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ABSTRACT OF THE DISSERTATION

On the Concrete Security of Lattice-Based Cryptography

by

Michael Walter

Doctor of Philosophy in Computer Science

University of California, San Diego, 2017

Professor Daniele Micciancio, Chair

Lattice-based cryptography is an extraordinarily popular subfield of cryptography.

But since it is also a very young field, practical proposals for lattice-based cryptographic

primitives have only recently started to emerge. Turning a cryptographic scheme into an

implementation poses a range of questions, the arguably most important one being its

concrete security: how do we ensure that any practically conceivable adversary is unable

to break the scheme? In this thesis, we address two issues that arise in this context.

Part I is concerned with basing cryptanalytic tools on a sound theoretical founda-

tion. The common approach to analyzing a concrete cryptographic primitive is to analyze

xiii



the performance of known algorithms to estimate the attack complexity of a hypothetical

adversary. This requires a thorough theoretical understanding of the best performing

algorithms. Unfortunately, for many subclasses of lattice algorithms there is a gap in

our understanding, which leads to problems in the cryptanalytic process. In this part of

the thesis we address these issues in two closely related subclasses of such algorithms.

We develop new algorithms and analyze existing ones and show that in both cases it

is possible to obtain algorithms that are simultaneously well understood in theory and

competitive in practice.

In Part II we focus on an integral part of most lattice-based schemes: sampling

from a specific distribution over the integers. Implementing such a sampler securely and

efficiently can be challenging for distributions commonly used in lattice-based schemes.

We introduce new tools and security proofs that reduce the precision requirements for

samplers, allowing more efficient implementations in a wide range of settings while

maintaining high levels of security. Finally, we propose a new sampling algorithms with

a unique set of properties desirable for implementations of cryptographic primitives.
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Chapter 1

Introduction

Lattice-based cryptography has seen a huge rise in popularity in the last two

decades. This is commonly attributed to, among other advantages, its conjectured

resistance to quantum computers. It is a known fact that a large scale general purpose

quantum computer would be able to break virtually all public key protocols currently

used on the internet. Given that the most optimistic estimates for the construction of

the first practical and scalable quantum computer fall in the range of 10 to 15 years,

one might wonder, why they are already causing such a burst in activity in the research

community. To understand this, consider a talk by Brian Sniffen, a security engineer

from Akamai Technology, at CRYPTO 20161. Akamai is estimated to be responsible for

15-30% of all web traffic, which gives them the means to collect representative sample

data from internet protocols in use. Sniffen argued, using examples from past breaks of

protocols, that it will take at least 10 years to remove a broken cryptographic protocol

from the public internet. The problem is that the internet is a large, organic, historically

grown network and phasing out broken protocols is not an easy task in this environment.

This means that post-quantum cryptographic protocols, which is what quantum resistant

cryptography is often referred to as, need to be standardized and ready to ship at least 10

years before quantum computers that can break current cryptographic primitives are built

1https://www.youtube.com/watch?v=bAGiXimZ4kQ
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in practice. As cryptographers we strive to err on the conservative side and thus we need

to take into account the possibility that the optimistic estimates for practical quantum

computers are accurate. If this is indeed the case then the time to roll out post-quantum

protocols is now. Indeed, NIST has realized the need for such protocols and published

a call for proposals2. Given that lattice-based cryptography is believed to be hard to

break even for quantum computers, it is a natural candidate to replace current susceptible

protocols.

Not surprisingly, there have been a huge number of proposals for lattice-based

schemes to solve a number of cryptographic problems, for example [19, 3, 65, 44, 11, 20,

27, 10, 9, 26, 40, 12]. More and more of such schemes are moving from theoretical con-

structions to practical implementations [65, 47, 1, 67, 17, 31, 69, 46, 4]. This transition

is peppered with a number of issues, most notably the one of concrete security. When

choosing parameters for a cryptographic scheme, we need to ensure that the scheme is

secure in a practical sense, i.e. that no realistic adversary can break it. Care must be

taken to strike the right balance between security and performance, which are usually

diametrical goals. In order to evaluate the amount of resources a hypothetical adversary

would need to break a scheme, one usually analyzes how well the best known algorithms

perform on typical instances. Since by definition one cannot solve secure instances with

such algorithms, they are usually applied to small/easy instances and the results are

extrapolated to larger/harder instances. As it turns out, lattice algorithms, i.e. algorithms

solving geometric problems in lattices, are a useful tool in this context [2, 16, 45].

The conflict between efficiency and security is not specific to parameter selection,

but also arises in other aspects of the implementation. Generally, lattice-based schemes

are relatively easy to implement, since most of the operations consist of simple additions

and multiplications of matrices and vectors over relatively small integers or ring elements.

2https://csrc.nist.gov/projects/post-quantum-cryptography
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However, there is a caveat: many schemes assume randomness in a form that is not

readily available on most platforms, which is crucial for the security proof. Converting

an available source of randomness, usually uniform random bits, into the required

distribution, commonly referred to as a sampling algorithm, can be tricky to implement

efficiently and securely [64, 13, 68, 71]. Accordingly, most sampling algorithms do not

produce the exact distribution, but rather approximate it. Naturally, the question arises,

how close the approximation needs to be in order for the security proof to still hold.

This needs to be addressed with rigor, as poor approximations have led to actual attacks

[60]. The analysis needs to be carried out carefully, since otherwise it might lead to

unsubstantiated security claims (see [70] for an example and [55] why it is incorrect).

Results

This thesis consists of multiple results tackling the issues outlined above. In

Part I we explore recent progress on some popular lattice algorithms with a focus on

their suitability for cryptanalysis. Part II is concerned with analyzing the security of

implementations of sampling algorithms, both in general and for the specific case of

lattice-based schemes.

Lattice Algorithms

The main topic of Chapter 3 is lattice point enumeration [36, 22], a classic

algorithm to solve particular lattice problems relevant to cryptography. It can be used

to solve several lattice problems, but in this thesis we focus on their ability to solve

the Shortest Vector Problem (SVP) in a lattice. The problem can be stated as follows:

given a matrix B ∈ Rm×n with full column rank, find a vector x ∈ Zn \ {0} such that

‖Bx‖ is minimal. This problem is NP-hard [48] and the fastest known algorithms have

exponential or even superexponential worst-case running time. Even though algorithms



4

with time and memory complexity of 2O(n) exist, somewhat surprisingly, lattice point

enumeration is the fastest known algorithm for practically relevant instances, despite

having superexponential running time. This is often attributed to their small memory

complexity. In the cryptanalytic context, they are commonly used to estimate lattice

attacks on cryptographic schemes.

Enumeration consists of two steps: 1) preprocessing the input matrix B and 2) a

brute-force search for the solution x. (See Section 2.4.1 for a more detailed description.) It

has been known for a long time that the size of the search space and thus the complexity of

the second step, both asymptotically and in practice, depends heavily on the preprocessing

step [33]. With regards to the asymptotic complexity, rigorous results were known,

but they only pertained to the corner cases with very light [22] and extremely heavy

preprocessing [36]. In particular, the algorithm of [22] uses a polynomial time algorithm

to preprocess B, which leads to 2O(n2) worst case complexity of the subsequent brute-force

search. On the other hand, the algorithm of [36] uses a heavy recursive preprocessing,

which is clearly also superexponential, but the search space for x can then be bounded by

nO(n). Still, the latter step dominates the complexity of the entire algorithm asymptotically,

so its running time is nO(n), which is clearly better than the aforementioned 2O(n2) bound

for the algorithm of [22]. However, the hidden constants in the nO(n) bound seem to be

too large to be useful in practice for achievable instances. So practical implementations

usually employ some medium preprocessing, but its effect on the asymptotic behavior

has been unclear for a long time. This is problematic for cryptanalysis, since one needs

a sound asymptotic model in order to carry out the extrapolation as described above.

Chapter 3 is, apart from a small extension, mostly concerned with analyzing the impact

of medium preprocessing on the complexity of enumeration. We show that there are

two different ways to obtain algorithms that are simultaneously competitive in practice

and asymptotically efficient. They can each be viewed as generalizations of [22] and
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[36], respectively. We discuss the impact of our results on cryptanalysis, in particular

our generalization of [36]. For our generalization of [22], our results were applied in this

context in a later survey [2].

In Chapter 4 we move on to a different type of algorithm: lattice block reduction.

Block reduction algorithms are used in a similar context as enumeration. They get the

same input, i.e. a matrix B ∈Rm×n, but they achieve different trade-offs with regards to

running time and output quality. More specifically, while enumeration searches the entire

search space for x and thus solves SVP exactly, block reduction algorithms approximate

the shortest vector: they output a vector x′ ∈ Zn such that ‖Bx′‖ is not too much larger

than the minimal ‖Bx‖. In fact, how well they approximate the minimum is determined

by a parameter 2≤ k ≤ n, usually called the block size. Larger values of k lead to better

approximation factors, which is the ratio ‖Bx′‖/‖Bx‖, at the cost of longer running times.

The trade-offs achievable with block reduction range from poly(n) running time and

2O(n) approximation factor for small k, to nO(n) running time (or 2O(n) if exponential

amounts of space are available) and constant approximation factor for large k close to the

column rank of the input matrix n.

The two types of algorithms, block reduction and enumeration, are closely related:

block reduction is often used as the preprocessing step in the enumeration, and they

themselves often rely on enumeration in dimension k as a subroutine. In the context of

cryptanalysis, block reduction is a popular tool and in many cases it is part of the best

known attack to cryptographic schemes [2, 16]. Similarly as above, we need a solid

theoretical understanding and efficient implementations of block reduction, in order to

carry out meaningful extrapolation during the analysis. Unfortunately, up to recently,

the reduction algorithms that were best understood in terms of asymptotic running time

and output quality [23], were significantly outperformed by less understood algorithms

[72]. Again, this is problematic for cryptanalysis. In Chapter 4 we present an algorithm
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along with theoretical analysis and an experimental study that shows that it is possible

to achieve both: a solid understanding of the asymptotics and approximation factor,

and competitive running time. We rigorously analyze the worst-case output quality and

running time of our algorithm. We then show that using a well established and common

heuristic, namely the Gaussian Heuristic (see Section 2.4.3 for details), the analysis

can be applied to the average case. This allows to predict its behavior simply using a

closed formula. Through a large set of experiments we then show that our algorithm is

competitive in practice and that the predictions are accurate.

We remark that many of the algorithms described in this part of the thesis are now

part of the public lattice reduction library fpLLL [77].

Approximate Samplers

A common algorithmic task in many lattice-based schemes is to sample from a

specific discrete distribution over the integers. There exists a range of algorithms with

different time, memory, and randomness characteristics suitable for different settings [28,

14, 19, 37, 21, 63]. All of these algorithms, with the sole exception of [37], approximate

the distribution, and their performance typically degrades with increasing precision, in

one or more of their characteristics. Naturally, we want to set the precision just large

enough to maintain the security of the scheme, in order to maximize its performance. To

quantitatively analyze the precision-security trade-off, one usually reduces the security

of the scheme that uses the approximate distribution to the security of the scheme that

uses the ideal distribution, i.e. the distribution the sampler is trying to approximate. Such

proofs are usually very generic and apply to entire classes of cryptographic schemes.

A recent line of research [65, 5, 76] has demonstrated that in many settings there are

surprisingly efficient reductions lowering the precision requirement for samplers and thus

increasing their performance. A notable consequence is that in certain settings most of



7

the sampling algorithms may be implemented using 53-bit floating point numbers while

maintaining meaningful security levels. Previously, this was only possible using much

larger precision (say more than 100 bits), which is significantly slower on commodity

computers. The results crucially rely on the notion of bit security, which is ubiquitous

in the field of cryptography, but not formally defined. There seems to be a common

understanding in the community of what bit security is meant to capture, a bound on the

trade-off between resources and advantage of any adversary, but it has been noted that

there are several problems with a straight-forward interpretation of this notion [7, 18].

In order to start building a sound theory around approximate samplers, we take a

step back and propose a definition of bit security in Chapter 5. We believe the definition

captures the security of a concrete instantiation of a scheme on an intuitive level. We

leverage tools from information theory (while maintaining the computational context) to

define an adversary’s advantage as the amount of information it is able to extract. In line

with the above intuition, this provides a lower bound on the amount of resources such

an adversary requires to extract the entire secret. Surprisingly, our definition yields an

expression that is either in line with, or diverges from, the common notion, depending

on the flavor of the cryptographic primitive. We then justify our new definition by

giving a series of tight reductions between schemes of different flavor, which, we believe,

demonstrates that our definition is on target.

In Chapter 6 we apply our notion of bit security to approximate samplers, recov-

ering previous results and extending them in several dimensions. Note that in order to

analyze the trade-off between approximation quality and security guarantee, one needs

to quantify the “distance” between the ideal distribution and its approximation. This

is usually done using some divergence between probability distributions. The security

guarantee then depends on 1) the bound on the divergence that can be obtained from

common data types that are used for approximations, e.g. fixed point or floating point
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numbers, and 2) how well the divergence lends itself to a security proof. In Chapter 6 we

first analyze, which properties are required of a divergence to obtain an efficient security

proof (along the lines of [65, 5, 76]). We then demonstrate how these properties can be

used in a security proof, solidifying results from [65] (which contains gaps in the proof).

Furthermore, the results of [65, 5, 76] only apply to a certain class of cryptographic

primitives (one important example being signature schemes). Extending them to more

general cryptographic primitives, e.g. arbitrary encryption schemes, has been an open

problem so far, which we solve in this chapter using our definition of bit security. Finally,

we present a new metric between probability distributions that is, to the best of our knowl-

edge, unique in that it 1) is a metric (i.e. is symmetric and satisfies triangle inequality),

2) allows for efficient security proofs, and 3) is easily bounded by common data types,

notably floating point numbers. We dub this new metric the max-log distance, for reasons

that will become clear upon seeing its definition. It is aimed at simplifying security

proofs for approximate samplers while maintaining their efficiency. We demonstrate its

usefulness by applying it to our own sampling algorithm in the following chapter.

The final chapter of this thesis, Chapter 7, presents a new sampling algorithm. It

has several advantages: 1) it is generic and thus can be used in any lattice-based scheme

where such a sampler is required (note that many of the known samplers do not have this

property), 2) it can be implemented very efficiently as we demonstrate in an experimental

study, 3) we lay out how it can be easily implemented in constant time with minor or

no performance penalty, a crucial feature in the context of cryptographic schemes and

notoriously hard to achieve in this context [3, 68, 64].



Chapter 2

Background

Notation and Basic Linear Algebra

Throughout this thesis, the log refers to the logarithm with base 2 and ln to the

one with base e. For n ∈ Z+ we denote the set {0, . . . ,n} by [n]. For vectors we use

bold lower case letters and the i-th entry of a vector v is denoted by vi. Occasionally, we

construct vectors on the fly using the notation (·)i∈S for some set S (or in short (·)i if the

set S is clear from context), where · is a function of i.

Matrices are denoted by bold upper case letters. The i-th column of a matrix B

is denoted by bi. Furthermore, we denote the submatrix comprising the columns from

the i-th to the j-th column (inclusive) as B[i, j] and the horizontal concatenation of two

matrices B1 and B2 by [B1|B2].

Definition 1 For two vectors v,w, their scalar product is defined as

〈v,w〉= ∑
i

vi ·wi.

Definition 2 For a vector v and some p ∈R+, we define the p norm of v to be

‖v‖p =
(
∑ |vi|p

)1/p
.

9
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Whenever we omit the subscript p, we mean the standard Euclidean norm, i.e. p = 2. For

any matrix B and p≥ 1, we define the induced norm to be ‖B‖p = max‖x‖p=1(‖Bx‖p).

For p = 1 (resp. ∞) this is often denoted by the column (row) sum norm; for p = 2 this is

also known as the spectral norm.

Fact 1 For any matrix B we have ‖B‖2 ≤
√
‖B‖1‖B‖∞.

Definition 3 For two vectors b and v, we define the orthogonal projection of v to b as

πv(b) = b− 〈b,v〉
‖v‖2 v.

For two matrices V and B, πV(B) is the matrix obtained by applying πV to every column

bi of B, where πV(bi) = πvk(· · ·(πv1(bi)) · · ·).

The Gram-Schmidt process allows to compute a orthogonal basis of any linear

space generated by a matrix B.

Definition 4 For each matrix B we define its Gram-Schmidt-Orthogonalization (GSO)

B∗, where the i-th column b∗i of B∗ is defined as b∗i = πB∗
[1,i−1]

(bi) = bi−∑ j<i µi, jb∗j and

µi, j = 〈bi,b∗j〉/‖b∗j‖2 (and b∗1 = b1).

For a fixed matrix B we extend the projection operation to indices: πi(·) =

πB∗
[1,i−1]

(·), so π1(B) = B. Whenever we refer to the shape of a matrix B, we mean

the vector r = (‖b∗i ‖)i∈[n]. We define B† to be the GSO of B in reverse order, i.e. the

matrix obtained by reversing the order of the columns of B, applying the usual GSO, and

reversing the order of the resulting matrix.

Arranging the values µi, j (cf. Definition 4) into an upper triangular matrix M in

the obvious way and setting the diagonal elements to 1, we obtain a decomposition of

B = B∗M. Normalizing the columns of B∗ we can further decompose it into B∗ = QD,
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where D is the diagonal matrix with the diagonal being the vector r, and Q orthonormal.

Now, Q and R = DM comprise the usual QR decomposition of B. When referring to the

GSO matrices, we mean D and M.

Probabilities and Information Theory

Calligraphic letters are reserved for probability distributions and x←P means

that x is sampled from the distribution P . For any x in the support of P we denote its

probability under P by P(x). All distributions in this work are discrete, and U (S) is

the uniform distribution over the support S. If S is clear from context, we simply write

U instead of U (S). The Bernoulli distribution with parameter p is denoted by Bp.

Definition 5 The statistical distance between two distributions P and Q over the same

support S is defined as

∆SD(P,Q) =
1
2 ∑

x∈S
|P(x)−Q(x)|.

Definition 6 The KL-divergence between two distributions P and Q over the same

support S is defined as

δKL(P,Q) = ∑
x∈S

P(x) ln
P(x)
Q(x)

.

Note that the statistical distance is a metric, while the KL-divergence is not.

Pinsker’s inequality bounds ∆SD in terms of δKL:

Fact 2 (Pinsker’s inequality) For any two distributions P and Q over the same sup-

port S we have ∆SD(P,Q)≤
√

δKL(P,Q)/2.

Definition 7 A probability ensemble Pθ is a family of distributions indexed by a param-

eter θ (which is possibly a vector). We extend any divergence δ between distributions to
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probability ensembles as δ (Pθ ,Qθ ) = maxθ δ (Pθ ,Qθ ).

For notational simplicity, we do not make a distinction between random variables,

probability distributions, and probabilistic algorithms generating them.

An algorithm A with oracle access to a sampler for distribution ensemble Pθ is

denoted by AP , which means that it adaptively sends queries θi to the sampler, which

returns a sample from Pθi . If A uses only one sample from Pθ , then we write A(Pθ ).

We will need a few concepts from information theory when considering the

security of cryptographic schemes in order to quantify the information an adversary is

able to obtain about a secret (cf. Chapter 5).

Definition 8 The Shannon entropy of a random variable X is given by

H(X) = EX

[
log

1
Pr{X}

]
=−∑

x
Pr[X = x] logPr[X = x].

Definition 9 For two random variables X and Y , the conditional entropy of X given Y is

H(X |Y ) = EY [H(X |Y )] = ∑
x,y

Pr[X = x,Y = y] log
Pr[Y = y]

Pr[X = x,Y = y]
.

Definition 10 The mutual information between two random variables X and Y is

I(X ;Y ) = H(X)−H(X |Y ).

Approximations

In this work we will occasionally encounter expressions of the form ε +O(ε2)

for some small ε . In many of these cases, the constant c hidden in the asymptotic

notation is much smaller than 1/ε (say cε ≤ 2−30). So, the higher order term O(ε2)
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has virtually no impact, neither in practice nor asymptotically, on our applications.

We define ε̂ = ε +O(ε2) and write a ' b for a = b̂, and similarly a . b for a ≤ b̂.

This allows us to drop the O(ε2) term in such cases and avoid tracing irrelevant terms

through our calculations without losing rigor, e.g. ln(1+ ε) = ε +O(ε2) can be written

as ln(1+ ε)' ε .

A p-bit floating point (FP) approximation x̄ of a real x stores the p most significant

bits of x together with a binary exponent. This guarantees that the relative error, defined

below, is bounded by ≤ 2−p.

Definition 11 For a real x and an approximation x̄ ∈ R, we define the relative error as

δRE(x, x̄) =
|x− x̄|
|x|

.

We extend the notion of relative error to any two distributions P and Q (and thus

implicitly to probability ensembles)

δRE(P,Q) = max
x∈S

δRE(P(x),Q(x)) = max
x∈S

|P(x)−Q(x)|
P(x)

,

where S is the support of P .

The following fact is straightforward to verify:

Fact 3 For any two distributions P and Q over the same support S we have

∆SD(P,Q)≤ 1
2
·δRE(P,Q).

The relative error can also be used to bound the KL-divergence:
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Lemma 1 (Strengthening [65, Lemma 2]) For any two distributions P and Q with

the same support S with µ = δRE(P,Q)< 1,

δKL(P,Q)≤ µ2

2(1−µ)2 .

In particular, if µ ≤ 1/4, then δKL(P,Q)≤ (8/9)µ2 < µ2.

Proof Recall that δKL(P,Q) = ∑i P(i) ln(P(i)/Q(i)). For any p,q > 0, let

x = (p− q)/p = 1− (q/p) < 1, so that ln(p/q) = − ln(1− x) = x+ e(x) with error

function e(x) =−x− ln(1−x). Notice that e(0) = 0, e′(0) = 0 and e′′(x) = 1/(1−x)2 ≤

1/(1−µ)2 for all x≤ µ . It follows that e(x)≤ x2/(2(1−µ)2)≤ µ2/(2(1−µ)2) for all

|x| ≤ µ , and

δKL(P,Q) = ∑
i

P(i) ln
(

P(i)
Q(i)

)
≤∑

i
P(i) ·

(
P(i)−Q(i)

P(i)
+ e
)
= 1−1+ e = e

where e = µ2/(2(1−µ)2).�

This is a slight improvement over [65, Lemma 2], which shows that if µ ≤ 1/4,

then δKL ≤ 2µ2. So, Lemma 1 improves the bound by a constant factor 9/4. In fact, for

µ ≈ 0, Lemma 1 shows that the bound can be further improved to δKL . 1
2 µ2.

Lattices

We now define, and state some basic facts about, the main subject of this thesis:

lattices.

Definition 12 A lattice Λ is a discrete subgroup of Rm.

Fact 4 Every lattice is generated by some matrix B ∈Rm×n, i.e. Λ = L (B) = {Bx : x ∈
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Zn}. If B has full column rank, it is called a basis of Λ and dim(Λ) = n is the dimension

(or rank) of Λ.

A lattice has infinitely many bases, which are related to each other by right-

multiplication with unimodular matrices.

Definition 13 A matrix U ∈ Zn×n is called unimodular, if |det(U)|= 1.

Fact 5 For any unimodular matrix U and basis B, we have L (B) = L (BU).

For every lattice Λ there are a few invariants associated to it.

Definition 14 For any lattice Λ = L (B), its determinant is defined as det(L (B)) =

∏i ‖b∗i ‖.

The determinant is exactly the volume of the parallelepiped spanned by B and is also

sometimes referred to as its volume. Even though the basis of a lattice is not uniquely

defined, the determinant is and it is efficiently computable given a basis.

Definition 15 For any lattice Λ we denote the length of its shortest non-zero vector (also

known as the first minimum) by

λ1(Λ) = min
{v∈Λ\0}

‖v‖.

We define the problem of finding a shortest non-zero vector in a lattice given a basis of

that lattice as the Shortest Vector Problem (SVP).

We use the short-hand notations det(B) = det(L (B)) and λ1(B) = λ1(L (B)).

The two quantities are related by Hermite’s constant.
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Definition 16 For every n ∈ Z+, Hermite’s constant is defined to be

γn = max
{Λ|dim(Λ)=n}

(
λ1(Λ)

det(Λ)1/n

)2

.

A classic result of Minkowski shows a bound on γn:

Fact 6 (Minkowski’s Theorem) For any n ∈ Z, we have γn ≤ n.

More generally, one can show that γn ∈Θ(n) [59].

Even though computing an upper bound on the length of a shortest vector is

easy (as demonstrated by Minkowski’s Theorem), solving SVP (even approximately) is

NP-hard under randomized reductions [38, 49].

A useful concept in lattices (as in other fields of mathematics) is duality, which

we introduce in the following.

Definition 17 For every lattice Λ, its dual is defined as Λ̂ = {w ∈ span(Λ)|〈w,v〉 ∈

Z for all v ∈ Λ}.

Fact 7 For any lattice Λ we have det(Λ̂) = det(Λ)−1.

Definition 18 For a lattice basis B we define the dual basis D as the unique matrix that

satisfies span(B) = span(D) and BT D = DT B = I.

The reason for this naming convention stems from the following fact:

Fact 8 For a lattice basis B and its dual basis D we have L̂ (B) = L (D).

Given a lattice basis, its dual basis is computable in polynomial time, but requires

at least Ω(n3) bit operations using matrix inversion. From Definition 18 follows that for

any vector w = Dx we have that BT w = x, i.e. we can recover the coefficients x of w

with respect to the dual basis D by multiplication with the transpose of the primal basis

BT . Finally, the following fact shows that the GSOs of a basis and its dual are related.
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Fact 9 For a lattice basis B and its dual D, we have ‖b∗i ‖= 1/‖d†
i ‖.

Enumeration

In order to solve SVP in practice, enumeration algorithms are usually employed,

since these are the most efficient algorithms for currently realistic dimensions. The

standard enumeration procedure, usually attributed to Fincke, Pohst [22], and Kannan

[36] can be described as a recursive algorithm: given as input a basis B ∈ Zm×n and a

radius r, it first recursively finds all vectors v′ ∈L (π2(B)) with ‖v′‖ ≤ r, and then for

each of them finds all v ∈L (B), s.t. π2(v) = v′ and ‖v‖ ≤ r, using b1. This essentially

corresponds to a breadth first search on a large tree, where layers correspond to basis

vectors and the nodes to the respective coefficients. While it is conceptually simpler to

think of enumeration as a BFS, implementations usually employ a depth first search for

performance reasons. Pseudo-code can be found in Algorithm 3.2 in Section 3.1.

At times during this thesis, a useful perspective on enumeration is to view it as

iterating over the integer solutions of the linear system

Bx = v (2.1)

such that ‖v‖ ≤ r. For this, observe that if B = QR is the QR decomposition of B, we

have ‖Bx‖= ‖QRx‖= ‖Rx‖. Accordingly, we focus on the system Rx = w such that

‖w‖ ≤ r. Now recall from the recursive description that the problem is first solved in the

projected lattice π2(R). Since R is upper triangular, this simply corresponds to dropping

the first column and row. Once we have collected all valid solutions (meaning that the

projected vectors are shorter than r) recursively for the reduced system, we can easily

generate for each of them a list of solutions for the original system using the first row

of R. Unrolling the recursion, we see that enumeration starts with finding all integer
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solutions for the last coordinate of x, which are passed to the recursion level above, etc.

The triangular structure of R makes this procedure reminiscent of an “iterated backward

substitution” from the usual Gaussian elimination.

The complexity, both in an asymptotic and in a concrete sense, of enumeration

depends heavily on the shape of the input basis [36, 35, 33]. Accordingly, enumeration is

usually combined with a preprocessing step to obtain an asymptotic complexity bound

and speed up the algorithm in practice. Unfortunately, the types of preprocessing that

yield the best overall asymptotic complexity (currently O(nn/2e) [33]) are rarely used

in practice as the hidden constants are too large to yield competitive running times in

practice for currently tractable dimensions. We will explore this gap between theory

and practice more in Chapter 3 and develop algorithms that are both, asymptotically and

practically efficient.

There are several practical improvements of enumeration collectively known

as SchnorrEuchner enumeration [74]: First, due to the symmetry of lattices, we can

reduce the search space by ensuring that the last non-zero coefficient is always positive.

Furthermore, if we find a vector shorter than the bound r, we can update the latter. And

finally, we can enumerate the coefficients of a basis vector in order of the length of the

resulting (projected) vector and thus increase the chance of finding some short vector

early, which will update the bound r and keep the search space smaller.

It has also been demonstrated [25] that reducing the search space (and thus the

success probability) – a technique known as pruning – can speed up enumeration by

exponential (but lower order) factors. For more details on recent improvements we refer

to [25, 35, 33, 52, 79].
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Lattice Reduction

We classify lattice reduction into two categories: global reductions and block re-

ductions. Global reductions yield in some sense the best possible basis. Block reductions

apply these global reductions to smaller blocks of the basis in some sequence, in order to

improve the overall quality of the basis.

Global Reductions

For every lattice basis B there are infinitely many bases that have the same shape,

among which there is a (not necessarily unique) basis that minimizes ‖bi‖ for all i. This

is equivalent to the condition that the GSO coefficients satisfy |µi, j| ≤ 1/2 for all i > j.

Transforming a basis into this form is commonly known as size reduction and is easily

and efficiently done using a slight modification of the Gram-Schmidt process. In this

work we will implicitly assume all bases to be size reduced. The reader can simply

assume that any basis operation described in this work is followed by a size reduction.

We will often modify a lattice basis B such that its first vector satisfies α‖b1‖ ≤

λ1(B) for some α ≤ 1. We will call this process SVP reduction of B. Given an SVP

oracle, it can be accomplished by using the oracle to find the shortest vector in L (B),

prepending it to the basis, and running LLL (cf. Section 2.4.2) on the resulting generating

system to remove the linear dependencies. In the context of reduction algorithms, the

relaxation factor α is usually needed for proofs of termination or running time and only

impacts the analysis of the output quality in lower order terms. In this work, we will

sweep it under the rug and take it implicitly to be a constant close to 1. Finally, we

will apply SVP reduction to projected blocks of a basis B, for example we will SVP

reduce the block πi(B[i,i+k]). By that we mean that we will modify B in such a way that

πi(B[i,i+k]) is SVP reduced. This can easily be achieved by applying the transformations

to the original basis vectors instead of their projections. If B is such that πi(B) is SVP
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reduced for all i, then it is called HKZ reduced.

Analogously to the primal case above, we can modify a basis B such that its dual

D satisfies α‖dn‖ ≤ λ1(L̂ (B)), i.e. its reversed dual basis is SVP reduced. This process

is called dual SVP reduction. Again, for simplicity we will take α implicitly to be a

constant close to 1. Note that if B is dual SVP reduced, then ‖b∗n‖ is maximal among all

bases of L (B). The obvious way to achieve dual SVP reduction is to compute the dual

of the basis, SVP reduce it as described above, and compute the primal basis. While the

transition between primal and dual basis is a polynomial time computation, it involves

matrix inversion, which can be quite time consuming in practice. To address this issue,

Gama and Nguyen [23] proposed a different strategy. SVP reduction, as performed by

enumeration, consists of two steps: 1) the coordinates of a shortest vector in the given

basis are computed, and 2) this vector is inserted into the basis. Note that the enumeration

procedure (step 1) only operates on the GSO matrices of the basis (cf. Section 2.4.1)

so it is sufficient for step 1 to invert the GSO matrices of the projected block, which

is considerably easier since they consist of a diagonal and an upper triangular matrix.

Furthermore, Gama and Nguyen observe that for dual SVP reduction, step 2 can be

accomplished using the coordinates obtained during the dual enumeration by solely

operating on the primal basis. Overall, their strategy is much more efficient in practice,

but we remark that step 1 still incurs a computational overhead of Ω(n3). We present

an alternative way to carry out step 1 in Section 3.1, which will not require to compute

any additional information about the dual basis. We achieve this by designing a “dual

enumeration” algorithm, which strongly resembles the traditional enumeration procedure

and is just as efficient.
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Block Reduction

As opposed to global reduction algorithms, block reductions do not find the

optimal basis but rather approximate it. The quality of their output is usually measured in

the length of the shortest vector they are able to find with respect to lattice invariants: the

approximation factor α = ‖b1‖/λ1(B) quantifies the length of the first vector in terms

of the first minimum, while the Hermite factor δ̄ = ‖b1‖/det(B)1/n expresses it in terms

of the root determinant, i.e. the normalized density, of the lattice. The Hermite factor

depends on the lattice dimension n, but the experiments of [24] suggest that in practice

the root Hermite factor δ = δ̄ 1/n converges to a constant as n increases for popular

reduction algorithms. During our experiments we found that to be true at least for large

enough dimensions (n≥ 140) [54].

The LLL algorithm [41] is a polynomial time basis reduction algorithm. A basis

B ∈ Zm×n can be defined to be LLL reduced if B[1,2] is SVP reduced and π2(B) is LLL

reduced. From this it is straight forward to prove that LLL reduction achieves a root

Hermite factor of at most δ ≤ γ
1/4
2 ≈ 1.0746. However, LLL has been reported to behave

much better in practice [61, 24].

Using LLL reduction, we can define a slight relaxation of HKZ reduction [33,

35, 36]: we call a basis B quasi-HKZ reduced, if it is LLL reduced and π1(B) is HKZ

reduced.

BKZ [72, 74] is a generalization of LLL to larger block size. A basis B is BKZ

reduced with block size k (denoted by BKZ-k) if B[1,min(k,n)] is SVP reduced and π2(B)

is BKZ-k reduced. BKZ achieves this by simply scanning the basis from left to right

and SVP reducing each projected block of size k (or smaller once it reaches the end) by

utilizing a SVP oracle for all dimensions ≤ k. It iterates this process (which is usually

called a tour) until no more change occurs. The following bounds for b1 of a BKZ-k
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reduced basis hold [32]:

‖b1‖ ≤ γ

n−1
k−1

k λ1(B) ≤ k
n−1
k−1 λ1(B) (2.2)

‖b1‖ ≤ 2γ

n−1
2(k−1)+

3
2

k det(B)1/n ≤ k
n−1

2(k−1)+
3
2 det(B)1/n (2.3)

where the latter inequalities follow from known bounds on γk, respectively [59]. In-

equality (2.3) shows that the root Hermite factor achieved by BKZ-k is at most . γ

1
2(k−1)
k .

Furthermore, while there is no polynomial bound on the number of calls BKZ makes to

the SVP oracle, Hanrot, Pujol, and Stehlé showed in [32] that one can terminate BKZ

after a polynomial number of calls to the SVP oracle and still provably achieve the bound

(2.3). Finally, BKZ has been repeatedly reported to behave very well in practice [24, 16].

For these reasons, BKZ is very popular in practice and implementations are readily

available in different libraries, e.g. in NTL[75] or fpLLL[77].

In [23], Gama and Nguyen introduced a different block reduction algorithm,

namely Slide reduction. It is also parameterized by a block size k, which is required to

divide the lattice dimension n, but uses a SVP oracle only in dimension k.1 A basis B is

defined to be slide reduced with block size k, if B[1,k] is SVP reduced, π2(B[2,k+1]) is dual

SVP reduced (if k < n), and πk+1(B[k+1,n]) is slide reduced. Slide reduction, as described

in [23], reduces a basis by first alternately SVP reducing all blocks πik+1(B[ik+1,(i+1)k])

and running LLL on B. Once no more changes occur, the blocks πik+2(B[ik+2,(i+1)k+1])

are dual SVP reduced. This entire process is iterated until no more changes occur. Upon

1Strictly speaking, the algorithm as described in [23] uses HKZ reduction and thus requires an SVP
oracle in lower dimensions as well. However, the entire analysis in [23] only relies on the SVP reducedness
of the projected blocks and thus the HKZ reduction can be replaced by SVP reduction, which we do in the
following.
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termination, the basis is guaranteed to satisfy

‖b1‖ ≤ γ

n−k
k−1
k λ1(B) ≤ k

n−k
k−1 λ1(B) (2.4)

‖b1‖ ≤ γ

n−1
2(k−1)
k det(B)1/n ≤ k

n−1
2(k−1) det(B)1/n (2.5)

This is slightly better than inequality (2.2) and (2.3), but the achieved root Hermite factor

is also only guaranteed to be less than γ

1
2(k−1)
k . Slide reduction has the desirable properties

of only making a polynomial number of calls to the SVP oracle and that all calls are in

dimension k (and not in lower dimensions). The latter allows for a cleaner analysis, for

example when combined with the Gaussian Heuristic (cf. Section 2.4.3). Unfortunately,

Slide reduction has been reported to be greatly inferior to BKZ in experiments [24], so it

is rarely used in practice and we are not aware of any publicly available implementation.

This only changed in the course of this work, when we contributed our implementation

to fpLLL, which resulted, among others, in the first public implementation of Slide

reduction.

The Gaussian Heuristic

The Gaussian Heuristic gives an approximation of the number of lattice points in

a “nice” subset of Rn. More specifically, it says that for a given set S and a lattice Λ, we

have |S∩Λ| ≈ vol(S)/det(Λ). The heuristic has proved to be very useful in the average

case analysis of lattice algorithms. For example, it can be used to estimate the complexity

of enumeration algorithms [25, 33] or the output quality of lattice reduction algorithms

[16]. For the latter, note that reduction algorithms work by repeatedly computing the

shortest vector in some lattice and inserting this vector in a certain position of the basis.

To estimate the effect such a step has on the basis, it is useful to be able to predict how

long such a vector might be. This is where the Gaussian Heuristic comes in: using the
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above formula, one can estimate how large the radius of an n-dimensional ball (this is

the “nice” set) needs to be such that we can expect it to contain a non-zero lattice point

(where n = dim(Λ)). Using the volume formula for the n-dimensional ball, we get an

estimate for the shortest non-zero vector in a lattice Λ:

GH(Λ) =
(Γ(n/2+1) ·det(Λ))1/n

√
π

(2.6)

If k is an integer, we define GH(k) to be the Gaussian Heuristic (i.e. equation

(2.6)) for k-dimensional lattices with unit determinant. The heuristic has been tested

experimentally [25], also in the context of lattice reduction [24, 16], and been found to

be too rough in small dimensions, but to be quite accurate starting in dimension > 45. In

fact, for a precise definition of random lattices (which we are not concerned with in this

work) it can be shown that the expected value of the first minimum of the lattice (over

the choice of the lattice) converges to equation (2.6) as the lattice dimension tends to

infinity.2

Heuristic 1 [Gaussian Heuristic] For a given lattice Λ, λ1(Λ) = GH(Λ).

Invoking Heuristic 1 for all projected sublattices that the SVP oracle is called on

during the process, the root Hermite factor achieved by lattice reduction (usually with

regards to BKZ) is commonly estimated to be [2]

δ ≈ GH(k)
1

k−1 . (2.7)

However, since the Gaussian Heuristic only seems to hold in large enough dimensions

and BKZ makes calls to SVP oracles in all dimensions up to the block size k, it is not

2One can also formulate Heuristic 1 for a given lattice by assuming it “behaves like a random lattice”.
Depending on the exact definition of what it means for a lattice to “behave like a random lattice”, this
version is either stronger as or equivalent to Heuristic 1.
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immediately clear how justified this estimation is. While there is a proof by Chen [15]

that under the Gaussian Heuristic, equation (2.7) is accurate for BKZ, this is only true

as the lattice dimension tends to infinity. It might be reasonable to assume that this

also holds in practice as long as the lattice dimension is large enough compared to the

block size, but in cryptanalytic settings this is often not the case. In fact, in order to

achieve an approximation good enough to break a cryptosystem, a block size at least

linear in the lattice dimension is often required. As another approach to predicting the

output of BKZ, Chen and Nguyen proposed a simulation routine [16]. We provide a

public implementation [78]. Unfortunately, the simulator approach has several drawbacks.

Obviously, it requires more effort to apply than a closed formula like (2.7), since it needs

to be implemented and “typical” inputs need to be generated or synthesized (among

others, the shape of a “typical” HKZ reduced basis in dimension 45). On top of that,

the accuracy of the simulator is based on several additional heuristic assumptions, the

validity of which has not been independently verified.

To the best of our knowledge there have been no attempts to make similar

predictions for Slide reduction, as it is believed to be inferior to BKZ and thus usually

not considered for cryptanalysis.

Discrete Gaussians

Discrete Gaussians, a discretized version of the classic Gaussian distribution, play

an important role in lattice based cryptography. In this work, we will only be concerned

with one dimensional Gaussians. For the general case we refer the reader to [51].

Definition 19 The Gaussian function ρ :R 7→R+ is defined as ρ(x) = exp(−πx2). We

extend it to countable sets S⊂R by ρ(S) = ∑x∈S ρ(x). We write ρc,s(x) = ρ((x− c)/s)

for the Gaussian function centered around c ∈R and scaled by a factor s ∈R.
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Definition 20 For a countable set S ⊂ R, c,s ∈ R, the discrete Gaussian distribution

DS,c,s is the distribution that samples y←DS,c,s with probability

DS,c,s(y) = ρc,s(y)/ρc,s(S)

for any y ∈ S.

Throughout this work, the subset S will usually be the integers or a coset thereof.

Sampling from DZ,c,s is computationally equivalent to sampling from Dc+Z,s, the cen-

tered discrete Gaussian over the coset c+Z. It has been shown that above a certain

threshold for s, the discrete Gaussian behaves similarly to the continuous one. To quantify

this behavior, [51] introduced the smoothing parameter.

Definition 21 For any ε > 0, the smoothing parameter of the integers ηε(Z) is the

smallest s > 0 such that ρ(sZ)≤ 1+ ε .

A special case of [51, Lemma 3.3] shows an upper bound on the smoothing

parameter of the integers.

Fact 10 For any ε > 0,

ηε(Z)≤
√

ln(2+2/ε)/π.

So, ηε(Z) < 6 is a relatively small constant even for very small values of ε <

2−160. Another useful bound, which easily follows from Poisson summation formula [51,

Lemma 2.8], is δRE(s,ρc,s(Z))≤ δRE(s,ρs(Z)) = ρ(sZ)−1. This implies the following

fact.

Fact 11 For any s≥ ηε(Z), and c ∈R, we have

δRE(s,ρc,s(Z))≤ ε,
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i.e., the total measure of ρc,s(Z) approximates s.

We will use the smoothing parameter to invoke the following tail bound.

Lemma 2 ([28, Lemma 4.2 (ePrint)]) For any ε > 0, any s > ηε(Z), and any t > 0,

Prx←DZ,c,s[|x− c| ≥ t · s]≤ 2e−πt2
· 1+ ε

1− ε
.

Finally, we will also require the smoothing parameter for the following discrete

convolution theorems, specialized to the one dimensional case.

Theorem 1 ([50, Theorem 3]) Let z ∈ Zm a nonzero integer vector, s ∈ Rm with si ≥
√

2‖z‖∞ηε(Z) for all i ≤ m and ci +Z arbitrary cosets of Z. Let yi be independent

samples from Dci+Z,si , respectively. Then the distribution of y = ∑ziyi is close to DY,s,

where Y = ∑i zici + gcd(z)Z and s =
√

∑i z2
i s2

i . In particular, if D̃Y,s is the marginal

distribution of y, then δRE(DY,s,D̃Y,s)≤ 1+ε

1−ε
−1' 2ε .

Theorem 2 ([63, Theorem 1]) Let s1,s2 > 0, with s2 = s2
1+s2

2 and s−2
3 = s−2

1 +s−2
2 . Let

Λ = KZ be a copy of the integer lattice Z scaled by a constant K. For any c1 and c2 ∈R,

denote the distribution of x1← x2 +Dc1−x2+Z,s1 , where x2← Dc2+Λ,s2 , by D̃c1+Z,s. If

s1 ≥ ηε(Z), s3 ≥ ηε(Λ) = Kηε(Z), then

δRE(Dc1+Z,s,D̃c1+Z,s)≤
(

1+ ε

1− ε

)2

−1' 4ε

.
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Chapter 3

Enumeration

This chapter explores several extensions and improvements of the traditional

enumeration algorithm. We will first introduce a way to enumerate all short vectors in the

dual of a lattice (specified by a given basis) without the need to compute neither the dual

basis nor its GSO. In the following sections we will analyze the impact of preprocessing

the basis on the complexity of the enumeration step. This will allow us to obtain variants

that are both, asymptotically and practically efficient, and hint at the impact of these

variants on cryptanalysis.

Dual Enumeration

Let B be a lattice basis and D the corresponding dual basis. The goal in this

section is to efficiently find all vectors x such that ‖Dx‖ ≤ r for some given r ≥ λ1(D)

by enumeration while only accessing B.

Recall from Section 2.4.1 that we can view enumeration on the dual basis D as

iterating over the integer solutions of the linear system

Dx = v (3.1)

which can be simplified to RDx = v, where D = QDRD is the QR decomposition of D.

29
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Unfortunately, computing RD from B requires O(n3) operations, but multiplying (3.1)

on the left by BT yields the system

x = BT v. (3.2)

Again considering the QR decomposition, this time of B = QBRB, we obtain x = RT
BQT

Bv.

Since again ‖QT
Bv‖ = ‖v‖, we can focus on the system x = RT

Bw and find all integer

solutions such that ‖w‖ ≤ r. Because RT
B is lower triangular, the solutions to the system

can again be efficiently generated by an “iterated substitution”, which now starts with the

first entry of x. The following lemma makes this intuition more explicit and will allow us

to derive a concrete enumeration procedure for the dual of a lattice.

Lemma 3 Let B be a lattice basis and w an arbitrary vector in the linear span of B. Let

x be the coefficient vector expressing w with respect to the dual basis, i.e., xi = 〈w,bi〉

for all i≤ n. Then, for any k ≤ n, the (uniquely defined) vector w(k) ∈ span(B[1,k]) such

that 〈w(k),bi〉= xi for all i≤ k, can be expressed as w(k) = ∑i≤k αib∗i /‖b∗i ‖2 where

αi = xi−∑
j<i

µi, jα j. (3.3)

Proof The condition w(k) ∈ span(B[1,k]) directly follows from the definition of w(k) =

∑i≤k αib∗i /‖b∗i ‖2. We need to show that this vector also satisfies the scalar product

conditions 〈w(k),bi〉= xi for all i≤ k. Substituting the expression for w(k) in the scalar

product we get

〈w(k),bi〉= ∑
j≤k

α j
〈b∗j ,bi〉
‖b∗j‖2 = ∑

j≤i
α j
〈b∗j ,bi〉
‖b∗j‖2 = αi +∑

j<i
α jµi, j = xi

where the last equality follows from the definition of αi. �
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This shows that if we enumerate the levels from k = 1 to n (note the reverse

order as opposed to primal enumeration) we can easily compute αk from all the given or

previously computed quantities in O(n). The length of w(k) is given by

‖w(k)‖2 = ∑
i≤k

α
2
i /‖b∗i ‖2 = ‖w(k−1)‖2 +α

2
k /‖b∗k‖2. (3.4)

To obtain an algorithm that is practically as efficient as primal enumeration, it is

necessary to apply the same standard optimizations of SchnorrEuchner enumeration to

the dual enumeration. It is obvious that we can exploit lattice symmetry and dynamic

radius updates in the same fashion as in the primal enumeration. The only optimization

that is not entirely obvious is enumerating the values for xk in order of increasing length

of the resulting partial solution. However, from Equation (3.3) and (3.4) it is clear that we

can start by selecting xk = b∑ j<k µk, jα je in order to minimize the first value of αk, and

then proceed by alternating around this first value just as in the SchnorrEuchner primal

enumeration algorithm.

It is also noteworthy that being able to compute partial solutions even allows us

to apply pruning [25] directly. In summary this shows that dual SVP enumeration should

be just as efficient as primal enumeration. To illustrate this, Algorithm 3.1 and 3.2 show

the SchnorrEuchner variant of the two enumeration procedures.1

1The function nextX simply selects the next value for a specific variable in order to alternate correctly
around the center of the interval of valid values. We omit details here since it works identical in both
algorithms and requires auxiliary variables that would clutter the code unnecessarily.



32

Algorithm 3.1. Dual Enumeration
procedure DualEnum(µ , (‖b∗i ‖2)i, A)

Input: The GSO of a lattice µ and

(‖b∗i ‖2)i∈[n] and an upper bound A to the

squared length of a shortest dual vector

Output: The coordinates of a shortest

dual vector in the dual basis D

1 k← 1

2 while k ≥ 1

3 αk← xk−∑ j<k µk, jα j

4 lk← lk−1 +α2
k /‖b∗k‖2

5 if lk ≤ A and k = n then

6 s← x, A← lk

7 if lk ≤ A and k < n then

8 k← k+1, xk←b∑ j<k µk, jα je

9 else

10 k← k−1, xk← nextX(k)

11 return s

Algorithm 3.2. Primal Enumeration
procedure PrimalEnum(µ , (‖b∗i ‖2)i, A)

Input: The GSO of a lattice µ and

(‖b∗i ‖2)i∈[n] and an upper bound A to the

squared length of a shortest vector

Output: The coordinates of a shortest vector

in the basis B

1 k← n

2 while k ≤ n

3 αk← xk +∑ j>k µ j,kx j

4 lk← lk+1 +α2
k ‖b∗k‖2

5 if lk ≤ A and k = 1 then

6 s← x, A← lk

7 if lk ≤ A and k > 1 then

8 k← k−1, xk← b−∑ j>k µ j,kx je

9 else

10 k← k+1, xk← nextX(k)

11 return s

The Complexity of Enumeration

We now turn to the impact of preprocessing in the enumeration. For this we first

introduce a new notion of basis reduction that will facilitate the analysis later.

Definition 22 Let B ∈Zm×n, n′ = dim(L (B)), and ζ : [n]→R+. We call B ζ -reduced,
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if for all i ∈ [n]

‖b∗i ‖> ζ (i)det(B)1/n′ ⇒ λ1(πi−1(B))> λ1(B)

and B[1,k] is ζ -reduced for all k ∈ [n−1].

Note that the definition covers arbitrary generating systems for lattices, not only bases.

The quantification over the sublattices in Definition 22 might seem like a stringent

condition at first sight but the reduction algorithms that we consider, namely LLL, BKZ

and HKZ reduction, naturally meet this condition since all subbases of the form B[1,k]

of a reduced bases B are also reduced. Next, we analyze the runtime of the standard

enumeration procedure on a ζ -reduced basis.

Theorem 3 Let B∈Zm×n be a ζ -reduced basis with an efficiently computable ζ (i)≥
√

n

for all i ∈ [n]. Then there is an efficiently computable set M ⊂Zn with |M| ≤ 3n
∏

n
i=1 ζ (i)

such that there is a vector x ∈M with ‖Bx‖= λ1(B).

Proof Let ∆ = det(B) and r =
√

n∆1/n be the Minkowski bound of L (B). We start out

by noting that we can assume w.l.o.g. that ‖b∗i ‖ ≤ ζ (i)∆1/n for all i ∈ [n], because if

there is an i with ‖b∗i ‖> ζ (i)∆1/n, we can ignore the entire sublattice L (B[i,n]) due to

ζ -reducedness and apply the result recursively to the reduced basis B[1,i−1]. Now we

simply bound the number of steps in the enumeration by

|M| ≤
n

∏
i=1

⌊
2r
‖b∗i ‖

+1
⌋
. (3.5)

Observe that for any real α ≥ 0 we have b2α + 1c ≤ max{2,3α}. This can easily

seen to be true: If α < 1, then 2α + 1 < 3 and b2α + 1c ≤ 2. Otherwise, α ≥ 1 and

2α +1≤ 2α +α = 3α . Setting α = r/‖b∗i ‖, we can bound each term in Equation 3.5
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by ⌊
2r
‖b∗i ‖

+1
⌋
≤max{2,3r/‖b∗i ‖}=

r
‖b∗i ‖

max{2‖b∗i ‖/r,3} ≤ 3ζ (i)∆1/n

‖b∗i ‖

So, the size of M is at most |M| ≤∏i
3ζ (i)∆1/n

‖b∗i ‖
= 3n

∏i ζ (i). �

Intuitively, Theorem 3 states that when calling the enumeration procedure on a

ζ -reduced basis, the running time is bounded by the product of the ζ values for all basis

vectors and a single exponential factor.

It is easy to see that an HKZ reduced basis is ζ -reduced for any constant function

ζ (i)≥
√

n by applying Minkowski’s bound. The following lemma shows that the LLL

algorithm computes ζ -reduced bases for an appropriate value of ζ .

Lemma 4 Let B ∈ Zm×n an LLL reduced basis. Then, B is ζ -reduced for ζ (i) = 2
n−1

4 .

Proof Let B an LLL reduced basis of a lattice Λ. For any i, we prove that if λ1(Λ) ≥

λ1(πi−1(Λ)), then ‖b∗i ‖ ≤ 2(n−1)/4 det(Λ)1/n. Since B is LLL reduced, we have ‖b∗k‖ ≤
√

2‖b∗k+1‖ for all k. In particular, ‖b∗i ‖ ≤ 2(k−i)/2‖b∗k‖ for all k≥ i, and ‖b1‖ ≥ λ1(Λ)≥

λ1(πi−1(Λ)) ≥ mink≥i ‖b∗k‖ ≥ ‖b∗i ‖2−(n−i)/2. So, we also have ‖b∗i ‖ ≤ 2(n−i+k)/2‖b∗k‖

for k < i. It follows that ‖b∗i ‖n ≤∏k 2((k−i) mod n)/2‖b∗k‖= 2n(n−1)/4 det(Λ) and ‖b∗i ‖ ≤

2(n−1)/4 det(Λ)1/n. �

This immediately recovers the time complexity of the Fincke-Pohst algorithm

[22], since it consists of preprocessing the basis using LLL and then performing the

enumeration step. Using Lemma 4 and Theorem 3, this shows that asymptotically,

Fincke-Pohst has a time complexity of 2n2/4+O(n).
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The Preprocessing

In the following two subsections we consider two different types of preprocessing,

which each can be viewed as generalizations of Kannan’s algorithm [36] and Fincke-Pohst

[22], respectively.

Kannan-style

The idea of Kannan’s algorithm is easily explained: instead of just returning the

shortest vector in the lattice, it HKZ reduces the basis B (which clearly solves SVP). In

order to do so, it first uses alternating calls to LLL and itself recursively on π1(B) to

quasi-HKZ reduce B, then performs the enumeration step, and finally uses a recursive

call to π1(B) to finalize the HKZ reduction. This produces a ζ -reduced basis before the

enumeration with ζ (1) = 2
√

n and ζ (i) =
√

n for all i > 1. It follows that the complexity

of the enumeration procedure on such bases (and by induction also the whole algorithm)

is in Õ(nn/2).

Note that the number of recursive calls of this algorithm, while asymptotically

dominated by the final enumeration step, can be extremely large: Helfrich [35] proved

that the number of top-level recursive calls is bounded by O(logn), leading to an overall

multiplicative factor of 2O(n log logn) in the complexity bound. The fact that heuristic

arguments [33] indicate that the enumeration step should be significantly improved using

stronger preprocessing suggests that it is this gigantic number of recursive calls that

slows down this algorithm in practice to the extend that it is outperformed by the simple

Fincke-Pohst algorithm for reasonable dimensions. In this section, we analyze to which

extend one can reduce the number of recursive calls during the preprocessing while

maintaining a nO(n) complexity bound. We remark, that we also show that it is possible to

remove the recursive call during the postprocessing [52], but since this has little impact
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on asymptotic or practical complexity, we refer the reader to [52] for details.

We begin by observing that in order to achieve the Õ(nn/2) complexity, requiring

ζ (1) to be this small seems to be an overkill. In fact, after running LLL we obtain

ζ (1) = 2
n−1

4 . So, after a recursive call on the basis π1(B), which does not change ζ (1),

we obtain a basis that is ζ -reduced for the function ζ (1) = 2
n−1

4 , ζ (i > 1) =
√

n. Clearly,

using this ζ function in Theorem 3 also exhibits a worst-case complexity of Õ(nn/2). This

lightweight Kannan algorithm reduces the number of recursive calls before enumeration

from log(n) to 1 and so the overall number of recursive calls to 2n, while preserving the

asymptotic runtime.

Furthermore, our analysis suggests a natural generalization. We can introduce

a degree of freedom by allowing a variable number κ(n) of basis vectors to have an

exponential ζ -bound as opposed to the sublinear bound obtained by the recursive call.

This can be achieved by first LLL reducing the basis B and recursing on the basis πκ(n)(B)

before enumerating. This will result in bounds of ζ (i≤ κ(n)) = 2
n−1

4 , ζ (i > κ(n)) =
√

n,

which, when plugged into Theorem 3, yield an upper bound of Õ(2nκ(n)/4n(n−κ(n))/2).

Note that for κ(n) = 1 this variant corresponds to the lightweight Kannan algorithm,

while for κ(n) = n it degenerates to the Fincke-Pohst algorithm. Using intermediate

values for κ(n) allows us to interpolate between these two algorithms and thus this

variant can be seen as a generalization of them. The new parameter can be used to

balance the preprocessing with the enumeration: for larger values of κ(n), the recursive

call is cheaper, but enumeration is harder, and vice versa. In order to maintain an

asymptotic upper bound of nO(n) we need to ensure that κ(n) = O(log(n)). For example,

κ(n) ≈ logn results in a runtime of Õ(n0.75n), only a little worse than the one for the

lightweight Kannan of Õ(nn/2), but with significantly lighter preprocessing.
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Algorithm 3.3. Our HKZ Reduction Algorithm
procedure reduce (B, κ)
Input: A lattice basis B ∈ Zm×n, a functions κ : [n]→ [n]
Output: An HKZ reduced basis of L (B)

1 B← LLL(B)
2 ∆← det(B), k← κ(n)
3 if ∃i≤ k : ‖b∗i ‖> 2

n−1
2 ∆

1
n then

4 v← enum(B[1,i−1])

5 return [v|π−1
v (reduce(πv(B),κ))]

6 B← [B[1,k]|π−1
k (reduce(πk(B),κ)]

7 v← enum(B)
8 return [v|π−1

v (reduce(πv(B),κ))]

Better Asymptotics for Non-Increasing Bases

In this section we will show that we can prove a tighter bound on the enumeration

after preprocessing if we assume that the shape of the input basis is non-increasing, which

is typically the case. What follows is an adaptation of the proof of Theorem 3 in [33],

which can be found more explicitly in the extended version [34]. We show the result for

κ(n) = 1, which yields the best asymptotic runtime in our previous analysis. The proof

can easily be adapted to larger κ(n) and yields the expected runtime.

We use the same starting point as the authors of [33], where it is proved that

the number of nodes processed during a SVP enumeration with arbitrary bound r on an

arbitrary basis B can be bounded by

2O(n)max
I⊂[n]

(
r|I|

√
n|I|∏i∈I ‖b∗i ‖

)

up to polynomial factors. Since our enumeration uses the bound r =
√

ndet(B)1/n, this

is equivalent to

2O(n)
∏

I

det(B)1/n

‖b∗i ‖

where I = {i : ‖b∗i ‖< det(B)1/n}. Note that in the case of non-increasing bases, I is of
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the form I = [k, . . . ,n] for some k ∈ [n]. The following lemma shows the result:

Lemma 5 Let B ∈ Zm×n with ‖b1‖ ≤ 2(n−1)/4 det(B)1/n, π1(B) be HKZ reduced, and

‖b1‖ ≥ ‖b∗2‖ ≥ ·· · ≥ ‖b∗n‖. Then for all k ∈ [n]

n

∏
i=k

det(B)1/n

‖b∗i ‖
≤ 2nnn/2e.

Proof Let

Γ̃n(k) = 2 ·Γn−1(k−1)

where Γn(k) = ∏
n−1
i=n−k(γi+1)

1/2i from Definition 2 of [33] and Γn(0) = 1. From Lemma

2 in [33] we immediately obtain Γ̃n(k)≤ 2
√

nlog( n
n−k). Akin to the proof in the extended

version of [33], we let π[k,n] = ∏
n
i=k ‖b∗i ‖1/(n−k+1) and first prove the inequality

π[1,k] ≤ Γ̃n(k)n/k
π[k+1,n] (3.6)

for all k by induction on k. For k = 1 the inequality follows from the assumption

‖b1‖ ≤ 2(n−1)/4 det(B)1/n. The rest of the proof is identical to the one of Hanrot and

Stehlé and shamelessly copied for completeness. Assume that the inequality holds for

k ≥ 1 and rewrite it as

π
k+1

k
[1,k+1] · ‖b

∗
k+1‖−

1
k ≤ Γ̃n(k)

n
k ·π

n−k−1
n−k

[k+2,n] · ‖b
∗
k+1‖

1
n−k

which is equivalent to

π
k+1

k
[1,k+1] ≤ Γ̃n(k)

n
k ·π

n−k−1
n−k

[k+2,n] · ‖b
∗
k+1‖

n
k(n−k)

From the HKZ reducedness assumption it follows that ‖b∗k+1‖ ≤
√

γn−k
n−k

n−k−1 ·π[k+2,n],
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which gives

π
k+1

k
[1,k+1] ≤ Γ̃n(k)

n
k
√

γn−k
n

k(n−k−1) ·π
k+1

k
[k+2,n] = Γ̃n(k+1)

n
k ·π

k+1
k

[k+2,n]

which yields the induction step after raising to the power k/(k+1).

From inequality (3.6) we obtain the inequality

π[k+1,n] ≥
det(B)1/n

Γ̃n(k)
(3.7)

by raising (3.6) to the power of k/n, multiplying it with π
(n−k)/n
[k+1,n] , and using the identity

det(B) = πk
[1,k] ·π

n−k
[k+1,n]. From (3.7) we get

(
det(B)1/n

π[k+1,n]

)n−k

≤ Γ̃n(k)n−k ≤ 2n−k√n(n−k)·log( n
n−k) ≤ 2n√nn/e

. �

A Variant Based on Dual HKZ Reduction

As mentioned, in [33] the authors were able to improve the analysis of Kannan’s

algorithm to obtain a worst case bound on the asymptotic running time of Õ(nn/2e)

instead of Helfrich’s Õ(nn/2) [35]. It is unclear if and how the techniques from [33] can

be applied to our algorithm to achieve a similar bound (with exception of the special

case in the previous subsection). Here we present a variant of our algorithm, for which

we can rigorously prove the same complexity bound as in [33]. In [52] we presented

experimental results, which show that in practice this variant has efficiency comparable

to the previous algorithm.

This variant, presented in Algorithm 3.4, maintains the idea of restricting recursive
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Algorithm 3.4. Variant of our HKZ Reduction Algorithm
procedure reduce (B, κ)
Input: A lattice basis B ∈ Zm×n, a function κ : [n]→ [n]
Output: An HKZ reduced basis of L (B)

1 B← LLL(B)
2 do

3 B← [B[1,k]|π−1
k (reduce(πk(B),κ))]

4 V← reduce(B[1,k−1],κ)
5 if ‖v1‖ ≤ ‖b∗k‖
6 return [v1|π−1

v1
(reduce(πv1(B),κ))]

7 B← [dualHKZ(B[1,k])|B[k+1,n]]
8 while change occurred
9 v← enum(B)

10 return [v|π−1
v (reduce(πv(B),κ))]

calls to dimension n− k, but potentially makes logarithmically (in n) many of them

interleaved with calls to a k dimensional dual HKZ reduction, where k = κ(n). The dual

HKZ reduction can be realized by the techniques outlined in Section 3.1.

We first bound the enumeration step and then the number of loop iterations during

the preprocessing in Algorithm 3.4 .

Lemma 6 Let B ∈ Zm×n be such that B[1,k] is dual HKZ reduced and πk−1(B) is HKZ

reduced for some k ∈ [n]. The shortest vector vector in L (B) can be computed by

enumeration while exploring at most kO(n)n(n−k)/2e+o(n) nodes.

Proof Let rk =
√

k det(L (B[1,k]))
1/k. Note that by Minkowski’s theorem rk ≥

λ1(L (B[1,κ(n)]))≥ λ1(L (B)), so L (B) contains a vector of length at most rk. Further-

more, note that the shortest vector can be found by enumerating all vectors of length

rk in πk(L (B)), followed by a CVP computation for each of them. We first bound

the number of nodes explored during the first step. Note that due to the dual HKZ

reducedness of B[1,k] we have 1/‖b∗k‖ ≤
√

k/det(L (B[1,k]))
1/k, and so rk ≤ k‖b∗k‖. By

Theorem 3 in [33], the number of nodes explored during the first step can be bounded

by kn−kn(n−k)/2e+o(n). For each vector found, the CVP problem can be solved exploring
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at most k! = kO(k) nodes due to the dual HKZ reducedness of B[1,k] [8]. Multiplying the

two bounds gives the result. �

Lemma 7 Let B ∈ Zm×n be LLL reduced. Then the number of iterations between Line 3

and 7 is at most logarithmic in k ·n with base α = k/(k−1).

Proof The proof is a generalization of Helfrich’s proof of the number of loop iterations

performed by Kannan’s algorithm ([35], Lemma 3.3). Let λ1 = λ1(L (B)) and B̄ be such

that it solves the densest (k− 1)-sublattice problem and B̄[1,k−1] is LLL reduced. We

need the following facts:

Fact 12 If B ∈ Zm×k is dual HKZ reduced, then

det(L (B[1,k−1]))≤
√

γk det(L (B))(k−1)/k.

Proof Can easily be shown by applying Minkowski’s theorem to the dual of B. �

Fact 13 When executing Line 7 of Algorithm 3.4, ‖b∗k‖ ≤ λ1 holds.

Proof Let v ∈ L (B) with ‖v‖ = λ1. If πk−1(v) > 0, the fact follows from the HKZ

reduction step. Otherwise, v ∈L (B[1,k−1]) and the fact easily follows from the check in

Line 5. �

Fact 14 If B is LLL reduced, then det(L (B[1,k−1]))/det(L (B̄[1,k−1]))≤ 2O(kn).

Proof W.l.o.g. we can assume that ‖b∗i ‖ ≤ 2(n−i)/2‖b1‖ ≤ 2nλ1, because otherwise

λ1(πi−1(L (B)))> ‖b1‖ (for brevity we ignored an explicit check in the presentation of

Algorithm 3.4). It follows that det(L (B[1,k−1]))≤ 2knλ
k−1
1 . From the properties of LLL
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reduction we get λ1 ≤ b̄1 ≤ 2(k−2)/4 det(L (B̄[1,k−1]))
1/(k−1) and so det(L (B̄[1,k−1]))≥

λ
k−1
1 /2(kn)/4. Putting the two inequalities together proves the fact. �

We define r(B) = det(B[1,k−1])/det(B̄[1,k−1]). Note that the HKZ reduction step

in Line 3 does not change the value of r(B). Now let B be the matrix during some

iteration of the loop before the dual HKZ reduction step (Line 7) and B′ its result. Then

we have

r(B′) =
det(B′[1,k−1])

det(B̄[1,k−1])

≤
√

γk
det(B′[1,k])

(k−1)/k

det(B̄[1,k−1])
Fact 12

≤
√

γk
det(B[1,k])

(k−1)/k

det(B̄[1,k−1])

≤
√

γkr(B)(k−1)/k ‖b∗k‖(k−1)/k

det(B̄[1,k−1])
1/k

≤
√

γkr(B)(k−1)/k λ
(k−1)/k
1

det(B̄[1,k−1])
1/k

Fact 13

≤
√

γkr(B)(k−1)/k λ1(L (B̄))(k−1)/k

det(B̄[1,k−1])
1/k

≤
√

γkr(B)(k−1)/k√
γk−1

(k−1)/k

≤ γkr(B)1/α

Now denote the value of r(B) after the i-th iteration by ri. We have just shown that

ri+1 ≤ γkr1/α

i and it follows that ri ≤ γ i
kr1/α i

1 ≤ γ i
k2O(kn)/α i

by Fact 14. So after i =

logα O(kn) iterations ri ≤ 2 ·O(kn)logα γk . Introducing a slack δ > 1 for the dual HKZ

reduction step (which does not affect the bound given in Lemma 6), there are at most

logα(γk) logδ (O(kn)) more iterations. �
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Figure 3.1. Comparison of the runtime of original fpLLL and Algorithm 3.3 (κ = logn)

Application to Cryptanalysis

In [52] we gave details for an experimental analysis of our algorithm, showing

that κ(n) = log(n) seems to be a good choice. As an exemplary result, we show in

Figure 3.1 a comparison of our algorithm with a then state-of-the-art implementation of

the FinckePohst algorithm from fpLLL. It shows that the running time of FinckePohst

starts to increase more rapidly beyond dimension 30 and there seems to be a qualitative

difference between the running times of the algorithms, with the FinckePohst algorithm

exhibiting a clear superexponential slowdown, and the graph for our new algorithm much

closer to a straight line (corresponding to an almost linear exponent in the running time,

i.e. 2O(n logn)).

We emphasize that our experimental analysis of the algorithm is only preliminary

as the tested dimensions are fairly low compared to what is possible with today’s state

of the art (see, e.g. the SVP challenge). Nonetheless, to get a sense of how well our

algorithm performs in higher dimensions, we used standard statistical methods to fit

curves to the data collected in our experiments. To determine the practical complexity

of the enumeration on reduced bases, we selected a model based on our theoretical

analysis, f (n) = 2c1n2 ·nc2n ·2c3n, and fitted it to the data collected only during the top
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Table 3.1. Parameters of model 2c1n2 ·nc2n ·2c3n after curve fitting to top level enumeration

Algorithm c1 c2 c3

FinckePohst 0.0068 0.0000 0.3195
Ours 0.0009 0.0839 0.0508

Table 3.2. Parameters of models f1 (for FinckePohst) and f2 (for our algorithm) after
curve fitting

f1(n) = 2a1n2+a2n f2(n) = nb1n ·2b2n

Preprocessing a1 a2 b1 b2

LLL 0.0045 0.4469 0.0280 0.4389
BKZ-10 0.0024 0.4830 0.0245 0.4504
BKZ-20 0.0019 0.4962 0.0237 0.4518
BKZ-30 0.0016 0.5028 0.0225 0.4574

level enumeration, i.e. ignoring pre- and postprocessing. The resulting constants for

FinckePohst and our algorithm are shown in Table 3.1. For FinckePohst, the running

time (in low dimension) is dominated by the single exponential component 2c3n, but there

is also a quadratic term 2c1n2
which becomes dominant in sufficiently high dimension.

(Notice also the complete absence of a quasilinear exponent 2c2n logn.) So, the runtime

of FinckePohst is clearly 2O(n2) also in practice when the dimension is sufficiently

large. On the other hand, for our algorithm the dominating factor is the quasilinear

exponent associated to c2. Apart from the small constant c1 in the case of our algorithm,

which we attribute to noise, this is consistent with the theoretical analysis. For further

exploration, we selected the model f1(n) = 2a1n2+a2n for the FinckePohst algorithm and

f2(n) = nb1n ·2b2n for our algorithm and fitted them to the entire runtimes, i.e. with pre-

and postprocessing, including variants where we replaced LLL preprocessing with BKZ

for both algorithms. The result is shown in Table 3.2. The table demonstrates that the

improvement due to BKZ decreases with increasing blocksize.

In [25] the authors claim that enumeration can be sped up heuristically by a factor
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of 2n/2 with extreme pruning. Recall that the basic idea of extreme pruning is to heavily

cut down on the enumeration and compensate the sacrificed success probability by a

large number of repetitions with randomized inputs. FinckePohst is an ideal candidate for

extreme pruning due to the cheap preprocessing, which has to be applied in each iteration.

After introducing the corresponding speed-up into f1 we can estimate the dimension n at

which our algorithm becomes more efficient than FinckePohst with extreme pruning by

computing the cross-over point between (the modified) f1 and f2. This point is reached

for n = 155, which seems already very close to practically tractable dimensions. It is not

immediately clear if extreme pruning can be applied to our algorithm due to its heavier

preprocessing. However, in the same work the authors of [25] show that a speed-up of

2n/4 can be achieved by non-extreme pruning, where the enumeration is pruned but only

sacrificing very little success probability. This non-extreme form of pruning can readily

be applied to our algorithm and we expect it to result in similar speed-ups. If this is

indeed the case the cross-over point at which our algorithm becomes more efficient than

FinckePohst with extreme pruning would drop to n = 95 – well below the limit of today’s

tractability.

Applying the same approach to variants that use BKZ and extreme pruning is a

little problematic, as extreme pruning is likely to suffer from heavy preprocessing. The

precise impact of BKZ on the practical complexity of extreme pruning has to the best

of our knowledge not been investigated in detail. However, the authors of [25] give a

prediction for the number of nodes that have to be enumerated by extreme pruning in

dimension n = 110 using BKZ-32 preprocessing, which is 2.5 ·1013. Using our model,

we expect the number of nodes to be enumerated by our algorithm with BKZ-30 and

(non-extreme) pruning to be about 8.4 · 1011. This already corresponds to a speed-up

of about 30 even without considering the overhead incurred by the repeated application

of BKZ-32 necessary for extreme pruning. We expect this speed-up factor to increase
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rapidly in larger dimensions due to the superior asymptotics of our algorithm.

We can use our model to estimate at which point the asymptotically superior

sieving becomes more efficient. Even though sieving algorithms have the drawback of

exponential memory requirements, we will ignore this fact and focus on the runtime.

In [39] the running time of HashSieve, a very recent sieving variant and to the best of

our knowledge the most efficient sieving algorithm in practice to date, was estimated

to be 20.45n−19 seconds in dimension n in practice. In order to compare our algorithm

meaningfully to this estimate, we need to convert the number of nodes calculated by f2

to computing time on a comparable computer that was used in [39]. For this we use the

observation made in [25] that an efficient implementation of enumeration can process

a node in approximately 200 clock cycles. Computing the intersection of f2 with the

estimate for sieving of 20.45n−19 suggests that sieving is more efficient than our algorithm

starting already in dimension n = 35. However, if introducing the potential speed-up

of 2n/4 to f2 due to pruning, this cross-over point rises to n = 745. Using for f2 the

parameters resulting from the application of BKZ-30 to the basis before running our

algorithm (cf. Table 3.2) and including the pruning heuristic, we expect our algorithm to

be more efficient up to dimension n = 1895. The latter two values for n are both by far

out of reach for today’s state of the art. We remark that the estimate from [39] does not

take block reduction as preprocessing into account. This is likely to improve HashSieve

somewhat, but we do not believe that it will change the picture significantly.

Remark about FinckePohst and Sieving Although not directly relevant to the

algorithm proposed in this work, we can use the model for FinckePohst and compare it

to sieving. Without pruning, FinckePohst is more efficient than sieving up to dimension

n = 31, with non-extreme pruning up to n = 71 and with extreme pruning up to n = 120.

This is consistent with results of the SVP challenge, which gives us confidence in our
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Figure 3.2. Diagram of estimated runtimes and cross-over points (not to scale). All
Algorithms use only LLL preprocessing.

model. Furthermore, these numbers suggest that in the search for fast practical algorithms,

in particular in dimensions relevant to currently unbroken challenges, one should focus

on (non-extremely) pruned enumeration or sieving rather than extreme pruning.

An illustration of the cross-over points is given in Figure 3.2. We reiterate that

this analysis is preliminary and more experimental evidence is necessary to support our

hypothesis.

Block Reduction

We now turn to another type of preprocessing, typically encountered in practical

implementations of enumeration. Here we use FinckePohst with its LLL preprocessing

as a starting point. Recall that LLL can be considered a special case of block reduction

algorithms with block size 2. In order to increase the performance of the algorithm,

one typically increases the time spent on preprocessing by increasing the block size

parameter. On an intuitive level, this will improve the shape of the basis and thus improve

the complexity of the enumeration step. In the following we analyze for the first time the

impact of such a preprocessing on the asymptotic complexity of the enumeration step,

using our framework of ζ -reduction.
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Consider an algorithm that reduces an input basis B using a block reduction

algorithm with parameter k and then runs enumeration to find the shortest vector. We are

interested in the complexity of the enumeration step depending on the parameter k. We

first briefly discuss the corner cases. For k = 2, the algorithm reduces to FinckePohst,

which we already analyzed in Section 3.2. Now consider the algorithm with parameter

k = n− 1. In this case, it has a striking similarity to Kannan’s algorithm: note that

Kannan’s algorithm can be viewed as alternately calling a SVP oracle on B[1,2] and a

HKZ oracle (instantiated with a recursive call) on π1(B) in order to achieve quasi-HKZ

reducedness. The only difference between this kind of preprocessing and, for example,

BKZ-(n−1) is that the latter alternates between calling an SVP oracle on B[1,n−1] and

a HKZ oracle on π1(B). So a BKZ-(n− 1) reduced basis is also quasi-HKZ reduced

and thus strictly stronger reduced than after Kannan’s preprocessing. In particular, the

enumeration complexity is less than the one for Kannan’s algorithm, which we know to

be O(nn/2e).

We first focus on the case of BKZ preprocessing and analyze the ζ bounds that it

achieves depending on the block size parameter in the following lemma.

Lemma 8 If B ∈ Zm×n is BKZ-k reduced then it is ζ -reduced with ζ (i) = k
n−1

2(k−1)+
3
2 .

Proof We prove the contrapositive and assume λ1(πi−1(B)) ≤ λ1(B). Since

πi−1(B) and B[1,i−1] are BKZ-k reduced, we have

‖b∗i ‖ ≤k
n−i
(k−1) λ1(πi−1(B))

≤k
n−i
(k−1) λ1(B)

≤k
n−i
(k−1)‖b1‖

≤k
n−i
(k−1) k

i−2
2(k−1)+

3
2 det(B[1,i−1])

1/(i−1)



49

and so

‖b∗i ‖i−1 ≤ k
(i−1)(n−i)

(k−1) +
(i−1)(i−2)

2(k−1) + 3
2 (i−1) det(B[1,i−1])

By (2.3) we also have ‖b∗i ‖n−i+1 ≤ k
(n−i)(n−i+1)

2(k−1) + 3
2 (n−i+1) det(πi−1(B)). Multiplying those

two bounds and doing some arithmetic gives

‖b∗i ‖n ≤ k
(i−1)(n−i)

(k−1) +
(i−1)(i−2)

2(k−1) +
(n−i)(n−i+1)

2(k−1) + 3
2 n det(B)≤ k

n(n−1)
2(k−1)+

3
2 n det(B)

�

Using Theorem 3 we can easily deduce a runtime bound for the enumeration step.

Corollary 1 Given a BKZ-k reduced basis B ∈ Zm×n, enumeration can solve SVP in

Λ(B) in k
n(n−1)
2(k−1)+

3
2 n2O(n).

For k = 2 (FinckePohst) and k = n−1 (≈ Kannan) we get the expected bounds up

to constants in the exponent. Other values for k interpolate the two algorithms offering an

improvement in the exponent of the dominating factor of FinckePohst of about log(k)/k.

Up to constants in the exponent, this proves that the enumeration step after BKZ is as

efficient as after Kannan’s preprocessing as long as k = O(n).

We continue by also showing how to apply ζ -reduction to slide reduced bases,

which leads to slightly improved results.

Lemma 9 If B ∈ Zm×n is slide reduced with parameter k, the t-th projected block

πtk(B[tk+1,(t+1)k]) is ζ -reduced for

ζ (tk < i≤ (t +1)k) = k
n−1

2(k−1)+
k

k−1−
tk2

n(k−1)
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Proof As before, we assume λ1(πi−1(B)) ≤ λ1(B). We start by showing the

lemma for the first vector ‖b∗i ‖ of the block. In this case B[1,i−1] and πi−1(B) are also

slide reduced and we can apply the same approach as for BKZ:

‖b∗i ‖ ≤k
n−i−k
(k−1) λ1(πi−1(B))

≤k
n−i−k
(k−1) λ1(B)

≤k
n−i−k
(k−1) ‖b1‖

≤k
n−i−k
(k−1) k

i−2
2(k−1) det(B[1,i−1])

1/(i−1)

and so

‖b∗i ‖i−1 ≤ k
(i−1)(n−i−k)

(k−1) +
(i−1)(i−2)

2(k−1) det(B[1,i−1])

By (2.5) we also have ‖b∗i ‖n−i+1 ≤ k
(n−i)(n−i+1)

2(k−1) det(πi−1(B)). Again, multiplying those

two bounds gives

‖b∗i ‖n ≤ k
(i−1)(n−i−k)

(k−1) +
(i−1)(i−2)

2(k−1) +
(n−i)(n−i+1)

2(k−1) det(B)

≤ k
n(n−1)−2k(i−1)

2(k−1) det(B)
(3.8)

which implies ‖b∗i ‖ ≤ k
n−1

2(k−1) det(B)1/n and shows the result for the first vector of each

block, because k
k−1 ≥

tk2

n(k−1) and so ζ (i)≥ k
n−1

2(k−1) .

We now generalize to arbitrary i. Let j = (t + 1)k, i.e. the end of the block.

If λ1(π j(B)) > λ1(πi−1(B)) then the shortest vector in πi−1(B) is in πi−1(B[i, j]) and

‖b∗i ‖ = λ1(πi−1(B)), because πi−1(B[i, j]) is HKZ reduced. It follows that ‖b∗i ‖ is ζ -

reduced for all ζ (i)≥
√

n≤ k
n−1

2(k−1) . Now let λ1(π j(B))≤ λ1(πi−1(B)). Then by assump-

tion λ1(π j(B))≤ λ1(πi−1(B))≤ λ1(B), so (3.8) holds for b∗j+1. Utilizing the fact that

πi−1(B[i, j]) is HKZ reduced and πi(B[i+1, j+1]) is DSVP reduced, we easily deduce by

Minkowski’s theorem that ‖b∗i ‖ ≤ κ
κ

κ−1‖b∗j+1‖ where κ = j− i+ 1. Putting this and
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(3.8) together, we get:

‖b∗i ‖ ≤κ
κ

κ−1‖b∗j+1‖

≤k
k

k−1 k
n(n−1)−2k j

2n(k−1) det(B)1/n

≤k
n−1

2(k−1)+
k

k−1−
tk2

n(k−1) det(B)1/n

�

Again, using Theorem 3, we obtain a bound on the runtime of enumeration on

slide reduced bases.

Corollary 2 Given a k-slide reduced basis B ∈Zm×n, enumeration can solve the SVP in

Λ(B) in k
n(n−1)
2(k−1)+

(n−k)
2 2O(n).

Proof The corollary follows from a short sequence of equations:

n/k

∏
t=1

ζ ((t−1)k+1)k =k
n(n−1)
2(k−1)+

nk
k−1−

k3
n(k−1) ∑

n/k
t=1 t

=k
n(n−1)
2(k−1)+

nk
k−1−

nk+k2
2(k−1)

=k
n(n−1)
2(k−1)+

k(n−k)
2(k−1) ≈ k

n(n−1)
2(k−1)+

(n−k)
2

�

Not surprisingly, due to the better bounds achieved on ‖b∗1‖, slide reduction

yields a stronger ζ -reduction and thus improves the bound on the enumeration. However,

plugging k = n−1 into the bound2 shows that the bound is still worse than the one for

2Technically, this choice of parameter is not possible for slide reduction as it requires k|n. But plugging
in this value should give a good estimation of how tight the bound is by comparison with Kannan’s
algorithm.
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Kannan, but only by a factor 1/e. We leave it as an interesting open question if one can

achieve such a bound for block reduced bases.

Remark Recall that block reduction algorithms use a SVP oracle in dimension

k. Obviously, we can use recursive calls to our enumeration algorithm (including block

reduction) to implement this oracle. In the case of BKZ we can use the slightly worse

bound obtained in [32] instead of Equation (2.2). This will give us worse constants in the

exponents, but has the advantage that the number of (top level) recursive calls during the

preprocessing is polynomially bounded, which bounds the overall number of recursive

calls by nO(n). This proves that using the algorithm proposed in [32] combined with

ζ -reduction, SVP can be solved by block reduction and enumeration in nO(n) steps by

setting k = ω(n). Alternatively, we can use slide reduction instead of BKZ to achieve a

similar result. To the best of our knowledge, such a bound was only known for Kannan’s

algorithm and the variant proposed in Section 3.3.1, up to this point. The impact of using

this asymptotic model for extrapolation in cryptanalysis has been extensively studied in

[2].

Chapter 3, in full, is a combination of material as it appears (with minor modifi-

cations) in the papers

• “Fast Lattice Point Enumeration with Minimal Overhead” [52] by Daniele Miccian-

cio and Michael Walter, published in the proceedings of the Twenty-Sixth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA 2016). The dissertation

author was the primary investigator and author of this paper.

• “Lattice Point Enumeration on Block Reduced Bases” [79] by Michael Walter,

published in the proceedings of the Eighth International Conference on Information

Theoretic Security (ICITS 2015). The dissertation author is the sole author of this

paper.
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• “Practical, Predictable Lattice Basis Reduction” [54] by Daniele Micciancio and

Michael Walter, published in the proceedings of the Thirty-Fifth Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques

(EUROCRYPT 2016). The dissertation author was the primary investigator and

author of this paper.



Chapter 4

Lattice Block Reduction

The main topic of this chapter is lattice reduction. Recall from Section 2.4.2 two

of the state-of-the-art block reduction algorithms: BKZ and Slide reduction. While Slide

reduction has a very clean analysis and is the theoretically best block reduction algorithm

to date, BKZ is the de facto standard for cryptanalysis due to its superior performance in

practice. Unfortunately, the behavior of BKZ is hard to predict, which is a major issue

for cryptanalysis. While progress has been made with regards to its running time [32]

after 20 years of research effort, predicting its output quality is still tricky, since the

best strategies [16] are cumbersome and build on questionable assumptions. One of the

main sources of problems is the fact that BKZ even with large block size relies on SVP

oracles in low dimensions and as stated in Section 2.4.3, the Gaussian heuristic cannot

be expected to hold in such low dimensions, so additional assumptions need to be made.

In this section we introduce a block reduction algorithm that is competitive in

practice, but matches the theoretical bounds of Slide reduction and allows for precise

predictions solely based on the Gaussian heuristic.

Self-Dual BKZ

Like BKZ our new algorithm is parameterized by a block size k and a SVP oracle

in dimension k, and acts on the input basis B ∈Zm×n by iterating tours. The beginning of

54
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every tour is exactly like a BKZ tour, i.e. SVP reducing every block πi(B[i,i+k−1]) from

i = 1 to n− k+1. We will call this part a forward tour. For the last block, which BKZ

simply HKZ reduces and where most of the problems for meaningful predictions stem

from, we do something different. Instead, we dual SVP the last block and proceed by

dual SVP reducing all blocks of size k backwards (which is a backward tour). After

iterating this process (which we call a tour of Self-Dual BKZ) the algorithm terminates

when no more progress is made. The algorithm is formally described in Algorithm 4.1.

Algorithm 4.1. Self-Dual BKZ
procedure DBKZ (B, k, SVPk)

Input: A lattice basis B ∈ Zm×n, a block size k, a SVP oracle in dimension k

Output: A k-reduced basis B′ (See Definition 23 for a formal definition.)

1 do

2 for i = 1 . . .n− k

3 SVP reduce πi(B[i,i+k−1]) using SVPk

4 for i = n− k+1 . . .1

5 dual SVP reduce πi(B[i,i+k−1]) using SVPk

6 while progress is made

7 return B

Note that, like BKZ, Self-Dual BKZ (DBKZ) is a proper block generalization of

the LLL algorithm, which corresponds to the case k = 2.

The terminating condition in Line 6 is left ambiguous at this point on purpose

as there are several sensible ways to approach this as we will see in the next section.

One has to be careful to, on the one hand guarantee termination, while on the other hand

achieving a meaningful reducedness definition.
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Reducedness Definition

The output of Algorithm 4.1 satisfies the following reducedness definition upon

termination:

Definition 23 A basis B = [b1, . . . ,bn] is k-reduced if either n < k, or it satisfies the

following conditions:

• ‖b∗k‖−1 = λ1( ̂L (B[1,k])), and

• for some SVP reduced basis B̃ of L (B[1,k]), π2([B̃|B[k+1,n]]) is k-reduced.

We first prove that Algorithm 4.1 indeed achieves Definition 23 when used with a

specific terminating condition:

Lemma 10 Let B be an n-dimensional basis. If πk+1(B) is the same before and after

one loop of Algorithm 4.1, then B is k-reduced.

Proof The proof is inductive: for n = k the result is trivially true. So, assume

n > k, and that the result already holds for n−1. At the end of each iteration, the first

block B[1,k] is dual-SVP reduced by construction. So, we only need to verify that for some

B̃ an SVP reduced basis for L (B[1,k), the projection π2([B̃|B[k+1,n]]) is also k-reduced.

Let B̃ be the SVP reduced basis produced in the first step. Note that the first and last

operation in the loop do not change L (B[1,k]) and B[k+1,n]. It follows that πk+1(B) is the

same before and after the partial tour (the tour without the first and the last step) on the

projected basis π2([B̃|B[k+1,n]]), and so πk+2(B) is the same before and after the partial

tour. By induction hypothesis, π2([B̃|B[k+1,n]]) is k-reduced. �

Lemma 10 gives a terminating condition which ensures that the basis is reduced.

We remark that it is even possible to adapt the proof such that it is sufficient to check that
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the shape of the projected basis πk+1(B) is the same before and after the tour, which is

much closer to what one would do in practice to check if progress was made (cf. Line

6). However, this requires to relax the definition of SVP-reduction slightly, such that

the first vector is not necessarily a shortest vector, but merely a short vector achieving

Minkowski’s bound. Since this is the only property of SVP reduced bases we need for

the analysis below, this does not affect the worst case output quality. Finally, we are

aware that it is not obvious that either of these conditions are ever met, e.g. (the shape of)

πk+1(B) might loop indefinitely. However, in Section 4.1.2 we show that one can put a

polynomial upper bound on the number of loops without sacrificing worst case output

quality.

To show that the output quality of Self-Dual BKZ in the worst case is at least as

good as BKZ’s worst case behavior, we analyze the Hermite factor it achieves:

Theorem 4 If B is k-reduced, then λ1(B[1,k])≤
√

γk
n−1
k−1 ·det(B)1/n.

Proof Assume without loss of generality that L (B) has determinant 1, and let ∆ be the

determinant of L (B[1,k]). Let λ ≤ √γk∆1/k and λ̂ ≤ √γk∆−1/k be the lengths of the

shortest nonzero primal and dual vectors of L (B[1,k]). We need to prove that λ ≤√γk
n−1
k−1 .

We first show, by induction on n, that the determinant ∆1 of the first k−1 vectors

is at most
√

γk
n−k+1 det(B)(k−1)/n =

√
γk

n−k+1. Since B is k-reduced, this determinant

equals ∆1 = λ̂ ·∆≤√γk∆1−1/k. (This alone already proves the base case of the induction

for n = k.) Now, let B̃ be a SVP reduced basis of L (B[1,k]) satisfying the k-reduction defi-

nition, and consider the determinant ∆2 = ∆/λ of π2(B̃). Since π2([B̃|B[k+1,n]]) has deter-

minant 1/‖b̃1‖= 1/λ , by induction hypothesis we have ∆2 ≤
√

γk
n−k(1/λ )(k−1)/(n−1).

Multiplying by λ we get

∆ = λ∆2 ≤
√

γk
n−k

λ
n−k
n−1 ≤

√
γk

n−k(
√

γk∆
1
k )

n−k
n−1 =

√
γk

(n−k)n
n−1 ∆

n−k
k(n−1) .
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Rising both sides to the power (n−1)/n we get ∆
1− 1

n ≤√γn
n−k

∆
1
k−

1
n , or, equivalently,

∆
1− 1

k ≤√γk
n−k. It follows that ∆1 = λ̂∆≤√γk∆

1− 1
k ≤√γk

n−k+1, concluding the proof

by induction.

We can now prove the main theorem statement. Recall from the inductive proof

that ∆ ≤ √γk
n−k

λ
n−k
n−1 . Therefore, λ ≤ √γk∆1/k ≤ √γk

n
k λ

n−k
k(n−1) . Solving for λ , proves

the theorem. �

Dynamical System Analysis

Proving a good running time on DBKZ directly seems just as hard as for BKZ, so

in this section we analyze the DBKZ algorithm using the dynamical system technique

from [32].

Let B = [b1, . . . ,bn] be an input basis to DBKZ, and assume without loss of

generality that det(B) = 1. During a forward tour, our algorithm computes a sequence

of lattice vectors B′ = [b′1, . . . ,b
′
n−k] where each b′i is set to a shortest vector in the

projection of [bi, . . . ,bi+k−1] orthogonal to [b′1, . . . ,b
′
i−1]. This set of vectors can be

extended to a basis B′′ = [b′′1, . . . ,b
′′
n] for the original lattice. Since [b′1, . . . ,b

′
i−1] gener-

ates a primitive sublattice of [bi, . . . ,bi+k−1], the projected sublattice has determinant

det(L (b1, . . . ,bi+k−1))/det(L (b′1, . . . ,b
′
i−1)), and the length of its shortest vector is

‖(b′i)∗‖ ≤
√

γk

(
det(L (b1, . . . ,bi+k−1))

det(L (b′1, . . . ,b
′
i−1))

)1/k

. (4.1)

At this point, simulations based on the Gaussian Heuristics typically assume that (4.1)

holds with equality. In order to get a rigorous analysis without heuristic assump-

tions, we employ the amortization technique of [33, 32]. For every i = 1, . . . ,n− k,

let xi = logdet(b1, . . . ,bk+i−1) and x′i = logdet(b′1, . . . ,b
′
i). Using (4.1), we get for all
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i = 1, . . . ,n− k,

x′i = x′i−1 + log‖(b′i)∗‖

≤ x′i−1 +α +
xi− x′i−1

k

= ωx′i−1 +α +(1−ω)xi

where ω = (1−1/k), α = 1
2 logγk and x′0 = 0. By induction on i,

x′i ≤ α
1−ω i

1−ω
+(1−ω)

i

∑
j=1

ω
i− jx j,

or, in matrix notation x′ ≤ b+Ax where

b = αk


1−ω

...

1−ωn−k

 A =
1
k



1

ω 1
... . . . . . .

ωn−k−1 · · · ω 1


.

Since all the entries of A are positive, we also see that if Xi ≥ xi are upper bounds on the

initial values xi for all i, then the vector X ′ = AX +b gives upper bounds on the output

values x′i ≤ X ′i .

The vector x′ describes the shape of the basis matrix before the execution of a

backward tour. Using lattice duality, the backward tour can be equivalently formulated

by the following steps:

1. Compute the reversed dual basis D of B′

2. Apply a forward tour to D to obtain a new dual basis D′

3. Compute the reversed dual basis of D′
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The reversed dual basis computation yields a basis D such that, for all i = 1, . . . ,n− k,

yi = logdet(d1, . . . ,dk+i−1)

= − log(det(B′)/det([b′1, . . . ,b
′
n−k+1−i]))

= logdet([b′1, . . . ,b
′
n−k+1−i]) = x′n−k+1−i.

So, the vector y describing the shape of the dual basis at the beginning of the backward

tour is just the reverse of x′. It follows that applying a full (forward and backward) DBKZ

tour produces a basis such that if X are upper bounds on the log determinants x of the

input matrix, then the log determinants of the output matrix are bounded from above by

R(AR(AX +b)+b) = (RA)2X +(RA+ I)Rb

where R is the coordinate reversal permutation matrix. This leads to the study of the

discrete time affine dynamical system

X 7→ (RA)2X +(RA+ I)Rb. (4.2)

Output Quality

We first prove that this system has at most one fixed point.

Claim 1 The dynamical system (4.2) has at most one fixed point.

Proof Any fixed point is a solution to the linear system ((RA)2− I)X +(RA+ I)Rb =

0. To prove uniqueness, we show that the matrix ((RA)2− I) is non-singular, i.e., if

(RA)2x = x then x = 0. Notice that the matrix RA is symmetric, so we have (RA)2 =

(RA)T RA = AT A. So proving ((RA)2− I) is non-singular is equivalent to showing

that 1 is not an eigenvalue of AT A. We have ρ(AT A) = ‖A‖2
2 ≤ ‖A‖1‖A‖∞, where ρ(·)
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denotes the spectral radius of the given matrix (i.e. the largest eigenvalue in absolute

value). But we also have

‖A‖∞ = ‖A‖1 =
1
k

n−k−1

∑
i=0

ω
i =

1−ωn−k

k(1−ω)
= 1−ω

n−k < 1 (4.3)

which shows that the absolute value of any eigenvalue of AT A is strictly smaller than 1.�

In order to analyze the output quality of DBKZ, we need to find a fixed point

for (4.2). We proved that (RA)2− I is a non-singular matrix. Since (RA)2− I =

(RA+ I)(RA− I), it follows that (RA± I) are also non-singular. So, we can factor

(RA+ I) out of the fixed point equation ((RA)2− I)x+(RA+ I)Rb = 0, and obtain

(RA− I)x+Rb = 0. This shows that the only fixed point of the full dynamical system

(if it exists) must also be a fixed point of a forward tour x 7→ R(Ax+b).

Claim 2 The fixed point of the dynamical system x 7→ R(Ax+b) is given by

xi =
(n− k− i+1)(k+ i−1)

k−1
α. (4.4)

Proof The unique fixed point of the system is given by the solution to the linear system

(R−A)x = b. We prove that (4.4) is a solution to the system by induction on the rows.

For the first row, the system yields

xn−k− x1/k = α. (4.5)

From (4.4) we get that xn−k =
n−1
k−1 α and x1 =

k(n−k)
k−1 α . Substituting these into (4.5), the

validity is easily verified.
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The r-th row of the system is given by

xn−k−r+1−
1
k

(
r

∑
j=1

ω
r− jx j

)
=

1−ωr

1−ω
α (4.6)

which is equivalent to

xn−k−r+1 +ω

(
xn−k−r+2−

1
k

(
r−1

∑
j=1

ω
r−1− jx j

))
− xr

k
−ωxn−k−r+2 =

1−ωr

1−ω
α. (4.7)

By induction hypothesis, this is equivalent to

ω

(
1−ωr−1

1−ω

)
α + xn−k−r+1−

xr

k
−ωxn−k−r+2 =

1−ωr

1−ω
α. (4.8)

Substituting (4.4) in for i = n− k− r+1, r, and n− k− r+2, we get

xn−k−r+1−
xr

k
−ωxn−k−r+2 =

kr(n− r)− (n− r− k+1)(r+ k−1)− (k−1)(r−1)(n− r+1)
k(k−1)

α

which, after some tedious, but straight forward, calculation can be shown to be equal to

α (i.e. the fraction simplifies to 1). This in turn shows that the left hand side of (4.8) is

equivalent to

ω

(
1−ωr−1

1−ω

)
α +α

which is equal to its right hand side. �

Note that since x1 corresponds to the log determinant of the first block, applying

Minkowski’s theorem results in the same worst case Hermite factor as proved in Theorem

4.
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Convergence

We now consider the convergence rate of the system, which will allow us to

deduce statements about the running time of DBKZ. Consider any input vector v and

write it as v = x+ e, where x is the fixed point of the dynamical system as in (4.4). The

system sends v to v 7→ RAv+b = RAx+RAe+b = x+RAe, so the difference e to

the fixed point is mapped to RAe in each iteration. In order to analyze the convergence

of the algorithm, we consider the induced norm of the matrix ‖RA‖p = ‖A‖p, since

after t iterations the difference is (RA)te and so its norm is bounded by ‖(RA)te‖p ≤

‖(RA)t‖p‖e‖p ≤ ‖RA‖tp‖e‖p. So if the induced norm of A is strictly smaller than 1,

the corresponding norm of the error vector follows an exponential decay. While the

spectral norm of A seems hard to bound, the 1 and the infinity norm are straight forward

to analyze. In particular, we saw in (4.3) that ‖A‖∞ = 1−ωn−k. This proves that the

algorithm converges. Furthermore, let the input be a basis B (with det(B) = 1), the

corresponding vector v = (logdet(b1, . . . ,bk+i−1))1≤i≤n and write v = x+ e. Then we

have ‖e‖∞ = ‖v−x‖∞ ≤ ‖v‖∞ +‖x‖∞ ≤ poly(n,size(B)). This implies that for

t = polylog(n,size(B))/ω
n−k ≈ O(e(n−k)/k)polylog(n,size(B)) (4.9)

we have that ‖(RA)te‖≤ c for constant c. Equation (4.9) already shows that for k =Ω(n),

the algorithm converges in a number of tours polylogarithmic in the lattice dimension n,

i.e. makes at most Õ(n) SVP calls.

In the initial version of [54], proving polynomial convergence for arbitrary k

was left as an open problem. Neumaier filled this gap in [58]. In what follows we

reformulate his proof using our notation for completeness, but we stress that this is

originally Neumaier’s work.

Claim 3 Let x be the fixed point of the dynamical system as defined in Claim 2 and
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ri = ei/xi be the relative error of the dynamical system. Then, if r,r′ are the relative errors

before and after the execution of one iteration of the system, then ‖r′‖∞ ≤ (1− ε)‖r‖∞

for ε = 1/(1+ n2/(4k(k− 1))) ≈ (2k/n)2. When k ≥ n/2, it is enough to take ε =

(k−1)/(n−1).

Proof Assume without loss of generality that ‖r‖∞ = (k− 1)/α , i.e., |ei| ≤

((k−1)/α)xi = (n− k− i+1)(k+ i−1) for all i = 1, . . . ,n− k. We need to prove that

|r′j|= |(RAe) j|/x j ≤ ((k−1)/α)(1− ε) for all j, or, equivalently,

|(Ae) j|= |(RAe)n−k− j+1| ≤
k−1

α
(1− ε)xn−k− j+1 = j(n− j)(1− ε).

By the definition of A, we have

|(Ae) j| ≤
1
k

j

∑
i=1

ω
j−i|ei| ≤

1
k

j

∑
i=1

ω
j−i(n− k− i+1)(k+ i−1)≡ f ( j).

So, it is enough to prove that the function f ( j) on the right hand side satisfies f ( j) ≤

j(n− j)(1− ε). We prove this inequality by induction on j, under the assumption that

ε ≤ g( j)≡ k(k−1)
k(n−2 j−1)+ j(n− j)

.

• base case ( j = 1): f (1) = n− k ≤ (n− 1)(1− ε) if and only if ε ≤ g(0) = (k−

1)/(n−1).

• inductive step: assume f ( j)≤ j(n− j)(1− ε) by inductive hypothesis. We need

to prove that

f ( j+1) = ω f ( j)+
(n− k− j)(k+ j)

k

≤ k−1
k

j(n− j)(1− ε)+
(n− k− j)(k+ j)

k
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is at most ( j+1)(n− ( j+1))(1− ε). This is true if and only if ε ≤ g( j).

This concludes the inductive proof, as long as ε ≤ g( j) for j = 0, . . . ,(n− k). Finally,

we observe that the function g( j) is minimized at j = n
2 − k, with minimum g(n

2 − k) =

1/(1+n2/(4k(k−1))). When k > n/2, the minimum is achieved at j < 0 and g( j) is

monotonically increasing for j ≤ 0. So it is enough to take ε = g(0) = (k−1)/(n−1).�

By a similar argument as above, this shows that the error can be made arbitrarily

close to 0 in O((n/k)2)polylog(n,size(B)) tours.

Heuristic Analysis

In the context of cryptanalysis, we are more interested in the average-case be-

havior of algorithms. For this we can use a very simple observation to predict the

Hermite factor achieved by DBKZ. Note that the proof of Theorem 4 is based solely

on Minkowski’s bound λ1(B)≤
√

γn det(B)1/n. Replacing it with Heuristic 1 yields the

following corollary.

Corollary 3 Applying Heuristic 1 to every lattice that is passed to the SVP oracle during

the execution of Algorithm 4.1, if B is k-reduced, then λ1(B1,k) = GH(k)
n−1
k−1 det(B)1/n.

As the Hermite factor is the most relevant quantity in many cryptanalytic settings,

Corollary 3 is already sufficient for many intended applications in terms of output quality.

We remark that the proof of achieved worst-case output quality of Slide reduction also

only relies on Minkowski’s bound. This means the same observation can be used to

predict the average case behavior of Slide reduction and yields the same estimate as

Corollary 3. In fact, from the recursive definition of Slide reduction it is clear that this

yields even more information about the returned basis: we can use Corollary 3 to predict

the norm of ‖bik+1‖ for all i ∈ [n/k]. A short calculation shows that these vectors follow
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a geometric series, supporting a frequently assumed behavior of lattice reduction, namely

the Geometric Series Assumption [73].

However, many attacks [44, 62] require to estimate the average-case output much

more precisely. Fortunately, applying a similar trick as in Corollary 3 to the dynamical

systems analysis in Section 4.1.2 allows us to obtain much more information about the

basis. For this, note that again we can replace Minkowski’s theorem in the analysis by

Heuristic 1. This transformation changes the dynamical system in (4.2) only slightly,

the only difference being that α = 1
2 logGH(k). As the analysis is independent of the

constant α , we can translate the fixed point in (4.4) to information about the shape of the

basis that DBKZ is likely to return.

Corollary 4 Applying Heuristic 1 to every lattice that is passed to the SVP oracle during

the execution of Algorithm 4.1, the fixed point of the heuristic dynamical system, i.e. (4.2)

with α = 1
2 logGH(k), is (4.4) with the same α and implies that after one more forward

tour, the basis satisfies

‖b∗i ‖= GH(k)
n+1−2i
2(k−1) det(L (B))

1
n (4.10)

for all i≤ n− k.

Proof According to (4.4), upon termination of Algorithm 4.1 the output basis

satisfies

log(det([b1, . . . ,bi])) =
(n− k− i+1)(k+ i−1)

k−1
α

By Heuristic 1 we have log‖b1‖= α + x1/k, from which Equation (4.10) easily follows

for i = 1. Now assume (4.10) holds for all j < i. Then we have, again by Heuristic

1, log‖b∗i ‖= α +(xi−∑ j<i log‖b∗j‖)/k. Invoking the induction hypothesis, Equation

(4.10) easily follows for all i≤ n− k. �
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Corollary 4 shows that the output of the DBKZ algorithm, if terminated after a

forward tour, can be expected to closely follow the GSA, at least for all i≤ n− k and can

be computed using simple closed formulas. It is noteworthy that the self-dual properties

of DBKZ imply that if terminated after a backward tour, the GSA holds for all i ≥ k.

This means, depending on the application one can choose which part of the output basis

to predict. Moreover, we see that DBKZ allows to predict a much larger part of the

basis than Slide reduction solely based on the Gaussian Heuristic. If one is willing to

make additional assumptions, i.e. assumptions about the shape of a k-dimensional HKZ

reduced basis, the BKZ simulator allows to predict the shape of the entire basis output by

BKZ. Obviously, the same assumptions can be used to estimate the remaining parts of

the shape of the basis in the case of Slide reduction and DBKZ, since a final application

of a HKZ reduction to individual blocks of size k only requires negligible amount of time

compared to the running time of the entire algorithm. Furthermore, since the estimation

of the known part of the shape (from Corollary 3 and 4) do not depend on these additional

assumptions, the estimation for Slide reduction and DBKZ is much less sensitive to the

(in-)correctness of these assumptions, while errors propagate during the BKZ simulation.

To compare the expected output of BKZ, DBKZ, and Slide reduction, we gener-

ated a Goldstein-Mayer lattice [30] in dimension n = 200 with numbers of bit size 2000,

applied LLL to it, and simulated the execution of BKZ with block size k = 100 until

no more progress was made. The output in terms of the logarithm of the shape of the

basis for the first 100 basis vectors is shown in Figure 4.1 and compared to the GSA.

Recall that the latter represents the expected output of DBKZ and, to some degree, Slide

reduction. Under the assumption that Heuristic 1 and the BKZ simulator are accurate,

one would expect BKZ to behave a little worse than the other two algorithms in terms of

output quality.
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Figure 4.1. Expected shape of the first 100 basis vectors in dimension n = 200 after BKZ
compared to the GSA. Note that the latter corresponds exactly to the expected shape of
the first 100 basis vectors after DBKZ (cf. Corollary 4).

Experiments

For an experimental comparison, we implemented DBKZ and Slide reduction in

fpLLL. At the point of this writing, the implementation of both algorithms was contributed

to fpLLL and is now readily available in stable versions. SVP reduction in fpLLL is

implemented in the standard way as described in Section 2.4.1. For dual SVP reduction

we used the algorithm explained in the Section 3.1.

Methodology

In the context of cryptanalysis we are usually interested in the root Hermite

factor achievable using lattice reduction in order to choose parameters for cryptosystems,

as this often determines the success probability and/or complexity of an attack. It is

clear that merely reporting on the average root Hermite factor achieved is of limited use

for this. Instead we will view the resulting root Hermite factor achieved by a certain

reduction algorithm (with certain parameters) as a random variable and try to estimate

the main statistical parameters of its distribution. We believe this will eventually allow
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for more meaningful security estimates. The only previous experimental work studying

properties of the underlying distribution of the root Hermite factor [24] suggests that it is

Gaussian-like but the study is limited to relatively small block sizes.

Since experiments with lattice reduction are rather time consuming, it is infeasible

to generate as much data as desirable to estimate statistical parameters like the mean

value and standard deviation accurately. A standard statistical technique to overcome this

is to use bootstrapping to compute confidence intervals for these parameters. Roughly

speaking, in order to compute the confidence interval for an estimator from a set of N

samples, we sample l sets of size N with replacement from the original samples and

compute the estimator for each of them. Intuitively, this should give a sense of the

variability of the estimator computed on the samples. Our confidence interval with

confidence parameter α , according to the bootstrap percentile interval method, is simply

the α/2 and 1−α/2 quantiles. For further discussion we refer to [80]. Throughout this

work we use α = .05 and l = 100. The complete confidence intervals for mean value and

standard deviation can be found in [54, 53]. Whenever we refer to the standard deviation

of a distribution resulting from the application of a reduction algorithm and computing

the root Hermite factor achieved, we mean the maximum of the corresponding confidence

interval.

It is folklore that the output quality of lattice reduction algorithms measured in the

root Hermite factor depends mostly on the block size parameter rather than on properties

of the input lattice, like the dimension or bit size of the numbers, at least when the lattice

dimension and size of the numbers is large enough. A natural approach to comparing

the different algorithms would be to fix a number of lattices of certain dimension and

bit size and run the different algorithms with varying block size on them. Unfortunately,

Slide reduction requires the block size to divide the dimension.1 To circumvent this we

1While it is trivial to generalize Slide reduction to other block sizes, the performance in terms of
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select the dimension of the input lattices depending on the block sizes we want to test, i.e.

n = t · k, where k is the block size and t is a small integer. This is justified as most lattice

attacks involve choosing a suitable sublattice to attack, where such a requirement can

easily be taken into account. Since for very small dimensions block reduction performs a

little better then in larger dimensions, we need to deal with a trade-off here: on the one

hand we need to ensure that the lattice dimension n is large enough, even for small block

sizes, so that the result is not biased positively for small block sizes due to the small

dimension. On the other hand, if the lattice dimension grows very large we would have

to increase the precision of the GSO computation significantly which would result in an

artificial slow down and thus limit the data we are able to collect. Our experiments and

previous work [24] suggest that the bias for small dimensions weakens sufficiently as

soon as the lattice dimension is larger than 140, so for the lattice dimension n we select

the smallest multiple t of the block size k such that t · k ≥ 140.

For each block size we generated 10 different subset sum lattices in dimension n

in the sense of [33] and we fix the bit size of the numbers to 10 ·n following previous

work [33, 52]. Experimental studies [61] have shown that this notion of random lattices

is suitable in this context as lattice reduction behaves similarly on them as on “random”

lattices in a mathematically more precise sense [30]2. Then we ran each of the three

reduction algorithms with corresponding block size on each of those lattices. For BKZ

and DBKZ we used the same terminating condition: the algorithms terminate when the

slope of the shape of the basis does not improve during 5 loop iterations in a row (this

is the default terminating condition in fpLLL’s BKZ routine with auto abort option set).

Finally, for sufficiently large block sizes (k > 45), we preprocessed the local blocks with

BKZ-(k/2) before calling the SVP oracle, since this has been shown to achieve good

the achieved output quality of the basis deteriorates somewhat in this case compared to other reduction
algorithms [43].

2In fact, subset sum lattices are extremely similar to the random lattices of [30].
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asymptotic running time (cf. Section 3.3.2) and also seemed a good choice in practice in

our experiments.

Results

Figure 4.2 shows the average output quality including the confidence interval

produced by each of the three algorithms in comparison with the prediction based on

the Gaussian Heuristic (cf. Equation (2.7)). It demonstrates that BKZ and DBKZ have

comparable performance in terms of output quality and clearly outperform Slide reduction

for small block sizes (< 50), which confirms previous reports [24]. For some of the small

block sizes (e.g. k = 35) BKZ seems to perform unexpectedly well in our experiments.

To see if this is indeed inherent to the algorithms or a statistical outlier owed to the

relatively small number of data points, we ran some more experiments with small block

sizes. We report on the results in [53], where we show that the performance of BKZ and

DBKZ are actually extremely close for these parameters.

Furthermore, Figure 4.2 shows that all three algorithms tend towards the predic-

tion given by Equation (2.7) in larger block sizes, supporting the conjecture, and Slide

reduction becomes quite competitive. Even though BKZ still seems to have a slight edge

for block size 75, note that the confidence intervals for Slide reduction and BKZ are

heavily overlapping here. This is in contrast to the only previous study that involved

Slide reduction [24], where Slide reduction was reported to be entirely noncompetitive in

practice and thus mainly of theoretical interest.

Figure 4.3 shows the same data separately for each of the three algorithms

including estimated standard deviation. The data does not seem to suggest that one or the

other algorithm behaves “nicer” with respect to predictability – the standard deviation

ranges between 0.0002 and 0.0004 for all algorithms, but can be as high as 0.00054. Note

that while these numbers might seem small, it affects the base of the exponential that the
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Figure 4.2. Confidence interval of average root Hermite factor for random bases as
computed by different reduction algorithms and the prediction given by Equation (2.7).

short vector is measured in, so small changes have a large impact. The standard deviation

varies across different block sizes, but there is no evidence that it might converge to

smaller values or even 0 in larger block sizes. So we have to assume, that it remains a

significant factor for larger block sizes and should be taken into account in cryptanalysis.

It is entirely conceivable that the application of a reduction algorithm yields a root

Hermite factor significantly smaller than the corresponding mean value.

In order to compare the runtime of the algorithms we ran separate experiments,
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Figure 4.3. Same as Figure 4.2 with estimated standard deviation
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Figure 4.4. Average runtime in seconds for random bases in dimension n = 2k for
different reduction algorithms (in log scale).

because due to the way we selected the dimension, the data would exhibit a somewhat

strange “zigzag” behavior. For each block size 50 ≤ k ≤ 75 we generated again 10

random subset sum lattices with dimension n = 2k and the bit size of the numbers was

fixed to 1400. Figure 4.4 shows the average runtime for each of the algorithms and block

size in log scale. It shows that the runtime of all three algorithms follows a close to single

exponential (in the block size) curve. This supports the intuition that the runtime mainly

depends on the complexity of the SVP oracle, since we are using an implementation that

preprocesses the local blocks before enumeration with large block size. As we showed in

Section 3.3.2 this achieves an almost single exponential complexity (up to logarithmic

factors in the exponent).

The data also shows that in terms of runtime, Slide reduction outperforms both,

BKZ and DBKZ. But again, with increasing block size the runtime of the different

algorithms seem to converge to each other. Combined with the data from Figure 4.2

this suggests that all three algorithms offer a similar trade-off between runtime and
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achieved Hermite factor for large block sizes. This shows that Slide reduction is not

only theoretically interesting with its cleaner and tighter analysis of both, output quality

and runtime, but also quite competitive in practice. It should be noted that we analyzed

Slide reduction as described in [23]. While significant research effort has been spent

on improving BKZ, essentially nothing along these lines has been done with regards to

Slide reduction. We hope that the results reported here will initiate more research into

improvements, both in practice and theory, of Slide reduction.

Chapter 4, in full, is a reprint of material as it appears (with minor modifications)

in the paper “Practical, Predictable Lattice Basis Reduction” [54] by Daniele Micciancio

and Michael Walter, published in the proceedings of the Thirty-Fifth Annual International

Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT

2016). The dissertation author was the primary investigator and author of this paper.
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Secure Discrete Gaussian Sampling
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Chapter 5

The Bit Security of Cryptographic
Primitives

In this chapter we define and analyze a notion of bit security, which we will use

in the following chapters to reason about the security of cryptographic schemes.

Security Games

In this section we formally define the bit security of cryptographic primitives

in a way that captures practical intuition and is theoretically sound. As the security of

cryptographic primitives is commonly defined using games, we start by defining a general

class of security games.

Definition 24 An n-bit security game is played by an adversary A interacting with a

challenger X. At the beginning of the game, the challenger chooses a secret x, represented

by the random variable X ∈ {0,1}n, from some distribution DX . At the end of the game,

A outputs some value, which is represented by the random variable A. The goal of the

adversary is to output a value a such that R(x,a), where R is some relation. A may output

a special symbol ⊥ such that R(x,⊥) and R̄(x,⊥) are both false.

This definition is very general and covers a lot of standard games from the

literature. Some illustrative examples are given in Table 5.1. But for the cryptographic

76



77

primitives explicitly studied in this work, it will be enough to consider the simplest

version of the definition where R = {(x,x)|x ∈ X} is the identity relation, i.e., the goal of

the adversary is to guess the secret x. We formally define the indistinguishability game

for two distributions because we refer to it extensively throughout this work.

Definition 25 Let {Dθ
0 }θ , {Dθ

1 }θ be two distribution ensembles. The indistinguishabil-

ity game is defined as follows: the challenger C chooses b←U ({0,1}). At any time

after that the adversary A may (adaptively) request samples by sending θi to C, upon

which C draws samples ci←Dθi
b and sends ci to A. The goal of the adversary is to output

b′ = b.

We loosely classify primitives into two categories according to their associated

security games: we call primitives, where the associated security game is a 1-bit game

(O(κ)-bit game), decision primitives (search primitive, respectively).

Note that we allow the adversary to always output ⊥, which roughly means “I

don’t know”, even for decision primitives. This is a crucial difference from previous

definitions that force the distinguisher to always output a bit. The reason this is important

is that in games, where the distinguisher is not able to check if it produced the correct

result, it is more informative to admit defeat rather than guessing at random. In many

cases this will allow for much tighter reductions (cf. Section 5.3.2). Such a definition

in the context of indistinguishability games is not entirely new, as Goldreich and Levin

[29, 42] also allowed this type of flexibility for the distinguisher. To the best of our

knowledge, this is the only place this has previously appeared in the cryptographic

literature.

Before defining the advantage of an adversary, we specify a few properties of its

output distribution.

Definition 26 For any adversary A playing a security game, we define its output proba-
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Table 5.1. Typical instantiations of security games covered by Definition 24. The
security parameter is denoted by κ . In the definition of digital signatures, the list Q of
the adversary’s queries are regarded as part of its output.

Game R n DX
Uninvertibility of one-way permutations {(x,y) | x = y} O(κ) U
Uninvertibility of one-way functions f {(x,y) | f (x) = f (y)} O(κ) U
Pre-image resistance {(x,y) | x 6= y, O(κ) U

for hash functions h h(x) = h(y)}
Indistinguishability of two distributions {(x,y) | x = y} 1 U
Unforgeability of {(x,(m,σ ,Q)) | O(κ) K(U )

signature scheme (K,S,V ) (pk,sk)← K(x),
V (pk,m,σ) = 1,m /∈ Q}

bility as αA = Pr[A 6=⊥], its conditional success probability as β A = Pr[R(X ,A)|A 6=⊥],

where the probabilities are taken over the randomness of the entire security game (in-

cluding the internal randomness of A). Finally, in the context of decision primitives,

we also define A’s conditional distinguishing advantage as δ A = 2β A− 1. With all of

these quantities, when the adversary A is clear from context, we drop the corresponding

superscript.

Now we are ready to define the advantage. The definition is trying to capture

the amount of information that the adversary is able to learn about the secret. For this

we use tools from information theory to quantify exactly this information. A straight-

forward definition could try to measure the mutual information between the random

variables X (modeling the secret) and A (modeling the adversary output, cf. Definition 24).

Unfortunately, the variable A might reveal X completely in an information theoretical

sense, yet not anything in a computational sense. To break any computationally hidden

connection between X and A, we introduce another random variable Y , which indicates,

when A actually achieves its goal and otherwise does not reveal anything about the secret.

Definition 27 For any security game with corresponding random variable X and A, the
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adversary’s advantage is

advA =
I(X ;Y )
H(X)

= 1− H(X |Y )
H(X)

where I(·; ·) is the mutual information, H(·) is the Shannon entropy, and Y (X ,A) is the

random variable with marginal distributions Yx,a = {Y | X = x,A = a} defined as

1. Yx,⊥ =⊥, for all x.

2. Yx,a = x, for all (x,a) ∈ R.

3. Yx,a = {x′←DX | x′ 6= x}, for all (x,a) ∈ R̄.

At first glance, the definition of Y might not be obviously intuitive, except for

case 1. For case 2, note that x completely determines the set R(x, ·) and if the adversary

finds an element in it, then it wins the game. Therefore, one can think of R(x, ·) as a

secret set, and finding any element in it as completely breaking the scheme. Finally, the

third case defines Y to follow the distribution of the secret, but is conditioned on the

event that it is incorrect. The intuition here is that if an adversary outputs something, then

his goal is to bias the secret distribution towards the correct one, i.e. it will allow us to

quantify how much better A performs than random guessing.

With the definition of the advantage in place, the definition of bit security follows

quite naturally.

Definition 28 Let T : {A | A is any algorithm} 7→ R be a measure of resources that is

linear under repetition, i.e. T (kA) = kT (A), where kA is the k time repetition of A. For

any primitive, we define its bit security as minA log T (A)
advA .

For convenience we will often write T (A) as T A or simply T if A is clear from

context. Note that we leave out a concrete definition of the resources on purpose, since
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we focus on the advantage. Our definition can be used with many different measures, for

example running time, space, advice, etc., or combinations of them.

The Adversary’s Advantage

While the advantage as defined in the previous section captures the intuition about

how well an adversary performs, it seems too complex to be handled in actual proofs or

to be used in practice. A simple definition in terms of simple quantities related to the

adversary (e.g. αA and β A) would be much more desirable. The goal of this section is

to distill such a definition by considering a broad and natural class of adversaries and

games.

Theorem 5 For any n-bit security game with uniform secret distribution, let A be an

adversary that for any secret x ∈ {0,1}n outputs ⊥ with probability 1−α , some value a

such that R(x,a) with probability βα , and some value a such that R̄(x,a) with probability

(1−β )α . Then

advA = α

(
1−

(1−β ) log(2n−1)+H(Bβ )

n

)
. (5.1)

Proof From the definition of Y in Definition 27 we get for any x,y ∈ {0,1}n with

y 6= x

Pr[Y =⊥|X = x] = 1−α

Pr[Y = x|X = x] = αβ

Pr[Y = y|X = x] =
α(1−β )

2n−1
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From this we compute

Pr[Y =⊥] = 1−α

Pr[Y = y] = Pr[Y = y|X = y]Pr[X = y]+Pr[Y = y|X 6= y]Pr[X 6= y]

=
αβ

2n +
2n−1

2n
α(1−β )

2n−1

=
α

2n

Now we calculate the conditional entropy

H(X |Y ) =∑
x,y

Pr[Y = y|X = x]Pr[X = x] log
Pr[Y = y]

Pr[Y = y|X = x]Pr[X = x]

=∑
x

Pr[Y =⊥|X = x]Pr[X = x] log
Pr[Y =⊥]

Pr[Y =⊥|X = x]Pr[X = x]

Pr[Y = x|X = x]Pr[X = x] log
Pr[Y = x]

Pr[Y = x|X = x]Pr[X = x]

∑
y6=x∧y6=⊥

Pr[Y = y|X = x]Pr[X = x] log
Pr[Y = y]

Pr[Y = y|X = x]Pr[X = x]

=∑
x

1−α

2n log
(1−α)2n

1−α
+

αβ

2n log
α2n

αβ2n

+(2n−1)
α(1−β )

(2n−1)2n log
α2n(2n−1)
2nα(1−β )

=(1−α)n+αβ log
1
β
+α(1−β ) log

2n−1
1−β

=(1−α)n+α((1−β ) log(2n−1)+H(Bβ ))
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Finally, we compute the advantage

advA = 1− H(X |Y )
n

= 1− (1−α)−α
(1−β ) log(2n−1)+H(Bβ )

n

= α

(
1−

(1−β ) log(2n−1)+H(Bβ )

n

)
.

�

Note that for large n we get advA≈αAβ A, which is exactly A’s success probability.

Plugging this into Definition 28 matches the well-known definition of bit security for

search primitives. On the other hand, for n = 1 this yields advA = αA(1−H(Bβ A))≈

αA(δ A)2. This matches the definition of Goldreich and Levin [29, 42], who proposed this

definition since it yields the inverse sample complexity of noticing the correlation between

the adversary output and the secret. The fact that it can be derived from Definition 27

suggests that this is the “right” definition of the adversary’s advantage.

We now redefine the adversary’s advantage according to above observations,

which, combined with Definition 28 yields the definition of bit security we actually put

forward and will use throughout the rest of this work.

Definition 29 For a search game, the advantage of the adversary A is

advA = α
A
β

A

and for a decision game, it is

advA = α
A(δ A)2.
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Security Reductions

To argue that our definition is useful in a theoretical sense, we apply it to several

natural reductions, which arise when constructing cryptographic primitives from other

ones. As the novelty of our definition lies mostly with decision games, we will focus on

decision primitives that are built from search primitives (cf. Section 5.3.1) and search

primitives that are built from decision primitives (cf. Section 5.3.2). Furthermore, in

Section 5.3.3 we show that hybrid arguments are valid using our definition, which can be

viewed as a reduction between decision primitives. Another such example will follow in

Section 6.1.2, where we show a tight reduction from the security of decision primitives

using approximate samplers to the security of an idealized primitive with access to the

exact distribution.

Throughout this section we will refer to two distribution ensembles {Dθ
0 }θ and

{Dθ
1 }θ as κ-bit indistinguishable, if the indistinguishability game from Definition 25

instantiated with {Dθ
0 }θ and {Dθ

1 }θ is κ-bit secure.

Search to Decision

A classical way to turn a search primitive into a decision primitive is the Goldreich-

Levin hardcore bit[29].

Definition 30 Let f : Z 7→ Y be a function and b : Z 7→ {0,1} be a predicate. The

hardcore bit game is defined as follows: the challenger X picks z←U (Z) and sets the

secret to x← b(x). It sends f (z) to the adversary which attempts to guess x.

Goldreich and Levin showed a way to construct a function with a hard-core bit

from any one-way function. In this setting, one would hope that if the one-way function

is κ-bit secure then also the hard-core bit is close to κ bit secure. The next theorem due

to Levin [42] establishes exactly such a connection.
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Theorem 6 (adapted from [42]) Let f : {0,1}n 7→ {0,1}k be a κ-bit secure one-way

function. Then b(z,r) = 〈z,r〉 mod 2 is a (κ −O(logn))-bit secure hardcore bit for

g(z,r) = ( f (z),r).

This theorem was proven in [42], and all we did was to adapt the statement from

[42] to our notation/framework. For completeness, we present the proof in the following.

Proof Throughout the proof the inner product 〈·, ·〉 will be performed implicitly

mod 2. We fix any distinguisher D that on input ( f (z),r) outputs b(z,r) with advantage

αD(δ D)2. We define the local advantage of D on z as

α
D
z (δ

D
z )2 = Pr[D( f (z),r) 6=⊥](2Pr[D( f (z),r) = b(z,r) | D( f (z),r) 6=⊥]−1)2

where the probability is over r and the internal randomness of D. We will make use of the

following fact, which follows from the Cauchy-Schwartz inequality (see [42] for details).

Fact 15 We have αD(δ D)2 ≤ Ez∈Z[α
D
z (δ

D
z )2].

We will build an adversary A from D that on input f (z) outputs z with probability

αD
z (δ

D
z )2 and otherwise ⊥. Due to Fact 15 this ensures that advA ≥ advD. Furthermore,

the expected resources T A of A will be bounded by poly(n)T D, which will yield the

result.

We fix z and assume that δ D
z > 0. If A queries D( f (z),r) for a random r, D

will return b(z,r) with probability αD
z β D

z , where β D
z = (δ D

z + 1)/2 > 1/2. Now let ri

be r with the i-th bit flipped and observe that 〈b(z,r),b(z,ri)〉 = zi – the i-th bit of z.

Accordingly, we have 〈b(z,r),D( f (z),ri)〉 = zi with probability αD
z β D

z for random r

(note that if r is random, so is ri). By Chebyshev’s inequality, repeating this process for

2n/αD
z (δ

D
z )2 pairwise independent r and taking the majority vote on the non-⊥ results

from D will result in the correct value of zi with probability > 1−1/2n.
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Sampling a uniformly random matrix R ∈ {0,1}n×k and computing Rp for all

p ∈ {0,1}k\{0} results in 2k−1 pairwise random vectors. Let r = Rp for some p. Then

b(z,r) = b(z,Rp) = b(zR,p). Note that w = zR ∈ {0,1}k is unknown to A, but can be

guessed.

At this point we have the following procedure: sample R←U ({0,1}n×k) and

compute gi,p = D( f (z),(Rp)i) for all i ∈ [n] and p ∈ {0,1}k\{0}. Then, for every

w ∈ {0,1}k, compute 〈b(w,p),gi,p〉 for every p ∈ {0,1}k\{0} such that gi,p 6=⊥ and set

z′i to the majority of them. Naively, this takes 22k time, but mapping the domain {0,⊥,1}

to {1,0,−1}, the majority can be computed using a summation and taking the sign of

the sum. All 2k summations, i.e. for every w ∈ {0,1}k, can be computed using the Fast

Fourier Transform in time k2k.

If w = zR, then z′ = z with probability > 1/2 by union bound, assuming that

2k− 1 ≥ 2n/αD
z (δ

D
z )2. The correctness of z′ can be checked by computing f (z′). To

accommodate for the assumption that δ D > 0, one also checks f (z̄′), where z̄′ is obtained

by flipping all the bits of z′.

Finally, A, on input f (z), samples l ≤ 2n bits from U ({0,1}) until the first 0 (if

no 0 occurs, simply output ⊥). Then it calls above procedure with k = l + dlog5ne. Its
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success probability is 1/2 times the probability that k ≥ log(2n/αD
z (δ

D
z )2 +1):

Pr[k ≥ log(2n/α
D
z (δ

D
z )2 +1)] =

2n

∑
k=dlog(2n/αD

z (δ D
z )2+1)e

pk

=
2n

∑
k=dlog(2n/αD

z (δ D
z )2+1)e

2−k+dlog5ne

≥ 5n
2n

∑
k=dlog(2n/αD

z (δ D
z )2+1)e

2−k

≥ 10n
(

αD
z (δ

D
z )2

8n
−2−2n−1

)
& α

D
z (δ

D
z )2.

Note that the small additive factor O(n2−2n−1) hidden in the last inequality leads to a a

minuscule loss in security and thus covered by the O(logκ) term claimed in the theorem.

The expected running time is bounded by

2n+dlog5ne

∑
k=dlog5ne

pkk2kpoly(n)T D = poly(n)T D
2n+dlog5ne

∑
k=dlog5ne

2−k+dlog5nek2k

= poly(n)T D
2n+dlog5ne

∑
k=dlog5ne

k

= poly(n)T D.

�

The proof for this theorem assumes a distinguisher D for b and constructs from it

an inverter A for f , where advD = advA (and the running time is polynomially related).

Such security preserving reductions are information theoretically only possible with

a definition of advantage that is proportional to (δ D)2 for decision primitives, if it is

proportional to αAβ A for search primitives. This is because any inverter querying a
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distinguisher with advantage δ D and attempting to learn an αAβ A fraction of a secret

with at least one bit of entropy, must make at least Ω(αAβ A/(δ D)2) queries. Denote

the resources of D by T D and note that T A ≥ Ω(αAβ A/(δ D)2)T D is a lower bound

on the resources of A. The goal of the proof is to find an upper bound on T A/advA =

T A/αAβ A ≥ Ω(T D/(δ D)2). This is only possible by assuming an upper bound on

T D/(δ D)2. If only a bound on T D/δ D is assumed, then the upper bound on T A/advA

must contain a linear factor in 1/δ D, which may be as large as O(2n) and thus result in a

dramatic loss in (nominal) security.

Decision to Search

In the following subsections we show constructions and the corresponding reduc-

tions in the other direction. The first is just a straightforward converse to the Goldreich-

Levin theorem, showing that any PRG is also a OWF for the same bit security. The

second construction is presented as a very natural and straight-forward way of turning a

decision primitive into a search primitive. The third reduction is one that naturally arises

in cryptographic applications, for example identification protocols.

PRGs are one-way functions

While the following theorem is intuitively trivial (and technically simple), as

explained in the introduction it serves to justify our definition of bit security. The proof

also illustrates the subtle difference between an adversary that outputs ⊥ and one that

outputs a random guess.

Theorem 7 If g is a PRG with κ-bit security, then it is also a (κ−4)-bit secure one-way

function.

Proof Assume A is an attack to g as a one-way function with cost T , output probability

αA, and conditional success probability β A. We turn A into an adversary D to g as a PRG
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by letting D(y) output 1 if G(A(y)) = y and ⊥ otherwise. Assume that A has conditional

success probability β A = 1. This is without loss of generality because one-way function

inversion is a verifiable search problem, and A can be modified (without affecting its

advantage) to output ⊥ when its answer is incorrect. So, A has advantage αA, equal

to its output probability. Notice that D is successful only when the indistinguishability

game chooses the secret bit 1, and then A correctly inverts the PRG. So, the success

probability of D is precisely αDβ D = αA/2. The output probability of D can be a bit

higher, to take into account the possibility that on secret bit 0, the challenger picks

a random string that belongs (by chance) to the image of the PRG, and A correctly

inverts it. But, in any case, it always belongs to the interval αD ∈ [1/2,3/4] ·αA. It

follows that αD ≥ αA/2 and β D = (αA/2)/αD ≥ 2/3. So, D has advantage at least

αD(δ D)2 = αD(2β D−1)2 ≥ αA/9. Since the two algorithms have essentially the same

cost, they achieve the same level of bit security, up to a small constant additive term

log9 < 4. �

We remark that our proof differs from the standard text-book reduction that

pseudorandom generators are one-way functions in a simple, but crucial way: when A(y)

fails to invert G, instead of outputting 0 as a “best guess” at the decision problem, it

outputs ⊥ to explicitly declare failure. The reader can easily check that the standard

reduction has output probability αD = 1 and (conditional) success probability β D ≤

(αA +1)/2. So, the advantage of the distinguisher in the standard proof is αD(2β D−

1)2 = (αA)2, resulting in a substantial drop (logαA) in the bit security proved by the

reduction.
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Secret Recovery

We proceed by giving a construction of a search primitive from two distributions.

We are not aware of any immediate applications, but this simple example is supposed to

serve as evidence that our definitions for search and decision primitives behave nicely

under composition. It also provides an example of “non verifiable” search problem, i.e., a

cryptographic problem with exponentially large secret space defined by a game at the end

of which A cannot efficiently determine if the secret has been found. Differently from

Theorem 7, this time one cannot assume without loss of generality that the (hypothetical)

attacker to the search problem has conditional success probability β = 1.

Definition 31 Let D0,D1 be two distributions. We define the n-bit secret recovery

game as the following n-bit security game: the challenger X chooses an n-bit secret

x←U ({0,1}n) and sends the vector c = (ci← Dxi)i≤n to A. The adversary A attempts

to guess x, i.e. R is the equality relation.

The next theorem shows that when instantiating the game with two indistinguish-

able distributions, the secret recovery game enjoys essentially the same bit security.

Theorem 8 If the κ-bit secret recovery game is instantiated with two κ-bit secure

indistinguishable distributions D0 and D1, and D0 is publicly sampleable, then it is

(κ−1)-bit secure.

Proof Let A be an adversary against the secret recovery game that recovers x

from the vector c with advantage advA = αAβ A. We build a distinguisher D against the

indistinguishability of D0 and D1 with essentially the same resources and advantage: D

chooses a secret x∈ {0,1}κ uniformly at random, which is non-zero with high probability

(otherwise output ⊥) and constructs the vector c by sampling D0 itself for every zero bit
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in x and querying its oracle for every 1 bit in x (which will return either samples from D0

or from D1). It sends c to A and returns 1 iff A returns x, otherwise it outputs ⊥.

The resources of D are essentially the same as those of A, so we analyze its

advantage advD = αD(δ D)2. The output probability of D, conditioned on x 6= 0, is almost

exactly A’s success probability, but note that A is only presented with the correct input

distribution if D’s challenger returns samples from D1, which is the case with probability

1
2 . So αD ≥ 1−2−κ

2 αAβ A. Furthermore, D’s conditional distinguishing advantage is

δ D ≥ 1−2−κ+1, because it only outputs the incorrect value if A returned x even though

c consisted of samples only from D0. Note that in this case A has no information about x,

which was chosen uniformly at random and thus the probability of this event is at most

2−κ . Accordingly, advD = αD(δ
D)2 ≥ (1−2−κ+1)2

2 αAβ A ≈ advA/2. �

Indistinguishability implies Message-Hiding

In our last example for this section we show that IND-CCA secure encryption

schemes enjoy a message hiding property, which we first formally define.

Definition 32 A private or public key encryption scheme is κ-bit message hiding, if the

following security game is κ-bit secure: the challenger chooses a message m ∈ {0,1}n

uniformly at random and sends its encryption to A. The adversary A attempts to guess

m, while C provides it with encryption (in case of private key schemes) and decryption

oracles.

This property naturally arises in the context of constructions of identification

protocols from encryption schemes (see e.g. [6]), where a random message is encrypted

and identification relies on the fact that only the correct entity can decrypt it. While it

seems intuitively obvious that breaking message hiding is no easier than distinguishing
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encrypted messages, showing that this is true in a quantifiable sense for specific definitions

of bit security is not as obvious. The next theorem establishes this connection.

Theorem 9 If a scheme with message space larger than 2κ is κ-bit IND-CCA secure, it

is κ-bit message hiding.

Proof Let A be an adversary that is able to extract a random message from an

encryption scheme with advantage advA =αAβ A. We construct a IND-CCA distinguisher

D against the scheme with essentially the same resources and advantage: D generates two

messages m0,m1←{0,1}m uniformly at random, which are distinct with overwhelming

probability (if not, output ⊥). It sends them to the challenger, which encrypts one of

them. Upon receiving the challenge cipher text cb, D forwards it to A. Any queries to the

encryption (in case of private key encryption) or decryption oracle are simply forwarded

to D’s own oracles. If A returns a message in {m0,m1}, D returns the corresponding bit.

Otherwise, it outputs ⊥.

The resources of D are essentially the same as for A, so we focus on its advantage.

Note that conditioned on the event that m0 6= m1, D’s output probability αD is at least as

large as the success probability of A, so αD ≥ (1−2−κ)αAβ A. The conditional distin-

guishing advantage of D is δ D ≥ 1−2−κ+1, since the only way D will guess incorrectly

is when A somehow outputs the wrong message mb̄. Since A has no information about

this message (which was chosen uniformly at random), the probability of this happen-

ing is at most 2−κ . This shows that D’s advantage in the indistinguishability game is

advD = αD(δ D)2 ≥ (1− 2−κ)αAβ A(1− 2−κ+1)2 ≈ αAβ A = advA, where the latter is

A’s advantage in the message hiding game. �
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Decision to Decision – The Hybrid Argument

This section is devoted to proving a general hybrid argument for indistinguisha-

bility games using our definition of advantage. Formally, we prove the following lemma.

Lemma 11 Let Hi be k distributions and Gi, j be the indistinguishability game instanti-

ated with Hi and H j. Further, let εi, j = maxA advA over all T -bounded adversaries A

against Gi, j. Then ε1,k ≤ 3k ∑
k−1
i εi,i+1.

Applying the lemma to our definition of bit security, we immediately get the

following theorem.

Theorem 10 Let Hi be k distributions. If Hi and Hi+1 are κ-bit indistinguishable for

all i, then H1 and Hk are (κ−2(logk+1))-bit indistinguishable.

Proof Let A be any adversary with resources T A (when attacking H1 and Hk). By

assumption, εi,i+1 ≤ T A/2κ (where εi, j is defined as in Lemma 11) for all T A-bounded

adversaries against Hi and Hi+1. By Lemma 11, εi,k ≤ 3k2T A/2κ for all T A-bounded

adversaries, in particular A. �

As a simple application, we get the following corollary.

Corollary 5 If a public key encryption scheme is κ-bits IND-CCA secure, then it is

(κ−2(logk+1))-bit IND-CCA secure in the k message setting.

Note that in contrast to the standard hybrid argument, which simply exploits

the triangle inequality of statistical distance, we lose an additional factor of 3k in the

advantage. In particular, consider the case where the bounds ε = εi,i+1 are the same for all

i. This means that ε1,k ≤ 3k2ε . Note that this additional factor has only a minor impact on

bit security. (See below for details.) Still, one may wonder if this additional factor is an
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artifact of a non-tight proof or if it is indeed necessary. Consider any distinguishers D that

never outputs ⊥ (i.e. αD = 1). The distinguishing advantage δ D
i, j against distributions Hi

and H j is exactly the statistical distance between D(Hi) and D(H j). Assume δ D
i,i+1 ≤ ε

for all i. The standard hybrid argument implies that δ D
1,k cannot be larger than – but

may be as large as – kε . But this can provide as much as H(B 1
2+kε

) ≈ (kε)2 bits of

information about the secret bit. Applying the same argument to any indistinguishability

game instantiated with Hi and Hi+1 shows that D provides at most ε2 bits of information

about the secret bit by assumption. This shows that the information learned by D is a

factor k2 larger on H1 and Hk! Since this is the intuition we base our definition on,

we believe that either the standard hybrid argument is not tight, or our theorem is tight

(up to the constant factor 3). Either way, as Theorem 10 and Corollary 5 demonstrate,

this additional factor only affects the constant in front of the log term in the number of

hybrids, so, we believe, it is only of secondary importance.

The rest of the subsection proves Lemma 11, where we make use of the fol-

lowing notation. For some distinguisher D, let αD
P,Q be its output probability, β D

P,Q

its conditional success probability, δ D
P,Q its conditional distinguishing advantage, and

advD
P,Q = αD

P,Q(δ D
P,Q)2 its advantage against the distributions P,Q. Furthermore, let

αD
P = Pr[D(P) 6=⊥] and γD

P = Pr[D(P) = 1] for any distribution P . We can express

the advantage of D against P and Q in terms of αD
P , αD

Q, γD
P , γD

Q:
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α
D
P,Q =

1
2
(αD

P +α
D
Q)

β
D
P,Q =

γD
P − γD

Q +αD
Q

αD
P +αD

Q

δ
D
P,Q = 2β

D
P,Q−1 =

2(γD
P − γD

Q)+αD
Q−αD

P

αD
P +αD

Q

advD
P,Q =

(2(γD
P − γD

Q)+αD
Q−αD

P)2

2(αD
P +αD

Q)
. (5.2)

We begin with the observation that for computationally indistinguishable distri-

butions the output probabilities of any bounded distinguisher D cannot vary too much

under the two distributions.

Lemma 12 Let P,Q be two distributions. If advD
P,Q ≤ ε for all T -bounded distinguish-

ers, then we have αD
P ≤ 2αD

Q+3ε and αD
Q ≤ 2αD

P +3ε for any T bounded distinguisher.

Proof We prove the first claim. (The proof of the second claim is symmetrical.)

Fix any distinguisher D. Assume αD
P ≥ 2αD

Q, since otherwise we are done. Consider an

alternative distinguisher D′, which runs D and in the event that D 6= ⊥, outputs 1 and

otherwise ⊥. Obviously, D′ is also T -bounded, and (setting γD′
P = αD′

P , γD′
Q = αD′

Q in

(5.2)) we get

advD′
P,Q =

(αD
P −αD

Q)2

2(αD
P +αD

Q)

≥
(αD

P −αD
Q)2

3αD
P

=
1
3

(
α

D
P −2α

D
Q +

(αD
Q)2

αD
P

)
≥ 1

3
(
α

D
P −2α

D
Q

)
.
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The first claim now follows from ε ≥ advD′
P,Q. �

Proof [of Lemma 11] We fix any distinguisher D and drop the superfix of α , γ , δ

and adv for the rest of the proof. Furthermore, we will abbreviate Hi by i in the subfixes

of α , γ , δ , and adv.

Using induction, one can prove

k

∑
i=1

advi,i+1 ≥
α1 +αk

α1 +2∑
k−1
i=2 αi +αk

adv1,k

The proof proceeds by substituting in the definition of advi,i+1 from (5.2), applying the

induction hypothesis to the first k−1 terms of the sum, and then minimizing over γk−1.

It remains to show that

α1 +αk

α1 +2∑
k−1
i=2 αi +αk

≥ 1
3k

.

We again proceed by induction and can thus assume that adv1,i ≤ 3i∑
i−1
j=1 ε j, j+1

for all i < k and symmetrically advi,k ≤ 3(k− i)∑
k−1
j=i ε j, j+1 for all i > 1. By Lemma

12, this means that αi ≤ 2α1 + 9i∑
i−1
j=1 ε j, j+1 for all i < k and again αi ≤ 2αk + 9(k−

i)∑
k−1
j=i ε j, j+1 for all i > 1. We note that

α1 +2
k−1

∑
i=2

αi +αk = α1 +2
b(k−1)/2c

∑
i=2

αi +2
k−1

∑
b(k−1)/2c+1

αi +αk

and using the above inequalities, the two sums are bounded by

2
b(k−1)/2c

∑
i=2

αi ≤ 2(k−3)α1 +3k2
b(k−1)/2c

∑
i=1

εi,i+1
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and

2
k−1

∑
b(k−1)/2c+1

αi ≤ 2(k−3)αk +3k2
k−1

∑
b(k−1)/2c+1

εi,i+1

respectively. This bounds the entire sum:

α1 +2
k−1

∑
i=2

αi +αk ≤ 2k(α1 +αk)+3k2
k−1

∑
i=1

εi,i+1

This in turn leads to the lower bound

α1 +αk

α1 +2∑
k−1
i=2 αi +αk

≥ 1

2k+ 3k2 ∑
k−1
i=1 εi,i+1

α1+αk

The last step is noticing that we can assume that (α1 +αk) ≥ 6k ∑
k−1
i=1 εi,i+1, because

(α1 +αk)/2≥ ε1,k and otherwise we would be done. Using this assumption we have

α1 +αk

α1 +2∑
k−1
i=2 αi +αk

≥ 1

2k+ 3k2

6k

≥ 1
3k

as desired. �

Chapter 5, in full, is a reprint of material (with minor modifications) that has

been submitted for publication and may appear as “On the Bit Security of Cryptographic

Primitives” by Daniele Micciancio and Michael Walter. The dissertation author was the

primary investigator and author of this paper.



Chapter 6

Approximate Samplers

The Security of Approximate Samplers

Many security reductions for lattice-based cryptographic primitives assume that

the primitive has access to samplers for an ideal distribution, which may be too difficult or

costly to sample from, and is routinely replaced by an approximation in any concrete im-

plementation. Naturally, if the approximation is good enough, then security with respect

to the ideal distribution implies that the actual implementation (using the approximate

distribution) is also secure. But evaluating how the quality of approximation directly

affects the concrete security level achieved by the primitive can be a rather technical

task. Traditionally, the quality of the approximation has been measured in terms of the

statistical distance δ = ∆SD, which satisfies the following useful properties:

1. Probability preservation: for any event E over the random variable X we have

PrX←P [E]≥PrX←Q[E]−δ (P,Q). This property allows to bound the probability

of an event occurring under P in terms of the probability of the same event

occurring under Q and the quantity δ (P,Q). It is easy to see that this property

is equivalent to the bound ∆SD(P,Q) ≤ δ (P,Q). So the statistical distance

δ = ∆SD satisfies this property by definition.

2. Sub-additivity for joint distributions: if (Xi)i and (Yi)i are two lists of discrete

97
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random variables over the support ∏i Si, then

δ ((Xi)i,(Yi)i)≤∑
i

max
a

δ ([Xi | X<i = a], [Yi | Y<i = a]),

where X<i = (X1, . . . ,Xi−1) (and similarly for Y<i), and the maximum is taken over

a ∈∏ j<i S j.

3. Data processing inequality: δ ( f (P), f (Q))≤ δ (P,Q) for any two distributions

P and Q and (possibly randomized) algorithm f (·), i.e., the measure does not

increase under function application.

We call any divergence that satisfies these three properties a useful divergence.

Approximate Samplers and Search Primitives

The following simple lemma demonstrates a classical proof of security using a

useful divergence, where, for simplicity, we assume that the resources TA of the adversary

do not depend on the distributions Pθ , and that the number of calls to Pθ performed

during any run of the game GP
S,A is bounded from above by TA.

Lemma 13 Let SP be a scheme with black-box access to a probability distribution

ensemble Pθ . Let its security against adversary A be defined by a search game GP
S,A and

, and δ any cryptographically useful divergence. If SP is κ-bit secure and δ (Pθ ,Qθ )≤

2−κ , then SQ is (κ−1)-bit secure.

Before we prove Lemma 13, we begin with a technical observation that will be

used throughout this section.

Lemma 14 Let δ be a cryptographically useful divergence, let Pθ and Qθ be two

probability ensembles and let AP be an algorithm querying Pθ at most q times. Let θi
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(resp. θ̃i) be the distribution of the i-th query made by AP (resp. AQ). Then,

δ ((θi,Pθi | Xi),(θ̃i,Qθ̃i
| Xi))≤ δ (Pθ ,Qθ )

for any event Xi that (θ j,Pθ j) j<i and (θ̃ j,Qθ̃ j
) j<i take some specific (and identical)

value.

Proof Note that at any point during the execution of A, conditioned on the event Xi,

AP and AQ behave identically up to the point they make the ith query. In particular, the

conditional distributions (θi | Xi) and (θ̃i | Xi) are identical and δ ((θi | Xi),(θ̃i | Xi)) = 0.

It follows by subadditivity (for joint distributions) that

δ ((θi,Pθi | Xi),(θ̃i,Qθ̃i
| Xi))≤ δ ((θi | Xi),(θ̃i | Xi))+max

θ

δ (Pθ ,Qθ )

= max
θ

δ (Pθ ,Qθ ).

�

Proof [of Lemma 13] Fix any adversary A. First observe that the number of queries

drawn from Pθ (Qθ resp.) is bounded by the resources T A and define εD
A = advA to

be the advantage of A against SD for D ∈ {P,Q}. Note that εD
A is simply A’s success

probability, since we are only considering search games. Then we have

ε
P
A ≥ ε

Q
A −δ (GP

S,A,G
Q
S,A)

by probability preservation of δ . By the bound on the number of queries and the data

processing inequality, we have δ (GP
S,A,G

Q
S,A) ≤ δ ((θi,Pθi)i<T A,(θ̃i,Qθ̃i

)i<T A), where

(θi)i<T A (resp. (θ̃i)i<T A) is the sequence of queries made to Pθ (resp. Qθ ) when A
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is attacking SP (resp. SQ). By sub-additivity for joint distributions and Lemma 14,

this quantity is at most T Aδ (Pθ ,Qθ ). So εP
A ≥ εQ

A − T Aδ (Pθ ,Qθ ). Dividing by

T A, we get εP
A

T A ≥
εQ

A
T A −δ (Pθ ,Qθ ) ≥

εQ
A

T A −2−κ . Because SP is κ bit secure, we have

2−κ ≥ εP
A

T A ≥
εQ

A
T A −2−κ , or, equivalently, 21−κ ≥ εQ

A
T A . This shows that log T A

εQ
A
≥ κ−1, i.e.,

SQ provides κ−1 bits of security. �

Lemma 13 captures the intuition that security with respect to an ideal distribution

implies security with respect to any sufficiently good approximation, and it also gives a

way to establish concrete security bounds. In order to (almost) preserve κ bits of security,

one needs δ (Pθ ,Qθ )< 2−κ , e.g., as obtained, using δ = ∆SD and estimating the ideal

probabilities Q(x) with κ-bit (fixed point or floating point) approximations. Additionally,

Lemma 13 allows us to view DZ,c,s as a ts-bounded distribution without losing security.

Notice that for a security parameter κ we can set t to about
√

κ ln2/π ≈ η2−κ (Z), which

by Lemma 2 implies a statistical distance of less than 2−κ if s≥ ηε(Z). So in the rest of

this work we will identify the unbounded Gaussian distribution DZ,c,s with its truncation

with support Z∩ [c± ts] whenever appropriate.

While using ∆SD is asymptotically efficient, it has been observed that in practice

it can lead to unnecessarily large memory cost and slow computations. The work of [65]

showed that we can improve the security analysis of approximate distributions. Assume

we have a divergence δ that satisfies the following strengthening of the probability

preservation property:

1.* Pythagorean probability preservation with parameter λ ∈R, which states that for

any joint distributions (Pi)i and (Qi)i over support ∏i Si, if

δ (Pi | ai,Qi | ai)≤ λ
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for all i and ai ∈∏ j<i S j, then

∆SD((Pi)i,(Qi)i)≤ ‖(max
ai

δ (Pi | ai,Qi | ai))i‖2.

We call a divergence that satisfies this property λ -pythagorean. A pythagorean divergence

additionally satisfying sub-additivity for joint distributions and the data processing

inequality (i.e. properties 2 and 3) will be called λ -efficient. Using a pythagorean δ , we

can improve Lemma 13 as follows.

Lemma 15 Let SP be a scheme with black-box access to a probability distribution

ensemble Pθ . Let its security against adversary A be defined by a search game GP
S,A. If

SP is κ-bit secure and δ (Pθ ,Qθ )≤ 2−κ/2 for some 2−κ/2-efficient divergence δ , then

SQ is (κ−3)-bit secure.

Proof Fix any adversary A. Define εD
A = advA to be the advantage of A against SD

for D ∈ {P,Q}. Towards a contradiction, assume we have T A

εP
A
≥ 2κ , but T A

εQ
A
< 2κ−3.

Consider the hypothetical game [GQ
S,A]

n (resp. [GP
S,A]

n) consisting of n independent copies

of GQ
S,A (resp. GP

S,A). Denote the probability of the event that A wins at least one of the n

games by εQ
An (resp. εP

An ). We begin by showing that we can bound εP
An from below in

terms of εQ
An using probability preservation and data processing inequality of ∆SD:

ε
P
An ≥ ε

Q
An−∆SD([GP

S,A]
n, [GQ

S,A]
n)≥ ε

Q
An−∆SD((θi,Pθi)i,(θ̃i,Qθ̃i

)i)

where (θi)i (resp. (θ̃i)i) is the sequence of queries made during the game [GP
S,A]

n (resp.

[GQ
S,A]

n).

Lemma 14 ensures that we can apply pythagorean probability preservation (Prop-
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erty 1*) to obtain

ε
P
An ≥ ε

Q
An−
√

T An ·δ (Pθ ,Qθ )≥ ε
Q
An−
√

T An ·2−κ/2 ≥ ε
Q
An−

√
n ·T A

2κ
. (6.1)

Now we set n = 1/εQ
A so that εQ

An = 1− (1−εQ
A )n > 1−exp(−1). Substituting into (6.1)

and using T A

εQ
A
< 2κ−3 we get

ε
P
An > 1− exp(−1)−

√
T A

2κεQ
A

> 1− exp(−1)−2−3/2 ≈ 0.279.

Finally, to achieve a contradiction, we derive a simple upper bound. By union bound

εP
An ≤ nεP

A . Since SP is κ-bit secure, εP
A ≤ T A/2κ , which shows that

ε
P
An ≤

nT A

2κ
=

T A

2κεQ
A

< 2−3 = 0.125

which is smaller than the lower bound. �

This shows that δ (Pθ ,Qθ )∼ 2−κ/2 is sufficient to maintain κ bits of security.

This type of analysis was first used in [65]1 for the special case of fixed distributions

(i.e. θ is fixed and cannot be chosen by the adversary) and the KL-divergence δ =
√

δKL,

which is efficient (see e.g. [5, 65] for proofs). Lemma 1, in combination with Lemma 15,

shows that it is sufficient for algorithms to approximate the probabilities of the target

distribution with floating point numbers of precision about half the security parameter.

Interestingly, in this setting, it is important to approximate probabilities in floating point,

as κ/2 bits of fixed-point precision is not secure. (See [56] for an attack.)

1We remark that the proof in [65] was flawed since it assumes repeatability of unforgeability games.
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Approximate Samplers and Decision Primitives

Note that above analysis only applies to search primitives. In this section we

extend it to decision games. The next theorem shows that it suffices to approximate a

distribution P up to distance δ (P,Q)≤ 2−κ/2 for an efficient divergence δ in order to

maintain almost κ bits of security.

Theorem 11 Let SP be a 1-bit secrecy game with black-box access to a probability

ensemble (Pθ )θ , and δ be a λ -efficient measure for any λ ≤ 1
4 . If SP is κ-bit secure

and δ (Pθ ,Qθ )≤ 2κ/2, then SQ is (κ−8)-bit secure.

The remainder of this section is devoted to proving Theorem 11. We will make

use of the results in the previous section and first note that the proof of Lemma 15 actually

shows something slightly stronger.

Lemma 16 (variant of Lemma 15) Let SP be any security game with black-box access

to a probability distribution ensemble Pθ . For any adversary A with resources T that

plays SP and event E over its output, denote γP = Pr[A ∈ E]. For the same event, denote

by γQ the probability of E when A is playing SQ. If T
γP
≥ 2k and δ (Pθ ,Qθ ) ≤ 2−k/2

for any 2−k/2-efficient δ , then T
γQ
≥ 2k−3.

From Lemma 16 we can derive a bound on the output probability of an adversary

when switching the distribution of the scheme.

Corollary 6 For any adversary A with resources T attacking SP and any event E over

A’s output, denote the probability of E by γP . Denote the probability of E over A’s output

when attacking SQ by γQ. If δ is
√

γQ/16T -efficient and δ (Pθ ,Qθ )≤
√

γQ/16T , then

16γP ≥ γQ.
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Proof We use Lemma 15 and set k such that 2k−4 = T
γQ

. This implies that

T
γQ
≥ 2k−3 is false. Assuming towards a contradiction that 16γP < γQ, we see that

2k−4 =
T
γQ
≤ T

16γP

contradicting Lemma 15. �

With this bound in place, we are ready for the main proof.

Proof [of Theorem 11] Fix any T A-bounded adversary A against SP , output

probability αA
P and conditional success probability β A

P . By assumption we have

αA
P(2β A

P − 1)2 ≤ T A/2κ . Denote the output and conditional success probability of

A against SQ by αA
Q and β A

Q. Assume towards contradiction that αA
Q(2β A

Q − 1)2 >

T A/2κ−8.

First we apply Corollary 6 to obtain αA
P ≥ 2−4αA

Q. Note that by assumption√
αA

Q/16T > 2(−κ+4)/2 > 2−κ/2 ≥ δ (Pθ ,Qθ ) and that trivially
√

αA
Q/16T ≤ 1

4 .

We now consider the hypothetical modified games ŜP and ŜQ, which are the

same as SP and SQ with the only difference that the adversary has the ability to restart

the game with fresh randomness at any time. Consider the adversary B against Ŝ that

simply runs A until A 6=⊥ (restarting the game if A =⊥) and outputs whatever A returns.

Let α = min(αA
P ,αA

Q) and note that B’s resources are T B < T A/α , its output probability

is 1 and the (conditional) success probability is β B
P = β A

P (or β B
Q = β A

Q) if playing ŜP

(or ŜQ, respectively).

By the properties of δ and ∆SD, we have β B
P ≥ β B

Q −
√

T Bδ (Pθ ,Qθ ) and

so 2β B
P − 1 ≥ 2β B

Q − 1− 2
√

T B/2κ . By assumption we also have that 2β A
P − 1 ≤
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√
T A/αA

P2κ , which yields

√
T A

α2κ
≥

√
T A

αA
P2κ

≥ 2β
B
Q−1−2

√
T A

α2κ

because β B
P = β A

P , and so

2β
A
Q−1 = 2β

B
Q−1≤ 3

√
T A

α2κ
.

If αA
Q ≤ αA

P , then α = αA
Q and the above inequality immediately yields the

contradiction. Otherwise, we can derive an upper bound on αA
P from it:

α
A
P ≤

9T A

2κ(2β A
Q−1)2 <

αA
Q

24

where the latter inequality follows from the assumption. This contradicts our lower bound

above. �

Approximate Convolution

In Chapter 7, we will make use of the Theorem 1 and 2 to reduce the task of

generating a specific discrete Gaussian, to generating samples from different distributions.

Observe that these theorems assume access to exact samplers. In order to analyze our

algorithms, we need to bound the divergence from the true distribution when applying

the theorems to samples from a distribution close to the exact Gaussian distributions.

Lemma 17 Let ∆ be a useful or efficient metric. Let AP be an algorithm querying a

distribution ensemble Pθ at most q times. Then we have

∆(AQ,R)≤ ∆(AP ,R)+q ·∆(Pθ ,Qθ )
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for any distribution R and any ensemble Qθ .

Proof By triangle inequality, ∆(AQ,R) ≤ ∆(AP ,R)+∆(AP ,AQ). Let (θi)i

(resp. (θ̃i)i) be the sequence of queries made by AP (resp. AQ). By data processing

inequality ∆(AP ,AQ)≤ ∆((θi,Pi)i,(θ̃i,Qi)i). The rest follows from sub-additivity and

Lemma 14. �

By letting A be the algorithm that performs the convolution as in Theorem 1

and applying Lemma 17 to it with Pi = DΛ,ci,si and approximate distributions Qi =

D̃Λ,ci,si , we can show that convolving approximate discrete Gaussians results in good

approximations of the expected discrete Gaussian. Furthermore, we can also apply

Lemma 17 to Theorem 2, if we have a bound on the approximation of the second sampler

for any center c2.

As an example, consider again the statistical distance ∆SD. By applying Lemma

17 to the convolutions in Theorem 1 (resp. 2), the resulting approximation error satisfies:

∆SD(AD̃Λ,ci,si ,DY,s). 2ε +∑
i

∆SD(D̃Λ,ci,si,DΛ,ci,si).

Conveniently, this works recursively: if we use the obtained approximate samples as input

to another convolution, the loss in statistical distance is simply additive in the number of

convolutions we apply. This shows that using a metric to analyze approximation errors is

relatively straight-forward.

Unfortunately, ∆SD is not cryptographically efficient and thus requires high preci-

sion to guarantee security. While
√

δKL allows to improve on that, it is not a metric and

thus Lemma 17 does not apply. One can still use
√

δKL to improve on the efficiency by

exploiting the metric properties of ∆SD, i.e. one first decomposes the statistical distance of

the approximate distribution as in the previous paragraph, and then bounds the individual
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parts using property 6.1.1. But as we start working with more complex and recursive

algorithms, this method becomes more involved. One needs to be careful to not rely on

typical metric properties when analyzing algorithms using
√

δKL, like triangle inequality

and symmetry. It would be much more convenient to use a cryptographically useful and

efficient metric ∆. This would allow to carry out the analysis using only ∆, and directly

claim bit security of 2 log∆(Pθ ,Qθ ) by Lemma 15.

A New Closeness Metric

In this section we introduce a new measure of closeness between probability

distributions which combines the ease of use of a metric with the properties of divergences

that allow to obtain sharper security bounds. More specifically, we provide an efficient

metric with a simple definition.

Definition 33 The max-log distance between two distributions P and Q over the same

support S is

∆ML(P,Q) = max
x∈S
|lnP(x)− lnQ(x)| .

For convenience, we also write ∆ML(p,q) = |ln p− lnq| for any two positive reals

p and q. It is easy to see that ∆ML is a metric.

Lemma 18 ∆ML is a metric, i.e., it is symmetric (∆ML(P,Q) = ∆ML(Q,P)), positive

definite (∆ML(P,Q)≥ 0 with equality if and only if P =Q), and it satisfies the triangle

inequality (∆ML(P,Q)≤ ∆ML(P,R)+∆ML(R,Q)).

Proof All properties are inherited from the infinity norm, simply by noticing that

∆ML(P,Q) = ‖ f (P)− f (Q)‖∞ for some function f (P) = (lnP(x))x. �



108

We note that in the regime close to 0, ∆ML is essentially equal to δRE.

Lemma 19 For any two positive real p and q,

∆ML(p,q) ≤ − ln(1−δRE(p,q)) . δRE(p,q) (6.2)

δRE(p,q) ≤ exp(∆ML(p,q))−1 . ∆ML(p,q). (6.3)

The same bounds hold for ∆ML(P,Q) and δRE(P,Q) for any two distributions P,Q

over the same support S.

Proof Let ε = δRE(p,q), so that (q/p) ∈ (1± ε). It follows that ∆ML(p,q) =

|ln(p/q)| ≤max[ln(1+ε), ln(1/(1−ε))] =− ln(1−ε). This proves (6.2). For (6.3), let

ε = ∆ML(p,q), so that max(p/q,q/p)≤ exp(ε). If p < q, then δRE(p,q) = (q/p)−1≤

exp(ε)−1. Else, p≥ q, and δRE(p,q) = 1− (q/p)≤ (p/q)−1≤ exp(ε)−1. The same

bounds for distributions easily follow by taking the maximum of ∆ML(P(x),Q(x)) and

δRE(P(x),Q(x)) when x ranges over the support of the two distributions. �

The next two lemmas prove that ∆ML is an efficient metric.

Lemma 20 ∆ML satisfies the sub-additivity property (for joint distributions) and data

processing inequality.

Proof We start by proving the subadditivity property for sequences of length two. The

general case follows by induction. By triangle inequality,

∆ML((X1,X2),(Y1,Y2)) ≤ ∆ML((X1,X2),(X1, [Y2 | Y1 = X1]))

+ ∆ML((X1, [Y2 | Y1 = X1]),(Y1,Y2))

where (X1, [Y2 | Y1 = X1]) is the distribution that selects a pair (x,y) by first choosing

x with probability Pr{X1 = x}, and then y with probability Pr{Y2 = y | Y1 = x}. By
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definition,

∆ML((X1, [Y2 | Y1 = X1]),(Y1,Y2)) = max
(x,y)

∣∣∣∣ln Pr{X1 = x} ·Pr{Y2 = y | Y1 = x}
Pr{Y1 = x} ·Pr{Y2 = y | Y1 = x}

∣∣∣∣
= ∆ML(X1,Y1).

and also

∆ML((X1,X2),(X1, [Y2 | Y1 = X1])) = max
(x,y)

∣∣∣∣ln Pr{X1 = x} ·Pr{X2 = y | X1 = x}
Pr{X1 = x} ·Pr{Y2 = y | Y1 = x}

∣∣∣∣
= max

x
∆ML([X2 | X1 = x], [Y2 | Y1 = x])

This proves subadditivity for joint distributions.

For the data processing inequality, let P and Q be two probability distributions

with support S and f : S 7→ T be any (deterministic) function. Then

∆ML( f (P), f (Q)) = max
j∈T
|lnPr[ f (P) = j]− lnPr[ f (Q) = j]|

= max
j∈T

ln

(
max

{
∑i∈ f−1( j)P(i)

∑i∈ f−1( j)Q(i)
,

∑i∈ f−1( j)Q(i)

∑i∈ f−1( j)P(i)

})

≤max
j∈T

ln
(

max
{

max
i∈ f−1( j)

P(i)
Q(i)

, max
i∈ f−1( j)

Q(i)
P(i)

})
= max

i∈S
ln
(

max
{

P(i)
Q(i)

,
Q(i)
P(i)

})
= ∆ML(P,Q)

where the inequality holds, because (∑i ai)/(∑i bi) ≤ maxi(ai/bi) for all bi ≥ 0. The

result for randomized functions follows by treating the random coins as explicit input

and combining the above with the sub-additivity property. �

Finally, we show that ∆ML also satisfies the pythagorean probability preservation

property for any parameter λ ≤ 1
3 .
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Lemma 21 For distributions Pi and Qi over support ∏i Si, if ∆ML(Pi | ai,Qi | ai)≤ 1/3

for all i and ai ∈∏ j<i S j, then

∆SD((Pi)i,(Qi)i)≤ ‖(max
ai

∆ML(Pi | ai,Qi | ai))i‖2.

Proof First, we observe that under the condition ∆ML(P,Q)≤ 1/3, we have

δKL(P,Q)≤ 2∆ML(P,Q)2.

This can be checked using Equation (6.3) as follows. Let x = ∆ML(P,Q)≤ 1/3. Apply-

ing Lemma 1 with µ = ex−1, we get

δKL(P,Q)≤ (ex−1)2

2(2− ex)2 ≤ 2x2,

where the last inequality is implied by (ex−1)(1+1/(2x))≤ 1, which can be verified

using the convexity bound ex−1≤ (e
1
3 −1)3x (valid for x ∈ [0,1/3]) as follows:

(ex−1) ·
(

1+
1
2x

)
≤ (e

1
3 −1) · (3x+1.5)≤ (e

1
3 −1) ·2.5≈ 0.99.

Now that we have established the bound δKL(P,Q) ≤ 2∆ML(P,Q)2, we can

use Pinsker’s inequality and the sub-additivity of δKL (which directly follows from what
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is often referred to as the chain rule) to get

∆SD((Pi)i,(Qi)i)≤
√

δKL((Pi)i,(Qi)i)/2

≤
√

1
2 ∑

i
max

ai
δKL(Pi | ai,Qi | ai)

≤
√

∑
i

max
ai

∆ML(Pi | ai,Qi | ai)2

= ‖(max
ai

∆ML(Pi | ai,Qi | ai))i‖2.

�

It follows that we can instantiate Lemma 17 with ∆ML to analyze the increase of

approximation error if applying multiple convolutions to approximate samples. We will

make intensive use of this in Chapter 7 to analyze the approximation error of our new

sampling algorithm.

Relationship to Other Measures. The max-log distance is closely related to

the Rényi divergence of order ∞ and shares many of its properties, including a multiplica-

tive probability preservation: PrX←P [E]≥ PrX←Q[E]/exp(∆ML(P,Q)) [5]. This can

be useful for other definitions of bit security than Definition 28. In particular, consider a

setting where the number of queries to the distribution is bounded by some fixed number

q. This seems reasonable in many applications since queries often require interaction

with an honest user. In this setting, it is easy to show that the success probability of

an adversary can only increase by a multiplicative factor of exp(q∆ML(Pθ ,Qθ )) using

sub-additivity, data processing inequality, and multiplicative probability preservation.

This shows that as long as ∆ML(P,Q) < 1/q, one loses almost no security. In a sub-

sequent work [66], Prest shows that by generalizing Lemma 1 to Rényi divergences of
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arbitrary order, one can achieve tighter bounds (∆ML(P,Q)≈
√

1/q) in this setting by

optimizing over the order of the divergence.

It has also been noted that the Rényi divergence is related to the notion of

differential privacy. More specifically, an algorithm A(D), taking a database D as input, is

ε-differentially private if the Rényi divergence of order ∞ between the output distributions

of A(D1) and A(D2) is less than ε for any two neighboring databases D1 and D2. Since

neighborhood is often defined using a symmetric relation on the set of databases, this is

equivalent to a formulation using the max-log distance. Finally, the techniques used in

[66] are related to advanced composition theorems in the differential privacy terminology.

For more details we refer the reader to [57] and references therein.

Chapter 6, in full, is a combination of

• material as it appears (with minor modifications) in “Gaussian Sampling over the

Integers: Efficient, Generic, Constant-Time” by Daniele Micciancio and Michael

Walter, published in the proceedings of the Thirty-Seventh Annual International

Cryptology Conference (CRYPTO 2017). The dissertation author was the primary

investigator and author of this paper.

• material (with minor modifications) that has been submitted for publication and

may appear as “On the Bit Security of Cryptographic Primitives” by Daniele Mic-

ciancio and Michael Walter. The dissertation author was the primary investigator

and author of this paper.



Chapter 7

Gaussian Sampling over the Integers

In this chapter we describe and analyze a new algorithm to sample the discrete

Gaussian distribution. The entire algorithm SAMPLEZ is presented in Algorithm 7.1.

In Sect. 7.1 and 7.2, we analyze the sub-routines SAMPLEI and SAMPLEC, which may

already be directly useful in some applications. Then, in Sect. 7.3, we analyze the full

algorithm SAMPLEZ. All algorithms assume access to a base sampler SAMPLEB to

approximate the distribution Dci+Z,s0 , for a small and fixed set of values for the coset

ci and one fixed s0. Any algorithm can be used as a base sampler, provided it produces

distributions D̃ci+Z,s0 within a small distance ∆ML(D̃ci+Z,s0,Dci+Z,s0) ≤ µ from the

exact Gaussian Dci+Z,s0 . By Lemma 19, this is essentially equivalent to approximating

the Gaussian probabilities with a relative error bound of µ . The reader is referred to

Sect. 7.5.2 for a possible choice of SAMPLEB.

Before we continue, we define rounding operators dcek = d2kce/2k and bcck =

b2kcc/2k for c ∈ [0,1) and k ∈ Z, which round c (up or down, respectively) to a number

with k fractional bits. We also define a randomized rounding operator bcek = bcck +

Bα/2k (where Bα is a Bernoulli random variable of parameter α = 2kc mod 1) which

rounds c to either dcek (with probability α) or bcck (with probability 1−α).

Finally, we saw in Section 6.2 that we can instantiate Lemma 17 with ∆ML

to analyze the increase of approximation error if applying multiple convolutions to

113
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approximate samples. For convenience, we reformulate Theorem 1 and 2 in terms of

the max-log distance and approximate distributions (following Lemma 17), specializing

them to our setting.

Corollary 7 Let z ∈ Zm be a nonzero integer vector with gcd(z) = 1 and s ∈Rm with

si ≥
√

2‖z‖∞ηε(Z) for all i≤ m. Let yi be independent samples from D̃Z,si , respectively,

with ∆ML(DZ,si,D̃Z,si) ≤ µi for all i. Let D̃Z,s be the distribution of y = ∑ziyi. Then

∆ML(DZ,s,D̃Z,s). 2ε +∑i µi.

Corollary 8 Let s1,s2 > 0, with s2 = s2
1 + s2

2 and s−2
3 = s−2

1 + s−2
2 . Let Λ = KZ be a

copy of the integer lattice Z scaled by a constant K. For any c1 and c2 ∈R, denote the

distribution of x1← x2 + D̃c1−x2+Z,s1 , where x2← D̃c2+Λ,s2 , by D̃c1+Z,s. If s1 ≥ ηε(Z),

s3 ≥ ηε(Λ) = Kηε(Z), ∆ML(Dc2+Λ,s2,D̃c2+Λ,s2) ≤ µ2 and ∆ML(Dc+Z,s1 ,D̃c+Z,s1) ≤ µ1

for any c ∈R, then ∆ML(Dc1+Z,s,D̃c1+Z,s). 4ε +µ1 +µ2.
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Algorithm 7.1. A sampling algorithm for Dc+Z,s for arbitrary c and s. Definitions for zi
and si as in (7.1) and (7.2) and s̄ as in (7.3). SAMPLEB is an arbitrary base sampler for
Dc+Z,s0 with fixed s0 and small number of cosets c+Z, where c ∈ Z/b.

SAMPLEZb,k,max(c,s)

x← SAMPLEI(max)

K←
√

s2− s̄2/smax

c′← bc+Kxek

y← SAMPLECb,s0(c
′)

return y

SAMPLECb(c ∈ b−kZ)

if k = 0

return 0

g← b−k+1 ·SAMPLEBs0(b
k−1c)

return g+SAMPLECb(c−g ∈ b−k+1Z)

SAMPLEI(i)

if i = 0

x← SAMPLEBs0(0)

return x

x1← SAMPLEI(i−1)

x2← SAMPLEI(i−1)

y = zix1 +max(1,zi−1)x2

return y

Large deviations

In this section we show how to efficiently sample DZ,s for an arbitrarily large

s� ηε(Z) using samples from DZ,s0 for some small fixed value of s0 ≥
√

2ηε(Z). For

this we make use of convolution to combine the samples from the basic sampler to yield

a distribution with larger noise parameter. The algorithm accomplishing this is given in

Algorithm 7.1 as SAMPLEI.

Lemma 22 For a given value of s0≥ 4
√

2ηε(Z) define the following sequence of values1

1Notice that the values in (7.1) and (7.2) depend both on the index i and the initial s0, so we will write
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for i > 0:

zi =

⌊
si−1√

2η

⌋
(7.1)

s2
i = (z2

i +max((zi−1)2,1))s2
i−1 (7.2)

If ∆ML(DZ,s0,SAMPLEBs0(0))≤ µ , then ∆ML(DZ,si,SAMPLEI(i))≤ (µ +2ε)2i and the

running time of SAMPLEI is at most 2i plus 2i invocations of SAMPLEB. Finally,

si(s0)≥ 22i
, implying i≤ dlog logse is sufficient to achieve a given target s.

Proof Note that SAMPLEI repeatedly invokes Corollary 7. The conditions of

Corollary 7 are met by definition of zi (Equation (7.1)), so every application incurs a loss

in ∆ML of 2ε by Corollary 7. The bound on the number of base samples and convolutions

is immediate.

We conclude by proving the statement si(s0) ≥ 22i
under the conditions of the

lemma. Let η = ηε(Z). By definition we have zi ≥ si−1√
2η
−1 and so

s2
i ≥ 2s2

i−1

(
si−1√

2η
−2
)2

and so

si ≥
√

2si−1

(
si−1√

2η
−2
)
≥ s2

i−1

(
1
η
− 2
√

2
si−1

)
≥ s2

i−1

(
1
η
− 2
√

2
s0

)
≥

s2
i−1

2η
.

Equivalently,

logsi ≥ 2logsi−1− log2η .

them as zi(s0) and si(s0) when we need to emphasize this dependency.
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Unrolling the recursion, we obtain

logsi≥ 2i logs0−

(
i−1

∑
j=0

2 j

)
log2η = 2i logs0−(2i−1) log2η ≥ 2i(logs0− log2η)≥ 2i

and so si ≥ 22i
. �

The algorithm SAMPLEI will overshoot the noise parameter, but in many applica-

tions (including ours further below) this is enough. In fact, for us it will not matter by

how much we overshoot a given target s, as we will show in the following sections how

to adjust the noise parameter to obtain a sample from a specific target distribution (with

arbitrary center).

Algorithm 7.2. A sampling algorithm for DZ,s̃ for some s̃ not much larger than s.
Definition of si as in (7.2).

SAMPLECENTEREDGAUSSIAN(s)

Select largest i such that si < s

x1← SAMPLEI(i)

x2← SAMPLEI(i)

z←

⌈
1
2

(
1+

√
2
(

s
si

)2
−1

)⌉
return zx1 +(z−1)x2

If all we are interested in is the centered Gaussian distribution with a specific

noise parameter not much larger than a certain target width, as is the case in many

applications, it is relatively easy to adapt the algorithm to get closer to the target s. One

way of doing this is to adjust zi in the top level of the recursion to yield something closer

to s. This is demonstrated by Algorithm 7.2, for which the following corollary establishes
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a bound on the size of the resulting noise parameter.

Corollary 9 If ∆ML(SAMPLEI(i),DZ,si) . µ for the largest i such that si ≤ s and s ≥

s0 ≥
√

2ηε(Z), then ∆ML(SAMPLECENTEREDGAUSSIAN(s),DZ,s̃). 2µ +2ε for some

s̃ such that s≤ s̃≤
√

5s.

Proof First note that si < s implies z≥ 2. The choice of z and si now guarantees

that Corollary 7 is applicable and that (z− 1)2 +(z− 2)2 < s2

s2
i
≤ z2 +(z− 1)2. Since

s̃2 = (z2+(z−1)2)s2
i this establishes the lower bound and shows that s̃2≤ z2+(z−1)2

(z−1)2+(z−2)2 s2.

The upper bound follows from the fact that the ratio z2+(z−1)2

(z−1)2+(z−2)2 is decreasing in z and

equals 5 for z = 2.

The bound on the ∆ML distance is immediate from Corollary 7. �

Note that the constant
√

5 in Corollary 9 follows from the worst case where z = 2.

Using a little more care in the choice of small coefficients, the bound can be improved

to
√

2, but for a simpler exposition we omitted this optimization. However, it will not

be possible to get arbitrarily close to any target s if given a fixed s0, but if the target s is

fixed we can always choose a suitable small s0 such that the target distribution will be

generated exactly.

For a fixed s0, zi(s0) and si(s0) are fixed, so one can precompute si and cor-

responding zi for a small set of i. As Lemma 22 shows, the si grow very rapidly so

only a very small number (∼ log logs) of precomputed values are necessary to generate

extremely wide distributions. If the target s is fixed, only the coefficients zi need to be

stored.
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Arbitrary center

We now show how to sample from an arbitrary coset c+Z using samplers for

only a small number of cosets. We assume c is given as a k digit number in base b

between 0 and 1. The parameter k dictates the trade-off between running time and output

precision, while the basis b determines the number of cosets the base sampler SAMPLEB

needs to be able to sample from.

The idea of our new algorithm SAMPLEC (see Algorithm 7.1) is to round the

center randomly digit by digit to finally obtain a sample from c+Z. Every rounding

operation consumes a sample from one of b cosets ofZ (where b is a parameter). To show

correctness, we iteratively use a convolution theorem. While this process of iterative

rounding increases the noise of the output distribution, this increase is minor as the

following lemma shows.

Lemma 23 Let 2≤ b ∈ Z be a base, s0 ≥ (
√
(b+1)/b)ηε(Z) and c ∈ b−kZ. If

∆ML(Dci+Z,s0,SAMPLEBs0(ci))≤ µ

for all ci ∈ Z/b, then ∆ML(SAMPLECb(c),Dc+Z,s̄). (4ε +µ)k where

s̄ = s0


√√√√k−1

∑
i=0

b−2i

 . (7.3)

Proof The proof follows by induction and Corollary 8. For k = 1 the claim is

obviously true. For k > 1, invoke the induction hypothesis and apply Corollary 8 with

s1 = s0

√
∑

k−2
i=0 b−2i, s2 = s0/bk−1, Λ = b−k+1Z, c2 = b−k[c]k (where [c]k is the k-th digit

in the b-ary expansion of c), and c1 = c.

It remains to show that the conditions on the noise parameters are met. First note
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that ∑
k
i=0 b−2i ≥ 1 for all k ≥ 1, and so s1 ≥ s0 > ηε(Z).

Then we have

s−2
3 = s−2

1 + s−2
2 = s−2

0

(k−2

∑
i=0

b−2i

)−1

+b2(k−1)


= s−2

0

(
1−b−2

1−b−2(k−1)
+b2(k−1)

)
= s−2

0
b2(k−1)−b−2

1−b−2(k−1)

and so

s3 =

√
1−b−2(k−1)

b2(k−1)−b−2
s0 =

1
bk−1

√
1−b−2(k−1)

1−b−2k s0 =
1

bk−1

√
b2k−b2

b2k−1
s0

Note that
b+1

b
· b

2k−b2

b2k−1
≥ 1

for all k > 1, which shows that s3 ≥ b−k+1ηε(Z) = ηε(Λ). �

The parameter b in SAMPLEC offers a trade-off between running time and number

of required samplers for cosets of Z. As most efficient samplers require storage for each

coset, this is effectively a time-memory trade-off. The larger the base b, the more bits we

can round at a time, but that requires more cosets. Note that the running time decreases

by a logarithmic factor in b, while the storage requirement increases linearly with b.

Reducing the number of required samples

Recall from the previous section that the parameter k determines the trade-off

between running time and output precision: the larger k, the closer the approximation

of the centers and thus the better the output distribution, but the number of required

base samples and the running time grow linearly with k. We now show that by using a

biased coin flip we can speed up the algorithm by a factor 2 while maintaining a good
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approximation.

Lemma 24 Let s≥ ηε(Z) and b,k ∈ Z such that τ = b−k ≤ (4π)−1. Then

∆ML(DZ,c,s,DZ,bcek,s). π
2
τ

2 +2ε = π
2/b2k +2ε,

where DZ,bcek,s is the distribution of the process of computing c′= bcek and then returning

a sample from DZ,c′,s.

To prove the lemma, we first observe that linear functions can approximate the

Gaussian function well on small enough intervals.

Lemma 25 For any x1,x2 with x2− x1 = τ , |x1|, |x2| ≤ ts for some t ≥ 1 and x ∈ [x1,x2],

we have

δRE

(
ρs(x),

x− x1

τ
ρs(x2)+

x2− x
τ

ρs(x1)

)
≤ π2t2τ2

2s2 e
2πτt

s .

In particular, if τ ≤ s
4πt , the bound on the right hand side is less than π2t2τ2

s2 .

Proof By linear interpolation,

∣∣∣∣ρs(x)−
(

x− x1

τ
ρs(x2)+

x2− x
τ

ρs(x1)

)∣∣∣∣≤ τ2

8
max

x1≤x′≤x2
|ρ ′′s (x′)|

Observe that

ρ
′′
s (x) =

(
2πx2

s2 −1
)

2π

s2 ρs(x)

implying that ‖ρ ′′s (x′)‖≤max(2πx′2
s2 ,1)2π

s2 ρs(x′)≤ 4π2t2

s2 ρ(x′). Finally note that if x′2≥ x2,

then ρs(x′)≤ ρs(x). Otherwise,

ρs(x′)
ρs(x)

= e−π( x′2−x2

s2 )
= eπ( x2−x′2

s2 )
= eπ(

(x−x′)(x+x′)
s2 ) ≤ e

2πτt
s
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concluding the proof. �

Proof [of Lemma 24] We set t = ηε(Z), which allows us to treat Dc+Z,s as a

ts-bounded distribution. If we assume that s ≥ ηε(Z) for some negligible ε , we can

conclude that Lemma 25 also holds for the respective distributions, since ρs(c+Z)≈ s

for any c, i.e. with c1 = bcck and c2 = dcek:

∆ML(DZ,c,s,DZ,bcer,s) = max
x

∣∣∣∣∣ln DZ,c,s(x)
DZ,bcer,s(x)

∣∣∣∣∣
= max

x

∣∣∣∣∣ln DZ,c,s(x)(c2−c
τ

DZ,c1,s(x)+
c−c1

τ
DZ,c2,s(x)

)∣∣∣∣∣
≤max

x

∣∣∣∣∣ln ρs(x− c)(1± ε)s
(1± ε)s

(c2−c
τ

ρs(x− c1)+
c−c1

τ
ρs(x− c2)

)∣∣∣∣∣
≤max

x

∣∣∣∣∆ML

(
ρs(x− c),

c2− c
τ

ρs(x− c1)+
c− c1

τ
ρs(x− c2)

)
+ ln

1± ε

1± ε

∣∣∣∣
.max

x
δRE

(
ρs(x− c),

c2− c
τ

ρs(x− c1)+
c− c1

τ
ρs(x− c2)

)
+2ε

≤ π2t2τ2

s2 +2ε

.
π2

b2k +2ε

where we used Lemma 25 and Lemma 19. �

In combination with SAMPLEC (cf. Algorithm 7.1), Lemma 24 suggests an

efficient algorithm to sample from DZ,c,s̄ for fixed s and arbitrary c:

1. write c in base b (which is a parameter of the algorithm) and divide this repre-

sentation into the k = logb
1
τ

higher order digits (representing chead) and the rest

ctail

2. use ctail to define the bias of a Bernoulli distribution to round chead either up or
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down

3. return SAMPLECb,s0(chead ∈ b−kZ).

These steps correspond to the computation of c′ and the following invocation of SAM-

PLEC in the algorithm SAMPLEZ. The efficiency gain stems from the fact that sampling

from a biased Bernoulli distribution is much cheaper than drawing samples from the

discrete Gaussian. This allows us to support centers c with arbitrary precision above k

with essentially no efficiency loss, since the lower order bits only define the bias of the

Bernoulli distribution, which is cheap to implement.

The Full Sampler

So far we have shown how to generate samples efficiently from DZ,si for poten-

tially very large si and how to sample from DZ,c,s̄ for arbitrary c ∈ R and a specific s̄,

both using only b samplers for DZ,ci,s0 for ci ∈ b−1Z and fixed s0 ≥ ηε(Z). We now

prove correctness of the full sampler, SAMPLEZ, which puts all the pieces together by

leveraging Corollary 8 yet again.

Lemma 26 Let b,k ∈ Z be a base and a precision parameter such that k > logb 4π . If

• ∆ML(DZ,smax,SAMPLEI(max))≤ µi and

• ∆ML(Dc′+Z,s̄,SAMPLECb(c′))≤ µc for any c′ ∈ Z/bk and some s̄≥ ηε(Z),

then

∆ML(Dc+Z,s,SAMPLEZb,k,max(c,s)). 6ε +π
2/b2k +µi +µc

for any c and s such that 1 < s/s̄≤ smax/ηε(Z).

Proof By Lemma 24 and 17, ∆ML(Dc+Kx,SAMPLEC(bc+Kxek)) ≤ π2/b2k +

2ε + µc. By correctness of SAMPLEI (Lemma 22), ∆ML(DKZ,Ksmax,Kx) ≤ µi (where
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x← SAMPLEI(max)) and by definition of K we have s =
√
(Ksmax)2 + s̄2. Now rewrite

DZ,c+Kx,s̄ = c+Kx+D−Kx−c+Z,s̄ and apply Corollary 8 with c2 = 0, c1 = c, x1 = Kx

and x2 = y to see that ∆ML(Dc+Z,s,SAMPLEZb,k,max(c,s)). 6ε+π2/b2k+µi+µc, if the

conditions in the theorem are met. This can easily be seen to be true from the assumptions

on s by the following calculation.

s3 =
(
(Ksmax)

−2 + s̄−2)− 1
2 =

(
1

s2− s̄2 +
1
s̄2

)− 1
2

=

(
s̄2(s2− s̄2)

s2

) 1
2

=
s̄
s

√
s2− s̄2 ≥

√
s2− s̄2ηε(Z)/smax = ηε(KZ)

�

The running time of SAMPLEZ is obvious: one invocation of SAMPLEI and

one of SAMPLEC, which we analyzed in Sect. 7.1 and 7.2, resp., and a few additional

arithmetic operations to calculate K and c′. It is worth noting that the computation of K,

the most complex arithmetic computation of the entire algorithm, depends only on s. In

many applications, for example trapdoor sampling, s is restricted to a relatively small

set, which depends on the key. This means that Ks can be precomputed for the set of

possible s’s allowing to avoid the FP computation at very low memory cost. Finally, the

algorithm may approximate the scaling factor K by a value K̃ such that δRE(K̃,K)≤ µK ,

which results in an approximation of the distribution of width s̃ =
√

(K̃si)2 + s̄ instead

of s. Elementary calculations show that ∆ML(DZ,c,s,DZ,c,s̃). 4πt2µK which by triangle

inequality adds to the approximation error.

As an example, assume we have an application, where we know that s̄ ≤ s ≤

220 = smax. It can be checked, that for any base b and s0 ≥ 4
√

2ηε(Z), the following
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parameter settings for our algorithm result in

∆ML(DZ,c,s,SAMPLEZb,k,max(c,s))≤ 2−52,

and thus in ≥ 100 bits of security by Lemma 15:

• t = ηε(Z) = 6, which results in ε ≤ 2−112

• µ = 2−60, the precision of the base sampler, resulting in µi ≤ 2−55

• k = d30/ logbe, which results in µc ≤ 2−55 and π2/b2k ≤ 2−56

• µK = 2−64, the precision of calculating K, resulting in 4πt2µK ≤ 2−55.

Online-Offline Phase and Constant-Time Implementa-
tion

Note that a large part of the computation time during our convolution algorithm

is spent in the base sampler, which is independent of the center and the noise parameter.

This allows us to split the algorithm into an offline and an online phase, similar in spirit to

Peikert’s sampler [63], which gives rise to a number of platform dependent optimizations.

The obvious approach is to simply precompute a number of samples for each of the b

cosets and combine them in the online phase until we run out. Note that the trade-off

now is not only a time-memory trade-off anymore, it is a time-memory-lifetime trade-off

for the device that depends on b. Increasing b speeds up the algorithm, but requires to

precompute and store samples for more cosets. While it also means that we effectively

decrease the number of samples required per output sample, the latter dependence is only

logarithmic, while the former is linear in b.

There are a number of other ways to exploit this structure without limiting the

lifetime of the device. Most devices that execute cryptographic primitives have idle times
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(e.g. web servers) which can be used to restock the number of precomputed samples.

As another example, one can separate the offline phase (basic sampler) and the online

phase (combination phase) into two parallel devices with a shared buffer. While the basic

sampler keeps filling the buffer with samples, the online phase can combine these samples

into the desired distribution. An obvious architecture for such a high performance system

would implement the base sampler in a highly parallel fashion (e.g. FPGA or GPU) and

the online phase on a regular CPU. This shows that in many scenarios the offline phase

can be for free.

The separation of offline and online phase also allows for a straight-forward

constant-time implementation with very little overhead. A general problem with sampling

algorithms in this context is that the running time of the sampler can leak information

about the output sample or the input, which clearly hurts security. For a fixed Gaussian,

a simple mitigation strategy is to generate the samples in large batches. This approach

breaks down in general when the parameters of the target distribution vary per sample and

are not known in advance. In contrast, this idea can be used to implement our algorithm

in constant time by generating the basic samples in batches in constant time. Note that

every output sample requires the exact same number of base samples and convolutions,

so the online phase lends itself naturally to a constant-time implementation.

Assume every invocation of SAMPLEZ requires q base samples and let t̂0 be the

maximum over ci ∈ Z/b of the expected running time (over the random coins) of the

base sampler (computed either by analysis or experimentation). Consider the following

algorithm.

Initialization:

• Use the base sampler to fill b buffers of size q, where the i-th buffer stores discrete

Gaussian samples Dci+Z,so for all ci ∈ Z/b.
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Query phase:

• On input c and s, call SAMPLEZ(c,s), where SAMPLEBs0(ci) simply reads from

the respective buffer.

• Call the base sampler q times to restock the buffers and pad the running time of

this step to T = qt̂0 +O(
√

κq).

Note that the restocking of base samples in the query phase runs in constant time

with overwhelming probability, which follows from Hoeffding’s inequality (the constant

in the O-notation depends on the worst-case running time of the base sampler). It follows,

that the query phase runs in constant time if all the arithmetic operations in SAMPLEZ

are implemented in constant time and the randomized rounding operation is converted to

constant time, both of which are easy to achieve.

The amortized overhead is only O(
√

κ/q), where q is the number of base samples

required per output sample. This can be further reduced, if enough memory for larger

buffers is available. Finally, the separation of online and offline phase into different

independent systems or precomputation of the offline phase allow for an even more

convenient constant-time implementation: One only needs to convert the arithmetic

operations and the coin flip into constant time. This incurs only a minimal penalty in

running time.

Applications and Comparison

We first give a short overview of existing sampling algorithms (Sect. 7.5.1) and

select a suitable one as our base sampler, before we describe the experimental study.
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Table 7.1. Comparison of Sampling Algorithms, starting with rejection-based sampler,
followed by tree-traversal samplers and finally Algorithm 7.1. The column exp(·) indi-
cates if the algorithm requires to evaluate exp(·) online. The column “Generic” refers
to the property of being able to produce samples from discrete Gaussians with different
parameters not known before precomputation (i.e. which may vary from query to query).
The security parameter is denoted by κ .

Algorithm Memory Rejection Rate exp(·) Generic
Rejection Sampling [28] 0 ∼ .9 Yes Yes
Discrete Ziggurat [14] var var Yes No
Bernoulli-type [19] O(κ logs) ∼ .5 No No
Karney [37] 0 ∼ .5 No Yes
Knuth-Yao [21] O(κs) - No No
Inversion Sampling [63] O(κs) - No No
Our work var - No Yes

Brief Survey of Existing Samplers

All of the currently known samplers can be categorized into two types2: rejection-

based samplers and tree traversal algorithms. Table 7.1 summarizes the existing sampling

algorithms and their properties in comparison to our work. The table does not contain

a column with the running time, since this depends on a lot of factors (speed of FP

arithmetic vs memory access vs randomness etc.), but for the rejection-based samplers,

the rejection rate can be thought of as a measure of the running time. Tree-traversal

algorithms should be thought of as much faster than rejection based samplers. A more

concrete comparison on a specific platform will be given in Sect. 7.5.4 and Sect. 7.5.6.

The Base Sampler

As mentioned above, our algorithm relies on a base sampler to be available, so

we now consider the problem of generating samples from DZ,c,s when s = O(ηε(Z))

is relatively small and c is fixed. We are interested in the amortized cost of sample

generation, where we want to generate a large batch of samples.

2Technically, even rejection-based samplers can be thought of as tree traversal algorithms, but this is
not as natural for them, hence our categorization.
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We first observe that we are sampling from a relatively narrow Gaussian dis-

tribution, so memory will not be a concern for us. For example, assume we choose

s ≈ 34 > 4
√

2ηε(Z) for reasonable ε , and the tailbound parameter t = 6 and store all

probabilities, i.e. Dc+Z,s(i) for all 0≤ i≤ ts with i ∈ c+Z, with 64 bit precision. Then

we obtain a memory requirement of only ∼ 1.5kb for each of the b cosets. Note that

storing half the probability table is sufficient in this case, which is obvious if c∈ {0,1/2},

but is also true for other c since we can exploit symmetries in the different tables that

we store. If indeed less memory is available, one can reduce s ≥
√

2η(Z), which is

the minimum to be usable for our algorithms. This will come at a moderate cost in

performance.

Finally, the algorithm can also be implemented using a sampler for only the

0-coset and noise parameter bs0 by bucketing the samples from different cosets in

intermediate buffers. This approach has the advantage of being potentially simpler, but

can make constant time implementations more troublesome (see Section 7.4).

Since we want to generate a large number of samples, our main criteria for the

suitability of an algorithm is its expected running time. For any algorithm, this is lower

bounded by the entropy of DZ,c,s, so a natural choice is (lazy) inversion sampling [63] or

Knuth-Yao [21], since both are (close to) randomness optimal and their running time is

essentially the number of random bits they consume, hence providing us with an optimal

algorithm for our purpose. In fact, Knuth-Yao is a little faster than inversion sampling, so

we focus on that.

Setup of Experimental Study

There are a number of cryptographic applications for our sampler, most of which

use an integer sampler in one of three typical settings.

• The output distribution is the centered discrete Gaussian with fixed noise parameter.
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This is the case in most basic LWE based schemes, where the noise for the LWE

instance is sampled using an integer sampler.

• The output distribution is the discrete Gaussian with fixed noise parameter, but

varying center. This is the case in the online phase of Peikert’s sampler [63]. In

particular, if applied to q-ary lattices the centers are restricted to the set 1
qZ.

• The output distribution is the discrete Gaussian where both, the center and the

noise parameter may vary for each sample. This is typically used as a subroutine

for sampling from the discrete Gaussian over lattices, as the GPV sampler [28] or

in the offline phase of Peikert’s sampler.

The ideas presented in this work can be applied to any of these settings. In

particular, the algorithms in this chapter can be used to achieve new time-memory trade-

offs in all three cases. The optimal trade-off is highly application specific and depends

on a lot of factors, for example, the target platform (hardware vs. software), the cost of

randomness (TRNGs vs. PRNGs), available memory, cost of evaluating exp(·), cost of

basic floating point/integer arithmetic, etc. In the following we present an experimental

comparison of our algorithm to previous algorithms. Obviously, we are not able to

take all factors into account, so we restrict ourselves to a comparison in a software

implementation, where all algorithms use the same source of randomness (NTL’s PRNG),

evaluate the randomness bit by bit in order to minimize randomness consumption, and use

only elementary data types during the sampling. In particular, whenever FP arithmetic is

necessary or ρs(·) needs to be evaluated during the sampling, all the algorithms use only

double or extended double precision. This should be sufficient since we are targeting

around 100 bits of security and the arguments in Chapter 6 apply to any algorithm. We

do not claim that the implementation is optimal for any of the evaluated algorithms, but it

should provide a fair comparison. We instantiated our algorithms with the parameters as
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listed at the end of Sect. 7.3. Our implementation makes no effort towards a constant-time

implementation. Even though turning Algorithm 7.1 into a constant-time algorithm is

conceptually simple (cf. Sect. 7.4), this still requires a substantial amount of design and

implementation effort, which is out of the scope of this work.

When referring to specific settings of the parameter s, we will often refer to it as

multiple of
√

2π . The reason is that two slightly different definitions of ρs(·) are common

in the literature and the factor
√

2π converts between them. While we found one of

them to be more convenient in the analytic part of this work, most previous experimental

studies [14, 65] use the other. So this notation is for easier comparability.

Fixed Centered Gaussian

In this section we consider the simplest scenario for discrete Gaussian sampling:

sampling from the centered discrete Gaussian distribution above a certain noise level.

This is accomplished by Algorithm 7.2. Note that the parameter s0 allows for a time

memory trade-off in our setting: the larger s0, the more memory required by our base

sampler (Knuth-Yao), but the fewer the levels of recursion. More precisely, the memory

requirement grows linearly with s0, while the running time decreases logarithmically.

We compare the method in different settings to the only other adjustable time-

memory trade-off known to date – the discrete Ziggurat. For our evaluation we modified

the implementation of [14] to use elementary data types only during the sampling (as

opposed to arbitrary precision arithmetic in the original implementation). The baseline

algorithms in this setting are the Bernoulli-type sampler and Karney’s algorithm, as they

allow to sample from the centered discrete Gaussian quite efficiently using very little

or no memory. Figure 7.1 shows the result of our experimental analysis for a set of

representative s’s. We chose the examples mostly according to the examples in [14],

where we skipped the data point at s = 10
√

2π , since this is already a very narrow distri-
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bution which can be efficiently sampled using Knuth-Yao with very moderate memory

requirements. Instead, we show the results for s = 214
√

2π (chosen somewhat arbitrarily),

additionally to data points close to the ones presented in [14]: s ∈ {25,210,217}
√

2π .

Figure 7.1 shows that the two algorithms complement each other quite nicely:

while Ziggurat allows for better trade-offs in the low memory regime, using convolution

achieves much better running times in the high memory regime. This suggests that

Ziggurat might be the better choice for constrained devices, but recall that it requires

evaluations of exp(·). So if s is not too large, even for constrained devices the convolution

type sampler can be a better choice (see for example [65]).

Note that the improvement gained by using more memory deteriorates in our

implementation, up to the point where using more memory actually hurts the running time

(see Fig. 7.1, bottom right). A similar effect can be observed with the discrete Ziggurat

algorithm. At first sight this might be counter-intuitive, but can be easily explained with

a limited processor cache size: larger memory requirement in our case means fewer

cache hits, which results in more RAM accesses, which are much slower. This nicely

illustrates how dependent this trade-off is on the speed of the available memory. Since

fast memory is usually much more expensive than slower memory, for a given budget

it is very plausible that the money is better spent on limited amounts of fast memory

and using Algorithm 7.2 rather than implementing the full Knuth-Yao with larger and

slower memory. In our specific example (Fig. 7.1, bottom right), this means that using a

convolution of two samples generated by smaller Knuth-Yao samplers is actually faster

than generating the samples directly with a large Knuth-Yao sampler.

Fixed Gaussian with Varying Center

We now turn to the second setting, where the noise parameter is still fixed but

the center may vary. In order to take advantage of the fact that the noise parameter is
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Figure 7.1. Time memory trade-off for Algorithm 7.2 and discrete Ziggurat compared to
Bernoulli-type sampling and Karney’s algorithm for s ∈ {25,210,214,217}

√
2π . Knuth-

Yao corresponds to right most point of Algorithm 7.2.

fixed and the center in a restricted set for the online phase, Peikert suggested that “if q is

reasonably small it may be worthwhile (for faster rounding) to precompute the tables of

the cumulative distribution functions for all q possibilities” [63]. This might be feasible,

but only for very small q and s (depending on the available memory). If not enough

memory is available, there is currently no option other than falling back to Karney’s

algorithm or rejection sampling.

Depending on the cost of randomness, speed and amount of available memory

and processor speed for arithmetic, Knuth-Yao can be significantly faster than Karney’s

algorithm. For example, in our prototype implementation, Knuth-Yao was up to 6 times

faster, but keep in mind that this number is highly platform dependent and can vary widely.
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Accordingly, we can afford to invoke Knuth-Yao several times, sacrificing some running

time for memory savings, and still outperform Karney’s algorithm. Our algorithms offer

exactly this kind of trade-off. There are two ways in which we can take advantage of

convolution theorems to address the challenge of having to store q Knuth-Yao samplers.

The first simply consists in storing the samplers for some smaller s0, which will reduce

the required memory by a factor s/s0. After obtaining a sample from the right coset,

using only the 0-coset we can generate and add a sample from a wider distribution to

obtain the correct distribution. This is very similar to Algorithm 7.2 with the additional

step of adding a sample from the right coset, where we simply invoke Corollary 7 once

more. This step will increase the running time by at most logs0
s additively (cf. Lemma

22).

Note that there is a limit to this technique though, since we need s0 >
√

2ηε(Z)

for the convolution to yield the correct output distribution. If s is already small, but there

is not enough memory available because q is too large, this approach will fail. In this

case we can use the algorithm from Sect. 7.2 to reduce the number of samplers needed

to be stored. In particular, for any base b such that3 rad(q) | b, we can cut down on the

memory cost by a factor q/b, which will increase the running time by dlogb qe. For this,

we simply need to express the center c in the base b and round the digits individually

using SAMPLECb. For example, if q is a power of a small prime p, we can choose b

to be any multiple of p. This can dramatically increase the modulus q for which we

can sample fast with a given amount of memory, assuming rad(q) is small. As a more

specific example, say q is a perfect square and let b =
√

q. Instead of storing q Knuth-Yao

samplers and invoking one when a sample is required for a coset 1
qZ, we can store b

samplers and randomly round each of the 2 digits of the center in base b successively.

This effectively doubles the running time, but this is likely to still be much faster than

3This is the condition for 1
q being expressible as a finite number in base b.
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Karney’s algorithm (again, depending on the platform), but we reduced the amount of

necessary memory by a factor
√

q.

Clearly, depending on the specific q, s and platform, the two techniques can be

combined. The optimal trade-off depends on all three factors and has to be evaluated

for each application. Our algorithms provide developers with the tools to optimize this

trade-off and make the most of the available resources.

Varying Gaussian

Finally, we evaluate the practical performance of our full sampler, SAMPLEZ.

Precomputing the value K, as suggested in Sect. 7.3, made little difference in our software

implementation and we show results for the algorithm that does not precompute K. The

bottleneck in our algorithm is the call to SAMPLEC, as it consumes a number of samples

which depends on the base b. Again, similar to the previous section, the base b offers

a time-memory trade-off, which is the target of our evaluation. We experimented with

the sampler for a wide range of noise parameters s, but since our algorithm is essentially

independent of s (as long as it is≤ smax), it is not surprising that the trade-off is essentially

the same in all cases. Accordingly, we present only one exemplary result in Fig. 7.2. As

a frame of reference, rejection sampling achieved 0.994 ·106 samples per second, which

shows that by spending only very moderate amounts of memory (< 1mb), our algorithm

can match and outperform rejection sampling. On the other hand, Karney’s algorithm

achieved 3.281 ·106 samples per second, which seems out of reach for reasonable amounts

of memory, making it the most efficient choice in this setting, if no other criteria are

of concern. But we stress again that this depends highly on how efficiently Knuth-Yao

can be implemented compared to Karney’s algorithm on the target platform. While

the running time of both, rejection sampling and Karney’s algorithm depends on s, this

dependence is rather weak (logarithmic with small constants) so the picture does not
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change much for other noise parameters.

Recall that our algorithm can be split into online and offline phase, since the

base samples are independent of the target distribution. Karney’s algorithm also initially

samples from a Gaussian that is independent of the target distribution, so a similar

approach can be applied. However, the trade-off is fixed and no speed-ups can be

achieved by spending more memory.

We tested both algorithms, where we assumed that the offline phase is free, for

a wide range of s. For this, we fixed b = 16 for our algorithm, which seemed to be

a good choice in our setting. Note that similar to Sect. 7.5.4, spending more memory

(and increasing b) should in theory only improve the algorithm. But if this comes at the

cost of slowing down memory access due to a limited cache size, this can actually hurt

performance. The results are depicted in Fig. 7.3. The graph allows for two interesting

observations: First, our algorithm consistently outperforms Karney’s algorithm in this

setting. So if the offline phase can be considered to be free or a limited life-time is

acceptable (cf. Sect. 7.4), our algorithm seems to be the better choice. Second, as
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expected, our algorithm is essentially independent of s (as long as it is < smax), while

the performance of Karney’s algorithm deteriorates as s grows. This is due to the fact

that Karney’s algorithm requires to sample a uniform number in [0,s] during the online

phase, which is logarithmic in s. This leads to a larger gap between the performance

of the two algorithms as s grows, and supports the claim that our sampler allows for

an efficient constant time implementation. In contrast, both Karney’s algorithm and

rejection sampling seem to be inherently costly to turn into constant time algorithms, due

to their dependence on s and the fact that they are probabilistically rejecting samples.

In summary, we believe that there are a number of applications and target plat-

forms, where our algorithm will be the best choice to implement a discrete Gaussian

sampler.

Chapter 7, in full, is a reprint of material as it appears (with minor modifications)

in “Gaussian Sampling over the Integers: Efficient, Generic, Constant-Time” by Daniele

Micciancio and Michael Walter, published in the proceedings of the Thirty-Seventh
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Annual International Cryptology Conference (CRYPTO 2017). The dissertation author

was the primary investigator and author of this paper.
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