
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
EFFICIENT ACCESS OF COMPRESSED DATA

Permalink
https://escholarship.org/uc/item/5n52q8mz

Author
Eggers, S.J.

Publication Date
1980-06-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5n52q8mz
https://escholarship.org
http://www.cdlib.org/


LBL-10648 
COK3C-fr>rt] f lg- 7-

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics, Computer Science & 
Mathematics Division 

To be presented at the Sixth International Conference 
on Very Large Data Bases, Montreal, Quelle. Canada, 
October 1-3, 1980 

EFFICIENT ACCESS OF COMPRESSED DATA 

Susan J. Eggers and Arie Shoshari 

June 1980 

1 

Prepared for tht> U.S. Department of Energy under Contract W-7405-ENG-48 

DISTRIBUTION OF THIS DOMMEHT IS UNUMITE3 



1 

Efficient Access of Compressed Data 

by Susan J. aggers and Arie Shoshani 

Department of Computer Science and Applied Mathematics 
Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

Abstract 

In this paper a compression technique is presented which allows a high 
degree of compression but requires only logarithmic access time. Tne tech­
nique is a constant suppression scheme, and is most applicable to stable 
databases whose distribution of constants is fairly clustered. Further­
more, the repeated use of the technique permits the suppression of a multi­
ple number of different constants. 

Of particular interest is the application of the constant suppression 
technique to databases whose composite key is made up of an incomplete 
cross product of several attribute domains. The scheme for compressing thr-
full cross product composite key is well known. In this paper, however, 
the general, incomplete case is also handled by applying the constant 
suppression technique in conjunction with a composite key suppression 
scheme. 

DISCLAIMER — • 



2 

i> Introduction 

An effective method for storing very large databases is the use of 
compression techniques. Unfortunately, since compression involves encoding 
the data, some efficiency in access must usually be sacrificed to achieve 
the smaller database. Some compression schemes require that the data be 
decompressed to its original form before being searched. Others allow the 
d<_̂ a to be used in the compressed form, but still require accessing over­
head. In both cases the savings in space is accompanied by additional 
access time of order n, where n is the number of values or tuples which 
must be processed in order to find the data [Alsb, Aron, Gott, Hahn, Knut]. 
Tarjan and Yao have developed a row displacement scheme in which access is 
logarithmic, but the database is not fully compressed [TarjJ. 

In this paper a compression technique is presented which allows a high 
degree of compression but requires only logarithmic access time, the tech­
nique is a constant suppression scNme, and is most applicable to stable 
databases whose distribution of constants is fairly clustered, further­
more, the repeated application of the technique permits the suppression of 
a multiple number of different constants. 

Another type of data repetition occurs when tuples are identified by 
the cross product of several attribute domains. These oomposite keys can 
be eliminated from the database, the domains of their category attributes 
stored in a dictionary and the tuples located computationally. The compu­
tation scheme fails, however, when all possible values of the cross product 

Compressed data, of course, requires fewer seorndary storage fetches. 
In this paper, however, the term access refers to the amount of time needed 
to locate values already in core. 



3 

are not represented in the relation. This situation, which shall be 
referred to as an incomplete cross product, can be nicely handled by using 
the constant suppression technique presented here in conjunction with com­
posite key suppression. The access time for the combined techniques is 
still logarithmic. 

In section 2 the characteristics of databases which are amenable to 
the above constant suppression technique are identified. A description of 
the technique and its data access algorithms follows in section 3. Section 
4 contains the application of the technique to the case of multiple con­
stants in a database. Section 5 discusses the use of the constant suppres­
sion technique in conjunction with a key suppression scheme to handle data­
bases with an incomplete cross product. The implications for data access 
of complete file transposition whan using the constant suppression scheme 
appear in section 6. And section 7 contains a storage compression and 
access time comparison with two other techniques. 

2. Characteristics of Statistical Databases 

The compression technique presented in this paper was designed to be 
effective for certain types of statistical databases which are widely used 
in sociological and scientific applications. The sociological databases 
are uuiiiprised of tabulations of socio-economic and environmental survey 
data, usually geographically based and summarized over demographic attri­
butes, such as race and sex. Examples in use at Lawrence Berkeley Labora­
tory (LBL) are population data in the 1970 U.S. Census Summary Tapes (4th 
Count), age-adjusted mortality rates, air quality da*a for individual moni­
toring stations and county business patterns. The scientific data results 
from laboratory experimrju-s in which some parameters are held constant 



4 

while others are systematically varied. An example from Battelle's Pacific 
Northwest Laboratory is the measurement of skin temperature and blood flow 
on laboratory rats in response to varying intensities of radiation, and 
positions and types of probes. 

The databases are organized into relations. Each tuple consists of 
category attributes, which uniquely define it and constitute the composite 
key, and non-category or non-key attributes, which supply the content of 
the database. For example, in the LBL database of mortality data by race, 
sex, disease, age group and geographical area, tie latter five attributes 
are the category attributes and serve as the composite key, while the mor­
tality counts and rates are the non-category attributes. 

The databases are usually sorted in the lexicographic order of their 
composite key. Thus, for most tuples, all key attribute values but one are 
repeated from tuple to tuple. The databases are therefore potential candi­
dates for oomponite key compression. In certain cases, some instances of 
the composite key are invalid; for those missing combinations no tuples 
exist. This incomplete cross product often occurs in the recording of 
experimental data for which some parameter combinations are unavailable or 
meaningless. 

In addition to the repetition of values in the composite key, there is 
repetition in the nai-key (non-category) attributes. The repetition stems 
from the prevalence of a particular constant value in the database, most 
typically zero or null. Depending on the ordering of the composite key 
values, the constants for a particular non-category attribute tend to clus­
ter, i.e., appear in logically consecutive tuples. For example, since 
there are relatively few Chinese in Vermont, a census database which is 



5 

comprise of a oount of population by race, state and county is likely to 

contain a series of zeros in the section for counties in Vermont. 

Two factors cause the databases to be extremely large. First, they 

may contain hundreds of non-key attributes. More importantly, the cardi­

nalities of the individual -7imains in the composite key can themselves be 

quite large? and the number of tuples generated is the product of these 

cardinalities. The mortality database contains the cross product of four 

races, two se>ss, 70 diseases, six age groups and 3000 counties, amounting 

to over ten million tuples. "Hie category attributes alone would occupy 

over sixty megabytes, if explicitly stored in the database. 

For the daf-abases at IBL query selection predicates'' are mosc commonly 

applied to die category attributes of the composite key, while output is 
3 

projected from both the category and non-categcry attributes ; only occa-
4 

sionally is selection based on non-category attributes . Thus, most 

accessing will involve locating the ncn-category attributes in the 

compressed database, given their uncompressed position, rather than search­

ing for them in the compressed form. The former type of access can there­

fore be optimized at the expense of the latter. In addition, queries tend 

to output relatively few of the attributes in a tuple. Consequently, the 

databases are amenable to complete file transposition. 

A query is assumed to contain two parts: a selection predicate which 
specifies the conditions of qualification and an output clause which pro­
jects attributes for display. 

e.g., SELECT race = white, state = California; OUTPUT county, popula­
tion. 

4 
e .g . , SEtECT population > 500,000; OUTPUT county. 



6 

Since the databases are summaries of survey data and results of exper­
iments, they tend to be extremely stable; updates are practically non-
existant, Therefore, compressed databases will rarely have to be 
reocmpressed. 

3. Suppression of Constants 

In this section we consider the compression of constant values in the 
non-category attributes; the compression of repeating values in the compo­
site keys is discussed in section 5. However, in order to clearly illis-
trate the constant suppression technique, the discussion here assumes that 
composite keys have been compressed, and that the tuples contain only the 
non-category values. 

For the purpose of explaining a constant supression scheme, one can 
think of the original, uncompressed tuples as the logical form of the data­
base, and the compressed data which is actually stored as the physical 
form. A desirable mapping between the two would have the property of pro­
viding efficient access, while requiring little storage overhead. 

One compression technique presented here considers the logical form of 
the database to be a vector of values, in which a series of constants 
alternates with a series of unsuppressed values. (Cf. L in Figure 1 
below.) Whether a relation is converted into a vector by rows or columns is 
unimportant to the presentation of the technique, but is discussed later in 
section 6. The vector representation merely enables the compression scheme 
to be concerned with the database as a whole and allows non-category attri­
butes to be compressed across either tuple or column boundaries. The phy­
sical database is considered to be a vector of unsuppressed values. 



7 

The mechanism for mapping between the two vectors uses a header which 
records the distribution of constants and unsuppressed values in the logi­
cal form. The header is a vector of counts, with the odd-positioned counts 
for unsuppressed values, and the even-positioned for constants. Each count 
contains the cumulative number of values of its type at the point at which 
a series of that type switches to a series of the other. The counts 
reflect accumulations from the beginning of the vector. 

For example, consider the vector L in Figure 1, which represents the 
logical form of a database, in which the O's are the constants to be 
suppressed and the v's are the unsuppressed values. Directly beneath the 
vector at the points at which one type of series gives way to the other, is 
the list of counts which comprise the compression header, H. The odd-
positicnea counts hold accumulations of unsuppressed values; and the even-
positioned counts hold the accumulations of zeros. The physical, 
compressed form of the data is represented by P. 

The header was designed so that a single structure can be used for 
mapping from the logical to the physical vector, and vice versa, in loga­
rithmic time. Since the counts are cumulative, and their sums are there­
fore in ascending order, a binary search on the sums can be utilized for 

L: v A v 2 0 0 0 0 0 0 0 0 0 v 3 v 4 v 5 v g v 7 0 0 v 8 v g v 1 Q 0 0 0 

H: 2 9 7 11 10 14 

Pi v L v 2 v 3 v 4 v 5 v 6 v 7 v 8 v g v 1 0 

Figure 1 



8 

both mappings* The algorithms run in O(log s), where s is the number of 
counts in the header. 

One mapping algorithm works as follows: 

(1) Forward mapping (logical bo physical vector): 

Given the ordinal position of a desired attribute instance in the 
uncompressed, logical vector, we want to determine whether this instance is 
a suppressed constant or an unsuppressed value; and, if unsuppressed, find 
its position in the compressed vector. First, the logical position is 
located in the compression header by doing a binary search on the pairwise 
sums of adjacent counts. Note that the sum of each successive pair of 
counts represents the logical position at the end of the series denoted by 
the second count in the pair. Thus, in the example above (Figure 1), the 
sum of the second and third counts (16) yields the logical position at the 
end of the second series of unsuppressed values, and the sum of the third 
and fourth counts (18) is the logical position at the end of the second 
series of constants. The binary search is terminated when a sum is found 
which is just greater than or equal to the given logical position. If the 
second of tbs two counts in the terminating sum is an unsuppressed value 
count, the attribute instance sought is an unsupyressed value. Its ordinal 
position in the physical vector is its logical position minus the number of 
suppressed constants up to that point. That accumulation is represented by 
the first count in the terminating sum. If the second of the counts in the 
terminating sum accumulates constants, the output value is the constant. 

More formally, let the header of counts be represented by the 
sequence, u n, c n, u ^ Cj_, u 2, c 2, ..., Uj, c i r ..., u g, c g, where the u's 



9 

are the unsuppressed value counts and the c's are the constant counts. Let 

C be the value of the suppressed constant, V be the desired attribute 

value, and 1 and p designate the logical and physical ordinal positions, 

respectively. A binary search for 1 on the sums of adjacent counts in the 

header yields one of two possible cases: 

<1> u t + c t < 1 <= c t + u. + 1, 

or 

(2) c ^ + u. : 1 <= u. + c i F for some i. 

Case (1) implies that V is unsuppressed, and p = 1 - c.. Case (2) implies 

that V is a constant, i.e., V = C . 

In the example database above, the twentieth position in the logical 

form (1 = 20) maps to the ninth physical location (p = 9). The binary 

search of the header terminates at the sum of 11 (c 2, for constants) plus 

10 (ii3, for.suppressed values), the number of accumulated constants, 11, 

is subtracted from 1, leaving a physical position, p = 9. the value at 

that position is v„. On the other hand, when 1 equals eighteen, the search 

terminates at a sum (u- + c,) in which the second of the two counts accumu­

lates constants. therefore the value of the eighteenth attribute is the 

constant, C = 0. 

u 0 and c always contain the value zero, they are included in the 
header, so that an attribute instance occurring in the first series of un­
compressed data does not have to be treated as a special case in the for­
ward and backward mapping algorithms. lor the sake of clarity, however, u Q 

and c- will be omitted from the example figures. 
For the case in which the logical vector begins with a series of con­

stants, u, contains a count of zero. 
For the presentation here, it is assumed that c. •. and C; .-, exijt. 



10 

(2) Backward mapping (physical to logical vector): 

Given the physical position p of an unsuppressed value, only the 
unsuppressed value counts in the header are searched to find the i, such 
that u. , < p <* u.. The equivalent logical position is calculated by 

adding to p the number of constants suppressed from the database up to p, 
i.e., 1 = p + c^_v 

Again, using the above example database, a binary search en the 
compression header for the ninth physical position (p = 9) terminates at 
the third unsuppressed value count (which contains a 10). Adding the 
preceding oount of compressed constants (11) to p results in the twentieth 
position in the logical form (1 = 20). 

The size of the header is, of course, dependent on the distribution of 
constants in the database. The more clustered the suppressible values, the 
smaller the header; and, the more constants in the database, the higher the 
likelihood of their occurring in long series. In the worse case, the data­
base is filled with alternating constants and unsuppressed values, and the 
header is the same order of size as the uncompressed data. In this case, a 
compression scheme which is independent of the distribution of constants, 
e.g., constant suppression with a bit map [Aron], may be preferable. In 
actual practioa, however, statistical databases are often sufficiently 
sparse and their sparseness is sufficiently clustered to produce satisfac­
torily small headers. The previously mentioned mortality database is 
aproximately 70 percent sparse, and the database on county business pat­
terns is 50 percent empty. 



11 

• An analysis of the break-even point at which storage will be saved by 
the constant suppression scheme, i.e., the point at which the overhead of 
the header is less than the storage saved by corapressi.cn, will give a rough 
estimate of the size of the header. Let a be the average length of a 
series of constants or ^suppressed values, p the fraction of constants in 
the database and n the length of the uncompressed, logical database. For 
simplicity, let us assists; that fie size fin bytes) of a count is the same 
as that for a data value. The break-even point is reached when the number 
of series, n/a, equals p*n or p = 1/a. For example, if the average length 
of a series is 100, then space is saved as long as the database contains 
more than one percent constants. 

4. The Case of Multiple Constants 

Often there is the prevalence of more than one common value in a data­
base. Each of these constants can be eliminated, by applying the constant 
suppression scheme repeatedly, once for each different constant. There 
exists a header for each compression, and the mapping algorithm computes 
from a position in the header for the first compression to a position in 
the header for the next, and so on, until a position in the physical data 
is reached. 

Consider the example in Figure 2. The uncompressed database is 
represented by L, where the v's are the unsuppressed values, and 1 and 0 
are the constants. The constant 1 is suppressed first; therefore in the 
first compression header, HI, the unsuppressed value counts reflect both 
unsuppressed values and zeros. The suppression of l's results in the logi­
cal representation depicted in L', where the v's are again the unsuppressed 
values and 0 is the remaining constant. HO is the compression header for 

http://corapressi.cn


12 

L: Vj v 2 v 3 1 1 v^ v 5 0 0 Vg 1 1 0 0 v 7 

HI: 3 2 8 4 11 

L' ! v l v 2 v 3 v 4 v 5 ° ° v 6 ° ° v 7 
HO: 5 2 6 4 7 

P: v x v 2 v 3 v 4 v 5 v6 V ? 

Figure 2 

suppressing zeros. That final cortpression results in the physical 
representation of the data, P. As an example, the tenth position in the 
first logical representation, L, maps to the eighth position in the second 
logical representation, I»'f and then to the sixth location in ~he 
compressed, physical data, P. 

An alternative scheme for compressing multiple constants from a data­
base is bo eliminate all types of constants on the first compression, and 
then utilize different headers to successively differentiate between the 
constants. Using the above example, the logical form of the database, L, 
the compression header which eliminates all types of constants, HC, and the 
compressed data, P are represented by: 



13 

L: Vj v 2 v 3 1 1 v 4 v 5 0 0 v 6 1 1 0 0 v ? 

HC: 3 2 5 4 6 87 

P: v x v 2 v 3 v 4 v 5 v g v ? 

Figure 3 

The constants which have been compressed from the database, C, and the 
header which indicates their distribution, H, are represented as: 

C: 1 1 0 0 1 1 0 0 

H-. 2 2 4 4 

Figure 4 

The variation is advantageous either for fctward mapping when the out­
put is an unsuppressed value or for backward mapping, tinder both cir­
cumstances only one application of the mapping algorithm is required. Haw-
ever, the scheme is less efficient than the previous one when outpjtting 
all constants but the last one suppressed. In this case an extra mapping 
is necessary. 

5. Inccnplete Cross Product 

An important application of the constant suppression scheme occurs for 
databases with an incomplete cross product. In order to explain the treat­
ment of incomplete cross product, we first describe the ccrapression of com­
posite keys in the case of a full cross p-oduct. 

If every combination of category attribute values is tiesent in the 
database, the composite key need not be stored. As laig as the attribute 



14 

values are encoded {presumably in a dictionary), and the codes are ordered 
in acme way, the position of the tuple sought can be calculated. For many 
statistical databases the ordering of the comxsite key values is lexico­
graphic, and the well-known array linearization algorithm can be applied 
to the encoded values of the category attributes to calculate the tuple 
position. 

However, statistical databases often have an incomplete cross product, 
i.e., there are no tuples which correspond to certain combinations of 
category attribute values. In order to utilize the key suppression tech­
nique, null tuples have to be introduced into the database to expand it to 
its full ctoss product. If the database is too sparse, the cost of storing 
the null tuples outweighs the savings of eliminating the composite key and 
the computational access. Svensson [Sven] treats this problem by 
representing the compceite key as a trie and compressing the repetitive 
values from the children of a node using the run-length encodinc, scheme 
described in section 7. However, since the compression does not apply 
across the children in the trie, there is still some repetition of values 
in the composite key. 

7 j 1 * N 2 * N 3 * ... * N k + 
j 2 * N 3 * ... Nfc + ... + 
\-l * \ + 

where ^ is the encoded value of a category attribute i used for selection; 
N. i s the cardinality of each category attribute i ; k i s the number of 
category attributes [Horo, among numerous others]. Assuming three races, 
two sexes and ten diseases, with female = 0, white = 2, lung cancer = 6, 
the tuple in which 

sex-female, race" white, disease«lung cancer, 
would occupy the twenty-sixth or (0 * 2 * 10 + 2 * 10 + 6) position. 



15 

An alternative, which elimiu->tfcs both the null tuples ot the key 
suppression schewe and the duplicates of the Svenssor. approach, is the key 
suppression scheme used in conjunction with the constant suppression tech­
nique presented in this paper. For their combined usage, the null tuples 
introduced into the cross product by the key suppression scheme are 
oompressed from the database, and a compression header is constrvctjed to 
reflect their absence. The combined algorithms still require only loga­
rithmic access time. 

For queries in whioh selection is given on category attributes and 
output is projected from non-category attributes, query processing would 
proceed as follows. First, the tuple position in the cross proe'-'jct is cal­
culated using the array linearization algorithm on the encode^, ordered 
category attribute values. Then, using the header for compresA;ed null 
tuples, the forward mapping algorithm of the constant suppression technique 
is applied to determine whether the tuyle actually exists. If corXitants 
have been oompressed as well, the forward mapping algorithm is .igain 
applied, once for each different constant suppressed. 

Queries selecting on non-category attributes can also be satisfied. 
The backward mapping algorithm is first applied to determine the tuple 
position. The category attributes' values are then computed using the 
reverse of the array linearization algorithm. 

The octnbinaticn of the kej and constant suppression schemes gives best 
results for databases with highly clustered null tuples. In this case the 
savings in composite key storage far outweighs the overhead of the compres­
sion header. However, even in the worst case, in which the database is 
filled with alternating null and actual tuples, storage savings can be 



16 

realized, Assuming the worst case, let n be the number of tuples in the 
incomplete cross product (also the number of null tuples), k be the size of 
a tiple and c the r ze of a teader count. Ihe break-even point at which 
storage wi.U be savet y using the constant suppression schene to enhance 
composite key suppression occurs when nk > 2nc, i.e., when the tuple is 
more than twice the size of a count. 

Some orderings of attributes in the composite key will clearly produce 
more tuple clustering than others. A more fortuitous distribution of null 
tuples could be achieved by analyzing the data for an optimal ordering. 

6. Implications of the Constant Suppression Technique on File Transposi­
tion 

File transposition [Bato, Harm, Turn] of a database refers to the phy­
sical division of tuples on attribute lines and the storing of each parti­
tion of attribute values separately. The technique is advantageously 
anployed on statistical databases whose tuples contain a large number of 
attributes, only a few of which are accessed in a single typical query. By 
partitioning the tuples and accessing a subset of attributes as needed, 
more tuples can be accessed per page, thereby reducing secondary storage 

o 
access and increasing the efficiency of query processing . 

When the constant suppression technique has been applied to a data­
base, it is advantageous to completely partition it, rather than to cluster 
into the same partition those attributes which tend to be requested 
together. When only one attribute is stored in each partition, the physi-

No correspondence between partitions and files is being made here, 
i.e., a partition is not necessarily a file. 



17 

cal pesjtiers needed for backward mapping can be located by sequentially 
searching the partition for a particular value. If the attributes are 
clustered into partitions, data compression makes it impossible to dif­
ferentiate between the attributes in the partition. Each attribute value 
must therefore be checked by first locating its logical position in the 
compression header and then mapping to the physical location. 

As mentioned in section 2, it is quite probable that a series of con­
stants will occur for a single attribute. Clustered file transposition 
tends to bceak up that natural concentration of constants. It is much less 
likely that all instances for different attributes in a partition will have 
the same value. Therefore the compression header that is generated by 
clustered file transposition will generally be longer than that for com­
plete file transposition. 

A disaSvantage of complete file transposition for databases compressed 
using the constant suppression technique is that each output attribute in a 
qualifying tuple must be located by a separate application of the mapping 
algorithm. However, since the algorithm runs in 0(log s), the overhead is 
not prohibitive. 

Tliere are, of course, other factors, such as the unpredictability of 
query attribute usage, which would effect tie decision of whether to util­
ize complete or clustered vertical partitioning. A discussion of these 
factors, as they pertain to statistical databases, is given in [Turn]. 
However, since they are issues which apply regardless of compression, they 
will not be discussed here. 



18 

1. Oanpariaon with Other Compression Schemes 

In this section we contrast the constant suppression technique to two 

other techniques for compressing constants. One achieves a degree of 

compression similar to that of the scheme presented in this paper; the 

other is usually less successful. Both, however, generate a greater over­

head in access time. 

(1) Constant suppression with a bit map [Aron]. 

Similar to the scheme presented here, constant suppression with a bit 

map eliminates caimonly occurring values from the database and depicts the 

logical form of the data with a bit map. In the bit map all set bits indi­

cate unsuppressed values and all cleared bits indicate suppressions. For 

forward mapping the set bits must be counted up to the logical position of 

the attribute selected. Their sum is the physical position of the 

instance. (Of course, if the logical position indicates a cleared bit, the 

desired value is the constant.) For backward mapping, the set bits must 

also be counted ur il the value of the physical position of the instance 

selected is reached. 

While this scheme is comparable in concept to the constant suppression 

with a header technique, its access time for both forward and backvrard map­

ping is of 0(n) time, where n is the number of bits in the map. Although 

for some applications bit operations can be utilized, the algorithm is 

still linear, and is computationally costly for large n. It was shown in 

section 3.1 that the algorithms for both forward and backward mapping in 

the constant suppression scheme presented here run in 0{lcg s) time, where 

s is the number of counts in the header (or constant and unsuppressed 



19 

series in the uncompressed database). Since, for most databases, s is much 
o 

smaller than n, it follows that O(log s) « O(n) . 
Sirce both schemes eliminate all constants from the database, their 

storage requirements for the data are identical. Therefore, to compare 
space savings, we will compute the break-even point for the storage of 
their respective headers. Let a be the average length of a series of con­
stants or suppressed values, n be the number of values in the uncompressed 
database and c be the size of a header count in bits. The break-even point 
occurs when tn/a)c equals n, or c = a. 'thus, more space is saved by the 
constant suppression scheme utilizing a header with sixteen bit counts, if 
the average length of a series of constants or unsuppressed values is 
greater than sixteen. 

(2) Run-length encoding [Aron]. 

In a run-length encoded database, a series of constants is replaced by 
a series indicator and a count of the number of constants eliminated. Tor 
both forward and backward mapping, one must sequence through the data, 
counting the number of unsuppressed values and references to the number of 
constants. Forward mapping requires 0(n) time. In backward mapping, the 
counting for the logical position is subsumed in the search of the data. 

Space requirements for the two schemes are comparable. In addition to 
the data actually stored, run-length encoding requires, for each series of 
constants, a series indicator and a count. Htor the same series of con­
stants, the overhead 'ror the constant suppression scheme presented here is 
two counts, one for the constant series and one for the unsuppressed value 

9 It is assumed that both algorithms are evaluated in software. 



2D 

series preceding it. 

8. Summary 

We have presented a technique for data compression which is applicable 
to databases with a high prevalence of camion values. Its main advantage 
is fast access time. The access for both forward and backward mapping is 
logarithmic, and is achieved through the binary search of a single header 
which describes the distribution of the constants and unsuFpressed values. 

The successive use of the constant suppression technique can handle 
multiple constants, and its use in conjunction with a composite key 
suppression technique is applicable to the general case of an incomplete 
cross product of composite keys. For databases which have been compressed 
using the constant suppres&.on scheme, complete file transposition is 
advantageous. 

The technique and its applications are currently being implemented for 
performance evaluation. 

Acknowledgement. 

We would like to thank our colleagues, Rowland Johnson and Peter Kreps, for 
many helpful discussions. This work was supported by the Applied Matherat-
ical Sciences Research Program of the Office of Energy Research, u. S. 
Department of Energy, under contract W-T405-ENG-48. 



21 

REFERENCES 

(1) Alsberg, P. A. "Space and Time Savings Through Large Database 
Compression and Dynamic Hestructuring," Procceedinqs of the IEEE, Vol. 
63, no. 8, August, 1975, 1114-1122. 

(2) Aronson, J. Data Conpression - A Comparison of Methods, Institute for 
Ccnjuter Sciences and Technology, National Bureau of Standards, Wash­
ington, D.C., 3-5. 

(3) Batory, D. S. "On Searching Transposed Files," ACM Transactions on 
Database Systems, Vol. 4, no. 4, December, 1979, 531-544. 

(4) Gottlieb, D., Hagerth, S., Lehot, P., Rabirowitz, H. "A Classifica­
tion of Compression Methods and their Usefulness for a Large Data Pro­
cessing Center," Proceedings of the National Computer Conference, 
Anaheim, 1975, 453-458. 

(5) Hahn, B. "A New Technique for the Compression and Storage of Data," 
Communications of the Association for Computing Machinery, Vol. 17, 
no. 8, August, 1974, 434-436. 

(6) Hammer, M.f Niamir, B. "A Heuristic Approach to Attribute Partition­
ing," Proceedings of the International Conference on Management of 
Data, Boston, 1979, 93-101. 

(7) Horowitz, H. and Sahni, S. Fundamentals of Data Structures, Computer 
Science Press, Inc., Potomac, MS., 1977, 65-66. 

(8) Knuth, D. E. The Art of Cciputer Programming, Tfolume 3: Sorting and 
Searching, Addison-Wesley, Reading, Mass., 1973, 401. 

(9) Svensson, P. "On Search Performance for Conjunctive Queries in 
Compressed, Fully Transposed Ordered Files, Proceedings of the Inter­
national Conference on Very Large Databases, 5, Rio de Janeiro, 1979, 
155-163. 

(10) Tarjan, R. E., Yao, A. C. "Storing a Sparse Database," Communications 
of the Association of Computing Machinery, Vol. 22, no. 11, November, 
1979, 606-611. 

(11) Turner, M. J., Hammond, R. and Cotton, F. "A DBMS for Large Statisti­
cal Databases," Proceedings of the International Conference on Very 
Large Databases, 5, Rio de Janeiro, 1979, 319-327. 




