.4 Thesis Outline . 4

2 Background 5
2.1 High Performance Computing . 5
2.2 Scheduling and Resource Management in HPC Systems 6

2.2.1 Scheduling in Distributed Systems 6
2.2.2 Scheduling HPC applications in private clusters 7
2.2.3 HPC as a service in the Cloud 10
2.2.4 Resource management in distributed systems 11
2.2.5 Existing Challenges for Scheduling HPC Applications 14
2.2.6 Research Methodology for Scheduling and Resource Manage-

ment of Distributed Systems 15
2.3 Prediction Approaches for HPC Applications 16

2.3.1 Runtime Prediction for Applications in HPC Clusters 17
2.3.2 Resource usage prediction for Applications and Virtual Machines 20

v

3 Scheduling non-preemptive applications with varying runtimes 23
3.1 Introduction . 23
3.2 Proposed scheduling algorithms . 25

3.2.1 Formal problem definition . 25
3.2.2 Our results . 25
3.2.3 Related work . 30

3.3 Analysis . 31
3.3.1 Lower bounds for priority based algorithms 31
3.3.2 Upper bounds for priority based algorithms 32
3.3.3 Constant approximation algorithms 34
3.3.4 Upper bounds for Block-Scheduling algorithm 37

3.4 Simulation experiments . 40
3.4.1 Workloads . 40
3.4.2 Experimental results . 41

3.5 Conclusion . 46

4 Handling Inaccuracies in Scheduling HPC Applications in Cluster 49
4.1 introduction . 49
4.2 Background and Problem Description 51

4.2.1 Common Scheduling Algorithms for HPC Workloads 52
4.2.2 Sensitivity to Job Runtime Accuracy 56
4.2.3 Job Runtime Prediction Reliability Estimation 56
4.2.4 Formulation of the Problem 57

4.3 Related Work . 58
4.3.1 Estimating Prediction Reliability 58
4.3.2 HPC Scheduling and Runtime Uncertainty 59

4.4 Proposed Hybrid Scheduling Platform 60
4.4.1 Proposed Design . 60
4.4.2 Central Scheduler . 62
4.4.3 Hybridization Parameter Adjusting Unit 63
4.4.4 ML-unit . 63

4.5 Evaluating the Performance of our Proposed Hybrid-Scheduling Platform 68
4.5.1 Event-Driven Simulation . 68
4.5.2 Comparison with Existing Scheduling Approaches 68
4.5.3 The effect of Clairvoyance on Hybrid Scheduler 69
4.5.4 Parameter Selection for Hybrid Scheduling 72

4.6 Summary . 72

5 Predicting Runtimes with Hierarchical Kalman Filters 74
5.1 Introduction . 74

5.1.1 Main Contributions of the Chapter 76
5.2 Related Work . 76
5.3 Adaptive Online Machine Learning for Application Runtime Prediction 77

5.3.1 Overview . 77

vi

5.3.2 Prediction Methodology . 79
5.3.3 First Proposed Approach: Fixed Multiple Kalman Filter (FMKF) 82
5.3.4 Second Proposed Method: Multi-Layer Kalman Filter (MLKF) 82

5.4 Experimental Evaluation of the Prediction Methods 84
5.4.1 Prediction Accuracy Evaluation 84

5.5 The impact of More Accurate Predictions on Scheduling Performance 85
5.5.1 Event Driven Simulation . 85
5.5.2 Scheduling Algorithms . 86
5.5.3 Results . 86

5.6 Summary . 87

6 Predicting Runtime using Deep Mixture Density Networks 89
6.1 Introduction . 89

6.1.1 Our Contributions . 90
6.1.2 Chapter Organization . 91

6.2 Related Work . 91
6.2.1 Related Work on HPC Application Runtime Prediction 91
6.2.2 Related work on HPC jobs runtime prediction 92

6.3 Mixture Density Networks for Runtime Predicion 92
6.3.1 Overview . 92
6.3.2 Prediction Methodology . 94
6.3.3 Architecture of Deep Mixture Network to predict job runtimes 95

6.4 Experimental Evaluation of the Prediction Methods 95
6.4.1 Prediction Accuracy Evaluation 96

6.5 Summary . 96

7 Predicting CPU Usage with Deep Recurrent Neural Networks 97
7.1 Introduction . 97
7.2 Related Work . 99
7.3 Background . 100

7.3.1 Structure-based clustering and alignment 100
7.3.2 Recurrent Neural Network for load prediction 101
7.3.3 Encoder-Decoder LSTM for sequence prediction 101

7.4 Our Proposed LSTM model for predicting individual VM patterns . . 104
7.4.1 The attention mechanism and structural bias 104
7.4.2 Specialized structural bias attention mechanisms 108
7.4.3 Additional input features to improve prediction accuracy . . . 108

7.5 Experimental Results and Discussion 109
7.5.1 Data Preparation and feature extraction 110
7.5.2 Using LSTM to predict CPU consumption 112
7.5.3 Discussion: Comparison with Existing Approaches for Work-

load Prediction . 116
7.5.4 Feasibility of Our Prediction Model for Resource Management

Systems . 117

vii

7.6 Summary . 117

8 Concluding Remarks 119
8.1 Scheduling Nonpreemptive Applications in Distributed Systems . . . 119
8.2 Runtime Prediction for HPC Workload 119
8.3 Predicting CPU Consumption Patterns in Distributed Systems 120
8.4 Conclusion and Future Directions . 121

Bibliography 122

viii

List of Figures

2.1 Each job j is illustrated as a two-dimensional rectangle with height
equal to its demand dj and width equal to its size pj. Each server has
the unit capacity. Jobs can run simultaneously on each server as long
as the total demand/height of running jobs do not exceed the server’s
capacity. 9

2.2 The comparison of a plan-based scheduling algorithm (online-SJF) and
a backfilling scheduling algorithm (FCFS-SJF) algorithms on an exam-
ple of seven jobs. 11

3.1 figure . 26
3.2 Earliest Feasible algorithm, assigns each job j on the server with the

earliest feasible time. The earliest feasible time on each server is de-
termined and the server with the minimum value is chosen. Here t2 is
the earliest feasible time and the job will be assigned to Server 2. . . 27

3.3 Average completion time vs. number of jobs for synthetic data set, the
milder growth in average total completion time for SJF and SVF is
observable. Job sizes are generated from uniform distribution. 42

3.4 Average completion time vs. number of jobs for synthetic data set. Job
sizes are generated from geometrical distribution. The growth pattern
is similar to the Fig 3.3, however SVF-ef curve has a larger margin
with other curves. 43

3.5 Average completion time comparison for 800 jobs sampled from HPC2N
data set. SVF-EF outperforms other priority based algorithms. 44

3.6 Comparison of the proposed method. HYBRID is doing slightly better
than SVF-EF and Block-Scheduling is about two factor off the perfor-
mance of HYBRID and SVF-EF. 45

3.7 The objective function of the proposed algorithms are compared as the
number of servers are increased. HYBRID has the best performance.
Block-Scheduling is about two factors off the SVF-EF algorithm. . . 46

3.8 figure . 47
3.9 figure . 48

ix

4.1 Each job j is illustrated as a two-dimensional rectangle with height
equal to its demand dj and width equal to its size pj. Each server has
a unit capacity. Jobs can run simultaneously on each server as long
as the total demand/height of running jobs do not exceed the server’s
capacity. 53

4.2 The comparison of a plan-based scheduling algorithm (online-SJF) and
a backfilling scheduling algorithm (FCFS-SJF) algorithms on an exam-
ple of seven jobs. 55

4.3 Wait-times of FCFS, FCFS-SJF, FCFS-SVF, Online-SJF, and Online-
SVF are plotted for traces with different accuracy levels. 57

4.4 Overview of the HS platform design. 61
4.5 Central scheduler design. 62
4.6 Online learning module predicts runtime for the current job based on

the feedback from previous jobs. 64
4.7 Prediction reliability estimation machine is trained using features of

completed jobs fi = {z1i, .., zki} and their corresponding prediction
accuracy values acci. 65

4.8 The trained reliability estimation machine is used to predict the accu-
racy for newly submitted jobs. 66

4.9 Feature importances for meta learning model are shown. 67
4.10 Wait time values of HS is compared with FCFS, SVF-BF, SJF-BF,

SVF and SJF. 70
4.11 Bounded slowdown values of HS is compared with SVF-BF, SJF-BF,

SVF and SJF. 71
4.12 Utilization percentage of HS is compared with SVF-BF, SJF-BF, SVF

and SJF. 71
4.13 Comparing average wait time with various initial alpha (α0) 72

5.1 The Kalman Filter is a Hidden Markov Model with continuous latent
variables. Yis are observations produced by Xis. Xi form a random walk. 80

5.2 Kalman Filter starts with an initial distribution, after each observation,
the assumption is filtered to a more accurate distribution. 80

5.3 Runtimes of the all jobs are shown. 83
5.4 One of the two auto regressive Kalman Filters AR1 and AR2 are chosen

based on the classification of features by Adaptive Online Classifier. 83
5.5 Prediction Accuracy of several traces in HPC2N trace 85
5.6 Wait time of SJF-BF using ML based predictions. 87
5.7 Response time of SJF-BF using ML based predictions. 87

7.1 Each LSTM unit has self loop (left). The unrolled self loop is demon-
strated on the right. 102

7.2 Anatomy of LSTM network. 103
7.3 Sequence prediction with encoder-decoder LSTM 103
7.4 The mechanism of attention model (97). 105

x

7.5 Heatmap of max CPU usage for 3000 VMs from Microsoft Azure public
dataset. 110

7.6 Partial auto-correlation of three virtual machines. 111
7.7 VM cpu utilization prediction for to VMs. 114
7.8 aggregated CPU usage prediction. LSTM is compared with ARIMA

and ANN. 115

xi

List of Tables

3.1 Lower bounds for priority based algorithms on single server 32
3.2 Comparison of stretch in the priority based scheduling algorithms, 5000

jobs are run on 10 parallel machines 42

4.1 Features considered for our prediction reliability estimation approach. 64
4.2 Correlation of estimated accuracies with actual accuracies for gradient

boosting tree is compared with decision tree and CNK. 67
4.3 Bounded-slowdown comparison with Clairvoyant problem setting. . . 72

5.1 Features extracted from SWF files of HPC application traces for each
user . 79

5.2 Comparison of average cluster utilization 88

7.1 Different scoring functions considered for attention model. 106
7.2 Features considered for our prediction model. 109
7.3 Specifications of LSTM Network for Individual VMs CPU Consumption.114
7.4 Mean absolute percentage error for individual VM CPU consumption. 115

xii

List of Algorithms

1 Algorithm for Earliest Feasible procedure 27
2 Gradient Boosting Tree as the Meta Learning Approach 66

xiii

Preface

http://cloudlab.ucmerced.edu/˜Mina

• Naghshnejad, Mina. (2019). Scheduling, Characterization and Prediction of
Workloads for High Performance Computing Systems. Ph.D. dissertation. Uni-
versity of California, Merced.

xiv

http://cloudlab.ucmerced.edu/~Mina

Acknowledgment

Similar to many others, Ph.D. was a long journey for me. Through this journey, I
learned a lot, lost some of the best people, and found some of the best people. As
an Iranian national, being able to focus on research for six years and not having to
worry about other aspects of life was a great opportunity despite all the concerning
matters happening to my closest friends and family in these six years.

I want to thank Professor Mukesh Singhal, who trusted my capabilities and ac-
cepted me as his Ph.D. student. Additionally, I would like to thank Professor. Sungjin
Im, who introduced me to research on job scheduling. I also like to thank Professor
Florin Rusu, who accepted to be part of my dissertation committee. Additionally, I
would like to thank the graduate division, specifically Dean Marjorie Zatz and Pro-
fessor Kello, who facilitated supporting learning and development programs that I
benefited while I was doing my Ph.D.

Last but not least, I would like to thank my family: my parents who taught me
how to strive for knowledge, my two sisters who supported me and encouraged me to
pursue my goals, and my partner in life who taught me how to be precise and firm
in expressing my ideas. It would not be possible without their help.

xv

Curriculum Vita

Education
• University of California, Merced. Merced, CA, USA. (2013 – 2019).

Ph.D. in Electrical Engineering and Computer Sciences.

• Shahid Beheshti University. Tehran, Iran. (2011 - 2013).
M.Sc. in Computer Science.

• Sharif University of Technology. Tehran, Iran. (2005 - 2010).
B.Sc. in Computer Science.

Research papers

Published papers
1. Handling prediction Inaccuracies in Backfilling Scheduling Approaches M Naghsh-

nejad, M Singhal, Journal of Super Computing, 2019. Link

2. Naghshnejad, Mina, and Mukesh Singhal. ”Adaptive Online Runtime Predic-
tion to Improve HPC Applications Latency in Cloud.” 2018 IEEE 11th Inter-
national Conference on Cloud Computing (CLOUD). IEEE, 2018. Link

3. Scheduling Jobs with Non-uniform Demands on Multiple Servers without In-
terruption S. Im, M. Naghshnejad, and M. Singhal, Proceedings of the IEEE
INFOCOM 2016. Link

To be Submitted

4. Predicting Resource Consumption with LSTM Recurrent Neural Network M
Naghshnejad, M Singhal

5. Predicting Job Runtimes with Deep Mixture Density Networks M Naghshnejad,
M Singhal

xvi

https://rdcu.be/bSb1i
https://ieeexplore.ieee.org/abstract/document/8457873
https://ieeexplore.ieee.org/abstract/document/7524417/

Professional Work Experience
• Quantitative Research Associate, Wells Fargo Corporate Risk Modelling, San

Francisco, CA, USA July 2019-Now

• Summer Machine Learning Research Intern, Qeexo, Pittsburgh, PA, USA Sum-
mer 2018

• Data Analysis Specialist, MTN Irancell, Tehran, Iran 2010-2011

xvii

Abstract
Scheduling, Characterization and Prediction of Workloads for Distributed
Computing Environments
A Ph.D. dissertation by: Mina Naghshnejad
Electrical Engineering and Computer Science
University of California, Merced. 2019.
Committee chair: Professor Mukesh Singhal.

As High Performance Computing (HPC) has grown considerably and is expected
to grow even more, effective resource management for distributed computing sys-
tems is motivated more than ever. As the computational workloads grow in quantity,
it is becoming more crucial to apply efficient resource management and workload
scheduling to use resources efficiently while keeping the computational performance
reasonably good. The problem of efficiently scheduling workloads on resources while
meeting performance standards is hard. Additionally, non-clairvoyance of job dimen-
sions makes resource management even harder in real-world scenarios. Our research
methodology investigates the scheduling problem compliant for HPC and researches
the challenges for deploying the scheduling in real world-scenarios using state of the
art machine learning and data science techniques.

To this end, this Ph.D. dissertation makes the following core contributions: a)
We perform a theoretical analysis of space-sharing, non-preemptive scheduling: we
studied this scheduling problem and proposed scheduling algorithms with polyno-
mial computation time. We also proved constant upper-bounds for the performance
of these algorithms. b) We studied the sensitivity of scheduling algorithms to the
accuracy of runtime and devised a meta-learning approach to estimate prediction
accuracy for newly submitted jobs to the HPC system. c) We studied the runtime
prediction problem for HPC applications. For this purpose, we studied the distri-
bution of available public workloads and proposed two different solutions that can
predict multi-modal distributions: switching state-space models and Mixture Density
Networks. d) We studied the effectiveness of recent recurrent neural network models
for CPU usage trace prediction for individual VM traces as well as aggregate CPU
usage traces. In this dissertation, we explore solutions to improve the performance of
scheduling workloads on distributed systems.

We begin by looking at the problem from the theoretical perspective. Modeling
the problem mathematically, we first propose a scheduling algorithm that finds a con-
stant approximation of the optimal solution for the problem in polynomial time. We
prove that the performance of the algorithm (average completion time is the constant
approximation of the performance of the optimal scheduling. We next look at the
problem in real-world scenarios. Considering High-Performance Computing (HPC)
workload computing environments as the most similar real-world equivalent of our
mathematical model, we explore the problem of predicting application runtime. We
propose an algorithm to handle the existing uncertainties in the real world and show-

xviii

case our algorithm with demonstrative effectiveness in terms of response time and
resource utilization. After looking at the uncertainty problem, we focus on trying to
improve the accuracy of existing prediction approaches for HPC application runtime.
We propose two solutions, one based on Kalman filters and one based on deep den-
sity mixture networks. We showcase the effectiveness of our prediction approaches
by comparing with previous prediction approaches in terms of prediction accuracy
and impact on improving scheduling performance. In the end, we focus on predict-
ing resource usage for individual applications during their execution. We explore the
application of recurrent neural networks for predicting resource usage of applications
deployed on individual virtual machines. To validate our proposed models and solu-
tions, we performed extensive trace-driven simulation and measured the effectiveness
of our approaches.

xix

Chapter 1

Introduction

High Performance Computing is behind most of recent advances in science and en-
gineering. Researches performed in national labs are not possible without the enor-
mous parallel interconnected super computers known as high performance systems.
Research in scientific fields such as computational physics, computational chemistry,
bio-informatics rely on HPC systems to perform complex large scale computational
experiments.

As the demand for HPC is growing, more advanced resource management and
application schedulers are required to provide desired performance demands of cus-
tomers while keeping the expenses of running HPC systems reasonable.

1.1 Research Motivation and Objectives
As computational requirements are increasing, the usage of public and private dis-
tributed systems for High Performance Computing is increasing. These distributed
systems offer significant benefit to companies in various industries by relieving them
from the necessity in setting up basic hardware and software infrastructures, and thus
enabling them to focus more on innovation and creating business value for their ser-
vices. Moreover, individual developers with innovative ideas for new Internet services
no longer require significant capital outlays in hardware to deploy their service or
staffing expenses to operate it.

With the increase in the usage of distributed systems and the fact that the semi-
conductor industry is not expecting further exponential growth of computational
power per chip area, the role of effective resource management is more apparent than
ever (15). Resource management is an essential part of cloud computing admin-
istration. Resource management is the process of allocating resources to a set of
applications in a manner that seeks jointly meeting the performance objective of ap-
plications and infrastructure providers. Resource management in distributed systems
is a difficult problem, due to the large scale of modern data centers, the heterogeneity
of resource types and their inter-dependencies, the variability and unpredictability of
the response time and resource usage, as well as the wide spectrum of objectives of

1

Chapter 1. Introduction 2

the different actors in a cloud ecosystem. Consequently, both academia and industry
have started significant research efforts in this area (76).

Most of the problems that arise in resource management problems in distributed
systems are NP-complete. Cloud providers and brokers need to avoid high overheads
for management modules. Thus, designing fast near-optimal algorithms to handle
resource management is of great concern.

Another issue in real-world scenarios of scheduling applications is the uncertainty
about the dimensions of incoming applications. Most of the times, neither the runtime
of the application nor its resource usage is known to the distributed system vendors.
For that reason, designing prediction approaches that can predict the application
runtime and resource usage in an online manner is highly demanded. Using cloud
resources extravagantly is a double-edged sword because performance improvement
comes with the expense of losing resource efficiency. Designing a resource manager
that meets resource efficiency as well as performance leads to significant revenue for
the cloud provider and revolutionizes the cloud computing business.

In this Ph.D. thesis, we focus on High Performance Computing systems, and
we mostly focus on scientific computing workload traces from national labs as our
datasets. Only in the last chapter, we use the subset of long-running traces from
Microsoft Azure. The overall goal of this Ph.D. thesis is to propose solutions for
improving resource management and scheduling workloads on distributed computing
systems. In part of our work, we propose approximation algorithms to schedule HPC
applications with a constant approximation of optimal average completion time of
applications.

In addition to constant approximation solution for the case of known application
runtime, we also study the scenarios where application runtimes are unknown. We
propose a solution to handle inaccuracies for application runtimes. We propose two
different approaches for predicting application runtimes by using the past traces of
applications. Additionally, we study the resource usage pattern of virtual machines
and propose a deep recurrent neural network for predicting individual virtual machine
workload usage pattern.

1.2 Research Challenges
Creating an optimal scheduling plan even when the runtime and resource requirement
of applications is known is an NP-Hard problem. One challenge is to find sub-optimal
solutions with polynomial computation time. Cloud and cluster vendors rent com-
putational resources to entities. Most of these entities do not want the cloud/cluster
vendor to know the contents of the applications they run on third party distributed
systems. On the other hand, the distributed system vendor needs to manage its
resources to provide high-performance service while using the computational/memo-
ry/network services efficiently to optimize its revenue.

For practically optimizing the planning of applications of customers, the vendor
needs to have a near-accurate prediction of the runtime and resource usage of the

Chapter 1. Introduction 3

applications. However, the vendor does not have much detail about applications
submitted by the customers. In fact, in most of the scenarios, the actual runtime of
applications is unknown. Consumers are often asked to input an estimate of their
application runtime, but studies show that these estimates are far from accurate.

Predicting the runtime of applications is not easy. HPC applications are becom-
ing more diverse, and their characterization and prediction is getting more difficult.
Prediction approaches should have low overhead and should be deployable in an on-
line manner so that the predicted runtime is used for scheduling purposes. Another
challenge for predicting runtimes is that often privacy considerations do not allow the
vendor to interrogate the codes of submitted applications. The privacy considerations
and legislations imply that prediction approaches should work with a minimal set of
features available from application trace.

Resource usage prediction is a hard problem. In fact, the resource usage of indi-
vidual applications is hard because of the existing noise and also because of the large
variance of resource usage among different applications.

1.3 Research Questions and Contributions
An important research question is whether we can predict the application runtimes
with minimal information we have from the application submission logs. Another
important question is if there is an unavoidable uncertainty in runtimes of applica-
tions, can we still devise scheduling algorithms to improve performance? Another
critical research question is if we can predict the individual resource usage patterns
of applications using the past resource usage of applications.

With the advent of dynamic virtual machines and container technology and the
feasibility of creating containers for each application, there is the opportunity of
consolidating resource allocation and application schedule. Our work lies in the in-
tersection of resource allocation in the cloud and workload prediction for distributed
systems. To answer the current concerns about resource efficiency in cloud and re-
garding the recent popularity of actualization methods, we consider the problem of
scheduling virtual machines to optimize performance. To keep the resource usage ef-
ficient, we hard constrain the usage of resources and do not run an application unless
the required resource for the application is available on at least one of the servers in
the system. For performance optimization, we consider the objective of minimizing
the total completion time of applications as it is one of the most popular objectives
for performance optimization and we are able to prove upper bounds for this objective
for our proposed algorithms.

We propose two different approaches to the runtime prediction of HPC appli-
cations. One uses state-space models, and the other applies deep mixture density
networks for prediction the runtime of HPC applications on distributed systems. We
also propose the usage of the recurrent neural network for predicting resource usage
for each individual virtual machine deployed in the distributed system.

specific contributions of this Ph.D. thesis include:

Chapter 1. Introduction 4

1. design non-preemptive offline scheduling solutions for HPC workloads

2. design approaches to predict the runtime of HPC applications in the cluster
using past traces using machine learning

3. design scheduling solutions to handle runtime inaccuracies of HPC workloads

4. predicting individual resource usage of virtual machines deployed in distributed
systems

1.4 Thesis Outline
Chapter 2 provides an overview of high performance computing, scheduling method-
ologies for high performance systems and approaches for predicting runtime and CPU
usage of applications in high performance computing systems. The next five chap-
ters are our contributions. In Chapter 3.5, our proposed scheduling algorithms for
non-preemptive applications is presented. In Chapter 4, a novel methodology for the
handling of runtime inaccuracies in HPC clusters is presented. Two novel prediction
approaches for HPC application runtimes are presented in Chapters 5 and 6. Finally,
a novel approach for predicting CPU usage of applications is presented in Chapter 7.
We conclude the thesis in Chapter 8.

Chapter 2

Background

In this chapter, we present required background about well-established theories,
methodologies, and technologies which are used in this thesis. In this regard, we
first define High Performance Computing; we then explore scheduling and resource
management practices for high performance scheduling. We then discuss the ne-
cessity of performance prediction for scheduling and resource management of HPC
applications. After that, we present the problem of runtime prediction and resource
prediction for HPC applications and explore existing approaches.

2.1 High Performance Computing
High Performance Computing, also known as HPC, is named after the execution of
applications in fields including science, engineering, health, and finance. The main
characteristic of these applications is high computational loads and large input and
outputs. A computing system should be defined as High Performance Computing
if it supports the execution of large-scale, performance-oriented applications at the
smallest cost, with the shortest possible runtime, within some time constraint.

Definition 1 (High Performance Computing). Execution of applications in inter-
connected clusters of computational servers with specific performance gourantee is
called High Performance Computing

Definition 2 (HPC applications). Large scale applications with large input and/or
outputs that require specific performance standards to be met.

Definition 3 (HPC systems). HPC systems support the execution of HPC appli-
cations. Specifically, they provide parallel processing, resource sharing, and time-
sharing.

Most critical costs for running and maintaining HPC clusters are cooling and
power provision. The facilitation of the desired performance while optimizing costs
requires careful scheduling at job level and process level and effective resource man-
agement.

5

Chapter 2. Background 6

For the majority of this thesis, we will focus on HPC systems for scientific com-
puting, but most of the concepts can be considered in the more general HPC system
systems as well.

2.2 Scheduling and Resource Management in HPC
Systems

This thesis studies scheduling of HPC applications. HPC applications are tradition-
ally applied in private clusters. Recently, with increasing popularity of Cloud systems,
HPC as a Service is introduced and provided by multiple Cloud providers. HPC as a
Service provides high performance virtual environments in a pay as you go basis to
Cloud customers. Both in private clusters or in HPC as a Service Cloud environments,
it is mandatory to carefully manage resources to optimize service to the customers
and keep the cluster/cloud service sustainable. In both services, customers require
specific level level of perfomance for their applications. At the other hand, Cloud/-
cluster vendor needs to minimize resource usage of the distributed system to optimize
its revenue (in case of virtual environments in Cloud) or make cluster maintenance
affordable (in case of private clusters.

2.2.1 Scheduling in Distributed Systems
”In computing, scheduling is the method by which work specified by some means is
assigned to resources that complete the work ”(Wikipedia). The work may be virtual
computation elements such as processes which are in turn scheduled onto hardware
resources such as processors. Early scheduling algorithms were taken from the field of
operations management and applied to computers. This reality should be no surprise
that assembly lines also require scheduling, and many of the same concerns exist
therein, including a laser-like desire for efficiency.

The scheduling problem can be considered offline- where all jobs are given before
starting the scheduling algorithm - or online (dynamic)- where jobs are submitted
during the scheduling and scheduler needs to decide how to schedule the job before
next job is submitted. In this thesis, we will discuss the scheduling method focused
on parallel jobs.

First, we will elaborate on how the distributed system runs applications across the
system. We then explain the role of the scheduler. In general, job scheduling involves
two inter-dependent steps: the allocation of jobs to processors (space-sharing) and
determining the start time of each job (time-sharing). When a job is submitted to the
system, the processor to run the job cooperatively is determined. This is called job
allocation, and it involves space-sharing. When the job is submitted to the system,
multiple attributes of the job is also submitted that quantifies the resource usage
and expected runtime. It is important to note that the system always maintains an
information table, containing information about current running jobs and the status

Chapter 2. Background 7

of resources being used. When a job is submitted, the system manager finds the most
suitable processor to meet the requirement of the job. This job is then assigned to
the processor, and system tables are updated accordingly.

The most famous scheduling algorithms include First In First Served (FCFS) that
processes jobs in the order of their submission. It is proved that in the model where
only one job at a time can be processed by each server, the Shortest Job First (SJF)
algorithm is optimal for homogeneous servers. However, in our problem setting- which
we discussed in Chapter 1- multiple jobs can run concurrently on available resources
scheduling jobs is an NP-Hard problem even in the case of a single server.

Desired Properties of an Ideal Scheduler for HPC Applications

Regarding the business requirement and usage of HPC clusters, the following prop-
erties are expected from HPC schedulers (94):

Efficiency: it has two meanings: one is that it should improve the performance
of scheduled jobs as much as possible; the other is that the scheduling should incur
reasonably low overhead so that it won’t counter attack the benefits.

Fairness: sharing resources among users raises new challenges in guaranteeing that
each user obtains his/her fair share when demand is heavy. In a distributed system,
this problem could be exacerbated such that one user consumes the entire system.
There are many mature strategies to achieve fairness on a single node.

Dynamicity: the algorithms employed to decide where to process a task should
respond to load changes, and exploit the full extent of the resources available.

Transparency: the behavior and result of the execution of a task should not be
affected by the host(s) on which it executes. More specifically, there should be no
difference between local and remote execution. No user effort should be required in
deciding where to execute a task or in initiating remote execution; a user should not
even be aware of remote processing, except maybe better performance. Further, the
applications should not be changed greatly. It is undesirable to have to modify the
application programs in order to execute them in the system.

The general problem of optimally mapping tasks to machines in an HPC suite has
been shown to be NP-complete. Different heuristics are developed to perform this
mapping. The problem gets even harder to solve when we running multiple jobs on
single server concurrently as long as enough resources are available. In the following
subsection, we explore common approaches for scheduling HPC applications.

2.2.2 Scheduling HPC applications in private clusters
The HPC applications are submitted to a central Application Management System.
The job management system decides the allocation of resources to the applications.
As the resources are finite, the applications may need to wait until they acquire
resources. The users are asked to provide running time and the required CPU and
memory for their applications. It is well known that the users submit an overestimated

Chapter 2. Background 8

runtime mostly because the application manager kills the applications if they take
longer than the user estimated duration (71).

In order to better present the problem, we first define our notion of a job in HPC
cluster: a job or application j is considered with specific submission time and resource
requirement. At the time of submission, a value of runtime and resource requirement
is submitted by the user. There are n independent jobs (indexed by integers), where
application j has the following characteristic:

• Submission time: rj

• Resource requirement: dj

• Actual running time: pj

• Requested running time: p̂j.

• Additional features (descriptors) including the user that submitted the applica-
tion, the time of the day the application submitted, etc.

In Fig 4.1, an application j is illustrated as a solid rectangle, with length equal
to actual runtime (pj) and resource requirement equal to dj. In the right figure, the
abstraction of resources in the HPC cluster is illustrated. The vertical dimension
represents the total resources in the system, and the horizontal axis denotes time. In
this section, we first present a background on scheduling approaches for HPC clusters
and introduce the issue of uncertainty in HPC workload traces. We then present the
formulation of the problem we study in this paper.

Common Scheduling Algorithms for HPC Workloads

FCFS (First Come First Served) is the most well-known scheduling algorithms for
HPC jobs. FCFS schedules jobs in order of their submission. FCFS is a list schedul-
ing algorithm that prioritizes jobs based on their submission time. In list scheduling
algorithms, also known as queue-based scheduling algorithms, if there are enough
available resources, resources are allocated to the submitted job, and the job starts
to process. Otherwise, the job is kept in a queue. Using FCFS does not consider the
geometry of jobs to pack them tightly into resources. To improve the performance
of FCFS, two strategies have been proposed: Backfilling (FCFS-BF) (135) and Plan-
Based scheduling (160) algorithms. In Fig 4.2, an FCFS-Backfilling scheduling strat-
egy is compared with a plan-based scheduling algorithm. While Backfilling backfills
the free resources available after FCFS scheduling with smaller jobs from the back of
the queue, plan-based scheduling uses the runtime of jobs in the queue to find the
near-optimal ordering jobs before assigning the jobs. As these two groups of schedul-
ing algorithms are the building blocks of our hybrid scheduling platform, we elaborate
their characteristics in the following subsections.

Chapter 2. Background 9

time

c
a
p
a
c
ity

Server:

d
e
m
a
n
d

J ob

size

MachineMachine M

j :

:Machine M:

Job j:

Machine M:

Figure 2.1: Each job j is illustrated as a two-dimensional rectangle with height equal
to its demand dj and width equal to its size pj. Each server has the unit capacity.
Jobs can run simultaneously on each server as long as the total demand/height of
running jobs do not exceed the server’s capacity.

FCFS Scheduling with Backfilling

In FCFS with backfilling, jobs are prioritized based on their submission time to the
system. In FCFS with backfilling, a rule is used to select some jobs from the back
of the waiting queue to run earlier. Several variety of backfilling algorithms are pro-
posed including easy (128), conservative (135) and slack backfilling (138) algorithms.
Although FCFS only rely on submission time to order the jobs, all these backfill-
ing approaches rely on runtime values to make the backfilling decision. Most of the
resource management systems deployed in HPC clusters including SLURM (154),
Cobalt (38), IBM LoadLeveler (128) use FCFS with backfilling. FCFS scheduling
algorithms are used mainly due to their simplicity and scalability as well as stability
to inaccurate input runtimes. The easy-backfilling algorithm acts like a greedy first
fit scheduler in the case that the next job in the queue has more resource demand
than the available resources. It takes the first job from the back of the queue that
fits into the available space.

One important observation is that as EASY-backfilling tries to backfill jobs greed-
ily into available holes created by the FCFS ordering of jobs, its performance does
not degrade substantially with inaccurate runtime estimates. On the other hand,
the performance of the EASY does not improve substantially with more accurate
runtime values. FCFS-SJF was proposed in (142) to use the application runtime
for backfilling decision. In FCFS-SJF, the backfilled jobs are chosen in the order of
increasing runtime. FCFS-SJF is commonly used in the works that propose more
accurate prediction approaches to runtime prediction as SJF-BF is more sensitive to
runtime prediction accuracy than EASY. We will also consider FCFS-SVF that or-
ders jobs based on volume(multiplication of runtime and required CPU). FCFS-SJF
and FCFS-SVF have some level of sensitivity to runtime accuracy, but still, have

Chapter 2. Background 10

acceptable performance in the absence of accurate runtime prediction. In our experi-
ments, we use FCFS-SJF and FCFS-SVF as representatives of FCFS with backfilling
algorithms.

Plan-based Scheduling Algorithms

On the other side of the scheduling algorithms spectrum are the plan-based algo-
rithms. Instead of deploying jobs immediately, plan-based approaches make a schedul-
ing plan-based on a group of submitted jobs. They try to find a near-optimal ordering
of jobs to optimize scheduling performance. The main issue with plan-based schedul-
ing algorithms is the fact that their performance is highly sensitive to the accuracy of
jobs’ runtime predictions. As in real-world scenarios, user runtime estimates used for
scheduling are not accurate; plan-based scheduling algorithms do not perform well.
We study several plan-based and backfilling approaches and propose an adaptive hy-
brid scheduling platform. Our sensitivity analysis experiments in the next subsection
show how plan-based work well with accurate and backfilling with inaccurate predic-
tions. Plan-based scheduling algorithms try to search over the Solution space to make
the best scheduling decision for each job. As the problem is dynamic and jobs are
submitted over time, the planning routine needs to be done periodically and based
on the jobs already in the systems. Several plan-based scheduling policies have been
proposed. Some policies propose a complete search over the solution space, and some
propose local search to improve the computation overhead (160; 152; 82).

Although these methods claim to have better performance than backfilling schedul-
ing methods, several issues make them less popular for cluster managers. First, for
most of these approaches, the computational the overhead for decision making makes
them less favorable. Furthermore, they completely rely on job runtimes for their de-
cisions and perform poorly if the runtimes are not accurate. We will discuss this issue
in the next section.

2.2.3 HPC as a service in the Cloud
Many pieces of research have found scientific workflows, referred to as workflows in
this thesis, an attractive model of building large scale applications for heterogeneous
parallel and distributed computing systems. Typically, a scientific workflow applica-
tion consists of several (legacy) programs in the form of a dependency graph, where
the input of some of these algorithms may depend on the output of others. In scien-
tific computing, usually users that submit the jobs tell the scheduler an upper bound
on how long they will run, and the scheduler can make a plan for when to launch each
job(offline scheduling). These scientific workflows are run in private clouds/clusters
or public clouds like commercial Infrastructure as service environments, including
Amazon Elastic Computing Cloud (EC2) and Google Cloud Platform (GCP). To de-
ploy workflow scheduling in current cloud systems, the user has to choose between
different available resource types and specify how long he wants to rent the resource.
So the resource requests made by customer consist of resource demand and duration

Chapter 2. Background 11

Figure 2.2: The comparison of a plan-based scheduling algorithm (online-SJF) and a
backfilling scheduling algorithm (FCFS-SJF) algorithms on an example of seven jobs.

of time that the resource needs to be used. This framework is similar to our modeling
except that we assume each workflow as a single solid application.

2.2.4 Resource management in distributed systems
Since the development of cloud systems, resource management has been an indis-
pensable part of protocol design and architecture. However, the early implemented
algorithms are too simple and do not consider all objectives in scheduling applications
on the available resource.

With the advance of computer and internet technologies, paradigms of cloud com-
puting have been successfully used on several information systems in recent years.
Although cloud computing systems nowadays provide a better way to carry out the
submitted tasks in term of responsiveness, scalability, and flexibility, The current
methods are far from optimal. Some methods only aim to achieve fairness among
users, while others try to optimize responsiveness. However, to our knowledge, there
has not been so many works on optimizing performance while keeping resource usage
efficient. One reason for this is the fact that scheduling can have many different and
contradictory aims that it is not possible to satisfy all of them with one single sched-
uler. Different role-players in the Cloud have different goals to achieve. Traditionally
resource scheduling in the Cloud is handled in different levels:

1. Application layer: applications, user tasks, workflows

2. Virtualization(Platform layer): virtual machines, databases, integrations, secu-

Chapter 2. Background 12

rity

3. Deployment(Infrastructure) Layer: Networking, Storage, server hardware, ser-
vices.

Each of these levels has its own objectives for sharing the resources among the appli-
cations. End-user is seeking fairness and responsiveness. Platform layer is looking for
quality of service to satisfy end-user as well as the reliability of the service. It may
also seek to optimize its resource usage if it is hiring servers from a cloud provider.
The infrastructure layer is looking to optimize power consumption, hardware usage.
Based on the objectives we consider for resource management, different algorithms
and methods have been designed and implemented.

Resource allocation in distributed systems

In slot based resource management systems, resource allocation is handled by the
Cloud provider to allocate virtual machines on physical machines. Initially, the re-
sources are divided among virtual machines or containers in the infrastructure level.
Tasks belonging to applications are scheduled on virtual machines in platform level.
From the methods and algorithms for resource allocation in the Cloud, we want to
highlight bin packing based algorithms. Bin packing based algorithms have been
proposed to allocate virtual machines(VMs) on servers. In these problems, server
resources such as CPU, memory, bandwidth, and storage are dimensions of the pack-
ing problem. These algorithms are often used in server selection phase to achieve
cost minimization, energy efficiency, and utility maximization. For the objective of
minimizing the number of servers, (147) and (23) proposed approximation algorithms
assuming that servers are homogeneous. (95) applied a multidimensional vector pack-
ing algorithm to allocate virtual machines in a cloud system. In some works, including
(132) virtual migration facilitated adaptive approximation algorithms. However, in
all these bin packing algorithms, only the objectives of the cloud provider are taken
into account, and customer SLA satisfaction regarding responsiveness is not taken
into consideration.

Modern models of resource allocation take advantage of creating and destroying
virtual containers on the go. In these models, end-users submit their requests with
the exact amount of resources that they require, and the cloud manager will be
responsible for providing the requested resources. One issue in resource allocation is
the concept of fairness among users or applications. In order to allocate resources in a
fair manner, max-min sharing, which maximizes the minimum allocation received by
a user in the system is employed and all the users whose demand cannot be satisfied
share the remaining resource. Dominant resource fairness(148) is proposed to achieve
fairness in the case of heterogeneous resource demands. However, in all these resource
allocation algorithms, the applications are executed even if the sufficient resource is
not available. In a more constrained model, applications are executed only if there is
sufficient resources for their deployment, and otherwise they will be waitlisted.

Chapter 2. Background 13

Task Scheduling in Application Layer of the Cluster

Most of the existing scheduling algorithms take care of the scheduling in the platform
level. In these models, the scheduler is given a coarse-grained slot of resources to
share among the submitted applications with some criteria. The most famous and
simplest scheduler for cloud systems is FIFO, where jobs are executed in order of
their submission. FCFS is the simplest member of a group of schedulers that can be
categorized under the name of list scheduling algorithms. The jobs are loaded into a
queue and scheduled to execute according to their order in the queue. More advanced
list scheduling algorithms are designed and released after FCFS. Later on, the ability
to set the priority of a Job was added. Facebook and Yahoo contributed signifi-
cant work in developing schedulers, i.e., Fair Scheduler (44) and Capacity Scheduler
(Im et al.) respectively, which subsequently released to Hadoop Community. In ca-
pacity scheduling tasks for each user form a queue. Each queue has a configurable
portion of the resources. In fair scheduling, Jobs are allocated to pools. The sched-
uler guarantees that each pool gets a minimum portion of resources over time using
preemption. Delay Scheduler (90), Dynamic Proportional Scheduler (122) offer differ-
entiated service for Hadoop jobs allowing users to adjust the priority levels assigned
to their jobs. There has been extensive work on improving these methods. Dead-
line Constraint Scheduler (78) addresses the issue of deadlines but focuses more on
increasing system utilization.

The Schedulers described above attempt to allocate capacity fairly among users
and jobs; they make no attempt to consider resource availability on a more fine-
grained basis. More specifically, they do not consider the heterogeneity of resource
demands by different applications. Another concern is also the need to configuring
slots for heterogeneous clusters of servers, as slots by default have different dimensions
on heterogeneous servers. These algorithms are mainly aiming to achieve the quality
of service based on SLA agreements with customers, including fairness and service
responsiveness and ignore resource efficiency.

Virtual Machine Scheduling in Clusters

As most of the scheduling algorithms in the Cloud do not consider optimizing resource
usage as an objective or constraint, considerable waste of resources happens in the
current management of cloud systems. About forty-five percent of the cost in cloud
computing systems is caused by physical nodes (64).

There have been several works in scientific workflow scheduling to target perfor-
mance optimization while keeping resource usage efficient. One approach to make
efficient use of resources is considering resource usage as one of the objectives in ad-
dition to performance objectives. In (90), a pareto based multi-objective workflow
scheduling with two objectives of makespan and cloud cost based on the EC2 cloud
model is proposed. The problem with the proposed algorithm is that the greedy al-
gorithm is time-consuming and imposes an overhead if applied in large scale cloud
computing systems.

Chapter 2. Background 14

Another solution is post-processing of output workflow schedules. In (44), a
new algorithm Maximum Effective Reduction(MER) is proposed. MER is a post-
processing resource efficiency algorithm that optimizes resource usage of a workflow
schedule. It trades off a makespan increase for reducing maximal resource usage by
consolidating tasks with the exploitation of resource efficiency in the original workflow
schedule.

In a theoretical paper, (49) several online algorithms are proposed to minimize
the flow time of the jobs; meanwhile, the total resource used should not exceed that
of the server. Unfortunately, no experiments or simulations are included in that work
to prove the superiority of their work in practice. Another issue about their work
is the fact that they assume that jobs can be preempted free of charge, which is
not a realistic assumption. In (Im et al.), we considered the same model but did
not allow preemption to make the model more realistic. We proposed several efficient
and easy to implement algorithms to minimize total completion time, and simulations
confirmed the good performance of our algorithms in practice.

2.2.5 Existing Challenges for Scheduling HPC Applications
As current resource allocation solutions are not considering performance optimization
objectives and task scheduling algorithms are not considering resource efficiency, we
aim to propose resource management systems that accommodate both concerns. The
few resource-efficient scheduling algorithms proposed so far for scientific workflow
scheduling are time-consuming and not suitable for deploying in public clouds. In
our model, we consider performance optimization as objective, and hard constrain
the resource usage by requiring that at any time the sum of used resources by running
applications should not exceed the resources on any of the servers.

The recent improvements in virtualization technologies allow us to allocate each
application on a single virtual machine or container. That allows us to consider the
problem of virtual machine scheduling where each virtual machine is supposed to run
if and only if the resources required by the related application is available on one of
the resources in the Cloud (33).

Another issue is preemption. Most of the current algorithms assume that the
preemption of virtual machines can be done free of charge. However, this assumption
is not valid for HPC systems. Preemption may be costly due to context switching
overheads or may not be allowed due to system restrictions or security considera-
tions (108). For this reason, it is crucial to design algorithms for non-preemptive
scheduling, although non-preemptive scheduling is a hard problem. These algorithms
can be applied to schedule a subset of virtual machines or all of them based on the
problem sets. That is why we have a specific emphasis on scheduling problem in
non-preemptive settings. Several papers that discuss HPC scheduling and backfilling
strategies consider the same assumption of non-preemption.

Another concern is that scheduling algorithms need to know the dimension of
applications in order to schedule their execution into the available resources better.

Chapter 2. Background 15

When users submit HPC applications, they are asked to submit an estimated runtime.
However, studies show that these assumptions are not accurate at all. One issue is
that the cluster/Cloud management tell the users that they will kill the application
if the application is not completed by after the estimated runtime. This encourages
the users to submit a pessimistic runtime for their application. These upper-bound
inaccurate runtimes are not helpful for optimal scheduling of application. In the
next section, we will discuss approaches to predict runtime and resource usage of the
application. The purpose of these predictions is to improve scheduling performance.

2.2.6 Research Methodology for Scheduling and Resource
Management of Distributed Systems

Research in HPC scheduling is challenging mainly because complete information
about real-world HPC workloads is not available. Private clusters, as well as third
party Cloud vendors, keep most of the information regarding HPC traces and work-
load management information proprietary. The existing research in HPC scheduling
can be classified into three methodologies:

1. Theoretical Analysis: In this methodology, lower bound and upper bound per-
formance of the proposed algorithms are given by mathematically modeling the
distributed system using the approximation algorithm.

2. Trace-based Simulation: In this approach, a real world system is simulated by
using a simulated resource management system on simulated jobs. Simulated
jobs can be synthetic workloads or trace logs of real-world distributed systems.
Simulation enables repeatability of large scale experiments that provide data
for analysis of the performance of algorithms.

3. Real System Experiments: This methodology provides a clear measure of the
algorithm behavior but requires dedicated distributed system nodes and inten-
sive time and investment on hardware. Also, a single experiment is not enough
for reasoning about a general hypothesis. Also, workload conditions are hard
to control in real systems, and this makes it hard to test specific hypothesis or
algorithm settings.

A common practice to perform research on scheduling is to use real-world traces
for simulating the cluster. In order to do so, multiple simulators have been proposed
to mimic the distributed system. The parallel processing uses the information on
arrival time, runtime, and resource usage to simulate running the applications on the
cluster simulator. After running the applications, the performance metrics, including
runtime, resource utilization, and bounded slow-down, is recorded for analysis and
comparison between different scheduling algorithms.

In this thesis, we used the first two approaches. In Chapter 3.5, we propose a
scheduling algorithm that runs in polynomial time, and we prove it is a constant
approximation of the optimal answer. To prove this claim, we applied combinatorial

Chapter 2. Background 16

approximation. In the same chapter, we used Traced-based simulation to show the
performance of the algorithm in practice. In Chapter 3.5, we performed both synthetic
trace and real-world traces to simulate the algorithm on a computing cluster. In
Chapter 4 and 5, we used trace-based simulation on real-world traces to test the
impact of using predicted application runtime on scheduling performance.

2.3 Prediction Approaches for HPC Applications
Recently, machine learning approaches have been used for performance prediction for
distributed systems. A group of these approaches predicts the performance metric val-
ues directly from data available about each application. Another group, first predict
performance-related features, including runtime and resource usage. These features
are, in fact, the requirement of the application to reach desirable performance. They
use these predictions to perform simulations and calculate the values of performance
metrics. Performance prediction helps to benchmark different scheduling approaches.
In other hands, the need for workload characterization and prediction arise from the
insufficient information at the time of submission of applications. Many scheduling
and resource management algorithms require an accurate value of runtime and re-
source usage to reach to desired performance and efficiency results. As these values
are not available, machine learning can be used to provide estimations.

Existing approaches for predicting runtime and resource requirement applications
fall into two main groups:

1. White-box prediction approaches: In these approaches, the prediction method-
ology has a clear view of the application, including its code, arguments, prepro-
cessing, and expected output. Several prediction-based scheduling approaches,
including (19), and (37) perform application profiling to gather information
about the current application. However, these approaches are not practical for
large-scale deployment. There are several works including (111) on interference
detection of applications which is not applicable to our problem setting (single
application per virtual machine).

2. Black-box prediction approaches: In these approaches, the prediction methodol-
ogy only has the trace log of the application. The trace log usually includes the
user who submitted the application, estimated runtime by the user, requested
resources. In addition, some system information is also available to the predic-
tion model, including currently running applications from the same user, the
current state of the resource usage in the system, etc.

In real-world scenarios, most often, the cluster management is not allowed to look
into details of the applications. For this reason, we only consider black-box prediction
approaches in this thesis.

Chapter 2. Background 17

2.3.1 Runtime Prediction for Applications in HPC Clusters
The necessity of runtime prediction for parallel applications has been highlighted
since the last years of 20th century (58). Different approaches have been proposed
to predict HPC application runtimes with different machine learning methodology as
well as prediction features inputs (142; 139). In backfilling algorithms, the runtime
of jobs is needed to determine when the processors of the currently running jobs will
be available and also in determining the eligibility of the waiting job from the back
of the queue to be executed (142).

Empirical studies of traces from HPC clustering sites show that user estimates are
generally inaccurate (104). For this reason, there have been several works in trying to
calculate better estimations of application runtimes. As users of HPC clusters tend
to repeat similar applications, it is conceivable that historical logs of previous runs
can be used to predict the runtime of future applications.

In statistical approaches, a distribution is pre-assumed for the data points, and
the prediction is performed by inputting the characteristic of the new input data to
the distribution. Some approaches consider multiple possible distributions, and after
determining which distribution the new job fits into, they calculate the prediction of
the response time of the job. The process of finding the parameters a1, a2, ..., an and
b is called training a machine learning model. When we have a model, we can use the
model to predict the target value for future independent variables.

In another group of statistical approaches for job runtime prediction, job runtime
values are considered as time series. The value of the time series at time ti is the
runtime that starts running at time ti. One observation is that, in the created time
series, time steps are not necessarily equidistance. Older time series based approaches
used for job runtime prediction includes calculating the mean of the runtimes of the
last two jobs from the same user or exponential smoothing which is a weighted mean
of the previous jobs that discounts the older jobs and puts more weight on the runtime
of the most recent jobs.

Several time-series based methodologies are proposed to use data from previous
jobs to predict the runtime for newly submitted applications. They are mainly expo-
nential smoothing and moving-average methodologies that predict future values based
on the recent runtime values. As noted by (133), these methods are not accurate and
will not improve scheduling performance and utilization significantly. To improve the
accuracy of runtime prediction, we have proposed a time-series based approach in
Chapter 5.

Another set of prediction approaches, find a mapping from a set of independent
variables including time of submission of the job, user, estimated runtime, etc to the
actual runtime of the job using machine learning techniques. We will next discuss
these approaches.

Chapter 2. Background 18

Machine Learning for Predicting Runtimes

Some other researchers have considered additional features for each job in trace
and perform prediction based on the similarity between these features of the jobs
(102; 125). Some more recent works focus on the specific family of scientific work-
flows and use machine learning for predicting runtime and resource usage for these
applications (100). Several works have proposed interrogating the codes to extract
features for runtime prediction. This is also not practical in many cases due to privacy
considerations.

The majority of online time series based prediction methods use simple forecasting
rules including mean, moving average, and exponential smoothing. Sonmez et al.
partition jobs into jobs submitted by the same user or jobs running at the same site
and applies simple time series methods to predict the subsequent runtime of jobs
based on the recent history. They consider the running mean of the last two jobs
as the prediction method. Although these methods are easy to implement and do
not need a large training pool, they are not very accurate. To configure the model
based on the individual user and use the recently completed jobs in the same trace
to strengthen the predicting power of the model, several online methods have been
proposed (133; 139). In fact, the scarcity of relevant training data makes the model
building cumbersome.

Supervised machine learning approaches provide tools for predicting a continuous
dependent variable based on possibly multiple independent variables. In these ap-
proaches, a mapping is often trained from input data X − i to yis. For instance, in
linear regression, target variable y is considered to be a linear function of independent
variables X − 1, .., Xn:

yi = a1X1i + a2X2i + ...+ anXni + b (2.1)

a1, a2, ..., an and b are parameters of the linear regression model. One approach to
finding the best mapping from Xi to yi is to find the line with the minimum least-
squares of error from the sample points. Linear regression is based on the assumption
that independent variables follow Gaussian distribution. Studying the runtime data
from HPC clusters show that the independent variables and target variable(runtime)
is multi-modal. This implies that rather than assuming a single distribution, we need
to consider a mixture of multiple Gaussians. In Chapter 6, we propose an approach
based on deep mixture models to predict the runtime of applications. A group of
supervised machine learning approaches function in an online manner. That means
the objective function above is used to predict one individual job and it is retrained
based on the actual value of the runtime. in (55), an online discriminative approach is
proposed to predict runtimes for HPC applications in a parallel computing platform.
In their work, they consider historical data, including few recent application runtimes
as input features to online polynomial regression. They consider several settings for
their model and use the available traces for manual model selection.

Chapter 2. Background 19

The Problem of Unpredictiblity

Accurate prediction of runtimes is hard. There is no guarantee that users keep the
same patterns in submitting applications, and new types of application are created.
Our studies show that while we can not accurately predict the application runtime,
we can have a near accurate estimate of to what extent the predictions are accurate.
In other words, we can predict the accuracy of the runtime prediction.

Estimating prediction reliability refers to estimating how well a prediction model
will perform on unseen data. In this work, we specifically focus on estimating pre-
diction reliability for individual out of sample data points. There have been several
works in machine learning literature on determining the reliability of the prediction
model for individual data points (53), (123). These approaches assume that features
and target values are generated independently from the same probability distribu-
tion, and they calculate confidence for predicted target values using p-value measure.
In (21), authors propose local regression sensitivity analysis to provide prediction
reliability values. The application of their approaches requires multiple runs of the
prediction step to determine the variance of the results and is not appropriate for
our purpose of estimating accuracy values on-the-fly. Some other existing approaches
are designed for a special group of prediction models and cannot be prescribed to
estimate reliability for an arbitrary prediction model (110; 149; 87; 79).

Authors in (119) have reviewed prediction uncertainty for online prediction prob-
lem. They compared multiple reliability estimation using the correlation coefficient
of estimated accuracy and the actual accuracy for the prediction model. In their
work, the similarity-based reliability estimation approach is implemented using K-
nearest-neighbors (KNN) prediction approach and is shown to be a well-performing
estimation approach. Similarity-based reliability prediction approaches consider the
accuracy of previous predictions of the same prediction model for similar examples in
the input space. A more general approach for similarity-based prediction reliability
estimation is to train a regression model that maps feature space and predicted target
value to the corresponding accuracy. Using regression models to estimate prediction
accuracy has been proposed in the past (52; 143; 14). Building a regression model
helps to map feature set characteristics to prediction accuracy and helps to identify
the characteristics of features that affect the performance of the classifier. In our
work, we adopt a similarity-based approach for reliability estimation. We use gradi-
ent boosting tree regression instead of K-nearest neighbor as an accuracy prediction
model and showcase its better estimation performance in comparison to the K-NN
model in Section 4.

Estimating prediction accuracy has often been proposed to help model selection
or iterative model improvement to achieve better prediction accuracy. However, in
our work, the goal of prediction reliability estimation is whether to rely on predicted
target values or not. If estimated prediction accuracy for a data point is too low,
our scheduling platform ignores the predicted runtime and uses the user requested
runtime with a less runtime accuracy sensitive scheduling policy.

Chapter 2. Background 20

2.3.2 Resource usage prediction for Applications and Virtual
Machines

Distributed system providers need to enable proactive resource provisioning for ef-
fective resource management. This effective resource management increases their
revenues. Both in private clusters and in HPC as a Service Cloud systems, customers
request for specific amount of resources when they submit their applications. One im-
portant observation is the fact that customers don’t use all the resources they request.
Trying to predict the actual resource consumption by each virtual machine and using
it as a base for proactive elastic resource provision will improve efficiency. Distributed
system providers need to predict increases and decreases in resource consumption in
individual VM level for efficient scheduling of workloads on resources in their clusters.
Workload prediction plays a key role in proactive provisioning approaches and has
been characterized as a hard problem (77).

The objective is to predict individual VM CPU consumption multiple time steps
in future, given historical aggregate CPU usage. The input to the model can be
expressed as

y = {y0, y1, ..., yM−1} (2.2)

where yt is the aggregate CPU measurement for time step t. The predicted CPU
consumptions can be expressed as:

ŷ = {ŷM , ŷM+1, ..., ŷT} (2.3)

Two different categories approaches are used to predict time series:

1. Considering previous values as features and building input vectors from multiple
recent values and applying common machine learning approaches to predict
future values based on input features.

2. Applying time series specific approaches such as ARIMA that automatically
consider temporal autocorrelation with previous values of the time series.

The problem with the first category of approaches is the fact they treat each of the
previous values equally. For instance, if we input three recent values as input to an
ANN, the model treats the immediate past value similar to the value with lag 2. This
leads to loss of valuable information about correlations consecutive lags. Recurrent
neural networks purposefully designed to learn all these patterns from sequences.

ARIMA is an acronym that stands for AutoRegressive Integrated Moving Average.
It is a generalization of the simpler AutoRegressive Moving Average and adds the
notion of integration. This acronym is descriptive, capturing the key aspects of the
model itself. Briefly, they are:

• AR (Autoregression):A model that uses the dependent relationship between an
observation and some number of lagged observations.

Chapter 2. Background 21

• I (Integrated): The use of differencing of raw observations (e.g. subtracting an
observation from an observation at the previous time step) in order to make the
time series stationary.

• MA (Moving Average): A model that uses the dependency between an obser-
vation and a residual error from a moving average model applied to lagged
observations.

The parameters of the ARIMA model are defined as follows:

• p: The number of lag observations included in the model, also called the lag
order.

• d: The number of times that the raw observations are subtracted from their
lagged observations also called the degree of differencing.

• q: The size of the moving average window, also called the order of moving
average.

In predictions with ARIMA, a linear regression model is constructed including
the specified number and type of terms, and the data is prepared by a degree of
differencing in order to make it stationary, i.e. to remove trend and seasonal structures
that negatively affect the regression model.

One limitation of ARIMA approaches is the requirement of parameter setting. We
want to apply our prediction model to predict individual virtual machine traces. Using
ARIMA, we need to figure out the value of p, d, and q for each VM. Additionally, As
our CPU utilization trace may not be consistent throughout VM lifetime, we need to
update the parameter p, d, and q for each prediction. Another issue is the fact that
ARIMA builds a linear regression model on the processed lags and is not able to learn
nonlinear patterns. Consequently, although ARIMA may give good predictions for
next couple of time series value, it is not able to give an accurate long-term prediction.

Finding repetitive patterns and mining the correlation between the patterns have
proved to be an effective approach in predicting individual VM CPU usage trace
(26; 80). Finding both autocorrelation between different windows of single trace as
well as correlation between windows in different traces help us to predict the values
of CPU usage in future time steps. In (80), co-clustering of subsequences in traces to
characterize the most repeating subsequences and then apply hidden Markov Models
to characterize the temporal correlations in the the discovered clusters and use these
informations to predict variations of VM workload patterns.

Different approaches are proposed to predict VM CPU usage. In (59), authors
consider two different possible models to predict VM traces: signature-driven and
state-driven models. They consider a cyclic pattern for a newly deployed VM and
switch to state-driven model if they fail to find a signature after several resource
consumption reports from the specific workload. In (105) each workload trace is
decomposed into several wavelet signals and perform prediction for each signal sepa-
rately. In (34), authors cluster VM trace patterns into several clusters called workload

Chapter 2. Background 22

categories and use a stochastic model to predict CPU demand for each of the work-
load categories. A little different from most of the previous work, (80) identify groups
of VMs that show recurring patterns. They train hidden Markov Model that utilizes
temporal correlations in co-cluster patterns. Inspired by their work, we propose using
attention-based recurrent neural networks to find co-clusters and extract the corre-
lation between patterns automatically. In fact, recurrent neural networks have been
proposed before for the different problem of aggregate workload CPU prediction be-
fore (65; 131; 42). In (42), authors proposed the usage of recurrent neural networks
for prediction of host CPU utilization. In (65), the cloud overall CPU utilization
is predicted with bidirectional multivariate input LSTM networks. The problem of
predicting aggregated workload is an easier problem first because only a single ag-
gregated trace is considered instead of various individual VM traces with various
patterns. Second, the aggregate trace has fewer noise (80).

Recurrent neural networks are specifically efficient for sequential data and are ap-
propriate for cloud virtual machine consumption trace time series. More specifically,
we will study Long Short-term Memory deep learning networks and show how they
outperform existing approaches for predicting aggregate CPU usage by virtual ma-
chines as well as resource usage for individual workloads. CPU consumption at the
level of the host has been studied extensively in the past. For this purpose, the ag-
gregated trace of CPU usages is studied as a single time series, and future values are
predicting based on the past and current values. In (59), authors use Markov Models
to model resource usage on the host. In (105), authors use wavelet transformation
of CPU usage trace as input to the Markov model to predict future values. (159)
apply ARIMA to predict future values of for future values. (25) uses neural networks
to predict future resource usage. We propose using attention-based LSTM recurrent
neural networks as an end to end tool that extracts similarities between subsequences
and finds correlation and auto-correlation among these subsequences by the help of
LSTM gates parameters of which will be learned with back-propagation through time.
We consider attention-based LSTM encoder decoders to make sure important infor-
mation in hidden layers of LSTM network is not lost (8; 116). In addition to existing
dual-level attention model for time series prediction, we also design a new attention
model biases based on the structural consistency introduced by (80).

Chapter 3

Scheduling non-preemptive
applications with varying runtimes

In this chapter, we consider the problem of scheduling jobs with non-uniform resource
requirement on multiple machines. Each machine has a certain computing capacity
and can schedule multiple jobs with two orthogonal dimensions of duration and re-
source requirement simultaneously as long as the jobs’ total resource requirement does
not exceed the machine’s capacity. This scenario arises commonly in virtual machine
scheduling in cloud computing data centers. We study this problem with the re-
quirement that jobs must be scheduled non-preemptively, meaning every job must be
completed without interruption once it gets started. We focus on the popular objec-
tive of minimizing total completion time of jobs. This problem is NP hard where the
main difficulty comes from non-trivial interaction between two orthogonal quantities,
jobs demands and sizes. We propose novel algorithms with provable approximation
guarantees for scheduling jobs with non-uniform demands on multiple homogeneous
machines without preemption. For the first time, we develop algorithms that are
constant approximation for all instances. We demonstrate the superior performance
of our algorithms via simulation experiments. Prior to our work, there was not any
algorithm available with approximation guarantees for this problem even in the single
machine case.

3.1 Introduction
Modern data centers consist of a large number of servers to handle explosive growth
of data. Further, each server is getting increasingly powerful with more resources. For
example, multi-processor chips have become dominant as the uniprocessor chip design
has hit the thermal wall by producing too much heat to be cooled down economically.
It is widely expected that more processors will be packed into a single chip in the
future (56).

As servers are getting more powerful, each server is often set to process multiple
jobs simultaneously to exploit its resources to the full capacity. This trend is observed

23

Chapter 3. Scheduling non-preemptive applications with varying runtimes 24

in various forms. Virtualization technologies such as VMware products and Xen allow
each individual physical server/machine to be shared by multiple virtual machines.
Virtualization helps reduce the cost of maintenance, operation and provision (con; 19),
and hence has been adopted in current platforms including Amazon EC2 (ec2) and
Microsoft Azure (azu). These platforms aim at providing ubiquitous access to shared
resources where resources are shared by multiple jobs and clients. In MapReduce (36)
(or its open source implementation, Hadoop) and Spark (157), which are now the de
facto large data processing frameworks, typically several tasks are processed on the
same server simultaneously. See (103; 126; 158) for characterizations of such tasks in
Google clusters.

All the above settings can be naturally modeled as follows. Each job j has a
certain computing requirement, dj, which we call j’s demand, and can be processed
on a server/machine with other jobs if the total demand of the jobs does not exceed
the machine’s computing capacity. This model is introduced in (49). One important
assumption made in (49) was that jobs can be preempted with no penalties and no
delay. However, significant overhead could occur when preempting jobs to schedule
other jobs. Preemption can be very costly due to context switching overheads, or may
not be allowed due to system restrictions or contracts with clients. Unfortunately,
non-preemption makes scheduling decisions significantly more challenging, and pre-
vious work has focused on preemptive scheduling except for some special cases. In
reality, only a subset of jobs may have to be processed non-preemptively. In this
chapter we focus on developing algorithms that schedule all jobs non-preemptively.
A more general setting where preemption is not allowed or limited for a subset of jobs
will be studied in future work. In this chapter we study non-preemptive scheduling
algorithms in the presence of multiple identical machines where multiple jobs can be
scheduled simultaneously subject to the capacity constraints of individual machines.

While there are various scheduling objectives considered in practice and in the
literature, we consider the popular objective of minimizing the total completion time
of jobs. We assume that all jobs are available for scheduling from the beginning and
all jobs information is known in order to focus on the offline scheduling environment
where jobs have varying demands. This problem is NP hard, and we aim at developing
heuristic algorithms with approximation guarantees. An algorithm is said to be a c-
approximation or have an approximation factor/ratio c if the algorithm’s objective is
at most c times the optimal scheduler’s objective for all instances. We note that it is
the non-preemptive requirement that makes the problem challenging since otherwise
one can easily get a constant approximation using linear programming. To the best
of our knowledge, there has been no theoretical study of this problem despite its
wide appearance in practice. In this chapter, we consider the static scheduling of
non-preemptive jobs on a parallel system of servers. We use the information about
job sizes and resource demands to allocate jobs on servers more efficiently. Important
applications include assigning virtual machines to servers.

In Section 3.2, we present the problem definition and our algorithms as well as
analytical results. We elaborate on the analytic results in Section 3.3. We present

Chapter 3. Scheduling non-preemptive applications with varying runtimes 25

the simulation results in Section 3.4 and conclude our work in Section 3.5.

3.2 Proposed scheduling algorithms

3.2.1 Formal problem definition
There are N jobs, 1, 2, 3, ..., N that are to be scheduled on M servers/machines, which
are indexed by 1, 2, 3, ...,M . Each job j has processing time/size pj and demand dj,
which are assumed to be integers. Time is slotted into unit-sized slots, 0, 1, 2, · · · ,
and jobs can start only at integer ties. It is assumed w.l.o.g. that pj ≥ 1. We call the
quantity vj := pjdj as j’s volume. We will be interested in non-preemptive scheduling,
meaning that a job must be processed without interruption until completion once
it gets started. Each job must be assigned to a server. All servers are available
with full capacity of resource at time zero. A feasible schedule can be described
by σ = {(Sσj ,mσ

j)}j∈[N] where Sσj is j’s start time and mσ
j is the server to which j

is assigned. When the schedule σ is clear from the context, we may drop σ from
the superscript and simply use Sj and mj. Note that each job j’s completion time
Cj = Sj + pj is determined by its start time in the non-preemptive setting. For
visualization of job and server, see Figure 3.2.1 where we view each job as a two
dimensional rectangle with height equal to its demand dj and width equal to its size
pj. Jobs run on the assigned server for the number of time steps equal to the job size.
We say that a schedule σ is feasible if the total demand of jobs processed on each
server is at most the server’s capacity at all times, i.e. ∑j:t∈(Sj ,Sj+pj),mj=i dj ≤ Di for
all servers i and time t where Di denotes server i’s capacity. Assuming that all servers
are identical, by simple scaling, we can assume w.l.o.g. that Di = 1 for all servers i
and 0 < dj ≤ 1 for all jobs j. The goal is to find a feasible schedule that minimizes
total completion time of all jobs, i.e. ∑j∈[N] Cj.

3.2.2 Our results
In this section we present our proposed algorithms as well as our main theoretical
results. We start by introducing priority based algorithms for capacitated machines
which are a combination of sorting jobs using different priority rules and appropri-
ately designed machine selection schema. The algorithms are intuitive and very easy
to implement. We show that one of the priority based algorithms is a constant ap-
proximation if every job has demand considerably smaller than the servers’ capacities.
Then, we give two different algorithms with constant approximation ratios for all in-
puts. The first one is a combination of two priority based algorithms. The second
is based on consolidating jobs of similar size into a single job. To the best of our
knowledge, these are the first algorithms with non-trivial approximation guarantees
for non-preemptive scheduling of capacitated machines

Chapter 3. Scheduling non-preemptive applications with varying runtimes 26

time

capacity

Server:

dem
and

Job

size

Figure 3.1: figure
Each job j is illustrated as a two dimensional rectangle with height equal to its

demand dj and width equal to its size pj. Each server has a unit capacity. Jobs can
run simultaneously on each server as long as the total demand/height of running

jobs do not exceed the server’s capacity.

Priority-based algorithms

Priority-based algorithms refer to those that prioritize jobs based on fixed quantities.
Such algorithms are desirable in practice in that priorities remain the same among
jobs and are easy to implement. In the following priority-based algorithms, jobs are
ordered in non-decreasing order of the following respective quantities.

• Shortest Job First (SJF): size pj.

• Smallest Demand First (SDF): demand dj.

• Smallest Volume First (SVF): volume djpj.

In the standard/incapacitated scheduling setting where a machine can schedule at
most one job at a time, a complete ordering of jobs decides the entire schedule when
there is a single machine, i.e, M = 1: the highest-priority job that is unscheduled
yet is started at the earliest time when the machine becomes available. We can
naturally extend priority-based algorithms to the capacitated setting where a machine
can process multiple jobs simultaneously by starting the highest-priority unscheduled
job j at the earliest time t when the job gets enough resources for pj time steps
from the time so that it can be processed until its completion without interruption.
Each priority-based algorithm can be coupled with a machine assignment rule which
decides the machine each job is scheduled on. In this work, we will consider the
three machine assignment rules. Keep in mind that jobs assigned to the machine are
scheduled following a fixed priority rule.

• Earliest Feasible machine (EF): Each job is assigned to the server that can start
the job the earliest.

Chapter 3. Scheduling non-preemptive applications with varying runtimes 27

• Lowest Workload First (LW): Each job is assigned to the machine with the lowest
workload.

• Random (RANDOM): Each job is assigned to a random machine.

Intuitively, EF is the most suitable rule for our goal of minimizing total completion
time and also outperforms other rules in our simulation experiments. For choosing
the best machine for each job j EF will check the earliest time it can be scheduled on
each machine and assign it to the machine with the smallest such value. We present
a psuedocode for EF algorithm in Algorithm 1 and illustrate it in Figure 3.2.

Algorithm 1 Algorithm for Earliest Feasible procedure
Job j with demand dj and sorted list L of currently running jobs ENSURE σj =
{Sj,mj} where Sj is j’s starting time and mj is the machine j is assigned to FOR
each job k on the sorted list L STATE consider the machine m on which the job k is
running on IF the current available resource on m is greater than dj STATE assign
job j to machine m STATE set job j’s start time to k’s completion time (sj ←− ck)
STATE break for loop ENDIF ENDFOR

Server 1:

j

Server 3:

Server 2:

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

����������������
����������������
����������������
����������������
������������������
������������������
������������������
������������������

��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

����������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

t 32 tt 1

Figure 3.2: Earliest Feasible algorithm, assigns each job j on the server with the
earliest feasible time. The earliest feasible time on each server is determined and the
server with the minimum value is chosen. Here t2 is the earliest feasible time and the
job will be assigned to Server 2.

We will refer to each combination as the pair of the two algorithms’ names. For
example, SVF-EF is SVF coupled with EF. We begin by showing that simple priority-
based algorithms can have poor performance for some instances.

Chapter 3. Scheduling non-preemptive applications with varying runtimes 28

Theorem 1. [Section 3.3.1] For any constant c > 1, none of the algorithms SVF,
SJF, SDF is a c-approximation for minimizing total completion time. Further, this
is the case even when there is only a single machine.

The lower bound instances that fail the priority-based algorithms are simple but
give a useful insight on the problem. Let’s first discuss SJF. It is folklore that SJF
is optimal when all jobs have a unit demand (130). A drawback of SJF is that
it could schedule slightly shorter jobs with large demands pushing back other jobs
with tiny demands. The algorithm SDF can perform poorly for similar reasons. It
may even schedule jobs in decreasing order of their sizes even when jobs have similar
demands. Hence prioritizing jobs based on either their sizes or demands can lead
to schedules of in qualities. On the other hand, it is not very obvious at first sight
why SVF is bad since it looks like a natural generalization of SJF to the capacitated
setting. Our lower bound instance shows that the bad event can occur when some
jobs with demands close to 1 block machines for long thus delaying all jobs with very
tiny demands. However, in practice not many jobs will have demands very close to
machines capacities, thus SVF could perform well for most instances. We formalize
this intuition in the following theorem.

Theorem 2. [Section 3.3.2] For a constant 0 < α < 1, if all jobs have demands at
most α, then SVF-EF is a

(
3α

1−α + 3
)
-approximation. More precisely, SVF-EF’s total

completion time is at most 1
1−α times the optimum plus 2

1−α times the total size of all
jobs.

When the system is overloaded, the contribution of jobs sizes to the total com-
pletion time objective becomes negligible. Hence, Theorem 2 implies that SVF-EF’s
objective becomes arbitrarily close to the optimum as α tends to 0 and the system
gets more overloaded. We note that SVF was analysed only together with EF since
it does not seem to yield similar approximation guarantees when coupled with other
machine assignment rules.

Constant approximation algorithms

Finally, building on the intuition, along with the above results, we develop algorithms
that are constant approximations for all instances for the first time.

Theorem 3. [Section 3.3.3] For any constant ε > 0, there is a 12(1+ε)-approximation
when M = 1. When there are more than one machine, there is a 5 + O(1/M)-
approximation.

When there are multiple machines (M ≥ 2), we combine SJF and SVF. Let us call
jobs with demands higher than 1/2 as high-demand jobs, and others as low-demand
jobs. It is easy to see that no two high-demand jobs can be processed on the same
machine at the same time. Intuitively, scheduling high-demand jobs in the capacitated
setting is similar to scheduling jobs in the incapacitated setting. Hence we dedicate

Chapter 3. Scheduling non-preemptive applications with varying runtimes 29

some machines to processing high-demand jobs separately, and process low-demand
jobs on the remaining machines. Thus, by separating high-demand jobs from low-
demand jobs, we achieve a constant approximation. However, when there is only one
machine (M = 1), we need a different idea. In this case, we reduce the problem to the
geometric packing problem where the goal is to maximize the total profit of rectangles
that can be packed into a target rectangle (75). Using this reduction and borrowing
ideas from (136), for any time t, we can obtain a partial schedule that completes as
many jobs by time 3(1+ε)t as the optimal scheduler does by time t. Then, we derive a
complete schedule by concatenating the partial schedules for geometrically increasing
t. We note that it is possible to reduce this problem to the maximum throughput
scheduling problems (10; 6). However, the resulting approximation ratio seems worse,
hence we use the above reduction.

As discussed earlier, any reasonably good algorithms seem to have to take into ac-
count both quantities, jobs sizes and demands. Then, a natural question is if we really
need a delicate 2D-packing to obtain constant approximations. Quite surprisingly, we
show that this is not the case by developing a constant approximation algorithm with
a nearly linear running time. While the approximation guarantee is worse than the
previous algorithm, we include this result since it shows the possibility of existence of
more efficient algorithms with approximation guarantees comparable to those claimed
in Theorem 3.

The Block-Scheduling algorithm takes advantage of the fact that rounding the
job sizes to the next power of two, we do not lose more than a factor of two in the
approximation ratio for the total completion time objective. The first step in the
Block-Scheduling algorithm is to group jobs of similar sizes into the same class. The
class k inludes jobs of size 2k−1 to 2k. Then we pack jobs in each class into blocks of
capacity equal to that of the servers. In order to complete as many jobs as possible
sooner, we order jobs of each class in non-decreasing order of their demands before
fitting them into blocks. After forming the blocks, we order them in non-increasing
order of their densities. We define density of a block as the number of jobs in the
block divided by its size. A block’s size is equal to that of any job in the block, which
is well defined as all jobs in the same block have an equal (rounded) size.

At a high-level, the Block-Scheduling algorithm is based on reduction to bin pack-
ing. The key idea is to group jobs of similar sizes so that each ‘consolidated’ block has
a sufficiently large demand. Then, we schedule the consolidated blocks mimicking the
algorithm Highest Density First (HDF). The algorithm HDF is a generalization of
SJF to the case where jobs have weights, and is known to be constant-approximate in
the incapacitated setting. The actual algorithm needs minor modifications, but this
is a high-level description of our algorithm and the intuition. While the high-level
idea is intuitive, the analysis is non-trivial.

The formal description of the Block-Scheduling algorithm is as follows.

1. Packing jobs into blocks: For each class k, create blocks using the First-Fit
algorithm: Consider jobs in class k in non-decreasing order of their demands,
and partition them into groups so that the total demand of jobs in every group

Chapter 3. Scheduling non-preemptive applications with varying runtimes 30

does not exceed 1. Here, we create another group only when the currently
considered job cannot fit with other jobs into the existing groups. We call the
created group as blocks, and let Bk,l denote the lth block we created for jobs in
class k.

2. Ordering blocks: Let pB denote the size of block B, which is defined as the size
of any job packed into the block. Let NB as the number of jobs in B. Define
B’s density, ηB := NB/pB. Blocks are ordered in non-increasing order of their
densities.

3. Assigning blocks to machines: We will recursively schedule blocks as follows.
In the kth step, for each machine m from 1 to M , we find a maximal set Bmk of
unscheduled blocks of sizes at most 2k with the highest densities such that the
total size of blocks in Bmk does not exceed γ · 2k, and schedule all jobs in the set
Bmk on the machine m, where γ := (9 + d6Me). Note that jobs are scheduled by
blocks in that no two jobs from different blocks are processed at the same time
on the same machine. Blocks in BA,mk are scheduled in non-increasing order of
their densities.

Theorem 4. [Section 3.3.4] There is a constant approximation where all jobs pro-
cessed at the same time have an equal size within a factor of 2. Further, the algorithm
runs in O(N logN) time.

3.2.3 Related work
When each job has a release time and deadline and the goal is to maximize the total
weight of jobs completed before their deadlines, several approximation algorithms
are known (10; 6). If the objective is minimizing makespan, i.e. the maximum
completion time, we can easily adapt our algorithms and analysis to obtain constant
approximations using the proof ides used in Section 3.3. As mentioned before, it is
well known that Shortest Job First (SJF) is optimal in the standard non-capaciated
setting. However, when jobs have release dates, the problem becomes NP-hard but
admits a (1 + ε)-approximation for any ε > 0 (28). For other results on variants of
completion time objectives, see a nice survey by Chekuri and Khanna (29).

As mentioned, (49) studied our problem in the preemptive setting, and gave and
analyzed several online algorithms for the total flow time objective under the resource
augmentation model; a job j’s flow time is defined as the job’s completion time minus
its arrival time. In contrast, our work studies non-preemptive scheduling. In the non-
preemptive setting, the flow time objective becomes very difficult to approximate (9).
Hence, we consider the completion time objective which admits more positive results.
For works in the queueing setting where jobs arrive following certain distributions,
see (98; 99). In such models, typically the focus is on the stability of the system,
which is very different from our work.

A lot of work has been done on somewhat related problem of scheduling jobs on
parallel machines. For example, see (46; 18; 121; 27; 161). Roughly speaking, in

Chapter 3. Scheduling non-preemptive applications with varying runtimes 31

these works, one can schedule a job on multiple machines/processors simultaneously
to speed up the processing. While these models accurately capture how jobs are
parallelized at a high level, they do not enforce hard capacity constraints on jobs
demands. On the other hand, in our model, jobs cannot be processed when given less
resources than their demands.

The capacitated machine model is close to batch scheduling of jobs in operation
research. A batch processing machine model is encountered in many different en-
vironments, such as heat treatment operations in the metalworking industries and
semiconductor manufacturing. The batch processing machine in that literature is
one which can process a number of jobs simultaniously as a batch. All jobs in a batch
start running at the same time and the completion time for each job is equal to that
of the longest job in the batch. However these two models are different as in the
former new jobs can start running as soon as there is enough available resource for
them. For a list of works on the operation research problems see (144), (41) and (84).

On the other hand, our work is related to virtual machine scheduling. In most of
the current resource management systems, cloud provider allocate virtual machines
on physical servers. Bin-packing algorithms have been proposed to allocate virtual
machines on servers (12), (23),(95). In these problems, server resources such as CPU,
memory and bandwidth and storage are dimensions of the bin packing problems.
These algorithms are often used in server selection phase to achieve cost minimiza-
tion, energy efficiency and utility maximization. For the objective of minimizing the
number of servers, (147) and (23) proposed approximation algorithms assuming ho-
mogeneous servers. In (95), Lin et. al applied a multi-dimensional vector packing
algorithm to allocate virtual machines in a cloud system. In some works including
(132), virtual migration facilitated adaptive approximation algorithms. However in
all these bin packing algorithms, only the objectives of cloud provider are taken into
account and customer SLA satisfaction regarding responsiveness is not taken into
consideration.

3.3 Analysis

3.3.1 Lower bounds for priority based algorithms
This section is devoted to proving Theorem 1. We assume throughout this section
that there is only a single machine. We note that the lower bounds for SJF and
SDF hold even if jobs have demands less than any fixed constant. The lower bound
instances are summarized in Table 3.1. Each instance consists of two types of jobs,
A and B.
Lower Bound for SJF: Consider the following instance. There are two types of
jobs. Type-A jobs have demands 1/2 and sizes 1. Type-B jobs have demands 1

2N and
sizes 1 + ε where ε > 0 is an arbitrarily small parameter. There are

√
N type-A jobs,

and the other N−
√
N jobs are type-B. The algorithm SJF will first complete Type-A

jobs by time
√
N/2. Since no type-B jobs get processed before time

√
N/2, the total

Chapter 3. Scheduling non-preemptive applications with varying runtimes 32

Table 3.1: Lower bounds for priority based algorithms on single server
SJF SDF SVF

sample size
√
N 1 1

type A: demand 1/2 1− ε 1
2N2

size 1 N N

sample size N −
√
N N − 1 N − 1

type B: demand 1
2N 1 1

size 1 + ε 1
N

1
N

completion time by SJF is at least (N −
√
N) ·
√
N/2 = Ω(N1.5). On the other hand,

we can complete all Type-B jobs by time 1, and all Type-A jobs by time (
√
N)/2 + 1.

Hence the optimal total completion time is at most (N−
√
N)·1+

√
N ·((

√
N)/2+1) =

O(N), which gives a gap of Ω(
√
N).

Lower Bound for SDF: The lower bound instance is as follows. As before there are
two types of jobs. The unique Type-A job has demand (1−ε) and size N where ε > 0 is
a parameter that is arbitrarily small. Type-B jobs have demands 1 and size 1/N . All
the N jobs are type-B except the unique Type-A job. The algorithm SDF processes
no type-B jobs until time N , hence has total completion time at least N(N − 1).
However, we can complete all type-B jobs by time 1 and the type-A job by time N+1,
hence the optimal total completion time is at most (N − 1) · 1 + 1 · (N + 1) = 2N .
Hence we obtain a gap of Ω(N).
Lower Bound for SVF: Again, there are two types of jobs. The unique Type-A
jobs has size N and demand 1

2N2 . All the other N − 1 jobs are Type-B and they have
size 1/N and demand 1. The algorithm SVF starts processing the type-A jobs. Note
that type-B jobs cannot be processed until the job-A completes since they require
the full capacity to get processed. Hence SVF has total completion time at least
N(N − 1). In contrast, the optimal total completion time is at most 2N since we can
complete type-B jobs by time 1 and the type-B job by time N + 1, which implies a
gap of Ω(N).

3.3.2 Upper bounds for priority based algorithms
In this section we prove Theorem 2. Since SVF will be paired only with EF, we may
refer to SVF-EF simply as SVF. Similarly, another algorithm SJF which is considered
for the sake of analsis, will be paired with EF, and we will refer to SJF-EF simply
as SJF. As mentioned before SJF is known to be optimal in the incapacitated case.
We first show that the optimal schedule can only be better off if it can compress
jobs: replace each job j with a job j′ with demand 1 and size pjdj, preserving the
volume of the job. Let I be the original instance and I ′ the compressed instance.
For notational convenience, for an instance I ′′, we allow OPT(I ′′) to denote a fixed

Chapter 3. Scheduling non-preemptive applications with varying runtimes 33

optimal schedule for instance I ′′ or its objective depending on the context. The
resulting problem will be a incapacitated scheduling for which we already know that
SJF is the optimal algorithm in terms of total completion time. We first show that
OPT(I ′) lower bounds OPT(I). We first show that the optimal schedule can only
be better off if it can compress jobs.

Lemma 1. OPT(I ′) ≤ OPT(I).

Proof. Consider a fixed machine m. Let j1, j2, ..., jk be the jobs assigned to the
machine m, which are ordered in their completion times in schedule OPT(I). Let
j′1, j

′
2, ..., j

′
k be the compressed jobs corresponding to j1, j2, ..., jk. We process jobs

j′1, j
′
2, ..., j

′
k in this order on the same machine. It is easy to see that we can complete

each job j′κ before jκ completes in OPT(I). This is because no schedule can complete
all jobs j1, j2, ..., jκ before time ∑κ

h=1 phdh which is the total volume of jobs j1, ..., jκ,
and compression preserves each job’s volume. This completes the proof.

Further, we know that SJF is optimal for the instance I ′ since I ′ is an instance
in the incapacitated setting (115). Hence we can assume w.l.o.g. that the optimal
schedule OPT(I ′) for I ′ is generated by SJF. Let Sj and Cj denote job j’s start and
completion times in the former schedule, respectively. Define S∗j and C∗j analogously
for the latter schedule OPT(I ′). The reader may wonder if compression gives too
much power to the optimal scheduler. For example, it may finish a long job with a
tiny demand very quickly by compressing it. Then, C∗j − S∗j could be much smaller
than pj. Hence we will bound Cj by S∗j and pj in Theorem 2.

Lemma 2. Suppose SVF starts processing job j at time Sj. Then it must be the case
that each machine’s capacity is used by at least 1− α from time 0 to Sj.

Proof. For the sake of contradiction, suppose that a machine is utilized up to capacity
1−α during the time interval (t1, t2) and a job start on the machine at time t2. This
is a contradiction since SVF could have started j earlier, no later than time t1.

Lemma 3. For all jobs j, we have Sj ≤ 1
(1−α)M

∑j−1
h=1 vh.

Proof. From Lemma 2, we know that SVF processed at least (1−α) volume of work
for jobs 1, 2, ..., j − 1 by time Sj. Hence, we have ∑j−1

h=1 vh ≥ (1− α)MSj.

Lemma 4. For all jobs j, we have S∗j ≥ 1
M

∑j−1−(M−1)
h=1 vh.

Proof. In SJF’s schedule, at most M − 1 jobs are being processed when job j starts
getting processed. Hence SJF must complete at least j − 1 − (M − 1) jobs out of
1, 2, ..., j − 1 by time S∗j . Thus, SJF processes at least ∑j−1−(M−1)

h=1 vh volume of work
by time S∗j , which yields the lemma.

Chapter 3. Scheduling non-preemptive applications with varying runtimes 34

We are now ready to complete the proof of Theorem 2. For each job j we derive,

Cj ≤ pj + 1
(1− α)M

j−1∑
h=1

vh [By Lemma 3]

= pj + 1
(1− α)M

(j−1−(M−1)∑
h=1

vh +
j−1∑

h=j−M+1
vh

)

≤ pj + 1
(1− α)M

(j−1−(M−1)∑
h=1

vh +
j−1∑

h=j−M+1
vj

)

≤ pj + 1
1− α · S

∗
j + M − 1

M(1− α)vj [By Lemma 4]

≤ 1
1− α · S

∗
j + 2

1− α · pj

The last inequality follows since job j has demand at most α, meaning vj ≤ αpj.
Knowing that ∑j S

∗
j and ∑

j pj are at most the optimal total completion time, we
have Theorem 2.

3.3.3 Constant approximation algorithms
In the previous section we showed that SVF is a constant approximation if all jobs
have demands at most α that is a constant smaller than 1. In this section, we develop
algorithms that are O(1)-approximation for all instances, proving Theorem 3. We
consider two cases depending on whether M ≥ 2 or not. Single Machine Case
(M = 1): In this case, we reduce our problem to the 2D-strip packing problem.
Using this reduction, we show the following.
Lemma 5. Suppose there is a subset of n jobs that can be completed within L time
steps. Then, for any constant ε > 0, one can find a schedule in polynomial time that
completes at least n jobs by time 3(1 + ε)L.

We can complete as many jobs as the optimal scheduler if we are allowed to use
3(1+ε) factor more time steps. Before proving the lemma, we first discuss how we use
it to prove Theorem 3 in the single machine case. By repeatedly using this lemma, we
obtain partial schedules and concatenate them to get a final schedule. Let N` denote
the total number of jobs that the optimal schedule completes by time 2`. Using
Lemma 5, we find a set of at least N` jobs that can be scheduled by time 3(1 + ε)2`.
Let this schedule be denoted by B`, which we call a block. We concatenate the blocks
B0, B1, B2, ... in this order. If a job in B` was already scheduled in the previous
block, we simply remove the job from the block B`. The resulting schedule is clearly
feasible. Note that jobs in block B` are processed between times 3(1 + ε)∑`−1

h=0 2h and
3(1 + ε)∑`

h=0 2h = 3(1 + ε) · (2`+1 − 1). For notational simplicity, let N−1 := 0. In
this schedule, the total completion time is at most

3(1 + ε)
∑
`≥0

2`(N −N`−1) (3.1)

Chapter 3. Scheduling non-preemptive applications with varying runtimes 35

This is because when the block B` is scheduled, there are at most N−N`−1 jobs alive,
and the block is scheduled for 3(1 + ε)2` time steps. On the other hand, the optimal
total completion time is at least

N +
∑
`≥1

2`−1(N −N`), (3.2)

since the optimal schedule has at least N − N` jobs alive during the time interval
(2`−1, 2`) for ` ≥ 1. The first term N follows since no job completes before time 1;
recall that all jobs have sizes at least 1. A simple algebra gives Theorem 3 for the
case M = 1. It now remains to prove Lemma 5.

: We borrow ideas from (75) which studies the problem of maximizing the total
profit of rectangles that can be packed into a target rectangle without overlap; here
rectangles can only be moved vertically and horizontally, and rotations are not al-
lowed. We first find a set of jobs J whose total volume does not exceed (1+ ε)L. This
is essentially a special case of the Knapsack problem where we are asked to pack items
of different profits and sizes into a knapsack with the goal of maximizing the total
profit of items packed. Then, it is well known that we can pack in polynomial time
as many items into a knapsack of size (1 + ε)L as the optimal solution can pack into
a knapsack of size L; for example see (150). We now view the scheduling instance as
an input to the 2D-strip packing problem. In the 2D-strip packing problem, we are
asked to pack all given rectangles without rotations into a strip with bounded width
but with unbounded height, and the goal is to minimize the strip height. Towards
this end, for each job j, create a rectangle r(j) with width pj and height dj. Steinberg
(136) shows a sufficient condition that all rectangles can be packed – particularly, the
condition is satisfied if the strip height is at least twice the maximum height of rectan-
gles, and the total area of rectangles is at most half of the strip area (and with other
‘easy conditions’). Hence we can pack all rectangles corresponding to J into a strip
with width (1+ε)L and height 2. Following ideas in Section 3 of (75), we can pack all
the rectangles corresponding to J into three strips with width (1 + ε)L and height 1.
We obtain the desired schedule by concatenating these three strips horizontally and
translating it into a schedule. Multiple Machine Case (M ≥ 2): We schedule
jobs of demands more than 1/2 (high-demand jobs) and the other jobs (low-demand
jobs) separately on two disjoint sets of machines,M1 andM2, respectively. Our new
algorithm, which we call HYBRID, combines two algorithms, SJF and SVF. We use
SJF to schedule high-demand jobs on M1 pretending that high-demand jobs have
demands equal to 1. For low-demand jobs, we schedule them on M2 using SVF. As
in the proof of Lemma 1, we use Sj and Cj to denote job j’s starting and completions
times in the schedule of our algorithm.
Low-demand Jobs: We first upper bound low-demand jobs’ contribution to the
objective. Obviously, the optimal scheduler can only decrease its objective if it only
needs to complete low-demand jobs. Hence we can assume w.l.o.g. that we only have
low-demand jobs. The analysis is similar to that in the previous section. The only

Chapter 3. Scheduling non-preemptive applications with varying runtimes 36

difference is that SVF can only use M2 machines while the optimal scheduler can use
all M machines. As before, let S∗j and C∗j denote the start and completion times of
a low-demand job j in the optimal schedule respectively, assuming that all jobs are
compressed. Then, we can easily adapt Lemmas 3 and 4 as follows.

Lemma 6. For all low-demand jobs j, we have

• Sj ≤ 2
M2

∑j−1
h=1 vh.

• For all jobs j, we have S∗j ≥ 1
M

∑j−1−(M−1)
h=1 vh.

Lemma 7. For all low demand jobs j, we have Cj ≤ 2M
M2
· S∗j +

(
M−1
M2

+ 1
)
· pj

Proof.

Cj ≤ pj + 2
M2

j−1∑
h=1

vh [Lemma 6]

= pj + 2
M2

j−1−(m−1)∑
h=1

vh +
j−1∑

h=j−m+1
vh


≤ pj + 2

M2

j−1−(m−1)∑
h=1

vh +
j−1∑

h=j−m+1
vj


≤ pj + 2M

M2
· S∗j + 2(M − 1)

M2
vj [Lemma 6]

≤ pj + 2M
M2
· S∗j + M − 1

M2
pj [Since vj ≤ 1

2pj]

≤ 2M
M2
· S∗j +

(
M − 1
M2

+ 1
)
· pj

High-demand Jobs: We can assume w.l.o.g. that the optimal scheduler only needs
to complete high-demand jobs on the M machines. For notational convenience, as-
sume that high-demand jobs 1, 2, 3, ... are ordered in non-decreasing order of their
sizes. Knowing that at most one high-demand job can be processed at any time, we
can also assume w.l.o.g. that optimal schedule is produced by SJF.

Lemma 8. For all high-demand jobs j, we have

• Sj ≤ 1
M1

∑j−1
h=1 ph.

• For all jobs j, we have S∗j ≥ 1
M

∑j−1−(M−1)
h=1 ph.

Proof. The upper bound on Sj follows from the fact that at most one machine gets
available for scheduling job j before time 1

M1

∑j−1
h=1 ph. The lower bound on S∗j follows

since SJF completes all jobs shorter than j but possibly other jobs being processed
on the other M − 1 machines at time S∗j .

Chapter 3. Scheduling non-preemptive applications with varying runtimes 37

Lemma 9. For all high demand jobs j, Cj ≤ (M−1
M1

+ 1) · C∗j

Proof.

Cj ≤ pj + 1
M1

j−1∑
h=1

ph [Lemma 8]

= pj + 1
M1

j−1−(M−1)∑
h=1

ph +
j−1∑

h=j−M+1
ph


≤ pj + M

M1
· S∗j + M − 1

M1
pj [Lemma 8]

≤ (M − 1
M1

+ 1) · C∗j
In the last inequality we used the fact that C∗j = S∗j + pj.

Putting the Pieces Together: By summing the inequalities in Lemma 7 over
all low-demand jobs, we have that HYBRID is a (3M−1

M2
+ 1)-approximation for low-

demand jobs. By summing over the inequalities in Lemma 9 over all high-demand
jobs, we have that HYBRID is a (M−1

M1
+ 1)-approximation for high-demand jobs. We

set M1 = bM−2
4 c + 1 and M2 = b3(M−2)

4 c + 1. A simple algebra gives Theorem 3 for
the multiple machine case.

3.3.4 Upper bounds for Block-Scheduling algorithm
The constant approximations we gave in the previous section, try to pack jobs effi-
ciently into machines. In particular, in the single machine case, the algorithm uses a
geometric packing. In this section, we show that even if we only process jobs of similar
size simultaneously, we can obtain constant approximations. Before we describe our
algorithm, we do the following simple preprocessing. The loss in the approximation
ratio will be factored in at the end of analysis.

Proposition 1. We can assume w.l.o.g. that each job size is a power of two with a
loss of factor two in the approximation ratio.

Proof. For each job j with size pj ∈ (2k−1, 2k), we pretend that the job has a size of 2k
for our algorithm and 2k−1 for the optimal scheduler; let’s call the modified instances
the algorithm and the optimal scheduler have to handle IA and IO, respectively. This
assumption is w.l.o.g. since this can only hurt our algorithm while benefiting the
optimal scheduler. Further, we can easily transform our algorithm’s schedule for
the IA into a schedule for the original instance without increasing the objective, by
keeping each job’s start time the same. Note that the only difference between IA
and IO is that each job’s size in IA is twice that in IO. This implies a one-to-one
mapping between schedules for the two instances IA and IO. More precisely, if we
stretch a schedule for IO over time by a factor of two, we obtain a schedule for IA
exactly doubling the objective (a job is scheduled at time t in the former schedule if

Chapter 3. Scheduling non-preemptive applications with varying runtimes 38

and only if it is scheduled at time 2t in the latter schedule.) Thus, we can assume
w.l.o.g. that our algorithm and the optimal scheduler are asked to schedule the same
set of jobs losing the approximation ratio by a factor of two.

For the sake of analysis, we assume the optimal scheduler is allowed to compress
jobs but in a somewhat restrictive manner. Recall that for each job j, its compressed
version has demand 1 and size pjdj. The restriction we impose here on the optimal
scheduler is that it can not complete any job of size greater than t by time t. This is
w.l.o.g. because it only strengthens the optimal scheduler. For the rest of the proofs,
we consider this strengthened optimal scheduler and call it OPT.

We use the well-known fact that the total completion time of jobs is equal to the
sum of the number of alive jobs over all time steps. This equivalent view immediately
follows by observing each alive/unfinished job contributes to the objective by one
at each time step. Let’s take a close look at the optimal scheduler using this lens.
The optimal scheduler’s objective can be expressed as ∑t≥0 R

∗
t where R∗t denote the

number of jobs alive at time t in the optimal scheduler. Thus, we can view R∗t as the
penalty that the optimal pays at time t. For each time t, we let the optimal scheduler
minimize the number of jobs alive at time t. That is, the OPT’s only goal is to try
to complete as many jobs as possible by time t without taking the global schedule
into account. This only gives additional power to the optimal scheduler. Similarly,
We let Rt denote the number of jobs alive at time t in the schedule of our algorithm,
which we refer to as A. We will show the following key lemma, which immediately
imply Theorem 4.

Lemma 10. For all times t ≥ 0, R2γt ≤ R∗t .

[Theorem 4] ∫ ∞
t=0

Rt dt = 2γ
∫ ∞
t=0

R2γt dt ≤
∫ ∞
t=0

R∗t dt.

Knowing that the first [last, resp.] integral is A’s [OPT’s, resp.] total completion
time, and factoring in the approximation loss stated in Proposition 1, we derive that
A is a 4γ-approximation where γ := (9 + d6Me). It now remains to prove Lemma 10.
Consider a fixed time t and let B∗ be the set of blocks containing all jobs j ∈ Gk that
OPT completes by t. Note that for each k, there exists l∗k such that OPT completes
all jobs in Bk,1, Bk,2, ..., Bk,l∗

k
−1 but no job in Bk,l∗

k
+1, Bk,l∗

k
+2, We assume w.l.o.g.

that OPT completes all jobs in Bk,l∗
k

with no cost added to objective function; this
is w.l.o.g. since it only gives more power to OPT. We call such blocks Bk,l∗

k
bonus

blocks. If A completes all blocks in B∗ by time 2γt, the lemma trivially holds true
for the time t, so suppose not. Let B be the set of blocks A completes by time
2γt. Let η∗ := maxB∈B∗\B ηB. Let k∗ be the largest k such that 2k ≤ t; so we have
2k ≤ t < 2k+1. Note that A completes the k∗th step by time 2γt on every machine.
We assume that there is at least one block of size at most 2k∗ that A couldn’t schedule
by the k∗th step since otherwise Lemma 10 trivially holds. We will distinguish blocks

Chapter 3. Scheduling non-preemptive applications with varying runtimes 39

into two types. Let JB denote the jobs in block B. We say that a block B is half-
full if the total demand of jobs in JB is at least half, otherwise almost-empty. The
following two propositions are immediate from the fact that blocks are constructed
by the First-Fit algorithm.

Proposition 2. For each half-full block B, it is the case that ∑j∈JB
pjdj ≥ pB/2.

Proposition 3. No two almost-empty blocks have an equal size.

We will prove the following two lemmas.

Lemma 11. The total number of jobs that A completes on all machines by time 2γt
other than jobs in B ∩ B∗ is at least η∗ · (4M + 2) · 2k∗.

Proof. The total size of almost-empty blocks in B∗ that are scheduled in the k∗th
step is at most 20 + 21 + 22 + ...+ 2k∗ ≤ 2 · 2k∗ , since all scheduled blocks in the k∗th
step have sizes at most 2k∗ and due to Proposition 3. Also we know that the total
size of half-full blocks in B∗ is at most

2tM + (20 + 21 + 22 + ...+ 2k∗) ≤ (4M + 2) · 2k∗

To see this, note that the total volume of jobs in half-full blocks in B∗ \ ⋃k Bk,l∗
k

is
upper-bounded by t on each machine, and by Proposition 2, the total size of those
blocks is at most 2t. Also recall that we added at most one bonus block of size 2k to
B∗ for each k, which is Bk,l∗

k
. We also know that the algorithm schedules blocks of

total size at least (γ − 1)2k∗ ; the loss ‘-1’ is upper bounded due to the fact that only
blocks of sizes at most 2k∗ are considered in the k∗th step. All of these mean that the
total size of blocks in B \ B∗ in the k∗th step is at least

M(γ − 1) · 2k∗ − 2 · 2k∗ − (4M + 2) · 2k∗ = (4M + 2) · 2k∗

We also know that for every block B ∈ B \ B∗, ηB ≥ η∗ since A chose to schedule B
over the block B′ in B∗ \ B with ηB′ = η∗. This means that the number of jobs that
A finished in the k∗th step but OPT didn’t is at least η∗ · (4M + 2) · 2k∗ .

Lemma 12. The total number of jobs that OPT completes by time t on each machine
other than jobs in B ∩ B∗ is at most η∗ · (4M + 2) · 2k∗.

Proof. Consider each half-full block B ∈ B∗ \ B. We know that the total number of
jobs in B is at most η∗pB. Also by Proposition 2, we know that B’s volume (the
total volume of jobs in B) is at least pB/2. What this implies is that each unit
time processing can (fractionally) complete at most 2η∗M jobs in half-full blocks in
B∗. So, for fixed time t, the total number of jobs in half-full blocks B∗ is at most
2η∗Mt ≤ η∗ · 4M · 2k∗ . Since there is at most one almost-empty block in B∗ \ B of
size 2k for each k, and its density is at most η∗, it follows that the total number of
jobs in almost-empty blocks in B∗ \ B is at most η∗ · 2 · 2k∗ .

The above two lemmas imply that A complete as many jobs by time 2γt as OPT
does by time t, which proves Lemma 10.

Chapter 3. Scheduling non-preemptive applications with varying runtimes 40

3.4 Simulation experiments
In (Im et al.), we conducted a performance analysis of different priority based algo-
rithms and SVF-EF proved to have the best performance. In this section, in addi-
tion to comparing the performance of different priority based algorithms, we perform
experiments on HYBRID and Block-Scheduling algorithms and compare their per-
formance with the best performing priority based algorithm, SVF-EF. In the new
experiments, we study the trend in the total completion time as the numbers of jobs
and servers increase. The simulation methodology is similar to the (Im et al.). We
emphasize that although our workload simulator is generating workloads with specific
distributions, our algorithms are proved in Section 3.3.3 to do well for any arbitrary
workload. However, the choice of input workload is for the purpose of better simula-
tion of the real world systems.In all experiments we consider uniform machines each
with capacity of 200 CPU resources. We developed a discrete-event simulator in Java
which consists of parallel machines with bounded capacities. Each job is described
by job size and a number for CPU requirement. We assume that preemption is not
allowed and all jobs are available at the beginning.

3.4.1 Workloads
Similar to (Im et al.) and following the same convention in (99) and (98), we assume
jobs’ CPU demands are distributed uniformly in interval [1, 100) with probability
0.75 and in interval [100, 200] with probability 0.25. For job sizes we assumed two
distributions:

1. SYNTH1: Distributed uniformly in interval [1, 100] with probability 0.7, in in-
terval [300, 350] with probability 0.15, and in interval [450, 500] with probability
0.15 .

2. SYNTH2: Distributed geometrical with mean equal to that of the uniform
distribution for SYNTH1.

We performed all experiments using both SYNTH1 and SYNTH2 datasets. As the re-
sults of the two distribution followed the same pattern, we are only including SYNTH2
results for better readability of some of our plots and tables (Table 3.2, Figure 3.6,
Figure 3.4.2).

We also performed experiments with a real world workload dataset from an online
benchmark repository (wor). We chose the HPC2N dataset which includes job sizes
and CPU requirements. We ignored details like job submission times included in
SWF format (48) as we assume all jobs are available for schedule at the beginning.
We run our algorithms on a sample of 800 jobs randomly chosen from HPC2N.

Chapter 3. Scheduling non-preemptive applications with varying runtimes 41

3.4.2 Experimental results
In this section we first evaluate the performance of priority based algorithms using
synthetic and the real world data sets. Then we will show case the HYBRID and
Block-Scheduling algorithms by comparing them to the best priority based algorithm.

In the first experiment, we compare the performance of the algorithms as a func-
tion of workload size, i.e., the number of jobs. We generated Workload sizes from 3000
to 16000 in an increment of 1000 for both SYNTH1 and SYNTH2. For each work-
load size we generated data 10 times and repeated the experiments for each dataset.
Figure 3.3 shows average completion time for jobs vs. number of jobs using the syn-
thetic workload. This experiment was conducted by running synthetic workloads on
50 machines. The relative performance of different priority rules are similar in both
distributions. However, in plots for SYNTH2, SVF-EF diverges from other adjacent
curves more rapidly as can be seen in Figure 3.3.b. Compatible with our theoretical
findings (Theorems 1 and 3), SVF-EF demonstrates the best performance, consider-
ably outperforming SJF-EF. Further, SVF-EF’s superiority in performance becomes
more prominent as the workload size increases. As some plots were overlapping, we
zoomed into that portion of the graph for better illustration. In second experiment
we tested our algorithms on a sample of 800 jobs randomly selected from a real-world
trace HPC2N. The comparison of average completion times is shown in Figure 3.5.
It can be seen that SVF-EF has the best performance for the real-world data sets.

Fairness is another important scheduling criterion in high performance computing
systems. As we are minimizing average completion time, it could happen that larger
jobs get more benefits than smaller jobs as they contribute more to the objective
function. A common measure for fairness in the literature is stretch which measures
by what factor, a job is slowed down relative to the time it takes to complete on an
unloaded system (137; 13; 135).

In another experiment, we compared the average, maximum and standard devia-
tion of the different algorithms for 5000 jobs generated from SYNTH1 on 10 machines
and the results are shown in Table 3.2. It can be seen that SJF-EF and SVF-EF have
the best average and maximum stretches. The SJF-EF performs slightly better than
SVF-EF, as sorting jobs in their order of increasing sizes counteracts the effect of
discriminating against small jobs. However, SVF-EF does quite a good job in terms
of fairness considering large gap between the performance of SVF-EF and SJF-LW.
The algorithm SVF-EF seems most preferable among all priority based algorithms

since it outperforms other algorithms while achieving a good fairness. For the random
ordering, we see a large range of stretch values which is reflected in the maximum and
standard deviation values. In the rest of the experiments the performances of the HY-
BRID and Block-Scheduling algorithms are compared with SVF as the best priority
based algorithm. In Figure 3.6, The average completion time for the Block-Scheduling
and HYBRID algorithms are compared with Random-Random and SVF-EF priority
based algorithms. It can be seen that the heuristics are doing better than Random-
Random algorithm considerably. This is a significant result, considering the fact that
the implemented Random-Random is not a trivial procedure. In Random-Random,

Chapter 3. Scheduling non-preemptive applications with varying runtimes 42

Number of jobs ×10 4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e

0

1000

2000

3000

4000

5000

6000

7000

8000

Random-Random

Random-LW

Random-EF

SJF-Random

SJF-LW

SJF-EF

SVF-Random

SVF-LW

SVF-EF

×10 4
1.52 1.54 1.56 1.58 1.6

3140

3160

3180

3200

3220

3240

3260

3280

3300

Figure 3.3: Average completion time vs. number of jobs for synthetic data set, the
milder growth in average total completion time for SJF and SVF is observable. Job
sizes are generated from uniform distribution.

Table 3.2: Comparison of stretch in the priority based scheduling algorithms, 5000
jobs are run on 10 parallel machines

Method Average Max std

RANDOM-RANDOM 507.80 22011 1385.19

RANDOM-LW 503.00 21516 1371.94

RANDOM-EF 514.13 19056 1265.38

SJF-RANDOM 64.85 835 72.72

SJF-LW 61.03 1470 85.44

SJF-EF 39.82 99.86 25.49

SVF-RANDOM 83.91 2235 142.25

SVF-LW 80.83 1977 129.25

SVF-EF 40.81 131.08 33.63

Chapter 3. Scheduling non-preemptive applications with varying runtimes 43

Number of jobs ×10 4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

A
ve

ra
g
e
 c

o
m

p
le

tio
n
 t
im

e

0

1000

2000

3000

4000

5000

6000

7000

8000

Random-Random

Random-LW

Random-EF

SJF-Random

SJF-LW

SJF-EF

SVF-Random

SVF-LW

SVF-EF

×10 4
1.42 1.44 1.46 1.48 1.5

3000

3050

3100

3150

3200

3250

3300

3350

3400

Figure 3.4: Average completion time vs. number of jobs for synthetic data set. Job
sizes are generated from geometrical distribution. The growth pattern is similar to
the Fig 3.3, however SVF-ef curve has a larger margin with other curves.

Chapter 3. Scheduling non-preemptive applications with varying runtimes 44

×10
4

0

5

10

15

R
a
n
d
o
m

-R
a
n
d
o
m

R
a
n
d
o
m

-L
W

R
a
n
d
o
m

-E
F

S
JF

-R
a
n
d
o
m

S
JF

-L
W

S
JF

-E
F

S
V
F
-R

a
n
d
o
m

S
V
F
-L

W

S
V
F
-E

F

Figure 3.5: Average completion time comparison for 800 jobs sampled from HPC2N
data set. SVF-EF outperforms other priority based algorithms.

Chapter 3. Scheduling non-preemptive applications with varying runtimes 45

in order to run a job on randomly selected server, the earliest available time that
the jobs can get enough resources to run is calculated. So, although the server se-
lection and job ordering are random, jobs are run at the earliest available time on
the designated server. HYBRID is the best performing heuristic. This is in line with
theoretical results in Section 3.3.

1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5
x 10

4

Number of Jobs

A
v

e
ra

g
e

 C
o

m
p

le
ti

o
n

 T
im

e

Block−Scheduling

SVF−EF

Hybrid

Figure 3.6: Comparison of the proposed method. HYBRID is doing slightly bet-
ter than SVF-EF and Block-Scheduling is about two factor off the performance of
HYBRID and SVF-EF.

The proposed constant approximation algorithms, Block-Scheduling and HYBRID,
are good candidates for scheduling jobs non-preemptively on parallel machines. Both
of the algorithms have good performance in terms of total completion time and they
both scale well. There is a trade-off between performance and runtime as former is
faster and latter has a better performance.

In terms of performance, HYBRID is the best. Block-Scheduling is about factor
of two off the SVF-EF and this is a normal consequence of rounding job sizes to the
next power of two. To improve the performance of Block-Scheduling, several changes
in the algorithm can be helpful. One is to follow a methodology like HYBRID to
divide jobs into two groups and consider different priority rules to sort each of them.
Another approach is to try to consolidate the blocks that are complimentary in terms
of resource usage. Another idea is improving the rounding error by categorizing jobs
into finer grained groups of jobs. This may improve the objective function, but will
increase the runtime.
In Figure 3.4.2, the average total completion time vs. number of servers is plotted .
We see that HYBRID has the best performance.

Chapter 3. Scheduling non-preemptive applications with varying runtimes 46

5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Servers

A
v

e
ra

g
e
 C

o
m

p
le

ti
o

n
 T

im
e

Block−Scheduling

SVF−EF

Hybrid

Figure 3.7: The objective function of the proposed algorithms are compared as
the number of servers are increased. HYBRID has the best performance. Block-
Scheduling is about two factors off the SVF-EF algorithm.

In Figure 3.4.2, the processing times of algorithms are depicted. Block-Scheduling
is faster than the priority based algorithms. We have plotted its processing time
in Figure 3.4.2 separately. The computational complexity of O(n log(n)) makes the
algorithm a good choice when there is a large number of jobs to schedule.

The SVF-EF and HYBRID are slower, as our efficient implementation of EF
procedure has time complexity of O(n) which leads to time complexity of O(n2) for
any priority based algorithm that uses EF for machine assignment. Between the two
slower algorithms, HYBRID does a little better than SVF-EF as it divides the jobs
into two smaller groups which makes it a constant factor faster.

3.5 Conclusion
In this chapter we proposed new algorithms for scheduling jobs with varying demands
on multiple machines without interruption. For this scheduling scenario which is
widely observed in practice, we considered one of the most popular objectives, min-
imizing total completion time. Our algorithms are the first algorithms with perfor-
mance guarantees for this specific problem to the best of our knowledge. Our work
gives in-depth insights on the problem, and develops heuristics with proved approx-
imation guarantees. In particular, we designed two simple and scalable algorithms,
HYBRID and Block-Scheduling and showed why they outperforms other intuitive
algorithms, which is verified by our experiments.

Chapter 3. Scheduling non-preemptive applications with varying runtimes 47

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5
x 10

4

Number of jobs

R
u

n
ti

m
e

(s
)

SVF−EF
Hybrid
Block−Scheduling

Figure 3.8: figure
The runtime of three proposed algorithms are plotted versus number of jobs.
Runtimes are in seconds. It is observable that O(n log(n)) time complexity of

Block-Scheduling keeps its runtime negligible for scheduling of jobs up to 8000.

Chapter 3. Scheduling non-preemptive applications with varying runtimes 48

0 0.5 1 1.5 2 2.5

x 10
4

80

100

120

140

160

180

200

220

240

260

Input Size

R
u

n
ti

m
e
(m

s
)

Figure 3.9: figure
The run time of Block-Scheduling algorithm is demonstrated in a wider range of up

to 37000 jobs. The run times are in miliseconds.

We proposed two novel algorithms with provable approximation guarantees for
scheduling jobs with non-uniform demands on multiple homogeneous servers without
preemption. These two algorithms are the first constant approximation algorithms for
all instances. The performance efficiency of the algorithms was studied and demon-
strated via simulation experiments. Our work is only a starting point and it can
be extended in many interesting directions such as considering different types of re-
sources as well as varying demand for each resource over time and heterogeneous
servers.

In another direction, our simple and efficient algorithms can be tailored for schedul-
ing workloads on current cloud computing platforms. New levels of resource efficiency
can be achieved by using our novel algorithms as scheduler that gets input data about
resource usage and task runtime from workload characterization modules.

Chapter 4

Handling Inaccuracies in
Scheduling HPC Applications in
Cluster

The performance of scheduling algorithms for HPC jobs highly depends on the accu-
racy of job runtime values. Prior research has established that neither user provided
runtimes nor system generated runtime predictions are accurate. We propose a new
scheduling platform that performs well in spite of runtime uncertainties. The key
observation that we use for building our platform is the fact that two important
class of scheduling strategies (backfilling and plan-based) differ in terms of sensitiv-
ity to runtime accuracy. We first confirm this observation by performing trace-based
simulations to characterize the sensitivity of different scheduling strategies to job run-
time accuracy. We then apply gradient-boosting-tree-regression as a meta learning
approach to estimate the reliability of the system-generated job runtimes. The es-
timated prediction reliability of job runtimes is then used to choose a specific class
of scheduling algorithm. Our hybrid scheduling platform uses plan-based scheduling
strategy for jobs with high expected runtime accuracy and backfills the remaining
jobs on top of the planned jobs. While resource sharing is used to minimize frag-
mentation of resources, a specific ratio of CPU cores is reserved for backfilling of less
predictable jobs to avoid starvation of these jobs. This ratio is adapted dynamically
based on the resource requirement ratio of predictable jobs among recently submitted
jobs. We perform extensive trace-driven simulations on real-world production traces
to show that our hybrid scheduling platform outperforms both pure backfilling and
pure plan-based scheduling algorithms.

4.1 introduction
With ever increasing usage of HPC clusters by scientific researchers, the diversity
of applications submitted to HPC clusters is non-deniable. This diversity requires
smarter scheduling strategies to keep resource usage efficient while meeting the clus-

49

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 50

ter cusomers’ preferred performance goals. The management of job deployment and
scheduling is performed by job management systems in HPC clusters. Job manage-
ment systems for HPC clusters need to perform resource allocation and job scheduling
cleverly to avoid capital and operational expenses for operating the cluster. Exten-
sive research has been done in designing scheduling platforms with better performance
and efficiency. However, most of these algorithms require an accurate value for job
runtime. It is well-known that user provided runtime estimations are far from accu-
rate (89; 140; 47). Several systems-generated runtime prediction approaches based
on the runtime of previously executed jobs have been proposed. However, due to
the inherent uncertainties in job runtime values, perfect prediction of runtimes is not
possible (141). To the best of our knowledge, no reliability estimation for individual
runtime predictions has been done in the past. Our studies on HPC trace data show
that although prediction approaches predict runtimes for some jobs very accurately,
they provide inaccurate prediction for a subset of submission jobs. The reliability
of individual job predictions provides valuable information to be used by scheduling
platforms. We use a supervised machine learning approach to estimate the reliability
of each job runtime prediction. In other words, we determine if a runtime prediction
for each new job is reliable using a machine learning model trained on previously
completed jobs. We then use our estimations of the accuracy to design a scheduling
platform that deploys an appropriate scheduling strategy based on the predictability
of the runtime for each job. For that purpose, we first conduct experiments in multiple
HPC trace datasets and measured sensitivity of different scheduling algorithms to job
runtime accuracy. We then designed a reliability estimation approach to determine
the accuracy estimates which will be a valuable input for our scheduling platform.

To be able to pick the best scheduling strategy based on the reliability of job
runtime prediction, it is worthwhile to study the sensitivity of job scheduling policies
to job runtime accuracy. There are two well-known groups of scheduling policies for
HPC jobs: Backfilling policies and plan-based policies. Backfilling tries to fill the free
resources with smaller jobs. However, FCFS-backfilling is far from optimal because
the initial ordering of jobs limits the feasibility of resources for later shorter jobs. The
popularity of FCFS-backfilling is due to the greedy nature of backfilling. It performs
well with inaccurate runtime prediction. However, with the advent of more accurate
online prediction models, more plan-based approaches have been proposed (160). One
may assume that with more accurate prediction approaches, plan-based scheduling
algorithms perform best. This is not true. One issue about using machine learning
approaches for runtime prediction is the fact that machine learning models are trained
based on minimizing a loss function. The loss function often minimizes average error
over all training points and does not necessarily perform well for all data points.
The question is whether we can determine if a machine learning model accurately
predicts the runtime for a newly submitted job. In Subsection 4.4.4, we see that we
actually can have accurate estimations of runtime prediction accuracy values for job
runtimes. We call this estimation the prediction reliability estimation following some
previous works in machine learning literature (21). Using the reliability estimation,

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 51

we categorize jobs into two categories of predictable and unpredictable jobs and design
our Hybrid-Scheduling platform around these two categories of jobs.

The research presented in this chapter addressed three questions. (1) Do different
scheduling strategies differ in sensitivity to prediction accuracy? (2) Can we estimate
the prediction reliability of individual jobs? (3) Can we improve the performance and
efficiency of scheduling HPC clusters with the knowledge of the answer to the first two
questions? To answer the first question we performed sensitivity experiments with
scheduling strategies from the two broad groups of backfilling and plan-based. We
observed that backfilling strategies are less sensitive to runtime accuracy. We also ob-
served that the performance of plan-based strategies significantly improves with more
accurate runtime values. We then studied prediction reliability and experimented ex-
isting approaches in machine learning literature for estimating prediction reliability
for job runtime values. Based on our experiments we designed a supervised model
that estimates the accuracy of runtime using gradient boosting tree regression. The
Pearson correlation for our estimated accuracies and the actual accuracy is 0.84 on
our test data. We then designed a hybrid scheduling platform that picks a policy for
scheduling each job based on the reliability of its runtime prediction. Our platform
first schedules the predictable jobs using a plan-based scheduling strategy and then
backfills the less predictable jobs on top. To avoid starvation, a dynamically adaptive
portion of resources are reserved for backfilling jobs. However, backfilled jobs can
use all remaining available resources to avoid resource fragmentation. Our extensive
trace-based simulations show that our platform outperforms each of the two strategies
deployed individually in terms of performance and efficiency.

We start by presenting the problem and related background in Section 4.2. We
review related work for HPC scheduling as well as prediction reliability estimation in
machine learning literature in Section 4.3. We present our approach for reliability es-
timation and Hybrid Scheduling Platform in Section 4.4. We present our trace-based
experiments with actual data in Section 4.5. We conclude our work in Section 4.6.

4.2 Background and Problem Description
In this chapter, we are interested in scheduling jobs in HPC clusters. The HPC
applications are submitted to a central Application Management System. The job
management system decides the allocation of resources to the applications. As the
resources are finite, the applications may need to wait until they acquire resources.
The users are asked to provide running time and the required CPU and memory for
their applications. It is well known that the users submit an overestimated runtime
mostly because the application manager kills the applications if they take longer than
the user estimated duration (71).

In order to better present the problem, we first define our notion of a job in HPC
cluster: a job or application j is considered with specific submission time and resource
requirement. At the time of submission, a value of runtime and resource requirement
is submitted by the user. There are n independent jobs (indexed by integers), where

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 52

application j has the following characteristic:

• Submission time: rj

• Resource requirement: dj

• Actual running time: pj

• Requested running time: p̂j.

• Additional features (descriptors) including the user that submitted the applica-
tion, the time of the day the application submitted, etc.

In Fig 4.1, an application j is illustrated as a solid rectangle, with length equal
to actual runtime (pj) and resource requirement equal to dj. In the right figure, the
abstraction of resources in the HPC cluster is illustrated. The vertical dimension
represents the total resources in the system and the horizontal axis denotes time. In
this section, we first present a background on scheduling approaches for HPC clusters
and introduce the issue of uncertainty in HPC workload traces. We then present the
formulation of the problem we study in this chapter.

4.2.1 Common Scheduling Algorithms for HPC Workloads
FCFS (First Come First Served) is the most well-known scheduling algorithms for
HPC jobs. FCFS schedules jobs in order of their submission. FCFS is a list schedul-
ing algorithm that prioritizes jobs based on their submission time. In list scheduling
algorithms, also known as queue-based scheduling algorithms, if there are enough
available resources, resources are allocated to the submitted job and the job starts to
process. Otherwise, the job is kept in a queue. Using FCFS does not consider the
geometry of jobs to pack them tightly into resources. To improve the performance
of FCFS, two strategies have been proposed: Backfilling (FCFS-BF) (135) and Plan-
Based scheduling (160) algorithms. In Fig 4.2, an FCFS-Backfilling scheduling strat-
egy is compared with a plan-based scheduling algorithm. While Backfilling backfills
the free resources available after FCFS scheduling with smaller jobs from the back of
the queue, plan-based scheduling uses the runtime of jobs in the queue to find the near
optimal ordering jobs before assigning the jobs. As these two groups of scheduling
algorithms are the building blocks of our hybrid scheduling platform, we elaborate
their characteristics in the following subsections.

FCFS Scheduling with Backfilling

In FCFS with backfilling, jobs are prioritized based on their submission time to the
system. In FCFS with backfilling, a rule is used to select some jobs from the back
of the waiting queue to run earlier. Several variety of backfilling algorithms are pro-
posed including easy (128), conservative (135) and slack backfilling (138) algorithms.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 53

time

c
a
p
a
c
ity

Server:

d
e
m
a
n
d

J ob

size

MachineMachine M

j :

:Machine M:

Job j:

Machine M:

Figure 4.1: Each job j is illustrated as a two-dimensional rectangle with height equal
to its demand dj and width equal to its size pj. Each server has a unit capacity. Jobs
can run simultaneously on each server as long as the total demand/height of running
jobs do not exceed the server’s capacity.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 54

Although FCFS only rely on submission time to order the jobs, all these backfill-
ing approaches rely on runtime values to make the backfilling decision. Most of the
resource management systems deployed in HPC clusters including SLURM (154),
Cobalt (38), IBM LoadLeveler (128) use FCFS with backfilling. FCFS scheduling
algorithms are used mainly due to their simplicity and scalability as well as stability
to inaccurate input runtimes. The easy-backfilling algorithm acts like a greedy first
fit scheduler in the case that the next job in the queue has more resource demand
than the available resources. It takes the first job from the back of the queue that
fits into the available space.

One important observation is that as EASY-backfilling tries to backfill jobs greed-
ily into available holes created by the FCFS ordering of jobs, its performance does
not degrade substantially with inaccurate runtime estimates. On the other hand,
the performance of the EASY does not improve substantially with more accurate
runtime values. FCFS-SJF was proposed in (142) to use the application runtime
for backfilling decision. In FCFS-SJF, the backfilled jobs are chosen in the order of
increasing runtime. FCFS-SJF is commonly used in the works that propose more
accurate prediction approaches to runtime prediction as SJF-BF is more sensitive to
runtime prediction accuracy than EASY. We will also consider FCFS-SVF that orders
jobs based on volume(multiplication of runtime and required CPU). FCFS-SJF and
FCFS-SVF have some level of sensitivity to runtime accuracy, but still have accept-
able performance in absence of accurate runtime prediction. In our experiments we
use FCFS-SJF and FCFS-SVF as representatives of FCFS with backfilling algorithms.

Plan-based Scheduling Algorithms

On the other side of the scheduling algorithms spectrum are the plan-based algo-
rithms. Instead of deploying jobs immediately, plan-based approaches make a schedul-
ing plan-based on a group of submitted jobs. They try to find a near optimal ordering
of jobs to optimize scheduling performance. The main issue with plan-based schedul-
ing algorithms is the fact that their performance is highly sensitive to the accuracy of
jobs’ runtime predictions. As in real-world scenarios, user runtime estimates used for
scheduling are not accurate, plan-based scheduling algorithms do not perform well.
We study several plan-based and backfilling approaches and propose an adaptive hy-
brid scheduling platform. Our sensitivity analysis experiments in the next subsection
show how plan-based work well with accurate and backfilling with inaccurate predic-
tions. Plan-based scheduling algorithms try to search over the solution space to make
the best scheduling decision for each job. As the problem is dynamic and jobs are
submitted over time, the planning routine needs to be done periodically and based
on the jobs already in the systems. Several plan-based scheduling policies have been
proposed. Some policies propose a complete search over the solution space, and some
propose local search to improve the computation overhead (160; 152; 82).

Although these methods claim to have better performance than backfilling schedul-
ing methods, several issues make them less popular for cluster managers. First, for
most of these approaches, the computational the overhead for decision making makes

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 55

Figure 4.2: The comparison of a plan-based scheduling algorithm (online-SJF) and a
backfilling scheduling algorithm (FCFS-SJF) algorithms on an example of seven jobs.

them less favorable. Furthermore, they completely rely on job runtimes for their
decisions and perform poorly if the runtimes are not accurate.

In this chapter, for the choice of plan-based strategy in our hybrid scheduling
platform, we use online priority-based scheduling algorithms. Online priority-based
scheduling algorithms are the plan-based version of commonly used priority-based
scheduling algorithms. Online priority-based scheduling algorithms have the high
performance of plan-based scheduling algorithms on the availability of accurate run-
time values while they have a low computational overhead. Shortest Job First (SJF)
algorithm is well known to have optimal performance in the offline case when one
job is allowed to run at a time. In (Im et al.) authors proposed Smallest Volume
First (SVF) as the two-dimensional extension of SJF that reaches near-optimal per-
formance in offline case. In comparison with other plan-based scheduling including
heuristic search algorithms, list-based scheduling algorithms are considerably faster.
Online-SJF and online-SVF are dynamic. Similar to other plan-based scheduling al-
gorithms, new ordering is computed at the time of the system events. With using
appropriate data structures like Heap, reordering the list takes constant time. Our
experiments show that SVF outperforms SJF and other commonly used scheduling
algorithms when accurate runtimes are provided. In this work, we will use online-SVF
as the plan-based scheduling algorithm and call it Plan-Based scheduling in the rest
of this chapter.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 56

4.2.2 Sensitivity to Job Runtime Accuracy
To study the sensitivity of backfilling and plan-based schedulers, we studied four
traces from Parallel Workload Dataset (wor) in detail. These datasets contain traces
of applications submitted to HPC clusters. The first observation as noted by several
previous works (142; 133) is inaccurate user estimates of job runtimes. In recent years,
several prediction approaches are proposed (142), (55) and some of them can predict
application runtimes as accurate as 80%. The question is how these more accurate
predictions affect the scheduling performance both for customer satisfaction criterion
(performance) and cluster provider criterion (utilization). To answer this question,
we perturbed the available traces to provide traces with variable runtime prediction
accuracy and simulated several scheduling algorithms discussed in the previous section
to compare the scheduling algorithms regarding their sensitivity to accuracy. We also
want to compare how different scheduling algorithms perform with more accurate
runtimes. FCFS does not use runtime estimates and schedules jobs on the order
of submission, so the average wait time of FCFS is not impacted by more accurate
runtime prediction. The important point to notice is the sensitivity of online-SJF
and online-SVF to the accuracy of runtime. These two algorithms do not perform
well with user-estimated runtimes which are generally inaccurate.

Through our extensive trace-based simulations, we realized that plan-based schedul-
ing algorithms are more sensitive to prediction accuracy than backfilling algorithms.
The good news is that they outperform backfilling algorithms if an almost accurate
prediction is available (accuracy more than 60%). We perturbed the existing traces
from ANL, LLNL, HPC2N, and SDSC to build 20%, 40%, 60% and 80% runtime value
accuracies and simulated different backfilling and plan-based scheduling algorithms
with the perturbed runtimes. The results of these experiments are demonstrated in
Fig 4.3. We can see that for all four datasets, for accuracy level higher than a thresh-
old (40% to 80%), online-SVF outperforms all the other algorithms in terms of wait
time.

4.2.3 Job Runtime Prediction Reliability Estimation
It is well-known that provided runtime values by users are far from accurate (142).
Several approaches have been proposed to generate more accurate runtime predic-
tions based on available information about the job at the time of submission. In
(133), several time-series-based approaches are used to predict job runtimes. A ma-
chine learning approach was proposed in (55) where the authors propose an online
learning model that makes a prediction for each newly submitted job and updates the
prediction model with newly available runtime after completion of each job. How-
ever, to the best of our knowledge, there has not been any study about confidence
or reliability of runtime predictions for individual jobs.One important issue in using
predicted runtimes is the fact that for some jobs, the prediction accuracy is low. We
need to measure the expected prediction error for individual jobs. This can be done
by estimating individual prediction reliability.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 57

0 20 40 60 80 100
accuracy(percentage)

1750

2000

2250

2500

2750

3000

3250

3500

w
ai

t t
im

e(
se

co
nd

s)

HPC2N

FCFS
SJF-BF
SVF-BF
SJF
SVF

0 20 40 60 80 100
accuracy (percentage)

2500

2750

3000

3250

3500

3750

4000

4250

4500

w
ai
t t
im

e
(s
ec

on
ds

)

LLNL

FCFS
FCFS-SJF
FCFS-SVF
D-SJF
D-SVF

0 20 40 60 80 100
accuracy(percentage)

2000

2500

3000

3500

4000

w
ai
t t
im

e(
se

co
nd

s)

ANL

FCFS
SJF-BF
SVF-BF
SJF
SVF

0 20 40 60 80 100
accuracy (percentage)

1500

1750

2000

2250

2500

2750

3000

3250

w
ai

t t
im

e
(s

ec
on

ds
)

SDSC

FCFS
SJF-BF
SVF-BF
SJF
SVF

Figure 4.3: Wait-times of FCFS, FCFS-SJF, FCFS-SVF, Online-SJF, and Online-
SVF are plotted for traces with different accuracy levels.

Evaluating the quality of prediction uncertainties is a challenging problem in ma-
chine learning (87).

Using the individual prediction accuracy metric (4.2) for previous jobs, we train
a regression model to predict job runtime accuracy for the newly submitted jobs.
When a job is submitted to the HPC cluster, information including the user id,
time of submission, requested runtime, CPU and memory is available for each job,
we extract useful features from job log. We explain the details of our approach to
Section 4.4. The prediction accuracies estimated by our reliability estimation machine
have a Pearson correlation of 0.84 with actual accuracies for HPC2N trace data.

4.2.4 Formulation of the Problem
The problem studied in this work is to execute a set of concurrent parallel jobs with
rigid resource requirements on an HPC platform with m units of resources. The jobs
are submitted over time in an online manner.

The resource requirement dj of an application j is equivalent to the user requested
resource known at the time of submission. The actual value of runtime is only known
a posteriori when the job completes. The problem we are trying to solve is how to
schedule applications to achieve better performance and utilization, without knowing
the accurate runtime values at submission time.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 58

Although application runtime has some correlation with several features as dis-
cussed in previous works (55), 100% accurate prediction of application runtimes is
not possible (55). Thus, we are looking for scheduling solutions that improve the
performance and utilization over the currently used approaches when 100% accurate
prediction is not available for all jobs in the system. More specifically we look for a
scheduling solution that:

• is online.

• has low overhead.

• performs well even with inaccurate runtime predictions.

• achieves high performance when accurate predictions are available.

• outperforms commonly used scheduling strategies in a real-world setting (accu-
rate runtime is available for a subset of jobs).

4.3 Related Work

4.3.1 Estimating Prediction Reliability
Estimating prediction reliability refers to estimating how well a prediction model will
perform on unseen data. In this work, we specifically focus on estimating prediction
reliability for individual out of sample data points. There have been several works
in machine learning literature on determining the reliability of the prediction model
for individual data points (53), (123). These approaches assume that features and
target values are generated independently from the same probability distribution and
they calculate confidence for predicted target values using p-value measure. In (21),
authors propose local regression sensitivity analysis to provide prediction reliability
values. The application of their approaches requires multiple runs of the prediction
step to determine the variance of the results and is not appropriate for our purpose of
estimating accuracy values on-the-fly. Some other existing approaches are designed for
a special group of prediction models and cannot be prescribed to estimate reliability
for an arbitrary prediction model (110; 149; 87; 79).

Authors in (119) have reviewed prediction uncertainty for online prediction prob-
lem. They compared multiple reliability estimation using the correlation coefficient
of estimated accuracy and the actual accuracy for the prediction model. In their
work, the similarity-based reliability estimation approach is implemented using K-
nearest-neighbors (KNN) prediction approach and is shown to be a well-performing
estimation approach. Similarity-based reliability prediction approaches consider the
accuracy of previous predictions of the same prediction model for similar examples in
the input space. A more general approach for similarity based prediction reliability
estimation is to train a regression model that maps feature space and predicted tar-
get value to corresponding accuracy. Using regression models to estimate prediction

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 59

accuracy has been proposed in the past (52; 143; 14). Building a regression model
helps to map feature set characteristics to prediction accuracy and helps to identify
the characteristics of features that affect the performance of the classifier. In our
work, we adopt a similarity-based approach for reliability estimation. We use gra-
dient boosting tree regression instead of K-nearest neighbor as accuracy prediction
model and showcase its better estimation performance in comparison to the K-NN
model in Section 4.4.

Estimating prediction accuracy has often been proposed to help model selection
or iterative model improvement to achieve better prediction accuracy. However, in
our work, the goal of prediction reliability estimation is whether to rely on predicted
target values or not. If estimated prediction accuracy for a data point is too low,
our scheduling platform ignores the predicted runtime and uses the user requested
runtime with a less runtime accuracy sensitive scheduling policy.

4.3.2 HPC Scheduling and Runtime Uncertainty
The necessity of runtime prediction for parallel applications has been highlighted since
the last years of 20th century (58). Different approaches have been proposed to pre-
dict HPC application runtimes with different machine learning methodology as well
as prediction features inputs (142; 139). Several time-series based methodologies are
proposed to use information available about completed jobs in the system to predict
the runtime for newly submitted jobs. They are mainly exponential smoothing and
moving average methodologies that predict future values based on the recent runtime
values. As noted by (133), these methods are not accurate and will not improve
scheduling performance and utilization significantly. Some earlier works profile the
existing applications and form a model similar to the regression decision tree to pre-
dict the runtime of the new application based on the most similar application profile
(129; 58). (129) applies genetic algorithms to search among the history logs to find
the most similar attributes. Several statistical methods fit a distribution to previ-
ous data and predict the new job runtime with mean and confidence interval of the
inferred distribution (142). (109) draws sixteen different distribution from previous
data and designs a hidden Markov Model to transit along these sixteen states. Some
other researchers have considered additional features for each job in trace and per-
form prediction based on the similarity between these features of the jobs (102; 125).
Some more recent works focus on the specific family of scientific workflows and use
machine learning for predicting runtime and resource usage for these applications
(100). Several works have proposed interrogating the codes to extract features for
runtime prediction. This is also not practical in many cases due to privacy consid-
erations. All these approaches are static, meaning that they train a static model
based on the available applications and use the model for prediction the runtimes of
new applications. Applying such a static model for a dynamic environment like cloud
leads to inaccurate predictions.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 60

Making an accurate prediction for application runtime is not easy. In fact, the scarcity
of relevant training data makes the model building cumbersome. Several online pre-
diction methods have been proposed that use the recently completed jobs in the same
trace to strengthen the predicting power of their model (133), (139).
Some authors correctly identified the importance of avoiding overfitting the value of
runtimes and considered approaches that favor under-prediction over over-prediction
as over-predicted runtime values impose the expense of killing incomplete jobs (47;
55).
Similar to our work, some previous works considered inaccurate predictions. They
proposed a solution to handle inaccuracies in predicted runtime values. Authors
in (40), considered error margins for runtime prediction to be considered for runtime
adjustment. In (117), authors developed an execution delay model for runtime predic-
tion and designed an adaptive stochastic allocation strategy for production workload
traces.

4.4 Proposed Hybrid Scheduling Platform
The study of sensitivity in Section 4.2.2 gave us an intuition to design a hybrid
scheduling platform. Since in real-world situations, accurate values of job runtimes
are not available, we propose a Hybrid Scheduling platform that uses FCFS with
backfilling for jobs with unpredictable runtime. At the time of job submission, the
normalized regression model is used to predict the job runtime value in an online
manner. Then, jobs are classified into two queues of predictable and unpredictable
using our trained reliability estimation model. Our platform schedules jobs with
higher expected runtime accuracy using plan-based scheduling. Our platform then
performs backfilling to schedule the jobs in the unpredictable queue on the remaining
available resources. The predictable and unpredictable jobs are defined below.
Predictable Jobs: These are jobs with high prediction reliability. We characterize
these jobs with estimated runtime accuracy of 60% or more.
unpredictable Jobs: These are jobs with low prediction reliability. We characterize
these jobs with estimated runtime accuracy of less than 60%.
Our resource manager dynamically determines the resource quota for pure priority
based algorithm based on the ratio of predictable jobs.

4.4.1 Proposed Design
In Subsection 4.2.2, we demonstrated how priority-based scheduling algorithms out-
perform backfilling algorithms when we have an almost accurate (accuracy of 60%
and higher), prediction of job runtimes. We use this observation to design a hybrid
scheduling algorithm. Similar to other algorithms discussed in Subsection 4.2.1, our
algorithm is online, and scheduling takes place in rounds. Two different policies, SVF
and FCFS-BF, are performed at each round. Using our reliability prediction model,
we know for which subset of jobs we have more accurate runtime values. Our hy-

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 61

brid model will apply Plan-Based scheduling for the subset of jobs and backfills the
remaining jobs on the top. We propose a hybrid scheduling algorithm that smartly
combines the backfilling algorithms and plan-based scheduling algorithms. With our
hybrid design, we will benefit from the effectiveness of backfilling scheduling approach
when the runtime predictions are inaccurate and we will benefit from the near optimal
performance of plan-based scheduling when the predictions are more accurate. We
determine the reliability of predicted runtimes using a supervised machine learning
method of gradient boosting trees as presented in Subsection 4.4.4. The supervised
regression outputs an estimation of the prediction accuracy. Our scheduling platform
puts jobs in two queues of predictable and unpredictable based on their estimations of
accuracy. For the jobs in unpredictable queue, the platform does not rely on system-
generated predictions. The platform uses the runtimes requested by the user to back-
fill unpredictable jobs. Our hybrid scheduling platform assigns a subset of resources
to plan-based scheduling to improve utilization of the resources and tops the remain-
ing unused resources with backfilling. Our experiments prove the better performance
and CPU utilization of the proposed hybrid approach to both pure plan-based and
pure backfilling methodologies. Figure 4.4 presents the Hybrid-scheduling platform

Figure 4.4: Overview of the HS platform design.

in detail. As demonstrated in Figure 4.4, when a job is submitted to the cluster, its
information is stored in the repository. ML-unit calculates the runtime prediction as
well as estimated prediction accuracy. The hybridization parameter calculator calcu-
lates the hybridization parameter based on the estimated prediction accuracy values
as explained in Section 4.4.3. The central scheduler uses the predicted runtime to
order predictable jobs on α portion of resources and backfills the unpredictable jobs
on top. After each job completes on the HPC system, its actual runtime is recorded
in the repository.

As demonstrated in Fig 4.4, our scheduling platform has four main components:
ML-unit, hybridization parameter adjusting unit, centralized scheduler, and reposi-
tory. When a job is submitted to the system, its runtime and prediction accuracy

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 62

Execution Queue

HPC System
Hybrid Scheduler

Submission Queue

Waiting Queue

Back�lling
Scheduler

Time

Re
so

ur
ceJ2

J1

J3

J5 J6

J7

J8

J8J9 J1J2. . .

J9

J1J3 J2J4

Plan-based
Scheduler

Time

Re
so

ur
ce

α

J3
J4J4

J1

J2

J4

J5 J6. . . J9 J4

Figure 4.5: Central scheduler design.

estimation are calculated in ML-unit. The values of runtime prediction and prediction
accuracy estimation are used by the central scheduler to determine the deployment
time of the new job in the HPC system. After the job completes running, infor-
mation about actual runtimes is saved in the repository to be used by ML-unit and
hybridization parameter estimator unit. The repository contains necessary data in-
cluding prediction model parameters for ML-unit as predictability estimation model.
As a job completes running on HPC cluster, the runtime value is added to the repos-
itory. Centralized scheduler, hybridization parameter adjusting unit and Ml-unit are
elaborated in the following subsections.

4.4.2 Central Scheduler
Using the input from ML-unit, jobs are partitioned into two queues: predictable
and unpredictable jobs as defined in the beginning of current section. Jobs that are
characterized as predictable by ML-unit are input to a new queue called predictable.
As shown in Fig 4.5, the Hybrid scheduler is composed of two schedulers: plan-based
scheduler and backfilling scheduler. At first, the central scheduler performs plan-based
scheduling. It determines the starting time of each predictable job in the waiting queue
following a plan-based scheduling algorithm as explained in Section 4.2.1. For this
plan-based scheduling, only specific portion of resources using the specific portion of
CPU cores determined by hybridization parameter unit is considered. Second, after
the deployment plan of the predictable jobs is determined, FCFS with backfilling
scheduler determines the starting time of unpredictable jobs on the remaining available
resources. The complete schedule for all jobs is used to deploy jobs on the HPC cluster.
This procedure is repeated at the time of each event in the computation cluster: Job
submission, Job completion or job termination.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 63

4.4.3 Hybridization Parameter Adjusting Unit
The ratio of resources used by plan-based scheduling policy to schedule predictable
jobs, α, is called hybridization parameter and will be updated by hybridization pa-
rameter adjusting unit in the platform. The parameter adjusting unit updates the
value of hybridization parameter, α based on the ratio of the sum of resource usage of
predictable jobs to the total resource request all the jobs. The formula for updating
α is presented below.

αt+1 = αt ∗
∑
i∈predictable di∑
j∈alljobs dj

(4.1)

Where dj is the resource requirement for the job j as defined in Section 4.2. The initial
value of α denoted as α0 is chosen through a grid search as illustrated in Fig 4.13.

4.4.4 ML-unit
ML-unit is responsible for predicting runtimes and estimating the accuracy of the
predicted runtimes. The runtime prediction is performed using online normalized
regression model (67), (120) similar to (55). Determining the prediction reliability of
jobs: To determine the prediction reliability of jobs, we use a gradient boosting tree
model. The model parameters are saved in the repository and the model is rebuilt
every 24 hour. One important function of Ml-unit is to determine if the jobs belong
to predictable or unpredictable class of jobs. In order to study prediction accuracy
for individual jobs, we need to use an appropriate metric to measure the accuracy of
prediction for individual jobs.

Measure of Prediction Accuracy: Common measures of accuracy in ma-
chine learning such as Mean Squared Error (MSE), measure the accuracy
of prediction globally. As we are interested in measuring and character-
izing accuracy for each individual point in data set, we use a point-wise
measure of accuracy that has been proposed in the literature of HPC job
runtime prediction for HPC clusters (142; 133). This metric measures ac-
curacy of runtime prediction for each job by comparing the predicted job
runtime value (p̂j) and actual job runtime (pj) as presented in Equation 4.2.

accuracy =


1 if p̂j = pj
p̂j

pj
if p̂j < pj

pj

p̂j
if p̂j > pj

(4.2)

Online Job Runtime prediction

The goal of online job runtime prediction module is to predict job runtimes in an
online manner. As a job is submitted to the systems, a minimal set of features are
extracted from the job description as well as resource management systems. These

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 64

feature group feature names number of features
user requested runtime p̃j (reqTime) 1
actual runtime and CPU for the previously completed jobs from the same user last, beflast, beflast2, lastcpu 4
maximum runtime and cpu for the previously completed jobs from the same user maxrt, maxcpu 2
seasonality features tod1, tod2, dow1, dow2 4
average and standard deviation of runtime and CPU of the jobs from the same user meanrt, stdrt, meancpu, stdcpu 4
the number of completed jobs from the same user prevuser 1

Table 4.1: Features considered for our prediction reliability estimation approach.

Figure 4.6: Online learning module predicts runtime for the current job based on
the feedback from previous jobs.

features are used by an online job runtime prediction module to predict job runtimes.
In our platform we implemented an l2 regularized polynomial model similar to (55).
New values of p̂i are predicted using features available from i − 1 completed jobs :
Z = {z11...z1i−1, ..., zki−1}. In this work, we use online normalized regression model
(120) similar to (55). Online normalized regression uses stochastic gradient descent
approaches to find a polynomials function of k input features corresponding i − 1
previously completed jobs Z = {z11...z1i−1, ..., zki−1}. The polynomial function is in
the form of:

f(w, z) = wTφ (z) . (4.3)

The minimization of regularized cumulative loss for up to i-th completed job is:

argw min
i∑

j=1
L (xj, f(w, z), pj) + λ‖w‖. (4.4)

where λ is the regularization parameter and f(w, zj) is our prediction for runtime of
job j.

The loss function is:

L(zj, f(zj), pj) =

λ.f(zj)− pj)2 iff(zj) ≥ pj

λ.(pj − f(zj))2 iff(zj) < pj
(4.5)

To focus on the symmetric inaccuracy of prediction, we consider the symmetric loss
function instead asymmetric loss function in (55) and penalize over-prediction and
under-prediction equally.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 65

Figure 4.7: Prediction reliability estimation machine is trained using features of com-
pleted jobs fi = {z1i, .., zki} and their corresponding prediction accuracy values acci.

A Meta Learning Approach to Estimate Runtime Prediction Accuracy

Meta-learning, or learning to learn, is the science of systematically observing how
different machine learning approaches perform (145). Here, we are interested in esti-
mating the prediction accuracy of our online algorithm that predicts job runtime. To
estimate the prediction accuracy of job runtimes (prediction reliability), we use a su-
pervised regression model. The regression model predicts runtime accuracy of newly
submitted jobs using information about features and prediction accuracy of completed
jobs. As shown in Figure 4.7, feature vectors of completed jobs, fi = {z1i, .., zki}, and
their corresponding prediction accuracy, acci are used to train a regression model.
The regression model maps the features and predicted runtime to accuracy values.
We used Gradient Boosting Tree regression (50) as it is known to find non-linear
mapping from data to target values (30). The trained prediction reliability estima-
tion model is used to estimate the runtime prediction accuracy of newly submitted
jobs. In Figure 4.8, the prediction reliability outputs accuracy estimation value for
job i, ˆacci, using feature vectors fi = {z1i, .., zki, p̂i}.

Gradient Boosting Tree regressor is a prediction approach that ensembles regres-
sion decision trees with gradient boosting (50). In gradient boosting, a model is built
in a stage-wise fashion. In each stage, the existing model is boosted by optimization
of an arbitrary differentiable loss function. In the gradient boosting algorithm, in each
stage a tree is built based on the residuals from the tree in the previous stage. Basi-
cally, in each stage, a new gradient tree is fitted into residual values. It is important to
note that at each stage, randomized samples of training data are chosen without sub-
stitution to avoid the risk of overfitting (51). Algorithm 2 shows the procedure to find
gradient boosting regression tree predictor ˜meta− 2 for input F . The algorithm has

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 66

Figure 4.8: The trained reliability estimation machine is used to predict the accuracy
for newly submitted jobs.

training set of k dimensional input features of size N denoted as F = {f1, f2, ..., fN}
and their corresponding target accuracy values ACC = {acc1, .., accN}. As the first
step, a decision tree meta0(F) is fitted to F and ACC. Namely, the features to
branch upon at each level of the tree as well as the threshold to make the decision
is found by solving an optimization problem (66). Using the trained decision tree,
one is able to find a decision region of feature space a new feature set belonging to a
new data point resides. The predicted target value for a new data point is predicted
by averaging the runtime of the applications in the same subregion. Then, in each
stage the gradient of the residuals of predictions are calculated and a regression tree
is fitted to this gradient to find Rjm decision regions. After calculating the multiplier
for each gradient residual subtree and adding the weighted sum of subtrees to the
previous regression tree, the stage is complete. The routine is repeated for a tunable
number of stages.

Algorithm 2 Gradient Boosting Tree as the Meta Learning Approach
STATE Initialize meta0 = argmin∑N

i=1 L(acci, γ) FOR m = 1 to M FOR i =

1, .., N STATE compute rim = −
[∂Laccimeta(fi)
∂meta(f(xi)

]
f=fm−1

ENDFOR STATE fit a

regression tree to the target rim FOR j = 1, 2, ...m STATE compute γjm =
argminγ

∑
xj∈Rjm

(accimetam−1(fm−1(xi) + γ) ENDFOR STATE update metam(x) =
metam−1(x) +∑Jm

j=1 γjmI(x ∈ Rjm) ENDFOR STATE output ˜meta(x) = metaM(x)

In Fig 4.9, relative importances of the most important features are presented. The
most important feature is assumed as 100% and all other features importance factors
are scaled to [0, 100]. The value of runtime for the previously completed job from the
same user has the most influence on the predictability of the runtime for the current
job. We see that the requested runtime by users and the runtime for the job before
the last job from same user are the second and third important features. The features
names are presented in Table 4.1.

Correlation of estimated accuracy values with the actual accuracy values have been
used to measure goodness of fit for meta learning approaches in the literature (20).
In Table 4.2, the correlation of actual runtime accuracies and estimated accuracies
are compared with CNK (20) and decision tree regressor. We observe that gradient
boosting tree meta learning approach is the most appropriate for prediction reliability

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 67

Figure 4.9: Feature importances for meta learning model are shown.

gradient boosting tree decision tree CNK
HPC2N 0.84 0.77 0.44
SDSC 0.81 0.75 0.53
ANL 0.79 0.68 0.47
LLNL 0.78 0.66 0.50

Table 4.2: Correlation of estimated accuracies with actual accuracies for gradient
boosting tree is compared with decision tree and CNK.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 68

estimation of job runtime values.

4.5 Evaluating the Performance of our Proposed
Hybrid-Scheduling Platform

We use four well-known real-world production traces from (wor) to evaluate our al-
gorithms. HPC2N is trace log containing three and a half years worth of accounting
records from the High-Performance Computing Center North (HPC2N) in Sweden.
LLNL ATLAS is trace log from ATLAS cluster in Lawrence Livermore National Lab
and ANL Intrepid is from Intrepid cluster in Argonne National Lab. SDSC trace is
from the SDSC Blue Horizon in San Diego Super Computer. In order to avoid over-
fitting our machine learning models, we perform our statistical analysis on a separate
trace log (HPC2N) and test our machine learning models on three other trace logs.

4.5.1 Event-Driven Simulation
We simulate the scheduling of traces using the open source event-driven simulation
package, Alea2 (83). Alea2 simulator is based on the GridSim simulation toolkit (24).
Alea2 extends Gridsim to provide a simulation environment that supports simulation
of varying job scheduling problems (83). Alea2 uses a centralized job scheduler which
uses scheduling techniques for schedule generation. For priority-based scheduling
algorithms, Alea2 central scheduler, jobs are submitted according to their submission
time in the trace. An ordered queue of jobs is maintained and is updated at each event
of job submission or job termination. Once started, jobs run to completion, implying
that the central scheduler is not allowed to preempt or migrate the tasks. We have
added an online regression method as a machine learning based prediction module
and gradient boosting tree as job runtime prediction accuracy estimation to the Alea2
package. At the time of each job submission, the prediction module will calculate the
prediction of runtime and returns the runtime value to the central scheduler.

4.5.2 Comparison with Existing Scheduling Approaches
The aim of this section is to compare the performance and efficiency of our proposed
hybrid scheduling algorithm with common scheduling algorithms in a real-world sce-
nario. For this purpose, we implemented hybrid scheduling platform as described in
Section 4.4. To implement the platform, existing prediction module in Alea2 was ex-
tended with implementing online normalized regression as described in (55) as well as
a module for performing reliability estimation with gradient boosting tree regression.
A thin module of Hybridization Parameter Calculator was also added to ALEA 2
repository. In scheduling module, hybrid scheduler as well as FCFS backfilling with
SVF and online-SVF was added.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 69

In the performance and efficiency comparison experiments, hybrid scheduling al-
gorithm was compared with two backfilling approaches as well as two plan-based
scheduling algorithms on production traces. FCFS-BF1 denotes backfilling with SJF
as used by (142) and (55). FCFS-BF2 is similar to FCFS-BF1 but uses SVF (Small-
est Volume First) rule to choose jobs to backfill. Plan-based1 is the dynamic version of
SJF as described in Section 4.2.1. Plan-based2 is dynamic version of SVF (Im et al.).

Our Hybrid-platform uses Online-SVF as the plan-based scheduling algorithm and
FCFS-Backfilling as the backfilling algorithm. SVF is chosen for list scheduling and
for backfilling algorithm, we chose FCFS-SVF as discussed in Section 4.2.1. Waiting
time and bounded slowdown are among the most used criteria for evaluating the
performance of the scheduling algorithm and utilization is a criterion to evaluate the
resource usage efficiency of the scheduling algorithm. The criteria are listed below.

Bounded slowdown: The slowdown of a job is the ratio of job response
time to its actual time. As this formula emphasizes on the short jobs
with runtime near zero, (142) has proposed bounded slowdown. Bounded
slowdown substitutes the runtime in the dividend by the maximum of a
constant value, τ and the actual runtime.

blsd = max
(
waitj + pj
max (pj, τ) , 1

)
(4.6)

Average wait time: Average wait time measures the average of time
between job submission and the job start time on the system overall jobs.

Utilization: The ratio of total node hours used by the scheduling algorithm
to the total nod hours elapsed from the time the first job was submitted to
the system. We used Hybrid-platform to schedule jobs of four different traces from
parallel workload dataset and compared the wait times with FCFS and Backfilling
algorithms SJF-BF, and SVF-BF as well as plan-based scheduling algorithms, online-
SJF and online-SVF. We can see in Fig 4.10 that HS has about 20% lower wait time
on average. In Fig 4.11 and Fig 4.12, bounded slowdown and utilization improvement
of Hybrid-platform is compared with backfilling and plan-based approaches. We can
see that Hybrid-platform’s bounded slowdown is more than 50% lower than backfilling
and online list scheduling methods. The utilization is reported as an improvement
over simple SJF scheduling. We can see in Fig 4.12 that utilization improvement is
also significantly higher than the backfilling approaches.

4.5.3 The effect of Clairvoyance on Hybrid Scheduler
In Table 4.3, we compare the bounded slowdown of Hybrid-platform with best per-
forming backfilling and plan-based algorithms both in clairvoyant case where accurate
runtime values are available at the time of job submission as well as non-clairvoyant
case where runtimes are predicted with system generated approaches. Plan-based

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 70

HPC2N LLNL ANL SDSC

1500

2000

2500

3000

3500

4000

A
ve

ra
ge

 W
ai

t-t
im

e

Performance Comparison - Wait-time
HS
FCFS_BF1
FCFS_BF2
Plan_based1
Plan_based2
FSFS

Figure 4.10: Wait time values of HS is compared with FCFS, SVF-BF, SJF-BF, SVF
and SJF.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 71

SDSC ANL
0

10

20

30

40

50

S
lo
w
do
w
n

Performance Comparison - Slowdown
HS
FCFS_BF1
FCFS_BF2
Plan_based1
Plan_based2

Figure 4.11: Bounded slowdown values of HS is compared with SVF-BF, SJF-BF,
SVF and SJF.

SDSC ANL
0

5

10

15

20

U
til
iz
at
io
n
Im

pr
ov

em
en

t(%
)

Effinciency Compariosn - Utilization
HS
FCFS_BF1
FCFS_BF2
Plan_based1
Plan_based2

Figure 4.12: Utilization percentage of HS is compared with SVF-BF, SJF-BF, SVF
and SJF.

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 72

Clairvoyant Nonclairvoyant

Backfilling Plan-Based Backfilling Plan-based Hybrid-platform
SDSC 40 20 50 45 25
ANL 24 10 24 22 12

Table 4.3: Bounded-slowdown comparison with Clairvoyant problem setting.

30 40 50 60 70 80 90 100
alpha

2000

2200

2400

2600

2800
A

ve
ra

ge
 W

ai
t-t

im
e

HS

Figure 4.13: Comparing average wait time with various initial alpha (α0)

scheduling performs best in the clairvoyant setting when accurate job runtimes val-
ues are available. However, in the more realistic situations, we can see that Hybrid-
platform is performing very close to the ideal case.

4.5.4 Parameter Selection for Hybrid Scheduling
In order to test our heuristic approach, we studied the changes in waiting time with
different initialization of α. Although the average wait time was not sensitive to initial
parameter, α0, the initialization of α0 = 0.6 resulted in better performance.

4.6 Summary
The goal of this chapter was to design a scheduling platform to handle inaccuracies in
workload runtimes. We designed a novel scheduling platform that hybridizes two pop-
ular classes of scheduling algorithms namely, backfilling and plan-based scheduling.
Our design was motivated by different sensitivity of these two classes of schedul-
ing algorithms to runtime prediction accuracy. Our platform is designed based on
a deep understanding of the characteristics of plan-based and backfilling scheduling
algorithms. To avoid resource fragmentation, our proposed platform is adaptive and
dynamically changes the portion of computation resources that plan-based scheduler
uses based on resource requirement ratio of recently submitted jobs with reliable run-

Chapter 4. Handling Inaccuracies in Scheduling HPC Applications in Cluster 73

time prediction. Our extensive trace-based experiments show significant improvement
in the performance and utilization of HPC workload traces.

While our present work serves as a demonstration of using prediction reliability
to improve performance and utilization of HPC scheduling platforms, there are sev-
eral directions for taking our idea further. A natural direction is to implement the
proposed platform in scheduling packages such as Cobalt (38). Another direction
is to extend the proposed approaches to consider prediction reliability for resource
consumption of data center workloads.

Chapter 5

Predicting Runtimes with
Hierarchical Kalman Filters

We propose adaptive online application runtime prediction methods to improve ap-
plication latency in clouds. Scheduling algorithms are highly sensitive to the value
of application runtime. It is well known that accurate prediction of job runtimes
improves scheduling performance. Previous studies assume Gaussian distribution for
runtime values and build their predictive models based on this assumption. We show
how parallel workload runtimes follow a multi-modal distribution and propose using
Gaussian Mixture Models to achieve more accurate prediction. We model the joint
distribution of runtimes and collective features available for corresponding jobs. In
order to achieve the appropriate parameterization of the Gaussian Mixture Models,
we use deep neural networks to find the best parametrization of the mixture model.
Our experiments show that Deep Mixture Density Network (DMDN) is capable of
more accurate prediction of runtime values given the appropriate features from the
newly submitted job.Our machine learning prediction results on HPC application
traces show that our adaptive online prediction models predict the runtimes 33%
to 80% more accurately than existing prediction approaches. Besides, our extensive
trace-based scheduling simulations show that our predicted runtimes improve the
performance (wait time) by 25%.

5.1 Introduction
With the increasing availability of cloud computing services, public and private orga-
nizations are increasing their use of cloud for High-Performance Computing (HPC)
applications to avoid up-front expenses of deploying local computation clusters. Accu-
rate prediction of application runtimes improves the performance of HPC scheduling.
More specifically, helps to increase the cloud vendor revenues substantially. To opti-
mize cloud vendor revenues on the computation of HPC applications, it is necessary
to apply predictive models that are online, fast, adaptive and accurate. Additionally,
it is required that these prediction models work with minimal training data.

74

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 75

We consider the problem of predicting HPC workload runtimes to improve schedul-
ing performance and efficiency. We studied HPC application traces intensively and
used our machine learning insight to design a predictive model to estimate HPC ap-
plication runtimes. Inherent variance and dynamic nature of applications make the
accurate runtime prediction a challenging problem. With the fast changing dynam-
ics of applications, training a static model based on the pool of available completed
applications and applying it to predict new applications results in inaccurate pre-
diction. The scarcity of training data is another challenge. Most of the existing
works on predicting cluster application runtimes predict the runtimes with profiling
or analyzing the content of the submitted applications. These approaches are not ap-
propriate for public cloud due to low computation overhead requirement and privacy
considerations.

Recently, with the exponential increase in the volume of streaming data, there has
been a boost in designing online machine learning methods for time series data. These
approaches can be incorporated into cloud resource management systems to predict
resource usage and design resource allocation and scheduling algorithms that maxi-
mize the cloud vendor revenue. In this paper, we focus on predicting the runtime of
HPC applications submitted to the cloud. We propose tailored machine learning ap-
proaches specific to the dynamicity and heterogeneity of HPC applications submitted
to the cloud to improve the accuracy of runtime prediction for these applications.

To address these requirements, we propose multi-model generative online pre-
diction approaches to predict execution runtimes of applications in the cloud. The
choice of generative approaches is because the generative models are well known for
handling prediction of data with non-static underlying distribution. Our generative
models have the capacity of incorporating time-varying parameters instead of static
parameters. This will gives the on-the-fly change of model and makes the model
adaptive. The specific generative models that we consider, known as State Space
Models are known for handling irregularly spaced data which matches application
runtime time series that we are considering. Additionally, as applications submitted
to the cloud follow multiple patterns, model selection is an indispensable part of the
prediction approach. Traditionally model selection is applied based on the decision of
domain experts. However, this is not possible for real-time prediction of applications
submitted to the cloud. With designing multiple model approaches, we facilitate
automated model selection on-the-fly.

After reviewing related work on runtime prediction and its impact on HPC schedul-
ing in Section 5.2, we present our adaptive online prediction model in Section 5.3.
We evaluate our prediction models in Section 5.4 and Section 5.5. in Section 5.4,
we compare the prediction accuracy of our proposed methods on HPC traces. Ad-
ditionally, we incorporate our prediction methods into open source Alea2 simulation
package and evaluate the effectiveness of our more accurate prediction runtimes by
evaluating the performance improvement for popular scheduling algorithms.

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 76

5.1.1 Main Contributions of the Chapter
First, we propose two novel generative multi-model machine learning approaches for
adaptive online runtime prediction of HPC applications in the cloud. These multi-
model approaches are fairly generic and are expected to be used with wide range of
applications submitted to the cloud. The hybrid models are proposed for Gaussian
linear state space models but are suitable for more general state space models. We
incorporated adaptive prediction by using dynamic models rather than existing static
models to decrease prediction bias for high variance nature of cloud application data.
Second, since designing hybrid dynamic systems for application runtime prediction is
a nontrivial effort, we dedicate main part of the paper to describe the details of the
formulation of our two recursive filtering approaches, exponential smoothing, and re-
cursive linear regression and explain the design of multi-model approaches composed
of these building blocks. Third, we conduct simulation experiments on real-world
HPC traces to evaluate the effectiveness of our approaches and their advantages over
existing prediction approaches. Our results show that our adaptive online predic-
tion models outperform the existing methods by a considerable margin. We also
demonstrate the effectiveness of our more accurate prediction models on efficiency
and performance of common scheduling algorithms for HPC applications. Our trace-
based simulations show that using our predictions reduces the average waiting time
and response time considerably.

5.2 Related Work
The necessity of runtime prediction for parallel applications has been highlighted since
last years of 20th century(58). Different approaches have been proposed to predict
HPC application runtimes with different machine learning methodology as well as
prediction features inputs (142; 139).

Some other researchers have considered additional features for each job in trace
and perform prediction based on the similarity between these features of the jobs
(102; 125). Some more recent works focus on the specific family of scientific work-
flows and use machine learning for predicting runtime and resource usage for these
applications (100). Several works have proposed interrogating the codes to extract
features for runtime prediction. This is also not practical in many cases due to pri-
vacy considerations. All these approaches are static, meaning that they train a static
model based on the available applications and use the model for prediction the run-
times of new applications. Applying such a static model for a dynamic environment
like cloud leads to inaccurate predictions.

To configure the model based on the individual user and use the recently com-
pleted jobs in the same trace to strengthen the predicting power of our model, several
online methods have been proposed (133; 139). Several time series based method-
ologies are proposed to use data from previous jobs to predict the runtime for newly
submitted applications. They are mainly exponential smoothing and moving-average

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 77

methodologies that predict future values based on the recent runtime values. As
noted by (133), these methods are not accurate and will not improve the schedul-
ing performance and utilization significantly. In fact, the scarcity of relevant training
data makes the model building cumbersome. The majority of online time series based
prediction methods use simple forecasting rules including mean, moving average and
exponential smoothing. Sonmez et al. partition jobs into jobs submitted by the
same user or jobs running at the same site and applies simple time series methods
to predict the subsequent runtime of jobs based on the recent history. They consider
mean, running mean of the last two jobs as the prediction method. Although these
methods are easy to implement and do not need a large training pool, they are not
very accurate.

Most similar work to ours is (55), where an online discriminative approach is
proposed to predict runtimes for HPC applications in a parallel computing platform.
In their work, they consider historical data including few recent application runtimes
as input features to an online polynomial regression. They consider several settings
for their model and use the available traces for manual model selection. Our proposed
online generative prediction approach considers both historical runtime data as well as
trace based features. The multi-model design allows our approach to perform on the
fly model selection and achieve faster convergence to accurate model. Furthermore,
our model is more robust to drifting.

In this work, we solely focus on appropriate modeling and adaptive prediction
of HPC application runtimes. Several works have addressed the characterization of
applications in cloud (118; 103; 39). Their studies shed more light on heterogeneity
and dynamicity of applications in clouds. Several prediction-based scheduling ap-
proaches including (19) and (37) perform application profiling to gather information
about the current application. However, these approaches are not practical for large-
scale deployment. There are several works including (111) on interference detection
of applications which is not applicable to our problem setting (single application per
virtual machine).

5.3 Adaptive Online Machine Learning for Appli-
cation Runtime Prediction

5.3.1 Overview
Our goal is to predict the runtime for each HPC application right after it is submitted
to the cloud. Based on recent advancements in cloud virtualization technologies and
Software Defined Networks(SDN) (91; 156), we make three important assumptions in
this paper:

• Granularity of application: we consider the HPC applications with the granu-
larity of applications and we do not look into task level specifications.

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 78

• Application level virtualization: a new virtual machine (VM) is deployed for
each application and terminated as the related application completes execution.

• Non-preemption: a running application/VM will not be interrupted or migrated
until the completion of execution.

In this work, we are not concerned with the details of tasks in each HPC application
and focus on these applications as a single unit. As our prediction methods are fairly
generic they can be extended to a finer granularity of tasks as future works. Note that
light-weight virtualization services such as containers can facilitate the allocation of
each application on a single virtual machine. So we assume a VM starts as soon as an
application is submitted to the system and terminates when the application completes
execution. As data extensive nature of HPC applications makes preemption costly
and impose overhead on the computation pipeline, we assume applications to be
non-preemptive.

We consider the problem of application runtime prediction for a newly submitted
HPC application request. To perform the prediction we have access to available infor-
mation from application requests as well as system features and history of previous
application runtimes. The training data is gradually accumulated and we need to
perform a prediction for each new feature vector right away with the available data.
For each application Ai, the feature vectors, Zis, enter to the system at time ti. Its
actual runtime, yi is only known after the Ai’s completion time t′i (t′i > ti).One naive
approach is to apply blind predictors for the first applications and gather the comple-
tion times to build a model for prediction runtimes of future applications. The offline
model will be retrained after several new application features and actual runtimes
are accumulated. However, as it seems, this approach is not accurate. Increasing the
frequency of retraining may increase the accuracy but makes the model building over-
head intractable. The appropriate approach for performing prediction is performing
online learning. The general scenario is that the prediction is performed for a new
observation using a prediction model. After the actual application runtimes become
available, the prediction error, vi = yi− ŷi is used to tweak the model for more accu-
rate prediction of future application runtimes. The online prediction approaches can
be classified into two general groups of discriminative and generative approaches. In
discriminative approaches, the new model parameters are updated with minimizing
the loss function. However, discriminative models are known to be inaccurate in case
of limited training data. They are also known to be ineffective when the underlying
distribution of data is not stationary and evolves over time. As submitted appli-
cations to the cloud are known for dynamicity and constantly changing, we propose
generative online learning approaches. In generative approaches, an initial underlying
distribution is assumed for the application runtime data and will be updated with
each new feature vector and actual runtime. Using generative approaches, we can
better detect distribution changes in the joint distribution of runtimes and features
data. Generative models let us use Bayes rule to perform automatic model selection
as we will describe in our first proposed approach. We can also consider multiple

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 79

Table 5.1: Features extracted from SWF files of HPC application traces for each user

Feature Meaning

ỹj User estimated runtime for jth application application requested by the user
dj The resource (CPU) request for jth application application requested by the user

TD Time of the day the application is submitted
TW Time of the week the application is submitted

Freecapcity Available free resource at the time of submission normalized by total resources for HPC applications

models for each trace and use observed features to perform model selection for each
application in the trace. Additionally, the generative approaches are known to per-
form better in the case of missing data which is common in our problem.
Problem Statement We describe the applications in terms of historical data in time
series format. time series are sets of runtimes y1, ..., yT and features Z1, Z2, ..., ZT or-
dered in time. Each application is indexed by the time it is submitted to the system.
Different features including runtime and resource usage can be expressed as time
series. The applications can be described with the following triplets.

(ti, yi, Zi) | 0 ≤ i ≤ n

ti ∈ R : ti ≤ ti+1

The features (Zi) are described in Table 5.1. Part of features are extracted from
application description including required resources. Some system features and en-
vironmental features including number of jobs currently running on the system and
time of the day and day of the week are also considered.

5.3.2 Prediction Methodology
The prediction is achieved via modeling the applications runtimes time series as a
state space model. This choice is motivated by the dynamic nature of state space
models that facilitates an adaptive prediction of application runtimes. State space
models can be considered as generative machine learning approaches where the set of
observations are generated from a set of hidden states that evolve over time. In our
study, the unobserved series that we call latent properties are application runtimes
which are unknown before the application completes execution in the system. Re-
gression coefficients (Zt) are the properties that are known at the time of application
submission, including submission time, user estimate of runtime, user estimate of
CPU and requested memory. We assume that the over time evolution of the appli-
cation runtimes denoted by y1, ..., yt are associated with a series of observed features
Z1, ..., Zt. We consider runtime values yi as regressions of observed features Zis plus
some error ε as in Equation 5.1. This is exactly the recursive least square. However

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 80

α1

Y1

α2

Y2

αT

YT

Figure 5.1: The Kalman Filter is a Hidden Markov Model with continuous latent
variables. Yis are observations produced by Xis. Xi form a random walk.

Predict Measure

Correct
Time t+1

Figure 5.2: Kalman Filter starts with an initial distribution, after each observation,
the assumption is filtered to a more accurate distribution.

we consider a more general formulation where the regression coefficient, αi is not
constant and changes according to a Markov chain as in Equation 5.2.

yt = Ztαt + εt, εt ∼ N (0,Ht) (5.1)
αt+1 = Tαt + ηt, ηt ∼ N (0,Qt)

α1 ∼ N (a1, p1).
(5.2)

Zt, Rt, Ht and Qt are initialized based on domain knowledge for the specific model.
Note that Equation 5.1 along with Equation 5.2 represents general linear Gaussian
state space model . We consider two different settings for the parameters Zt and
T and derive exponential smoothing and adaptive linear regression from this linear
dynamic system. The system starts with initial distribution for the hidden value α.
As the system gets new observation values, the model parameters αt+1 and pt+1 are
updated using a regression lemma for calculating mean and covariance of conditional
distribution of P (αt|Yt−1, vt) (43). Given runtime values (yt) and the error in pre-
diction of yt, denoted as vt, we can update our model for the prediction of current
application runtime. This recursive process is called Kalman filtering and is presented
in Equation 5.3.

at+1 = TatZ
′
tZtPtZ

′
t +Ht (5.3)

Pt+1 = TPt(T − TPtZ ′) +Qt (5.4)

At time t, the Equation 5.3 calculates the estimated mean of hidden variable αt,
denoted by at, and its covariance, denoted by pt. Having the mean and covariance of

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 81

the hidden variable, we can calculate the prediction of our runtime values using the
Equation 5.1.

Motivated by the auto-regressive property of traces and the correlation between
available features and the history of previous runtimes, we consider two important
groups of linear Gaussian state space models. Autoregressive forecasting (exponential
smoothing) and recursive least squares. We highlight the fact that both these models
can be considered as special cases of Linear Dynamic Systems, known as Kalman
Filters (43). Generalizing these two approaches as state space models are beneficial
because it facilitates hybridizing these models and also makes our approaches extend-
able to more complex models in future studies. We focus on linear Gaussian state
space models and propose two multi-model prediction approaches based on these
models to reach lower bias and higher prediction accuracy.
Exponential Smoothing: Now we will show that Equation 5.2, which is also called
the state space model, is in fact a first order auto-regressive model. Considering the
feature vectors Zt and T as unit vector, we derive exponential smoothing predic-
tion recursion which is a common low-overhead approach to forecast future values of
runtimes. The following formulation of exponential smoothing can be expressed in
recursive formula of Equation 5.6.

yt+1 = (1− λ)
∞∑
0
λjyt−1 0 ≤ λ ≤ 1 (5.5)

ŷt is calculated with the following recursive relation:
ŷt+1 = (1− λ)yt + λŷt (5.6)

The exponential smoothing recursion can be derived from Equations 5.1 and 5.2 as
follows:

yt = αt + εtαt+1 = αt + ηtyt − yt−1 = εt − εt−1 + ηt (5.7)

Setting λ appropriately will yield the Equation 5.6.
Adaptive Linear Regression: To gain more predictive power, we would like to

use the information available at the submission time of the applications. A simple
regression model for runtimes is

yt = Ztα + εt εt,∼ N(0, Ht)
which is actually in the form of Gaussian linear dynamic system. where Zt is 1 × k
regressor vector and α is the regression coefficient. We can see that the Gaussian
linear dynamic system derived from Equations 5.1 and 5.2 gives the recursive least
squares method as developed by Packett (112). To derive the regression with time
varying coefficient, we allow the coefficient α to vary according to a random walk,
αt+1 = αt + ηt. The related Gaussian linear dynamic system expression will beyt = ztαt + εt

αt+1 = αt + ηt
(5.8)

After deriving the filter equations for mean and variance of αt+1, Equation 5.1 is
applied to predict the value of runtime (yt).

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 82

5.3.3 First Proposed Approach: Fixed Multiple Kalman Fil-
ter (FMKF)

In our first approach, we perform automated model selection between two different
candidate models: exponential smoothing and adaptive linear regression. Our hybrid
approach figures out which model is actually producing the runtime values based on
the prediction error for previous time steps. It calculates each runtime based on the
likelihood of each models being in effect. We follow a Bayesian framework: starting
with prior probabilities of each model being correct (the system being in a particular
mode), the corresponding posterior probabilities are obtained. We assume the model
the system obeys is fixed. The model assumed to be in effect is one of the two
candidate models. We explained the Kalman Filter representations of Exponential
Smoothing and Adaptive Linear Regression in the previous section. Next, we will
present our hybrid prediction model that combines the two models.

Our first hybrid model arbitrates between two predictive models: Exponential
Smoothing and Adaptive Linear Regression. We assume that only one of the pre-
dictive models is in effect for each user trace. We designed this model based on the
assumption that as we get more completed applications from a user, adaptive linear
regression gains more power to predict the application runtimes. Probabilities pt1 and
pt2 determine which of the two Kalman Filters the model is using to generate predic-
tion in step i. The initial probabilities p0

1 and p0
2 favor auto-regressive Kalman Filter

and both models evolve as more application runtimes are available. The likelihood
function of model j at time t is given by

Λj(t) = p[z(t)|Zt−1,Mj] = p[νj(t)] = N [(νj(t); 0, Sj(t)] (5.9)
Where νj and Sj are the innovation(error of prediction) and its covariance for model j
(11). Using the likelihood for each model we can calculate the probability that model
j is effective after tth step by the following expressions.

µj(t) = Λj(t)µj(t− 1)∑2
i=1 [Λi(t)µi(t− 1)]

j = 1, 2 (5.10)

The state of the system is a Gaussian mixture with two terms

p(α(t)|Zt) =
2∑
i=1

µi(t)N [αi(t); α̂i(t), Pi(t)] (5.11)

Mean and covariance of the state at time step t is calculated using the most recent
posterior probability of each model µj(t − 1). For derivations of the mean and co-
variance of the mixture model we refer the reader to the work of Bar-Shalom et al.
(11).

5.3.4 Second Proposed Method: Multi-Layer Kalman Filter
(MLKF)

Our second approach is a hierarchical Kalman Filter based on the observation that
most runtime traces for users follow a bimodal distribution, as an example the dis-

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 83

tribution of application runtimes is demonstrated Fig 5.3. At the first level, the
application is classified as short or long. In the second level, one of the two auto
regressive Kalman Filter is applied for predicting runtime. We initialize two auto

Figure 5.3: Runtimes of the all jobs are shown.

regressive Kalman Filters that evolve in parallel over time. At each time step, one of
the models is creating runtime values. To predict the runtime for a new application
we should determine which model to use for prediction. This prediction takes place
in the first layer of our prediction model, where a classifier Kalman Filter is used
to determine which of the two models is generating the runtime values. This first
layer, is actually an adaptive online classifier that uses available features at the time
of job submission to decide which model should be used to predict the runtime for
the submitted application. This is shown in Fig 5.4. To design the online adaptive
classifier, we use a modified version of adaptive linear regression Kalman Filter. The
modification is related to mapping the Kalman Filter output to a class label. Our
online classifier, classifies the incoming feature vector into one of the two classes: long
and short. The online adaptive classifier generates a binary value by thresholding the
result of an adaptive linear regression Kalman Filter.

C(yi) =

1 if yi ≥ T

0 Otherwise1.
(5.12)

The adaptive online classifier thresholds the result of the adaptive online classifier as
in Equation 5.8 as in equation 5.12 determine the class that the input observation
belongs to. In the second level, based on the class the application fall into, the
related autoregressive Kalman Filter is applied to predict the runtime. Consider an
application a is submitted to our Multi-Level Kalman Filter Model (MLKF). At the

α1

C1= 0

Y1

α2

C2= 1

Y2

α3

C3= 1

Y3

α4

C4= 0

Y4

Figure 5.4: One of the two auto regressive Kalman Filters AR1 and AR2 are chosen
based on the classification of features by Adaptive Online Classifier.

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 84

first level, an adaptive logistic regression will determine if the incoming workload
belongs to the long class or short class. At the second level, the appropriate Kalman
Filter is applied to predict the runtime of a.

5.4 Experimental Evaluation of the Prediction Meth-
ods

We implemented our novel prediction models as a Java module for ALEA2 simulation
package. We have shared the updated package in Github. In this section we report
our trace based experiments to showcase the effectiveness of our proposed prediction
models.
Trace Data: We use four widely used real world production traces from (wor) to
evaluate our algorithms. HPC2N is trace log containing three and a half years worth
of accounting records from the High-Performance Computing Center North (HPC2N)
in Sweden. LLNL ATLAS is trace log from ATLAS cluster in Lawrence Livermore
National Lab and ANL Intrepid is from Intrepid cluster in Argonne National Lab.
SDSC trace is from the SDSC Blue Horizon in San Diego Super Computer. In order
to avoid overfitting our machine learning models, we perform our statistical analysis
on a seperate trace log (HPC2N) and test our machine learning models on three other
trace logs.

5.4.1 Prediction Accuracy Evaluation
We compare the accuracy of our proposed online generative methods with most com-
mon prediction method for parallel workload scheduling. We will demonstrate how
our accurate predictions improve the performance of scheduling algorithms in sec-
tion 5.5. We follow the commonly used measure of prediction accuracy in HPC
scheduling literature(142; 133).

accuracy =


1 if ŷ = y
ŷ
y

if ŷ < y
y
ŷ

if y < ŷ

(5.13)

We compared the accuracy of our proposed adaptive models with exponential
smoothing (ES) and moving average(MA2) as the most widely used methods of on-
line prediction for job runtime. MA calculates the current runtime as the average
of the runtime of the last two completed jobs. ES Calculates a weighted average
of previous values. We see that both FMKF and MLKF improve accuracy substan-
tially over the common widely used online runtime prediction methods. For all user
traces FMKF and MLKF perform substantially better than common approaches for
predicting runtimes.

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 85

User 7 User 6 User 17 User 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User Trace

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

ES

MA2

FMKF

MLKF

Figure 5.5: Prediction Accuracy of several traces in HPC2N trace

5.5 The impact of More Accurate Predictions on
Scheduling Performance

Recently, consolidation of cloud applications have been proposed to improve resource
efficiency and power usage in data centers(35; 134). These consolidation methods
consider a limited set of resources for a set of jobs. This setting is similar to that of
HPC clusters. More recently, Software Defined Networks provide the abstraction for
assigning a block of virtual resources to a set of specific type of jobs (86). Scheduling
algorithms that optimize performance are highly dependant on the accurate predic-
tion of application runtimes. In this section, we investigate the performance of wait
time and response time in HPC traces. We consider an HPC cluster managed by
a centralized scheduler that has complete control over all jobs and resources in the
system. The events in the system include application submission, application start,
normal application end and application termination if the job exceeds its expected
runtime.

5.5.1 Event Driven Simulation
We simulate the scheduling of traces using open source event-driven simulation pack-
age, Alea2(83). Alea2 Simulator is based on the GridSim simulation toolkit which was
extended to provide a simulation environment that supports simulation of varying job
scheduling problems. Alea2 uses a centralized job scheduler which uses (advanced)
scheduling techniques for schedule generation. For priority based scheduling algo-
rithms, Alea2 central scheduler, jobs are submitted according to their submission
time in trace. An ordered queue of jobs is maintained and is updated at each event
of job submission or job termination. Once started, jobs run to completion, implying
that the central scheduler is not allowed to preempt or migrate the tasks. We have

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 86

added our implementation of the predictive methods as a machine learning based
prediction module to the Alea2 package. At the time of each job submission, the
prediction module will calculate the prediction of runtime and returns the runtime
value to the central scheduler.

5.5.2 Scheduling Algorithms
The scheduling scenario we consider here is as follows: there are n applications:
A1, A2, ..., An each Ai has a resource demand di and runtime pi. Applications are
submitted to the system at submission times t1, t2, ..., tn. Each Ai will have response
time ri and wait time wi. The former is the time it takes for the application form
submission to completion, the latter denotes the time that takes for the job to start
execution after submission to the system. We assume that the total resource available
is R. For simplicity, we only assume one type of resources. A scheduling algorithm
assigns a time si to each application. We are interested in scheduling that optimizes
the sum of response times ∑i ri. The most widely used for HPC applications are
priority based algorithms. In priority based methods, an ordered queue of jobs is
maintained and updated at each event of new job submission or job termination.
Priority based scheduling algorithms suffer from fragmentation of resources. This
leads to having many idle processors which imply lower performance and resource
utilization. Backfilling methods are proposed to improve priority based scheduling
policies by allowing waiting jobs in the queue to bypass earlier jobs as they can fit
into the idle resources. The most popular backfilling algorithm in HPC clusters is
Easy backfilling. It allows later jobs in the queue to move forward without slowing
the first job in the queue. Easy is widely used because it is simple and has higher per-
formance than plain First Come First Served algorithm. In (142), authors proposed
Short Job First Backfilled First (SJF-BF) to leverage runtime predictions. However,
in (133), the authors claimed that runtime predictions are inaccurate and do not im-
prove performance and efficiency. Priority-based algorithms are the most widely used
scheduling algorithms for HPC clusters due to their low overhead. The most widely
used scheduling algorithm is FCFS-Easy. We will showcase the effect of our online
machine learning prediction methods with the SJF-BF algorithm. SJF-BF (142) is
similar to Easy, except that for the backfilling, the smallest job is selected to bypass
the earlier jobs in the queue. To avoid premature killing of jobs according to short
predictions(142), our simulator uses the user estimation when our predicted finishing
time is reached and the application is still running.

5.5.3 Results
One of the most important metrics to evaluate performance in a dynamic system is
the measure of wait time. Wait time is the time that the job needs to wait until it
starts runt time. We have compared the wait time of our two implemented exact
plan based scheduling algorithms with EASY backfilling on FCFS for three different
production traces. Another measurement of performance is the measure of response

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 87

time. Response time measures the time it takes from the submission of the job till the
job completion time. Both FMKF and MLKF prediction methods improved the wait
time and runtime of user traces significantly. To avoid confusion we only plotted the
result of the best method for each trace. We can see that although user estimates do
not improve the performance of SJFBF over EASY-BF, our machine learning based
predictions reduce wait time and response time significantly. Utilization is another

ANL LLNL SDSC
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Workload

W
a

it
 T

im
e

FCFS

SJF−Est

SJF−ML

Figure 5.6: Wait time of SJF-BF using ML based predictions.

ANL LLNL SDSC
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Workload

R
e

s
p

o
n

s
e

 T
im

e

FCFS

SJF−Est

SJF−ML

Figure 5.7: Response time of SJF-BF using ML based predictions.

important measure to reduce the OPEX cost of cluster owners. By integrating a fairly
accurate prediction system, we were able to improve both of these factors . Table 5.2
shows the improvement of our methods over the commonly used method.

5.6 Summary
The goal of this paper was to explore the suitability of generative online learning
methods as adaptive approaches to predict runtime of HPC applications in clouds.

Chapter 5. Predicting Runtimes with Hierarchical Kalman Filters 88

Table 5.2: Comparison of average cluster utilization
Workload FCFS SJF-ES SJF-FMKF SJF-MLKF

ANL 0.63 0.63 0.64 0.64
LLNL 0.74 0.73 0.75 0.76
SDSC 0.78 0.78 0.81 0.81

We started by generalizing exponential smoothing and recursive least squares methods
in form of Kalman Filaters. We then designed two hybrid generative approaches to
achieve more accurate prediction for HPC application runtimes in the cloud. In
our hybrid approaches, automated model selection and model switching decreased
the model bias and facilitated more accurate prediction of runtimes for the HPC
application submitted to cloud.

We compared our prediction approaches with widely used approaches on available
public HPC traces. Our adaptive prediction models improved over the existing pre-
diction approaches by 33% inaccuracy. Besides, our extensive trace-based scheduling
simulations showed that our predicted runtimes improved the performance (wait time)
25%. Our trace-based simulations showed that using the more accurate prediction
methods will improve the performance of scheduling algorithms. Our multi-model
generative approaches can be used for more general problems of resource usage pre-
diction and improve the performance and efficiency.

Chapter 6

Predicting Runtime using Deep
Mixture Density Networks

We propose Deep Mixture Density Networks to prediction HPC application runtimes.
Our more accurate predictions improve application latency in HPC clusters. Schedul-
ing algorithms are highly sensitive to the value of application runtime. It is well known
that accurate prediction of job runtimes improves scheduling performance. Previous
studies assume Gaussian distribution for runtime values and build their predictive
models based on this assumption. We show how parallel workload runtimes follow
a multi-modal distribution and propose using Gaussian Mixture Models to achieve
more accurate prediction. We model the joint distribution of runtimes and collective
features available for corresponding jobs. In order to achieve the appropriate param-
eterization of the Gaussian Mixture Models, we use deep neural networks to find the
best parametrization of the mixture model. Our experiments show that Deep Mixture
Density Network (DMDN) is capable of more accurate prediction of runtime values
given the appropriate features from the newly submitted job.Our machine learning
prediction results on HPC application traces show that our adaptive online predic-
tion models predict the runtimes 33% to 80% more accurately than existing prediction
approaches. Besides, our extensive trace-based scheduling simulations show that our
predicted runtimes improve the performance (wait time) by 25%.

6.1 Introduction
Recently, machine learning approaches have been used for performance prediction for
distributed systems. A group of these approaches predicts the performance metric val-
ues directly from data available about each application. Another group, first predict
performance-related features, including runtime and resource usage. These features
are, in fact, the requirement of the application to reach desirable performance. They
use these predictions to perform simulations and calculate the values of performance
metrics. Performance prediction helps to benchmark different scheduling approaches.
In other hands, the need for workload characterization and prediction arise from the

89

Chapter 6. Predicting Runtime using Deep Mixture Density Networks 90

insufficient information at the time of submission of applications. Many scheduling
and resource management algorithms require an accurate value of runtime and re-
source usage to reach to desired performance and efficiency results. As these values
are not available, machine learning can be used to provide estimations.

We consider the problem of predicting HPC workload runtimes to improve schedul-
ing performance and efficiency. We studied HPC application traces intensively and
used our machine learning insight to design a predictive model to estimate HPC ap-
plication runtimes. Inherent variance and dynamic nature of applications make the
accurate runtime prediction a challenging problem. With the fast changing dynam-
ics of applications, training a static model based on the pool of available completed
applications and applying it to predict new applications results in inaccurate pre-
diction. The scarcity of training data is another challenge. Most of the existing
works on predicting cluster application runtimes predict the runtimes with profiling
or analyzing the content of the submitted applications. These approaches are not ap-
propriate for public cloud due to low computation overhead requirement and privacy
considerations.

Our extensive study and analysis of HPC applications traces showed that the
target values follow multi-model distribution. More specifically, they can be described
with Gaussian Mixture ModelsGMM) effectively. GMMs are good descriptors when
a single X can have any of the multiple target values based on the specific Gaussian
from the mixture.

Considering the gaussian mixture model for the data, we propose Deep Mixture
Density Networks approaches to predict execution runtimes of applications in the
cloud. The choice of Deep Mixture Density Networks is because the generative models
are well known for handling prediction of data with non-Gaussian distribution. Our
mixture models have the capacity of capturing multi-modality of the job runtime
distribution. This will gives the on-the-fly change of model and makes the model
adaptive. The specific generative models that we consider, known as State Space
Models are known for handling irregularly spaced data which matches application
runtime time series that we are considering. Additionally, as applications submitted
to the cloud follow multiple patterns, model selection is an indispensable part of the
prediction approach. Traditionally model selection is applied based on the decision of
domain experts. However, this is not possible for real-time prediction of applications
submitted to the cloud. With designing multiple model approaches, we facilitate
automated model selection on-the-fly.

6.1.1 Our Contributions
We propose the usage of Deep Mixture Density Networks for HPC runtime prediction.
The choice of Mixture Density Networks (MDN) is based on our workload analysis
and our understanding of the distribution of the HPC runtime data.

Chapter 6. Predicting Runtime using Deep Mixture Density Networks 91

6.1.2 Chapter Organization
After reviewing related work on runtime prediction and its impact on HPC scheduling
in Section 6.2, we present our Mixture Density Network in Section 6.3. We evaluate
our prediction models in Section 6.4. in Section 6.4, we compare the prediction
accuracy of our proposed methods on HPC traces.

6.2 Related Work

6.2.1 Related Work on HPC Application Runtime Prediction
The necessity of runtime prediction for parallel applications has been highlighted since
last years of 20th century(58). Different approaches have been proposed to predict
HPC application runtimes with different machine learning methodology as well as
prediction features inputs (142; 139).

Some other researchers have considered additional features for each job in trace
and perform prediction based on the similarity between these features of the jobs
(102; 125). Some more recent works focus on the specific family of scientific work-
flows and use machine learning for predicting runtime and resource usage for these
applications (100). Several works have proposed interrogating the codes to extract
features for runtime prediction. This is also not practical in many cases due to pri-
vacy considerations. All these approaches are static, meaning that they train a static
model based on the available applications and use the model for prediction the run-
times of new applications. Applying such a static model for a dynamic environment
like cloud leads to inaccurate predictions.

To configure the model based on the individual user and use the recently com-
pleted jobs in the same trace to strengthen the predicting power of our model, several
online methods have been proposed (133; 139). Several time series based method-
ologies are proposed to use data from previous jobs to predict the runtime for newly
submitted applications. They are mainly exponential smoothing and moving-average
methodologies that predict future values based on the recent runtime values. As
noted by (133), these methods are not accurate and will not improve the schedul-
ing performance and utilization significantly. In fact, the scarcity of relevant training
data makes the model building cumbersome. The majority of online time series based
prediction methods use simple forecasting rules including mean, moving average and
exponential smoothing. Sonmez et al. partition jobs into jobs submitted by the
same user or jobs running at the same site and applies simple time series methods
to predict the subsequent runtime of jobs based on the recent history. They consider
mean, running mean of the last two jobs as the prediction method. Although these
methods are easy to implement and do not need a large training pool, they are not
very accurate.

Most similar work to ours is (55), where an online discriminative approach is
proposed to predict runtimes for HPC applications in a parallel computing platform.

Chapter 6. Predicting Runtime using Deep Mixture Density Networks 92

In their work, they consider historical data including few recent application runtimes
as input features to an online polynomial regression. They consider several settings
for their model and use the available traces for manual model selection. Our proposed
online generative prediction approach considers both historical runtime data as well as
trace based features. The multi-model design allows our approach to perform on the
fly model selection and achieve faster convergence to accurate model. Furthermore,
our model is more robust to drifting.

6.2.2 Related work on HPC jobs runtime prediction
In this work, we solely focus on appropriate modeling and adaptive prediction of HPC
application runtimes. Several works have addressed the characterization of applica-
tions in cloud (118; 103; 39). Their studies shed more light on heterogeneity and
dynamicity of applications in clouds. Several prediction-based scheduling approaches
including (19) and (37) perform application profiling to gather information about
the current application. However, these approaches are not practical for large-scale
deployment. There are several works including (111) on interference detection of
applications which is not applicable to our problem setting (single application per
virtual machine).

6.3 Mixture Density Networks for Runtime Predi-
cion

6.3.1 Overview
Our goal is to predict the runtime for each HPC application right after it is submitted
to the cloud. Based on recent advancements in cloud virtualization technologies and
Software Defined Networks(SDN) (91; 156), we make three important assumptions in
this paper:

• Granularity of application: we consider the HPC applications with the granu-
larity of applications and we do not look into task level specifications.

• Application level virtualization: a new virtual machine (VM) is deployed for
each application and terminated as the related application completes execution.

• Non-preemption: a running application/VM will not be interrupted or migrated
until the completion of execution.

In this work, we are not concerned with the details of tasks in each HPC application
and focus on these applications as a single unit. As our prediction methods are fairly
generic they can be extended to a finer granularity of tasks as future works. Note that
light-weight virtualization services such as containers can facilitate the allocation of
each application on a single virtual machine. So we assume a VM starts as soon as an

Chapter 6. Predicting Runtime using Deep Mixture Density Networks 93

application is submitted to the system and terminates when the application completes
execution. As data extensive nature of HPC applications makes preemption costly
and impose overhead on the computation pipeline, we assume applications to be
non-preemptive.

We consider the problem of application runtime prediction for a newly submitted
HPC application request. To perform the prediction we have access to available infor-
mation from application requests as well as system features and history of previous
application runtimes. The training data is gradually accumulated and we need to
perform a prediction for each new feature vector right away with the available data.
For each application Ai, the feature vectors, Zis, enter to the system at time ti. Its
actual runtime, yi is only known after the Ai’s completion time t′i (t′i > ti).One naive
approach is to apply blind predictors for the first applications and gather the comple-
tion times to build a model for prediction runtimes of future applications. The offline
model will be retrained after several new application features and actual runtimes
are accumulated. However, as it seems, this approach is not accurate. Increasing the
frequency of retraining may increase the accuracy but makes the model building over-
head intractable. The appropriate approach for performing prediction is performing
online learning. The general scenario is that the prediction is performed for a new
observation using a prediction model. After the actual application runtimes become
available, the prediction error, vi = yi− ŷi is used to tweak the model for more accu-
rate prediction of future application runtimes. The online prediction approaches can
be classified into two general groups of discriminative and generative approaches. In
discriminative approaches, the new model parameters are updated with minimizing
the loss function. However, discriminative models are known to be inaccurate in case
of limited training data. They are also known to be ineffective when the underlying
distribution of data is not stationary and evolves over time. As submitted appli-
cations to the cloud are known for dynamicity and constantly changing, we propose
generative online learning approaches. In generative approaches, an initial underlying
distribution is assumed for the application runtime data and will be updated with
each new feature vector and actual runtime. Using generative approaches, we can bet-
ter detect distribution changes in the joint distribution of runtimes and features data.
Generative models let us use Bayes rule to perform automatic model selection as we
will describe in our first proposed approach. We can also consider multiple models for
each trace and use observed features to perform model selection for each application
in the trace. Additionally, the generative approaches are known to perform better in
the case of missing data which is common in our problem.

Features extracted from SWF files of HPC application traces for each
user

• ỹj : User estimated runtime for jth application application requested by the user

• dj: The resource (CPU) request for jth application application requested by
the user

Chapter 6. Predicting Runtime using Deep Mixture Density Networks 94

• TD: Time of the day the application is submitted

• TW: Time of the week the application is submitted

• Freecapcity: Available free resource at the time of submission normalized by to-
tal resources for HPC applications

Problem Statement We describe the applications in terms of historical data in
time series format. time series are sets of runtimes y1, ..., yT and features Z1, Z2, ..., ZT
ordered in time. Each application is indexed by the time it is submitted to the
system. Different features including runtime and resource usage can be expressed as
time series. The applications can be described with the following triplets.

(ti, yi, Zi) | 0 ≤ i ≤ n

ti ∈ R : ti ≤ ti+1

The features (Zi) are described in Table 6.3.1. Part of features are extracted from
application description including required resources. Some system features and en-
vironmental features including number of jobs currently running on the system and
time of the day and day of the week are also considered.

6.3.2 Prediction Methodology
The prediction is achieved via deep mixture density networks (DMDN). Mixture Den-
sity Networks are first proposed by Bishop in 1994 (17). MDNs extend the conven-
tional neural networks for approximating target values that do not follow Gaussian
distribution. Instead of estimating the average, the network estimates the conditional
distribution of the target value. As HPC runtime values follow multi-modal distri-
bution and they show heteroscedasticity, MDNs are appropriate approach for their
prediction. Instead of single Gaussian, the general distribution we consider for job
runtimes is as follows:

p(t | x) =
m∑
i=1

(t | x)(t) (6.1)

where.
φ(t | x) = 1

(2π)c/2δi(x)c exp−‖t− µi(x)‖2

2σi(x)2 . (6.2)

µi represents the center of the ith Gaussian kernel. A Gaussian mixture models with
kernels given by 6.2 can approximate any given density function to arbitrary accuracy
provided the mixing coefficients and Gaussian parameters are correctly chosen (101).
One important issue is how to determine the parameters of of Gaussian mixture mod-
els in 6.1. Following the MDN we consider these parameters to be function of input

Chapter 6. Predicting Runtime using Deep Mixture Density Networks 95

data. In order to approximate the function we train a neural network that outputs
three sets of parameters to model our mixture model. By choosing appropriate num-
ber of mixture models and appropriate architecture of neural network, we are able to
approximate conditional distribution of p(t | x).

After training the neural network with sufficient input data and corresponding
target values, the neural network can be used to approximate target values for input
data. Assuming that the component kernels of the mixture model are not strongly
overlapping, the target values can be calculated as the center of the highest component
calculated as

max
i
{αi(x)
δi(x) } (6.3)

6.3.3 Architecture of Deep Mixture Network to predict job
runtimes

To obtain the parameters for the mixture, a DNN is modified to output multiple
parameter vectors. We start off with a single layer DNN and a ReLU activation.
Using the hidden layer h1(x), we proceed by computing the parameters of the mixture
as follows:

h1(x) = max(W T
1 X + b1, 0) (6.4)

αx = softmax(W T
α h1(x) + bα) (6.5)

µ(x) = W T
µ h1(x) + bµ (6.6)

σ(x) = W T
σ h1(x) + bσ (6.7)

The mixing coefficient must sum to unity: ∑α(x) = 1. Therefore, we are using a
softmax function to constrain the output. This step is important, as the mixture of
probabilities must integrate to one. The constraints for µ and σ themselves depend on
the distribution we are choosing for our model. The only constraint we must enforce
for Gaussian is, that the std. deviation is σ(x) > 0.

6.4 Experimental Evaluation of the Prediction Meth-
ods

We implemented our novel prediction models as a Java module for ALEA2 simulation
package. We have shared the updated package in Github. In this section we report
our trace based experiments to showcase the effectiveness of our proposed prediction
models.
Trace Data: We use four widely used real world production traces from (wor) to
evaluate our algorithms. HPC2N is trace log containing three and a half years worth
of accounting records from the High-Performance Computing Center North (HPC2N)
in Sweden. LLNL ATLAS is trace log from ATLAS cluster in Lawrence Livermore
National Lab and ANL Intrepid is from Intrepid cluster in Argonne National Lab.

Chapter 6. Predicting Runtime using Deep Mixture Density Networks 96

SDSC trace is from the SDSC Blue Horizon in San Diego Super Computer. In order
to avoid overfitting our machine learning models, we perform our statistical analysis
on a separate trace log (HPC2N) and test our machine learning models on three other
trace logs.

6.4.1 Prediction Accuracy Evaluation
We compare the accuracy of our proposed online generative methods with most com-
mon prediction method for parallel workload scheduling. We follow the commonly
used measure of prediction accuracy in HPC scheduling literature(142; 133).

accuracy =


1 if ŷ = y
ŷ
y

if ŷ < y
y
ŷ

if y < ŷ

(6.8)

6.5 Summary
The goal of this paper was to explore the suitability of Mixture Density Network to
predict runtime of HPC applications in clouds. We started by explaining . We then
designed two hybrid generative approaches to achieve more accurate prediction for
HPC application runtimes in the cloud. In our hybrid approaches, automated model
selection and model switching decreased the model bias and facilitated more accurate
prediction of runtimes for the HPC application submitted to cloud.

We compared our prediction approaches with widely used approaches on available
public HPC traces. Our MDN models improved over the accuracy of existing pre-
diction approaches. Our MDN approaches can be used for more general problems of
resource usage prediction and improve the performance and efficiency of distrbuted
systems.

Chapter 7

Predicting CPU Usage with Deep
Recurrent Neural Networks

Ensuring sustainability in the competitive cloud computing market requires cloud
providers to incorporate more efficient resource management techniques to minimize
their resource usage while providing competitive quality of service to customers. This
level of efficiency is not possible without smart allocation of virtual machines on
physical resources. Therefore, the future data centers should provide an unprece-
dented level of flexibility in resource management that requires intelligent decision
making and scheduling of virtual machines. To that end, predictions of future re-
source consumption of virtual machines on individual virtual machine trace level is
required. Accurate resource consumption forecasting has received attention in recent
years, however, it has proven to be a difficult problem. We propose attention-based
LSTM deep neural networks for long term prediction in individual CPU consumption
of virtual machine traces. We investigate attention-based LSTM architectures and
provide more accurate long term prediction for individual VM consumption. We train
a deep LSTM network on CPU usage traces of 39000 virtual machines. We propose
structural attention models appropriate for VM traces to improve LSTM prediction
ability. To demonstrate the effectiveness of our approaches, we used our approaches
to predict real-world workloads from Microsoft Azure Public Dataset. Our exper-
iments demonstrate a considerable improvement in prediction error over currently
used approaches for workload prediction.

7.1 Introduction
Data centers consumed about 1.3 percent of the worldwide electricity in 2012, and this
fraction will grow to 8% by 2020 (54). There are increasing environmental concerns
to reduce energy consumption and CO2 emissions in industry (85). Cloud providers
such as Microsoft Azure, Amazon Web Services(AWS), and Google Cloud Platform
(GCP) virtualize resources to allow consumers to access resources on a pay-as-you-
go basis. Often, cloud providers offer a selection of virtual machines with a certain

97

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 98

amount of resources, including CPU, memory, etc. The customer purchases her choice
of the virtual machine, and the cloud provider guarantees a level of quality of service
(QoS) via service level agreement (SLA).

Cloud providers need to enable proactive resource provisioning to increase their
revenues. One important observation is the fact that customers don’t use all the
resources they request. Trying to predict the actual resource consumption by each
virtual machine and using it as a base for proactive elastic resource provision will
improve efficiency. Cloud providers need to predict increases and decreases in resource
consumption in individual VM level for efficient scheduling of workloads on resources
in their clusters. Workload prediction plays a key role in proactive provisioning
approaches and has been characterized as a hard problem (77).

The main objective of this paper is to study the effectiveness of sequence model
deep learning approaches for long-term prediction of individual VM workload resource
consumption in cloud platforms. In particular, we consider the problem of predict-
ing future CPU consumption by virtual machines based on previous VM traces with
attention-based Long Short Term Memory(LSTM) neural networks. One problem
with encoder-decoder networks is their performance will deteriorate rapidly as the
length of the input sequence increases. In time series analysis, this could be a con-
cern since we usually expect to make predictions based on a relatively long segment
of target series as well as driving series. The novelty in our work is that we train
attention-based encoder-decoder networks to effectively predict future sequences of
CPU usage for individual VM traces. We implement input-based attention to ex-
tract useful correlations with driving-traces. We also implement temporal attention
mechanism to select relevant information stored in LSTM hidden units across all time
steps.

In this work, we study the effectiveness of increasingly popular recurrent deep
learning approaches for predicting virtual machine resource consumption (88). We
will achieve this by training a Long Short-Term Memory (LSTM) recurrent neural
networks on time series extracted from the log of previous traces. The LSTM has
been found extremely successful in many applications with sequential data, such as
unconstrained handwriting recognition (63), speech recognition (61) and machine
translation (8). Recently, LSTM is applied for aggregate CPU usage on host servers
(131), (42) and (65). In this chapter, we focus on using LSTM for predicting CPU
usage in individual workload traces. We illustrate the feasibility of our approach
by training a model on Microsoft Azure traces from 35, 941 deployments from 5,958
subscribers during a period of 30 days (azu).

In this paper, we predict the CPU usage by individual VM traces. The aims of
this research are to :

• To investigate the accuracy of Recurrent Neural Networks for predicting future
CPU usages of individual VM traces in comparison to traditional prediction
methods.

• To study appropriate recurrent neural network structure and hyper-parameters

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 99

in order to achieve accurate prediction of CPU usage in individual VMs.

• To determine how far in the future the Recurrent Neural Network can accurately
predict the CPU usage traces.

We use the sequence-to-sequence time series prediction to predict CPU consump-
tions across virtual machines. For this purpose, we train encoding decoding LSTM
networks with multivariate inputs that are able to remember autocorrelation between
sequence patterns as well as the correlation between input context (exogenous vari-
ables including additional features about time series) and sequence patterns.

This paper is organized as follows: We present the related work and the problem
statement in Section 7.3, we explain our proposed approach in detail in Section 7.4.
We then present our experimental setup and results in Section 7.5. Finally, we will
conclude our work in Section 7.6.

7.2 Related Work
Different approaches are proposed to predict VM CPU usage. In (59), authors con-
sider two different possible models to predict VM traces: signature-driven and state-
driven models. They consider a cyclic pattern for a newly deployed VM and switch to
state-driven model if they fail to find a signature after several resource consumption
reports from the specific workload. In (105) each workload trace is decomposed into
several wavelet signals and perform prediction for each signal separately. In (34), au-
thors cluster VM trace patterns into several clusters called workload categories and
use a stochastic model to predict CPU demand for each of the workload categories. A
little different from most of the previous work, (80) identify groups of VMs that show
recurring patterns. They train hidden Markov Model that utilizes temporal correla-
tions in co-cluster patterns. Inspired by their work, we propose using attention-based
recurrent neural networks to find co-clusters and extract the correlation between pat-
terns automatically. In fact, recurrent neural networks have been proposed before
for the different problem of aggregate workload CPU prediction before (65; 131; 42).
In (42), authors proposed the usage of recurrent neural networks for prediction of
host CPU utilization. In (65), the cloud overall CPU utilization is predicted with
bidirectional multivariate input LSTM networks. The problem of predicting aggre-
gated workload is an easier problem first because only a single aggregated trace is
considered instead of various individual VM traces with various patterns. Second,
the aggregate trace has fewer noise (80).

Recurrent neural networks are specifically efficient for sequential data and are ap-
propriate for cloud virtual machine consumption trace time series. More specifically,
we will study Long Short-term Memory deep learning networks and show how they
outperform existing approaches for predicting aggregate CPU usage by virtual ma-
chines as well as resource usage for individual workloads. CPU consumption at the
level of the host has been studied extensively in the past. For this purpose, the ag-
gregated trace of CPU usages is studied as a single time series, and future values are

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 100

predicting based on the past and current values. In (59), authors use Markov Models
to model resource usage on the host. In (105), authors use wavelet transformation
of CPU usage trace as input to the Markov model to predict future values. (159)
apply ARIMA to predict future values of for future values. (25) uses neural networks
to predict future resource usage. We propose using attention-based LSTM recurrent
neural networks as an end to end tool that extracts similarities between subsequences
and finds correlation and auto-correlation among these subsequences by the help of
LSTM gates parameters of which will be learned with back-propagation through time.
We consider attention-based LSTM encoder decoders to make sure important infor-
mation in hidden layers of LSTM network is not lost (8; 116). In addition to existing
dual-level attention model for time series prediction, we also design a new attention
model biases based on the structural consistency introduced by (80).

7.3 Background

7.3.1 Structure-based clustering and alignment
Finding repetitive patterns have been a common approach for workload character-
ization. Most of the existing work find a mapping between extracted features and
a set of characteristics and use the mapping to predict the characteristics of target
traces (7; 151). On a set of sample workloads (7) uses workload profiling to extract
features corresponding events visible to virtual machine manager in each specific win-
dow of They use regression models to characterize the target workloads after training
their regression models. However, these studies are concerned with statistically un-
derstanding and reproducing computing tasks (e.g., MapReduce tasks) scheduled on
a cloud. Different from these works and inspired by some previous work on gene ex-
pression data (92), Khan et al. propose co-clustering VM traces and using Gaussian
Hidden Markov Models (GHMM) (16; 113) to predict future patterns of VM con-
sumption (80). Finding repetitive patterns and mining the correlation between the
patterns have proved to be an effective approach in predicting individual VM CPU
usage trace (26; 80). Finding both autocorrelations between different windows of a
single trace as well as the correlation between windows in different traces help us to
predict the values of CPU usage in future time steps. In (80) co-clustering of sub-
sequences in traces to characterize the most repeating subsequences and then apply
hidden Markov Models to characterize the temporal correlations in the discovered
clusters and use these pieces of information to predict variations of VM workload
patterns. Khan et al. define the consistency measure as:

const(trace) = min
j∈J

(∑i∈I(1− |aij − aj|/d))
|I|

. (7.1)

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 101

7.3.2 Recurrent Neural Network for load prediction
With the recent advancements in processors and the advent of deep neural networks,
the application of deep learning approaches has increased substantially (107; 22; 88).
The multi-layer neural network has been successfully used for predicting CPU loads on
servers in distributed system (45). Among neural network architectures, the recurrent
neural network is the most appropriate for predicting subsequences of traces.(42) use
a recurrent neural network to predict one step ahead of host load in the cloud. As
one problem with RNNs are the fact that information from multiple steps in the past
will be lost because of multiple differentiation of the cost function in the optimization
process, long short term memory (LSTM) have been proposed. In LSTMs self-loops
conditioned on the context allows the network to remember information from the
past selectively and avoids loss of useful information (57; 69). For these reasons (131)
apply LSTM for multi-step prediction of hosts in the cloud. In (65), authors propose
multi-variate bidirectional LSTMs for predicting aggregate utilization of workload in
the cloud. They consider additional features including memory usage as input and
incorporate more recent bidirectional LSTM (62).

7.3.3 Encoder-Decoder LSTM for sequence prediction
Recurrent neural networks are specially designed for sequential data (124; 96). In
addition to connections between different layers of the neural network, RNNs have
edges between values at different time steps. In training the RNN, the weights on
temporal edges as well as layer edges are optimized. Back-propagation in feedforward
networks moves backward from the final error through the outputs, weights, and
inputs of each hidden layer, assigning those weights responsibility for a portion of the
error by calculating their partial derivatives −∂E/∂w, or the relationship between
their rates of change (68). Those derivatives are then used by the learning rule,
gradient descent, to adjust the weights up or down, whichever direction decreases
error.

In LSTM as a specific type of RNN, back-propagation goes through time steps as
well as network layers. During training, LSTM learns what to remember and what
to forget from the past time steps. As input size is large for LSTM, deep learning
networks are usually trained in batches. Also, back-propagation is usually performed
several times on the training set. Each complete run-through training set is called
epochs. The choice of batch size, epochs, as well as training window, impacts the
prediction power of the LSTM network. Usage of recurrent neural networks has been
proved to be effective for server load prediction (42; 131).

Here, we present the mathematical formulation through the flow of information
in Cell State in LSTM (70). For the simplicity of exposition, we refer to LSTMs as
operating on a sequence that contains vectors x(t) with the time step index t ranging
from 1 to τ . Below is the formulas for forget gate, ft. Matrices Wi, Wf , Wc, Wo

represents the appropriate weight matrices. The vectors bi, bf , bc , bo denote the
corresponding bias vectors. A sigmoid function is used to calculate the activation of

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 102

Figure 7.1: Each LSTM unit has self loop (left). The unrolled self loop is demon-
strated on the right.

the forget gate ft:
ft = σ(Wf .[ht−1, xt] + bf) (7.2)

In the second step cell state determines what new information should be stored in
the cell state. To start with, a sigmoid layer named the input gate layer decides
which information should be updated. Then, a tanh layer creates a vector C̃t of new
candidate values to be updated in the next state.

it = σ(Wi.[ht−1, xt] + bf) (7.3)
C̃t = tanh(WC .[ht−1, xt] + bC) (7.4)

Next, LSTM updates the old cell state C̃t into the new cell state Ct. Ct−1 is
multiplied by ft to remove non-helpful information from old cell. ŷM and fM present
the consumption component of previous time step and the features of this time step,
respectively.Then it computes it ∗ C̃t. There are the new candidate values, scaled by
how much information should be updated in each state value.

Ct = ft ∗ Ct−1 + it ∗ C̃t (7.5)
Lastly, LSTM needs to decide the output. This has two parts:A sigmoid activation
function layer as output gate is used to filter the cell state firstly. Then, the cell
state is put through tangent hyperbolic (tanh()) and is multiplied by the output ot
to calculate the desired information.

Ot = σ(W0.[ht−1, xt] + b0) (7.6)
ht = Ot ∗ tanh(Ct) (7.7)

The value of weight matrices, Wi, Wf , Wc, as well as bias vectors, bi, bf , bc , bo will
be determined through an optimization procedure called back-propagation through
time in model training stage.

For predicting long term dependencies in time series data, sequence to sequence
LSTM networks are proved to be effective (57). As shown in Figure 7.3, in these
networks, the encoder calculates an encoding of the input and passes it to the decoder.
The encoding is, in fact, the hidden state of the last time step in encoder LSTM. The

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 103

Figure 7.2: Anatomy of LSTM network.

Figure 7.3: Sequence prediction with encoder-decoder LSTM

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 104

decoder generates the prediction of the target sequence using the encoding and target
sequence from the last window of time steps.

7.4 Our Proposed LSTM model for predicting in-
dividual VM patterns

In this section, we describe our proposed prediction methodology based on the fun-
damentals of LSTM recurrent neural networks presented in the previous section. We
propose to tailor existing attention-based LSTM approaches for sequence-to-sequence
prediction to build a predictive model. The predictive model is trained using avail-
able VM consumption traces and predicts future consumption patterns for each given
individual VM trace. We train a model with CPU Consumption traces of 80,000
individual VMs. As it is observable in available public VM traces and also pointed
out in (106), CPU usage for each virtual machine is not constant and changes over
VM lifetime. The objective is to accurately predict multiple time steps in the future
for an individual virtual machine, given historical CPU usage for that specific virtual
machine. The CPU usage for the previous M time-steps as well as other eight fea-
tures listed in Table 7.2 are given as input to the model. The proposed LSTM model
predicts the CPU usage in each of the next M time steps.

Based on the works of (80), we extend the existing attention-based encoder-
decoder LSTM models on making them more effective for VM trace data. We design
encoder-decoder LSTM networks that take advantage of VM trace pattern matching
techniques. For this purpose, we improve existing encoder-decoder LSTM models for
trace prediction in two ways: we expand the LSTM input with additional pattern
matching based features as well as frequency features. Also, we design specialized
attention-based LSTM models that determine the attention to the specific hidden
state of a decoder based on the pattern matching structure of input sequence and
predicted subsequence of the output sequence. We propose attention-based recurrent
neural network models to predict individual VM traces. Different attention mecha-
nisms have been introduced in the fields of computer vision (127), neural machine
translation (97), image captioning (155; 153), and speech recognition (31). We picked
the most useful attention mechanisms for our multivariate trace prediction problem
and improved them based on the trace prediction literature to achieve more accurate
predictions. We considered applying attention model both for different dimensions of
input features as well as temporal attention. Attention is a mechanism in recurrent
neural networks that weights some inputs or hidden states at specific time lags in
encoder more than others to achieve better prediction (74).

7.4.1 The attention mechanism and structural bias
Attention models in recurrent neural networks propose to adaptively focus on a spe-
cific part of the inputs of the recurrent neural network to improve the quality of

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 105

Figure 7.4: The mechanism of attention model (97).

learning. As reviewed in Section 7.3 and shown in Figure 7.2, LSTM units are func-
tions of three sets of inputs: input time series (Xt), hidden states from the previous
time step (ht−1) and cell state from previous time step CSt−1. The earlier atten-
tion models focused on temporal attention (8). Temporal attention model considers
all hidden states of encoder instead of the last hidden state and creates a context
vector by creating a weighted sum of hidden states of the encoder (8). Temporal
attention enables search over different alignments of source and target sequences to
achieve more accurate prediction (146). The temporal attention models consider all
hidden states of the encoder instead of considering only the last hidden state of the
encoder to create the context vector. Later attention models also considered different
weighting dimensions of the multi-dimensional input time series. As multi-variate
inputs are often used for time series prediction, authors in (116) have proposed an
additional input attention model that weights the different dimensions of the input
time series based on their effectiveness in minimizing the cost function. The input
attention model considers the weighted sum of input features and allows the model
to use available input features more selectively based on the context.

The general framework for building an attention model is to design a scoring func-
tion that measures the relevance of each specific part of the input and the current
hidden state of the encoder. Having a scoring function, the weight for each hidden
layer of the encoder is determined and used for calculation of the context vector. The
temporal attention mechanism is shown in Figure 7.4. We review the general frame-
work of attention to provide intuition and background theory for the specific atten-
tion mechanisms presented following the notations in (97). In sequence-to-sequence
prediction with a recurrent neural network, the context vector transfers useful in-

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 106

Table 7.1: Different scoring functions considered for attention model.
scoring function name equation

inner product hTt h̄s

general ht
TWah̄s

concatenation vTa tanh(Wa[ht; h̄s])

formation from encoders to be used in encoders. Attention mechanism modifies the
construction of context vector to improve the encoding-decoding sequence prediction
power. The context vector for temporal attention model denoted as ct, allows the
decoder to capture global information rather than solely infer based on one hidden
state. To build context vector ct, for a single CPU usage trace prediction at time
step s, ys, the model loops over all encoders’ states, h̄s, to compare the current target
hidden state (decoder’s hidden state) and each of the source hidden states (different
encoders’ states from 1 to S) as in Equation 7.9. The comparison calculates a similar-
ity score that we denote as score(ht, h̄s). To calculate the probability distribution of
yt as in Equation 7.11 conditioned on target states, the scores are normalized to sum
to one over all S values of encoder hidden states as shown in Equation 7.8. To make
the attention mechanism trainable, weights are used as parameters to enable learning
appropriate context vectors. The calculation of attention is shown in Equation 7.10.
The attention vector for decoder

αts = exp(score(ht, h̄s)∑s
s′=1 exp score(ht, h̄s′)

(7.8)

ct =
∑
S

αtsh̄s (7.9)

h̃t = f(ct, ht) = tanh(WC [ct;ht]) (7.10)

p(yt|y<t, x) = softmax(Wsh̃t) (7.11)

As the goal for the model is to focus on more relevant information, a scoring function
is employed to formulate the similarity of sth hidden state in encoder and the current
encoder. The differences in attention models are mainly in the way this similarity is
formulated.

The different scoring functions are listed in Table 7.1.
In this work we adopt the dual attention model from (116) and add structural

VM trace pattern bias to make it more effective for VM trace prediction. In the
first stage of the dual attention model, the scores for different dimension of the input
vector is calculated to determine the appropriate weighting of different dimensions.
Given the k-input series xk = (xk1, ..., xkT)T ∈ RT , an input attention mechanism is
constructed via a multilayer perceptron, by using ht−1 and the cell state st−1 in the
encoder LSTM unit with:

ekt = vTe tanh(We[ht−1; st−1] + Uex
k) (7.12)

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 107

and
αkt = exp ekt∑n

i=1 exp eit
(7.13)

where ve ∈ RT , We ∈ RT×2m and Ue ∈ RT×T are parameters to learn. A softmax
function is applied to ekt to ensure all attention weights sum to one. The parameters
of the attention model can be learned with other components of our LSTM model.
With these attention weights effective covariate series are extracted adaptively as
follows.

x̃t = (α1
tx

1
t , α

2
tx

2
t , ..., α

n
t x

n
t)T . (7.14)

Then the hidden state at time t can be updated as
ht = f1(ht−1, x̃t). (7.15)

Where f1 is an LSTM unit that can be computed according to Equation 7.3 with xt
replaced by the newly computed x̃t.

Another issue is that for time series prediction, we want the model to consider
autocorrelations and correlations from far in the past, and we need the model to
choose previous lags selectively. Temporal attention can bring useful information from
a distant past to the current RNN cell. Attention models select the most pertinent
piece of information, rather than using all the available information large part of
which is irrelevant to compute the neural response. To predict the output ŷT , we use
a decoder to decode the encoded input information. However to avoid degradation
of encoder-decoder network with the increase in length of the sequences, a temporal
attention mechanism is used in the decoder to adaptively select relevant encoder
hidden states across all time steps. The attention weight of each encoder hidden
state at time t is calculated based upon the previous decoder hidden state dt−1 ∈ Rp

and the cell state of the LSTM unit s′t−1 ∈ Rp with
lit = vTd tanhWd[dt−1; s′t−1] + Udhi q ≤ i ≤ T (7.16)

and
βit = exp lit∑T

j=1 exp ljt
(7.17)

Where [dt−1; s′t−1] ∈ R2p is a concatenation of the previous hidden state and cell
state of the LSTM unit. Where vd ∈ Rm and Wd ∈ Rm×2p and Ud ∈ Rm×m are
parameters to be learned. The attention weight βit represents the importance of the i
encoder hidden state for prediction. Since each encoder hidden state hi is mapped to
a temporal component of the input, the attention mechanism computes the context
vector ct as a weighted sum of all the encoder hidden states {h1, h2, ..., hT},

T∑
i=1

βithi. (7.18)

After calculating the weighted summed context vectors, context vectors are combined
with the given target series (y1, y2, ..., yT−1):

ỹt−1 = w̃T [yt−1; ct−1] + b̃, (7.19)

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 108

where [yt−1; ct−1 ∈ Rm+1 is a concatenation of decoder input yt−1 and ct−1. Parameter
w̃ ∈ Rm+1and b̃ ∈ R map the concatenation to the size the decoder input. The newly
computed ỹt−1 are used to update of the decoder hidden state at time t:

dt = f2(dt−1, ỹt−1) (7.20)
We choose the nonlinear function f2 as an LSTM unit. Then dt can be updated as:

f ′t = σ(W ′
f [dt−1; ỹt−1] + b′f) (7.21)

7.4.2 Specialized structural bias attention mechanisms
Similar to the work in (32) where authors design specialized bias models for neural
machine translation based on literature in statistical machine translation, we design
structural bias for trace prediction based on literature in statistical trace characteri-
zation (80).

Temporal bias We include a temporal bias through redefining the pre-normalised
attention scalars in Equation 7.10 as follows:

αt = f(ct, ht) = tanh(WC [ct;ht]) +W1ψ(j, i) (7.22)

Consistency pattern bias To improve the effectiveness of attention model for
predicting workload patterns, we add a measure of consistancy on the literature on
co-clustering approaches for workload prediction. This bias is based on the idea that
one characterization of CPU traces is their consistency measure (80). We define
the consistency bias attention between ith element of the source subsequence and
(j− 1)th element of the target subsequence as how close each of the elements in their
corresponding subsequences are to these values. We also add the value of j−1 as the
number of elements from the target subsequence considered for the calculation of the
consistency:

φ(j, i) = [
(∑0≤k<j−1 |ak − aj−1|)/d

|I|
,
(∑l∈J |al − aj|)/d

|J |
, |J |]T . (7.23)

αt = f(ct, ht) = tanh(WC [ct;ht]) +W1ψ(j, i) +W2φ(j, i) (7.24)

7.4.3 Additional input features to improve prediction accu-
racy

As discussed earlier in this section, we add multiple features to individual CPU time-
series to capture characteristics of the CPU usage for individual VMs. Using LSTM
with multidimensional input features gives our model the power to predict a wide
variety of virtual machines without using additional clustering and similarity calcula-
tion. The feature series considered are listed in Table 7.2. A set of effective positional
features are CPU reading values from time lags with specific depth in the past. There
are three most important points in the past that we use as a fixed weight attention
feature (taking into account long-term seasonality): 1) 1 hour ago, 24 hours ago,

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 109

Table 7.2: Features considered for our prediction model.
feature group feature names number of features

original CPU trace yt 1
statistics of past data e mean, std 1

seasonality features hod, dow 2
autocorrelation lag1, lag2, lag12 3

lagged trace values ld, lw 2

2) One week ago. Recurrent neural network prediction with multi-dimensional in-
put time series is not accurate and the model cannot choose which of the covariates
to focus for making the prediction (116). To avoid the curse of dimensionality and
improve the performance of multi-variate prediction model, we use input attention
model proposed in (116) to pick the most relevant features for prediction of each
sequence. This is done as the first stage of the dual-stage attention model that we
adopt from (116). At encoding step, we incorporate input attention model to choose
the most relevant feature time series for each sequence.

7.5 Experimental Results and Discussion
In this work, we focus on predicting resource consumption by workloads in produc-
tion clusters. The production workloads include internal vendor VMs comprising of
research and development and infrastructure management workloads as well as ser-
vices provided to the third party customers, including communication, gaming, data
management (33). The original trace used in (33) contains information about every
VM running on Microsoft Azure for three month period from November 16, 2016 to
Feb 16, 2017. The dataset also contains information on resource requests submit-
ted by each subscriber in each deployment. The VM resource usage measurements
are reported with five-minutes (300 seconds) resolution. The data used to train the
encoder-decoder LSTM networks in our research are extracted from Microsoft Azure
public workload dataset. The Microsoft Azure public dataset contains a representa-
tive subset of 30 consecutive days of traces of the first-party virtual machine workload
(VM) of Microsoft Azure in one of its geographical regions. The trace is a sanitized
subset of the Azure VM workload described in (33). We extracted time series for
maximum and average CPU consumption for each of the 2,013,767 individual virtual
machines. Fig 7.5 shows virtual machine traces for three VMs during the first week of
this period. While temporal patterns are observable in time series of different VMs,
we can see that each VM has a specific pattern and a single simple model cannot
predict future values of individual VMs accurately. There are two main information
sources for prediction:

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 110

Figure 7.5: Heatmap of max CPU usage for 3000 VMs from Microsoft Azure public
dataset.

1. Local features: If we see a trend, we expect that it will continue (AutoRegressive
model), if we see a consumption spike, it will gradually decay (Moving Average
model), if we see more CPU consumption on holidays, we expect to have more
CPU consumption on holidays in the future (seasonal model).

2. Global features: If we look to autocorrelation plot, we’ll notice strong week-to-
week and day-to-day autocorrelation.

We illustrate heatmap of 3000 virtual machines in Microsoft Azure in Fig 7.5. Each
row on the heatmap represents a single virtual machine. Darker color represents lower
CPU consumption and brighter colors show higher CPU consumption by each virtual
machine.

7.5.1 Data Preparation and feature extraction
The original data in public Azure dataset is available in VM CPU readings in comma-
separated vector (CSV) format. The tables are indexed by virtual machine anonymized
IDs. Each row of the table contains information on resource usage for specific VM ID
at a specific timestamp. The original CPU readings are available publicly in 125 ta-
bles of 1GB each. We applied database table manipulation techniques using Python
Pandas package to extract individual time series for each virtual machine. From the
CPU reading tables, we built VM consumption matrices containing individual VM
consumption traces using data management techniques. For each VM ID, we ex-
tracted the time series of maximum CPU consumption and stacked the time series to
form a matrix of 2, 013, 767 rows. Before using our data for building the prediction
models we did a couple of common data preprocessing to achieve better prediction
models. We removed all zero columns - time-steps that all CPU readings for all
VMs are zero. We also applied local smoothing to alleviate spikes in the data. For
predicting overall maximum CPU consumption, we created a time series composed
of the sum over columns of the VM consumption matrix. For the remainder of the

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 111

Figure 7.6: Partial auto-correlation of three virtual machines.

paper, wherever we talk about VM consumption, maximum consumption is intended
except otherwise is specified. We hand-picked a few temporal and seasonal features to
consider as extra inputs in addition to the original max CPU time series values that
improved our model prediction accuracy. As LSTM does a good job to discover and
learn features from the lagged CPU usage traces on its own, feature engineering is
not necessary. However, as individual VM prediction is a hard problem, we included
8 additional features to improve the prediction accuracy of the model. Our experi-
ments approve the effectiveness of additional features. We considered the following
eight features in addition to the original time series improve our prediction as listed
in Table 7.2: We extracted Mean and standard deviation for CPU usage in the past
as we saw high load and low load time series have different patterns. We also added
two seasonality features, an hour of the day and the day of the week to capture daily
and weekly seasonality. Through analysis of autocorrelation plots of different vir-
tual machines, we realized the VMs have different patterns of autocorrelations. The
partial autocorrelation plots are shown in Fig 7.6. As first, second and 12th auto-
correlations were the most distinctive values we considered these values as additional
features. These three features capture consecutive autocorrelation strength as well
as the strength of correlation with 10 minutes ago CPU utilization reading as well as
that of last hour. We also realized, adding the value of max CPU load for the exact
time in the previous day improved the prediction accuracy.

Our input data is a nine-dimensional time series consisting of original max CPU
values as well as eight other features listed in Table 7.2. The length of each of the
time series is 8640 timestamps. Our dataset differs from an ordinary machine learning
dataset as the data is collected over time. Generally, machine learning datasets
are collections of observations with no consideration of time. In those problems,

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 112

predictions are made for new data when the actual outcome may not be known until
some future date. The future is being predicted, but all prior observations are almost
always treated equally. Perhaps with some very minor temporal dynamics to overcome
the idea of concept drift such as only using the last year’s observations rather than all
data available. A time-series dataset is different. Time series adds an explicit order
dependence between observations: a time dimension. This additional dimension is
both a constraint and a structure that provides a source of additional information.
Time series prediction involves taking models to fit on past data and using them
to predict future observations. Time series based prediction models often learn the
degree of autoregression and seasonality from the past and use the learned model for
future data. We implemented the presented prediction approaches on Azure Public
Data Set introduced in (33) to show the effectiveness of our proposed solutions. The
trace contains a representative subset of the first-party Azure VM workload in one
geographical region. The dataset contains information on CPU usage for 2, 013, 767
VMs during 30 days. The VM resource usage measurements are reported with five-
minutes (300 seconds) resolution.

7.5.2 Using LSTM to predict CPU consumption
The objective is to predict individual VM CPU consumption multiple time steps in
the future, given historical aggregate CPU usage. The input to the model can be
expressed as

y = {y0, y1, ..., yM−1} (7.25)

where yt is the aggregate CPU measurement for time step t. The predicted CPU
consumptions can be expressed as:

ŷ = {ŷM , ŷM+1, ..., ŷT} (7.26)
The input dataset was the aggregate CPU usage by all virtual machines in 30 days.
We chose a deep LSTM structure through experimentation with the training set and
validation set data. The architecture is shown in Fig 7.3. The input to the network
are subsequences of M aggregate CPU readings. To train the model, back-propagation
through time is used. We chose Mean Squared Error as objective function, as shown
in Equation 7.27.

Jθ =
T∑
M

(yt − ŷt)2 (7.27)

As we observed in Microsoft Azure dataset and also pointed out in previous literature,
CPU usage for each virtual machine is not constant and changes over VM lifetime
(106). The objective is to accurately predict multiple time steps in the future for an
individual virtual machine, given past CPU usage for that specific virtual machine.
The maximum CPU usage for the previous M time-steps as well as other eight fea-
tures listed in Table 7.2. LSTM model predicts the maximum CPU usage in the next
M steps. Training a model that is able to predict individual VM CPU consumption
traces is a hard problem if we take into account variance in different virtual machine

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 113

consumption patterns. Some previous works, consider multiple training models and
assign the most appropriate model by looking into the input feature vector and find-
ing the cluster it is most similar to. Instead of clustering and categorizing virtual
machines, we calculated several additional features for each VM to capture the char-
acteristics of that virtual machine including autocorrelation pattern, the maximum
value and standard deviation in available past time steps. In fact, using LSTM with
multi-dimensional input features gives our model the power to predict a wide vari-
ety of virtual machines without using additional clustering and similarity calculation.
For further improvement of our individual VM prediction LSTM model, we used at-
tention mechanism. There are three most important points in the past that we use
as a fixed weight attention feature (taking into account long-term seasonality): 1)
One hour ago, 24 hours ago, 2) One week ago. To perform training, we considered
24 hours windows for each time series and applied zero paddings for shorter virtual
machines and random cutting for longer ones. As we are training our model with time
series related to different VMs, there is a high probability of abrupt changes in loss
function when performing SGD. We apply gradient clipping for better convergence of
loss function (114).

In the training stage, the weight values described in the previous section are
determined using back-propagation through time (BPTT) with regard to Jθ. The
gradient-based optimization approach that worked well for this specific problem was
ADAM. ADAM is known for being efficient and appropriate for large problems, and
it usually requires minimal tuning (81). For the loss function, we used the Mean
Squared Error (MSE). To perform training, we considered 24 hours windows for each
time series and applied zero padding for shorter virtual machines and random cutting
for longer ones. As we are training our model with time series related to different
VMs, there is a high probability of abrupt changes in loss function when performing
SGD. We apply gradient clipping for better convergence of loss function (114).

We implemented encoder-decoder LSTM with attention model using Tensorflow
1.13 (5). We realized that the batch size of 288 (which is in fact 24 hours of every
minutes CPU readings) and a window size of 12 works best. To study the effectiveness
of attention models and structural bias, we repeated the experiments with ANN,
encoder-decoder LSTM without attention mechanism and LSTM encoder-decoder
model with one of the two attention models. We also compared our model with
encoder-decoder LSTM with dual attention model without structural bias. In each
of these configurations, 4 layer LSTM is trained on data for 24 hours of max CPU
reading. The trained LSTM is used to predict the maximum CPU usage for the next
24 hours. We evaluate our prediction model by calculating and comparing the mean
absolute percentage error (MAPE), root means squared error (RMSE), and mean
absolute error (MAE) with existing methods. The mean absolute percentage error
(MAPE), also known as mean absolute percentage deviation (MAPD), is a measure
of predicting the accuracy of a forecasting method in statistics, for example, in trend
estimation. It usually expresses accuracy as a percentage, and is defined by the

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 114

Figure 7.7: VM cpu utilization prediction for to VMs.

Table 7.3: Specifications of LSTM Network for Individual VMs CPU Consumption.
Training Fuction Back-Propagation

Number of Hidden Layers 4
Nodes in Each Layer 12,10,10, 1

Batch Size 288
Sequence Length 12

Loss Function MSE
Optimization Method SGD with Gradient Clipping

Learning Rate Schedule 0.1, 0.01, 0.001
Gradient Clipping Value 5

Performance Goal 0.001

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 115

Figure 7.8: aggregated CPU usage prediction. LSTM is compared with ARIMA and
ANN.

Table 7.4: Mean absolute percentage error for individual VM CPU consumption.

Approach ANN LSTM LSTM+INP LSTM+INP+TP LSTM+INP+TP+bias
MAPE 29% 17% 16% 14% 11.5%

formula:
M = 100%

n

n∑
t=1

∣∣∣∣∣yt − ŷtyt

∣∣∣∣∣
where yt is the actual value and ŷt is the forecast value.

Compared methods: ANN (Artificial Neural Network): We considered 12 recent
values of each of nine features. So, our the number of input features -or dimension
of the input- for the ANN is 108. Our neural network architecture is similar to the
network used in (73).

LSTM: We implemented encoder-decoder LSTM as described in Section 7.4. The
window size is 12 time-steps, and the batch size is 288.

LSTM with input attention (LSTM+INP): In this configuration we added input
attention model as described in Section 7.4 to the encoder-decoder model.

LSTM with temporal attention (LSTM+TP): In this configuration we added tem-
poral attention as described in Section 7.4 to the LSTM model.

LSTM with dual attention (LSTM+INP+TP): In this configuration we added
dual attention (temporal and input) as described in Section 7.4 to the LSTM model.

LSTM with dual attention and structural bias (LSTM+TP+INP+bias): In this
configuration we added structural bias as described in Section 7.4 to the LSTM model
with dual attention.

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 116

7.5.3 Discussion: Comparison with Existing Approaches for
Workload Prediction

The disadvantage of traditional neural networks like all other non-sequential ma-
chine learning approaches is that those models are valid for a certain period only
and temporal dependence of variables across different timestamps are not taken into
account when building a predictive model. Traditional neural network approaches do
not consider the temporal characteristics of input features in building the predictive
model.

Recurrent Neural Networks have been proposed as neural networks with time series
as input. So, in addition to learning a mapping between feature values and target
values, they also learn the mapping between the previous values of the target value
and its future values. These approaches are shown to be considerably more effective
than other types of neural networks for time series data (96), (124). Recurrent neural
networks architecture is composed of multiple states similar to Markov chains. In
the process of training RNNs, back-propagation through time is applied to determine
model weights. As one can imagine, long back-propagation can lead to exploding
or vanishing gradients as a result of many extremely small or extremely large values
multiplied together (69). To overcome this, a special group of RNNS called LSTM
have been proposed (70). LSTMs are able to store information for a long period of
time and are appropriate for our application.

LSTM can be thought of as a natural extension of well-studied ARIMA models,
but much more flexible and expressive. LSTM is non-parametric, that greatly sim-
plifies learning. Once we train our LSTM model, we are able to use the same model
for the prediction of different test subsequences. Imagine working with different
ARIMA parameters for more than 2 millions time-series for individual virtual ma-
chine CPU usages. Any exogenous feature (numerical or categorical, time-dependent
or series-dependent) can be easily injected into the model. LSTM Sequence to se-
quence prediction predicts next values, conditioning on joint probability of previous
values, including our past predictions. Use of past predictions stabilizes the model.
It learns to be conservative, because error accumulates at each step, and an extreme
prediction at one step can ruin prediction quality for all subsequent steps. For a
complete review of LSTMs, we refer the readers to chapter 10 of (60). Deep Learning
provides a more accurate prediction with the fine granularity of time-steps for mid-
term as well as long-term future. There is no need for feature engineering parameter
tuning for each individual time series.

Two different categories of approaches are used to predict time series:

1. Considering previous values as features and building input vectors from multiple
recent values and applying common machine learning approaches to predict
future values based on input features.

2. Applying time-series specific approaches such as ARIMA that automatically
consider temporal autocorrelation with previous values of the time series.

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 117

The problem with the first category of approaches is the fact they treat each of the
previous values equally. For instance, if we input three recent values as input to an
ANN, the model treats the immediate past value similar to the value with lag 2. This
leads to loss of valuable information about correlations consecutive lags. Recurrent
neural networks purposefully designed to learn all these patterns from sequences.

ARIMA is an acronym that stands for AutoRegressive Integrated Moving Average.
It is a generalization of the simpler AutoRegressive Moving Average and adds the
notion of integration.

In predictions with ARIMA, a linear regression model is constructed including
the specified number and type of terms, and the data is prepared by a degree of
differencing in order to make it stationary, i.e. to remove trend and seasonal structures
that negatively affect the regression model.

One limitation of ARIMA approaches is the requirement of the parameter setting.
We want to apply our prediction model to predict individual virtual machine traces.
Using ARIMA, we need to figure out the value of p, d, and q for each VM. Addition-
ally, As our CPU utilization trace may not be consistent throughout VM lifetime,
we need to update the parameter p, d, and q for each prediction. Another issue is
the fact that ARIMA builds a linear regression model on the processed lags and is
not able to learn nonlinear patterns. Consequently, although ARIMA may give good
predictions for the next couple of time series value, it is not able to give an accurate
long-term prediction.

However, an LSTM recurrent neural network is able to build an end to end model
with high generalization ability. With the help of gated nodes and the layered struc-
ture can predict future CPU utilization values for utilization traces of individual VMs
without requiring manual parameter setting and parameter updating.

7.5.4 Feasibility of Our Prediction Model for Resource Man-
agement Systems

After training the model on training data, the trained model is deployable to predict
next hour worth of max CPU consumption for 12 lags in next hour, given CPU usage
data for 12 lags in the current hour. Applying the model to predict is, in fact, multiple
matrix multiplications and takes less than a minute to calculate in an ordinary dual-
core system. Our experiments show that the LSTM network is powerful enough to
predict new sequences. In deployment, it is possible to monitor the performance of
the prediction and retrain the model with newer data as soon as drift is detected.

7.6 Summary
In this chapter, we proposed LSTM approaches to predict maximum CPU consump-
tion both for individual virtual machines as well as overall CPU consumption for
large cloud platform data centers. For both problems, LSTM based architectures
were trained and tested on real-world production trace data. For training LSTM

Chapter 7. Predicting CPU Usage with Deep Recurrent Neural Networks 118

for individual VM CPU consumption, we used the dual-stage attention model and
added CPU level consistency bias to achieve a generalized model with high accuracy
prediction of individual VMs. For the optimization, we performed gradient clipping
to avoid gradient explosion in back-propagation. We also included autocorrelation
and frequency features to improve LSTM prediction ability with leveraging selective
temporal dependencies. Our experimental evaluations showed our designed attention-
based LSTM outperforms commonly used approaches in prediction accuracy. Our
attention-based LSTM provides an accurate long-term and mid-term prediction for
resource usages. We discussed why LSTM is more appropriate than other nonre-
current deep learning approaches. We also discussed how LSTM is more accurate
than ARIMA for midterm and long-term prediction of aggregate CPU consumption
traces. Additionally, we studied the effect of attention mechanism to improve the
encoder-decoder LSTM model for prediction individual VM CPU usage traces.

Chapter 8

Concluding Remarks

High Performance Computing is behind most of the recent advances in science and
engineering. Researches performed in national labs are not possible without the enor-
mous parallel interconnected supercomputers known as high performance systems. As
discussed in Chapter 1, more advanced resource management, and application sched-
ulers are required to provide the desired performance demands of customers while
keeping the expenses of running HPC systems reasonable. In conclusion, we briefly
highlight the major contributions and future research directions that can be built
upon the outcomes of this research under three main categories including schedul-
ing algorithm design, application runtime prediction, and applications resource usage
prediction.

8.1 Scheduling Nonpreemptive Applications in Dis-
tributed Systems

Our first goal of this Ph.D. thesis was to study the theoretical problem of scheduling
non-preemptive applications and propose effective and efficient scheduling algorithms.
In order to achieve this goal, we have proposed SVF (Smallest Volume First) algorithm
in Chapter 3.5. We proved that SVF’s average completion time is a constant multiple
of the optimal scheduler in the worst-case scenario. We also performed trace-based
simulations to compare the performance (average completion time) and efficiency
(CPU utilization) of SVF with existing scheduling approaches.

8.2 Runtime Prediction for HPC Workload
Our second goal of this Ph.D. thesis was to study the inaccuracy of runtime prediction
for HPC applications, its impact on scheduling performance and propose solutions to
improve the scheduling performance. For this purpose, we propose to solution for
improving scheduling performance deterioration caused by inaccurate runtime.

119

Chapter 8. Concluding Remarks 120

Our first solution is a hybrid scheduling platform that arbitrates between two dif-
ferent scheduling strategies based on the predictability of application runtime. This
solution is presented in Chapter 4. The choice of scheduling strategies is based on
their sensitivity to runtime accuracy. Our extensive simulation experiments showed
that plan-based scheduling strategies have high performance when accurate runtimes
are available, but their performance highly degrades when job runtimes are inaccu-
rate. While plan-based scheduling strategies are highly sensitive to runtime accuracy,
backfilling strategies have lower sensitivity to runtime accuracy. Backfilling strategies
mainly perform FCFS and then greedily pack unassigned jobs on remaining available
resources based on the available estimation of runtime. As the initial FCFS stage of
backfilling does not use the estimation of job runtime, these strategies are less sensitive
to the job runtime accuracy. Our hybrid scheduling platform partitions waiting jobs
into two groups of predictable and unpredictable and applied the appropriate strategy
for jobs in each partition. To avoid resource fragmentation, we use resource sharing
in our hybrid scheduling platform. Our experiments show that the Hybrid scheduling
platform improves scheduling performance by 20% in the real-world scenario where
average runtime accuracy is about 70%.

Our second solution for improving performance degradation because of inaccurate
job runtimes is proposing more accurate runtime prediction approaches. For this
purpose, we propose two new prediction approaches: one approach for predicting
HPC runtimes in the Cloud is discussed in Chapter 5 and one for predicting runtimes
for HPC workload on HPC clusters, discussed in Chapter 6. The difference between
cluster and Cloud is that in the Cloud, we have more variation in workload features.
For this purpose, we propose an adaptive online prediction approach based on linear
state-space models (Kalman Filters).

For job runtime prediction in HPC clusters, we look into the distribution of work-
load data. As the workload is multi-modal, we propose Mixture Density network for
HPC clusters.

8.3 Predicting CPU Consumption Patterns in Dis-
tributed Systems

To achieve the third goal of this Ph.D. thesis, we proposed LSTM approaches to
predict maximum CPU consumption both for individual virtual machines as well as
overall CPU consumption for large cloud platform data centers. For both problems,
LSTM based architectures were trained and tested on real-world production trace
data. For training LSTM for individual VM CPU consumption, we used the dual-
stage attention model and added CPU level consistency bias to achieve a generalized
model with high accuracy prediction of individual VMs. For the optimization, we
performed gradient clipping to avoid gradient explosion in back-propagation. More-
over, we included autocorrelation and frequency features to improve LSTM prediction
ability with leveraging selective temporal dependencies.

Chapter 8. Concluding Remarks 121

Our experimental evaluations showed our designed attention-based LSTM out-
performs commonly used approaches in prediction accuracy. Our attention-based
LSTM provides an accurate long-term and mid-term prediction for resource usages.
We discussed why LSTM is more appropriate than other nonrecurrent deep learning
approaches. Additionally, discussed how LSTM is more accurate than ARIMA for
midterm and long-term prediction of aggregate CPU consumption traces. Addition-
ally, we studied the effect of attention mechanism to improve the encoder-decoder
LSTM model for prediction individual VM CPU usage traces.

8.4 Conclusion and Future Directions
In this thesis, our focus was on improving scheduling high performance computing
workloads in response to the recent increase in extensive computational processes.
To do so, while keeping an eye on theoretical fundamentals, we tried to come up
with solutions for real-world scenarios. Although there have been theoretical works
to design algorithms for non-clairvoyance scheduling problems, the scheduling algo-
rithms that use the knowledge about actual application resource usage patterns lead
to considerable performance improvement.

We identified one of the challenges in applying the state of the art scheduling algo-
rithms on clusters and the Cloud: the non-clairvoyance nature of the workloads. To
overcome this challenge, we proposed a runtime reliability aware scheduling platform.
Additionally, we proposed two approaches to predict application runtimes more accu-
rately. We also studied the problem of predicting CPU usage of virtual machines and
proposed the application of recurrent neural networks for this time series prediction
problem.

In continuation of our work, several directions for workload prediction is apparent.
More work on CPU usage of individual virtual machines with emerging open datasets
from the public Cloud can be an interesting direction. Studying the application
of emerging time series prediction approaches, including the Transformer (93), can
be an interesting path for research. Predicting user submission patterns is another
interesting time series prediction.

Bibliography

[azu] Microsoft azure public dataset. Accessed Oct. 25, 2012.

[wor] Parallel workloads archive. http://cs.huji.ac.il/labs/parallel/
workloads, note = accessed: 2015-07-01.

[ec2] http://aws.amazon.com/ec2/.

[con] http://www.vmware.com/consolidation/overview/.

[5] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org.

[6] Albagli-Kim, S., Shachnai, H., and Tamir, T. (2014). Scheduling jobs with dwin-
dling resource requirements in clouds. In INFOCOM, 2014 Proceedings IEEE,
pages 601–609. IEEE.

[7] Azmandian, F., Moffie, M., Dy, J. G., Aslam, J. A., and Kaeli, D. R. (2011).
Workload characterization at the virtualization layer. In 2011 IEEE 19th Annual
International Symposium on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems, pages 63–72. IEEE.

[8] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

[9] Bansal, N., Chan, H.-L., Khandekar, R., Pruhs, K., Schicber, B., and Stein,
C. (2007). Non-preemptive min-sum scheduling with resource augmentation. In
Foundations of Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium
on, pages 614–624. IEEE.

[10] Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., and Schieber, B. (2001). A
unified approach to approximating resource allocation and scheduling. Journal of
the ACM (JACM), 48(5):1069–1090.

122

http://cs.huji.ac.il/labs/parallel/workloads
http://cs.huji.ac.il/labs/parallel/workloads
http://aws.amazon.com/ec2/
http://www.vmware.com/consolidation/overview/

Bibliography 123

[11] Bar-Shalom, Y., Li, X. R., and Kirubarajan, T. (2004). Estimation with appli-
cations to tracking and navigation: theory algorithms and software. John Wiley &
Sons.

[12] Beloglazov, A., Abawajy, J., and Buyya, R. (2012). Energy-aware resource al-
location heuristics for efficient management of data centers for cloud computing.
Future generation computer systems, 28(5):755–768.

[13] Bender, M. A., Muthukrishnan, S., and Rajaraman, R. (2004). Approximation
algorithms for average stretch scheduling. Journal of Scheduling, 7(3):195–222.

[14] Bensusan, H. and Kalousis, A. (2001). Estimating the predictive accuracy of a
classifier. In European Conference on Machine Learning, pages 25–36. Springer.

[15] Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M.,
Franzon, P., Harrod, W., Hill, K., Hiller, J., et al. (2008). Exascale computing
study: Technology challenges in achieving exascale systems. Defense Advanced Re-
search Projects Agency Information Processing Techniques Office (DARPA IPTO),
Tech. Rep, 15.

[16] Bilmes, J. A. et al. (1998). A gentle tutorial of the em algorithm and its appli-
cation to parameter estimation for gaussian mixture and hidden markov models.
International Computer Science Institute, 4(510):126.

[17] Bishop, C. M. (1994). Mixture density networks. Technical report, Citeseer.

[18] Blazewicz, J., Kovalyov, M. Y., Machowiak, M., Trystram, D., and Weglarz, J.
(2006). Preemptable malleable task scheduling problem. IEEE Trans. Computers,
55(4):486–490.

[19] Bobroff, N., Kochut, A., and Beaty, K. (2007). Dynamic placement of virtual
machines for managing sla violations. In Integrated Network Management, 2007.
IM’07. 10th IFIP/IEEE International Symposium on, pages 119–128. IEEE.

[20] Bosnić, Z. and Kononenko, I. (2008a). Comparison of approaches for estimating
reliability of individual regression predictions. Data & Knowledge Engineering,
67(3):504–516.

[21] Bosnić, Z. and Kononenko, I. (2008b). Estimation of individual prediction reli-
ability using the local sensitivity analysis. Applied intelligence, 29(3):187–203.

[22] Brahma, P. P., Wu, D., and She, Y. (2015). Why deep learning works: A manifold
disentanglement perspective. IEEE transactions on neural networks and learning
systems, 27(10):1997–2008.

[23] Breitgand, D. and Epstein, A. (2012). Improving consolidation of virtual ma-
chines with risk-aware bandwidth oversubscription in compute clouds. In INFO-
COM, 2012 Proceedings IEEE, pages 2861–2865. IEEE.

Bibliography 124

[24] Buyya, R. and Murshed, M. (2002). Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid computing.
Concurrency and computation: practice and experience, 14(13-15):1175–1220.

[25] Caglar, F. and Gokhale, A. (2014). ioverbook: intelligent resource-overbooking
to support soft real-time applications in the cloud. In 2014 IEEE 7th International
Conference on Cloud Computing, pages 538–545. IEEE.

[26] Calzarossa, M. C., Massari, L., and Tessera, D. (2016). Workload characteriza-
tion: A survey revisited. ACM Computing Surveys (CSUR), 48(3):48.

[27] Chang, H., Kodialam, M., Kompella, R. R., Lakshman, T., Lee, M., and Mukher-
jee, S. (2011). Scheduling in mapreduce-like systems for fast completion time. In
INFOCOM, 2011 Proceedings IEEE, pages 3074–3082. IEEE.

[28] Chekuri, C., Goel, A., Khanna, S., and Kumar, A. (2004). Multi-processor
scheduling to minimize flow time with ε resource augmentation. In Proceedings of
the thirty-sixth annual ACM symposium on Theory of computing, pages 363–372.
ACM.

[29] Chekuri, C., Khanna, S., and Zhu, A. (2001). Algorithms for minimizing
weighted flow time. In Proceedings of the thirty-third annual ACM symposium
on Theory of computing, pages 84–93. ACM.

[30] Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pages 785–794. ACM.

[31] Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015).
Attention-based models for speech recognition. In Advances in neural information
processing systems, pages 577–585.

[32] Cohn, T., Hoang, C. D. V., Vymolova, E., Yao, K., Dyer, C., and Haffari, G.
(2016). Incorporating structural alignment biases into an attentional neural trans-
lation model. arXiv preprint arXiv:1601.01085.

[33] Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., and Bian-
chini, R. (2017). Resource central: Understanding and predicting workloads for
improved resource management in large cloud platforms. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 153–167. ACM.

[34] Dabbagh, M., Hamdaoui, B., Guizani, M., and Rayes, A. (2015a). Energy-
efficient resource allocation and provisioning framework for cloud data centers.
IEEE Trans. Network and Service Management, 12(3):377–391.

[35] Dabbagh, M., Hamdaoui, B., Guizani, M., and Rayes, A. (2015b). Toward
energy-efficient cloud computing: Prediction, consolidation, and overcommitment.
IEEE network, 29(2):56–61.

Bibliography 125

[36] Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113.

[37] Delimitrou, C. and Kozyrakis, C. (2014). Quasar: resource-efficient and qos-
aware cluster management. ACM SIGPLAN Notices, 49(4):127–144.

[38] Desai, N. (2005). Cobalt: an open source platform for hpc system software
research. In Edinburgh BG/L System Software Workshop, pages 803–820.

[39] Di, S., Kondo, D., and Cirne, W. (2012). Characterization and comparison
of cloud versus grid workloads. In Cluster Computing (CLUSTER), 2012 IEEE
International Conference on, pages 230–238. IEEE.

[40] Dimitriadou, S. and Karatza, H. (2010). Job scheduling in a distributed system
using backfilling with inaccurate runtime computations. In Complex, Intelligent
and Software Intensive Systems (CISIS), 2010 International Conference on, pages
329–336. IEEE.

[41] Dobson, G. and Nambimadom, R. S. (2001). The batch loading and scheduling
problem. Operations research, 49(1):52–65.

[42] Duggan, M., Mason, K., Duggan, J., Howley, E., and Barrett, E. (2017). Pre-
dicting host cpu utilization in cloud computing using recurrent neural networks. In
2017 12th International Conference for Internet Technology and Secured Transac-
tions (ICITST), pages 67–72. IEEE.

[43] Durbin, J. and Koopman, S. J. (2012). Time series analysis by state space
methods, volume 38. OUP Oxford.

[44] Durillo, J. J. and Prodan, R. (2014). Multi-objective workflow scheduling in
amazon ec2. Cluster Computing, 17(2):169–189.

[45] Duy, T. V. T., Sato, Y., and Inoguchi, Y. (2011). Improving accuracy of host
load predictions on computational grids by artificial neural networks. International
Journal of Parallel, Emergent and Distributed Systems, 26(4):275–290.

[46] Edmonds, J., Chinn, D. D., Brecht, T., and Deng, X. (2003). Non-clairvoyant
multiprocessor scheduling of jobs with changing execution characteristics. J.
Scheduling, 6(3):231–250.

[47] Fan, Y., Rich, P., Allcock, W. E., Papka, M. E., and Lan, Z. (2017). Trade-off
between prediction accuracy and underestimation rate in job runtime estimates. In
Cluster Computing (CLUSTER), 2017 IEEE International Conference on, pages
530–540. IEEE.

[48] Feitelson, D. G., Tsafrir, D., and Krakov, D. (2014). Experience with using
the parallel workloads archive. Journal of Parallel and Distributed Computing,
74(10):2967–2982.

Bibliography 126

[49] Fox, K. and Korupolu, M. (2013). Weighted flowtime on capacitated machines.
In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 129–143. SIAM.

[50] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232.

[51] Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics
& data analysis, 38(4):367–378.

[52] Gama, J. and Brazdil, P. (1995). Characterization of classification algorithms.
In Portuguese Conference on Artificial Intelligence, pages 189–200. Springer.

[53] Gammerman, A. and Vovk, V. (2007). Hedging predictions in machine learning.
The Computer Journal, 50(2):151–163.

[54] Gao, P. X., Curtis, A. R., Wong, B., and Keshav, S. (2012). It’s not easy being
green. In Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication, pages 211–
222. ACM.

[55] Gaussier, E., Glesser, D., Reis, V., and Trystram, D. (2015). Improving back-
filling by using machine learning to predict running times. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, page 64. ACM.

[56] Geer, D. (2007). For programmers, multicore chips mean multiple challenges.
Computer, 40(9):17–19.

[57] Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget:
Continual prediction with lstm.

[58] Gibbons, R. (1997). A historical application profiler for use by parallel schedulers.
In Workshop on Job Scheduling Strategies for Parallel Processing, pages 58–77.
Springer.

[59] Gong, Z., Gu, X., and Wilkes, J. (2010). Press: Predictive elastic resource scaling
for cloud systems. CNSM, 10:9–16.

[60] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

[61] Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with
recurrent neural networks. In International Conference on Machine Learning, pages
1764–1772.

http://www.deeplearningbook.org

Bibliography 127

[62] Graves, A., Jaitly, N., and Mohamed, A.-r. (2013). Hybrid speech recognition
with deep bidirectional lstm. In 2013 IEEE workshop on automatic speech recog-
nition and understanding, pages 273–278. IEEE.

[63] Graves, A. and Schmidhuber, J. (2009). Offline handwriting recognition with
multidimensional recurrent neural networks. In Advances in neural information
processing systems, pages 545–552.

[64] Greenberg, A., Hamilton, J., Maltz, D. A., and Patel, P. (2008). The cost of a
cloud: Research problems in data center networks. SIGCOMM Comput. Commun.
Rev., 39(1):68–73.

[65] Gupta, S. and Dinesh, D. A. (2017). Resource usage prediction of cloud work-
loads using deep bidirectional long short term memory networks. In 2017 IEEE
International Conference on Advanced Networks and Telecommunications Systems
(ANTS), pages 1–6. IEEE.

[66] Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The elements of statistical
learning: data mining, inference, and prediction, 2nd Edition. Springer series in
statistics. Springer.

[67] Hazan, E. et al. (2016). Introduction to online convex optimization. Foundations
and Trends R© in Optimization, 2(3-4):157–325.

[68] Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In
Neural networks for perception, pages 65–93. Elsevier.

[69] Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al. (2001). Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies.

[70] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

[71] Hovestadt, M., Kao, O., Keller, A., and Streit, A. (2003). Scheduling in hpc re-
source management systems: Queuing vs. planning. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 1–20. Springer.

[Im et al.] Im, S., Naghshnejad, M., and Singhal, M. Scheduling jobs with non-
uniform demands on multiple servers without interruption.

[73] Ismaeel, S. and Miri, A. (2015). Using elm techniques to predict data centre
vm requests. In Cyber Security and Cloud Computing (CSCloud), 2015 IEEE 2nd
International Conference on, pages 80–86. IEEE.

[74] Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on pattern analysis and
machine intelligence, 20(11):1254–1259.

Bibliography 128

[75] Jansen, K. and Zhang, G. (2007). Maximizing the total profit of rectangles
packed into a rectangle. Algorithmica, 47(3):323–342.

[76] Jennings, B. and Stadler, R. (2015). Resource management in clouds: Survey and
research challenges. Journal of Network and Systems Management, 23(3):567–619.

[77] JoSEP, A. D., KAtz, R., KonWinSKi, A., Gunho, L., PAttERSon, D., and
RABKin, A. (2010). A view of cloud computing. Communications of the ACM,
53(4).

[78] Kc, K. and Anyanwu, K. (2010). Scheduling hadoop jobs to meet deadlines. In
Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second Inter-
national Conference on, pages 388–392. IEEE.

[79] Kendall, A. and Gal, Y. (2017). What uncertainties do we need in bayesian
deep learning for computer vision? In Advances in neural information processing
systems, pages 5574–5584.

[80] Khan, A., Yan, X., Tao, S., and Anerousis, N. (2012). Workload characterization
and prediction in the cloud: A multiple time series approach. In 2012 IEEE Network
Operations and Management Symposium, pages 1287–1294. IEEE.

[81] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[82] Klusáček, D., Chlumskỳ, V., and Rudová, H. (2015). Planning and optimization
in torque resource manager. In Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed Computing, pages 203–206. ACM.

[83] Klusáček, D. and Rudová, H. (2010). Alea 2: job scheduling simulator. In
Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques, page 61. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[84] Koh*, S.-G., Koo, P.-H., Ha, J.-W., and Lee, W.-S. (2004). Scheduling parallel
batch processing machines with arbitrary job sizes and incompatible job families.
International Journal of Production Research, 42(19):4091–4107.

[85] Kong, F. and Liu, X. (2015). A survey on green-energy-aware power management
for datacenters. ACM Computing Surveys (CSUR), 47(2):30.

[86] Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky,
S., and Uhlig, S. (2015). Software-defined networking: A comprehensive survey.
Proceedings of the IEEE, 103(1):14–76.

[87] Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural
Information Processing Systems, pages 6402–6413.

Bibliography 129

[88] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature,
521(7553):436.

[89] Lee, C. B., Schwartzman, Y., Hardy, J., and Snavely, A. (2004). Are user runtime
estimates inherently inaccurate? In Workshop on Job Scheduling Strategies for
Parallel Processing, pages 253–263. Springer.

[90] Lee, Y. C., Han, H., Zomaya, A. Y., and Yousif, M. (2015). Resource-efficient
workflow scheduling in clouds. Knowledge-Based Systems, 80:153–162.

[91] Li, F., Cao, J., Wang, X., Sun, Y., and Sahni, Y. (2017). Enabling software
defined networking with qos guarantee for cloud applications. In Cloud Computing
(CLOUD), 2017 IEEE 10th International Conference on, pages 130–137. IEEE.

[92] Li, G., Ma, Q., Tang, H., Paterson, A. H., and Xu, Y. (2009). Qubic: a qualitative
biclustering algorithm for analyses of gene expression data. Nucleic acids research,
37(15):e101–e101.

[93] Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X., and Yan, X. (2019).
Enhancing the locality and breaking the memory bottleneck of transformer on time
series forecasting. arXiv preprint arXiv:1907.00235.

[94] Liang, D., Ho, P.-J., and Liu, B. (2000). Scheduling in distributed systems.
Department of Computer Science and Engineering University of California, San
Diego.

[95] Lin, W., Peng, B., Liang, C., and Liu, B. (2013). Novel resource allocation
model and algorithms for cloud computing. In Emerging Intelligent Data and Web
Technologies (EIDWT), 2013 Fourth International Conference on, pages 77–82.
IEEE.

[96] Lipton, Z. C., Berkowitz, J., and Elkan, C. (2015). A critical review of recurrent
neural networks for sequence learning. arXiv preprint arXiv:1506.00019.

[97] Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025.

[98] Maguluri, S. T. and Srikant, R. (2014). Scheduling jobs with unknown duration
in clouds. Networking, IEEE/ACM Transactions on, 22(6):1938–1951.

[99] Maguluri, S. T., Srikant, R., and Ying, L. (2014). Heavy traffic optimal resource
allocation algorithms for cloud computing clusters. Performance Evaluation, 81:20–
39.

[100] Matsunaga, A. and Fortes, J. A. (2010). On the use of machine learning to
predict the time and resources consumed by applications. In Proceedings of the 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
pages 495–504. IEEE Computer Society.

Bibliography 130

[101] McLachlan, G. J. and Basford, K. E. (1988). Mixture models: Inference and
applications to clustering, volume 84. M. Dekker New York.

[102] Mendes, C. L. and Reed, D. A. (1998). Integrated compilation and scalability
analysis for parallel systems. In Parallel Architectures and Compilation Techniques,
1998. Proceedings. 1998 International Conference on, pages 385–392. IEEE.

[103] Mishra, A. K., Hellerstein, J. L., Cirne, W., and Das, C. R. (2010). Towards
characterizing cloud backend workloads: insights from google compute clusters.
ACM SIGMETRICS Performance Evaluation Review, 37(4):34–41.

[104] Mu’alem, A. W. and Feitelson, D. G. (2001). Utilization, predictability, work-
loads, and user runtime estimates in scheduling the ibm sp2 with backfilling. IEEE
Trans. Parallel Distrib. Syst., 12(6):529–543.

[105] Nguyen, H., Shen, Z., Gu, X., Subbiah, S., and Wilkes, J. (2013). Agile: Elastic
distributed resource scaling for infrastructure-as-a-service. In ICAC, volume 13,
pages 69–82.

[106] Nguyen, T. H., Di Francesco, M., and Yla-Jaaski, A. (2017). Virtual machine
consolidation with multiple usage prediction for energy-efficient cloud data centers.
IEEE Transactions on Services Computing.

[107] Nielsen, M. A. (2015). Neural networks and deep learning, volume 25. Deter-
mination press San Francisco, CA, USA:.

[108] Niranjan Mysore, R., Pamboris, A., Farrington, N., Huang, N., Miri, P., Rad-
hakrishnan, S., Subramanya, V., and Vahdat, A. (2009). Portland: a scalable
fault-tolerant layer 2 data center network fabric. In ACM SIGCOMM Computer
Communication Review, volume 39, pages 39–50.

[109] Nissimov, A. and Feitelson, D. G. (2007). Probabilistic backfilling. In Workshop
on Job Scheduling Strategies for Parallel Processing, pages 102–115. Springer.

[110] Nouretdinov, I., Melluish, T., and Vovk, V. (2001). Ridge regression confidence
machine. In ICML, pages 385–392.

[111] Novakovic, D., Vasic, N., Novakovic, S., Kostic, D., and Bianchini, R. (2013).
Deepdive: Transparently identifying and managing performance interference in
virtualized environments. In Proceedings of the 2013 USENIX Annual Technical
Conference, number EPFL-CONF-185984.

[112] Ophem, S. v. and Berkhoff, A. P. (2016). A numerically stable, finite memory,
fast array recursive least squares filter for broadband active noise control. Interna-
tional journal of adaptive control and signal processing, 30(1):31–45.

Bibliography 131

[113] Paroli, R., Spezia, L., et al. (2002). Parameter estimation of gaussian hidden
markov models when missing observations occur. Metron-International Journal of
Statistics, 60(3-4):163–179.

[114] Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training
recurrent neural networks. In International Conference on Machine Learning, pages
1310–1318.

[115] Pinedo, M. L. (2012). Scheduling: theory, algorithms, and systems. Springer
Science & Business Media.

[116] Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., and Cottrell, G. (2017).
A dual-stage attention-based recurrent neural network for time series prediction.
arXiv preprint arXiv:1704.02971.

[117] Ramı́rez-Velarde, R., Tchernykh, A., Barba-Jimenez, C., Hirales-Carbajal, A.,
and Nolazco-Flores, J. (2017). Adaptive resource allocation with job runtime un-
certainty. Journal of Grid Computing, 15(4):415–434.

[118] Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., and Kozuch, M. A. (2012).
Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In Pro-
ceedings of the Third ACM Symposium on Cloud Computing, page 7. ACM.

[119] Rodrigues, P. P., Gama, J., and Bosnic, Z. (2008). Online reliability estimates
for individual predictions in data streams. In 2008 IEEE International Conference
on Data Mining Workshops, pages 36–45. IEEE.

[120] Ross, S., Mineiro, P., and Langford, J. (2013). Normalized online learning.
arXiv preprint arXiv:1305.6646.

[121] Sanders, P. and Speck, J. (2012). Energy efficient frequency scaling and schedul-
ing for malleable tasks. In Euro-Par 2012 Parallel Processing - 18th International
Conference, Euro-Par 2012, Rhodes Island, Greece, August 27-31, 2012. Proceed-
ings, pages 167–178.

[122] Sandholm, T. and Lai, K. (2010). Dynamic proportional share scheduling
in hadoop. In Job scheduling strategies for parallel processing, pages 110–131.
Springer.

[123] Saunders, C., Gammerman, A., and Vovk, V. (1999). Transduction with confi-
dence and credibility.

[124] Schäfer, A. M. and Zimmermann, H.-G. (2007). Recurrent neural networks are
universal approximators. International journal of neural systems, 17(04):253–263.

[125] Schopf, J. M. and Berman, F. (1999). Using stochastic intervals to predict
application behavior on contended resources. In Parallel Architectures, Algorithms,

Bibliography 132

and Networks, 1999.(I-SPAN’99) Proceedings. Fourth InternationalSymposium on,
pages 344–349. IEEE.

[126] Sharma, B., Chudnovsky, V., Hellerstein, J. L., Rifaat, R., and Das, C. R.
(2011). Modeling and synthesizing task placement constraints in google compute
clusters. In Proceedings of the 2nd ACM Symposium on Cloud Computing, page 3.
ACM.

[127] Sharma, S., Kiros, R., and Salakhutdinov, R. (2015). Action recognition using
visual attention. arXiv preprint arXiv:1511.04119.

[128] Skovira, J., Chan, W., Zhou, H., and Lifka, D. (1996). The easy loadleveler api
project. In Workshop on Job Scheduling Strategies for Parallel Processing, pages
41–47. Springer.

[129] Smith, W., Foster, I., and Taylor, V. (1998). Predicting application run times
using historical information. In Feitelson, D. G. and Rudolph, L., editors, Job
Scheduling Strategies for Parallel Processing, pages 122–142, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[130] Smith, W. E. (1956). Various optimizers for single-stage production. Naval
Research Logistics Quarterly, 3(1-2):59–66.

[131] Song, B., Yu, Y., Zhou, Y., Wang, Z., and Du, S. (2018). Host load prediction
with long short-term memory in cloud computing. The Journal of Supercomputing,
74(12).

[132] Song, W., Xiao, Z., Chen, Q., and Luo, H. (2014). Adaptive resource provi-
sioning for the cloud using online bin packing. Computers, IEEE Transactions on,
63(11):2647–2660.

[133] Sonmez, O., Yigitbasi, N., Iosup, A., and Epema, D. (2009). Trace-based
evaluation of job runtime and queue wait time predictions in grids. In Proceedings of
the 18th ACM international symposium on High performance distributed computing,
pages 111–120. ACM.

[134] Srikantaiah, S., Kansal, A., and Zhao, F. (2008). Energy aware consolidation for
cloud computing. In Proceedings of the 2008 conference on Power aware computing
and systems, volume 10, pages 1–5. San Diego, California.

[135] Srinivasan, S., Kettimuthu, R., Subramani, V., and Sadayappan, P. (2002).
Characterization of backfilling strategies for parallel job scheduling. In Parallel
Processing Workshops, 2002. Proceedings. International Conference on, pages 514–
519. IEEE.

[136] Steinberg, A. (1997). A strip-packing algorithm with absolute performance
bound 2. SIAM Journal on Computing, 26(2):401–409.

Bibliography 133

[137] Stillwell, M., Vivien, F., and Casanova, H. (2010). Dynamic fractional resource
scheduling for hpc workloads. In Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pages 1–12. IEEE.

[138] Talby, D. and Feitelson, D. G. (1999). Supporting priorities and improving
utilization of the ibm sp scheduler using slack-based backfilling. In Parallel Pro-
cessing, 1999. 13th International and 10th Symposium on Parallel and Distributed
Processing, 1999. 1999 IPPS/SPDP. Proceedings, pages 513–517. IEEE.

[139] Tang, W., Desai, N., Buettner, D., and Lan, Z. (2010). Analyzing and adjusting
user runtime estimates to improve job scheduling on the blue gene/p. In Parallel
& Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages
1–11. IEEE.

[140] Tang, W., Lan, Z., Desai, N., and Buettner, D. (2009). Fault-aware, utility-
based job scheduling on blue, gene/p systems. In 2009 IEEE International Con-
ference on Cluster Computing and Workshops, pages 1–10. IEEE.

[141] Tchernykh, A., Schwiegelsohn, U., Alexandrov, V., and Talbi, E.-g. (2015). To-
wards understanding uncertainty in cloud computing resource provisioning. Proce-
dia Computer Science, 51:1772–1781.

[142] Tsafrir, D., Etsion, Y., and Feitelson, D. G. (2007). Backfilling using system-
generated predictions rather than user runtime estimates. IEEE Transactions on
Parallel and Distributed Systems, 18(6):789–803.

[143] Tuda, K., Rätsch, G., Mika, S., and Müller, K.-R. (2001). Learning to predict
the leave-one-out error of kernel based classifiers. In International Conference on
Artificial Neural Networks, pages 331–338. Springer.

[144] Uzsoy, R. (1994). Scheduling a single batch processing machine with non-
identical job sizes. THE INTERNATIONAL JOURNAL OF PRODUCTION RE-
SEARCH, 32(7):1615–1635.

[145] Vanschoren, J. (2019). Meta-learning. In Automatic Machine Learning: Meth-
ods, Systems, Challenges, pages 39–68. Springer.

[146] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008.

[147] Wang, M., Meng, X., and Zhang, L. (2011). Consolidating virtual machines
with dynamic bandwidth demand in data centers. In INFOCOM, 2011 Proceedings
IEEE, pages 71–75. IEEE.

[148] Wang, W., Li, B., and Liang, B. (2014). Dominant resource fairness in cloud
computing systems with heterogeneous servers. In INFOCOM, 2014 Proceedings
IEEE, pages 583–591. IEEE.

Bibliography 134

[149] Weigend, A. S. and Nix, D. A. (1994). Predictions with confidence intervals (lo-
cal error bars). In Proceedings of the international conference on neural information
processing, pages 847–852.

[150] Williamson, D. P. and Shmoys, D. B. (2011). The Design of Approximation
Algorithms. Cambridge University Press.

[151] Wolski, R. and Brevik, J. (2013). Using parametric models to represent private
cloud workloads. IEEE Transactions on Services Computing, 7(4):714–725.

[152] Xhafa, F., Carretero, J., Dorronsoro, B., and Alba, E. (2012). A tabu search
algorithm for scheduling independent jobs in computational grids. Computing and
informatics, 28(2):237–250.

[153] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,
and Bengio, Y. (2015). Show, attend and tell: Neural image caption generation
with visual attention. In International conference on machine learning, pages 2048–
2057.

[154] Yoo, A. B., Jette, M. A., and Grondona, M. (2003). Slurm: Simple linux utility
for resource management. In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 44–60. Springer.

[155] You, Q., Jin, H., Wang, Z., Fang, C., and Luo, J. (2016). Image captioning
with semantic attention. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4651–4659.

[156] Yuan, H., Bi, J., Zhang, J., Tan, W., and Huang, K. (2017). Workload-aware
revenue maximization in sdn-enabled data center. In Cloud Computing (CLOUD),
2017 IEEE 10th International Conference on, pages 18–25. IEEE.

[157] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010).
Spark: Cluster computing with working sets. HotCloud, 10:10–10.

[158] Zhang, Q., Hellerstein, J. L., and Boutaba, R. (2011). Characterizing task
usage shapes in google’s compute clusters. In Large Scale Distributed Systems and
Middleware Workshop (LADIS’11).

[159] Zhang, Q., Zhani, M. F., Zhang, S., Zhu, Q., Boutaba, R., and Hellerstein,
J. L. (2012). Dynamic energy-aware capacity provisioning for cloud computing
environments. In Proceedings of the 9th international conference on Autonomic
computing, pages 145–154. ACM.

[160] Zheng, X., Zhou, Z., Yang, X., Lan, Z., and Wang, J. (2016). Exploring plan-
based scheduling for large-scale computing systems. In Cluster Computing (CLUS-
TER), 2016 IEEE International Conference on, pages 259–268. IEEE.

Bibliography 135

[161] Zheng, Y., Shroff, N. B., and Sinha, P. (2013). A new analytical technique for
designing provably efficient mapreduce schedulers. In INFOCOM, 2013 Proceedings
IEEE, pages 1600–1608. IEEE.

	List of Symbols
	List of Figures
	List of Tables
	List of Algorithms
	Preface
	Acknowledgment
	Curriculum Vita
	Abstract
	Introduction
	Research Motivation and Objectives
	Research Challenges
	 Research Questions and Contributions
	Thesis Outline

	Background
	High Performance Computing
	Scheduling and Resource Management in HPC Systems
	Scheduling in Distributed Systems
	Scheduling HPC applications in private clusters
	HPC as a service in the Cloud
	Resource management in distributed systems
	Existing Challenges for Scheduling HPC Applications
	Research Methodology for Scheduling and Resource Management of Distributed Systems

	Prediction Approaches for HPC Applications
	Runtime Prediction for Applications in HPC Clusters
	Resource usage prediction for Applications and Virtual Machines

	Scheduling non-preemptive applications with varying runtimes
	Introduction
	Proposed scheduling algorithms
	Formal problem definition
	Our results
	Related work

	Analysis
	Lower bounds for priority based algorithms
	Upper bounds for priority based algorithms
	Constant approximation algorithms
	Upper bounds for Block-Scheduling algorithm

	Simulation experiments
	Workloads
	Experimental results

	Conclusion

	Handling Inaccuracies in Scheduling HPC Applications in Cluster
	introduction
	Background and Problem Description
	Common Scheduling Algorithms for HPC Workloads
	Sensitivity to Job Runtime Accuracy
	Job Runtime Prediction Reliability Estimation
	Formulation of the Problem

	Related Work
	Estimating Prediction Reliability
	HPC Scheduling and Runtime Uncertainty

	Proposed Hybrid Scheduling Platform
	Proposed Design
	Central Scheduler
	Hybridization Parameter Adjusting Unit
	ML-unit

	Evaluating the Performance of our Proposed Hybrid-Scheduling Platform
	Event-Driven Simulation
	Comparison with Existing Scheduling Approaches
	The effect of Clairvoyance on Hybrid Scheduler
	Parameter Selection for Hybrid Scheduling

	Summary

	Predicting Runtimes with Hierarchical Kalman Filters
	Introduction
	Main Contributions of the Chapter

	Related Work
	Adaptive Online Machine Learning for Application Runtime Prediction
	Overview
	Prediction Methodology
	First Proposed Approach: Fixed Multiple Kalman Filter (FMKF)
	Second Proposed Method: Multi-Layer Kalman Filter (MLKF)

	Experimental Evaluation of the Prediction Methods
	Prediction Accuracy Evaluation

	The impact of More Accurate Predictions on Scheduling Performance
	Event Driven Simulation
	Scheduling Algorithms
	Results

	Summary

	Predicting Runtime using Deep Mixture Density Networks
	Introduction
	Our Contributions
	Chapter Organization

	Related Work
	Related Work on HPC Application Runtime Prediction
	Related work on HPC jobs runtime prediction

	Mixture Density Networks for Runtime Predicion
	Overview
	Prediction Methodology
	Architecture of Deep Mixture Network to predict job runtimes

	Experimental Evaluation of the Prediction Methods
	Prediction Accuracy Evaluation

	Summary

	Predicting CPU Usage with Deep Recurrent Neural Networks
	Introduction
	Related Work
	Background
	Structure-based clustering and alignment
	Recurrent Neural Network for load prediction
	Encoder-Decoder LSTM for sequence prediction

	Our Proposed LSTM model for predicting individual VM patterns
	The attention mechanism and structural bias
	Specialized structural bias attention mechanisms
	Additional input features to improve prediction accuracy

	Experimental Results and Discussion
	Data Preparation and feature extraction
	Using LSTM to predict CPU consumption
	Discussion: Comparison with Existing Approaches for Workload Prediction
	Feasibility of Our Prediction Model for Resource Management Systems

	Summary

	Concluding Remarks
	Scheduling Nonpreemptive Applications in Distributed Systems
	Runtime Prediction for HPC Workload
	Predicting CPU Consumption Patterns in Distributed Systems
	Conclusion and Future Directions

	Bibliography

