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ABSTRACT OF THE DISSERTATION

Characterizing land-atmosphere interactions with surface air temperature variability
and heat wave intensity

by

Anna Louise Merrifield

Doctor of Philosophy in Oceanography

University of California, San Diego, 2018

Shang-Ping Xie, Chair

A series of model simulations and statistical analyses are used to examine the drivers of

summer surface air temperature (SAT) variability over the continental United States (US) and the

drivers of extreme heat events over Europe. An overarching goal is to improve understanding of the

land-surface feedback on summer SAT, a topic of considerable socioeconomic importance. North

American summer SAT variability is well-observed and known to be influenced strongly by the

large-scale atmospheric circulation as well as by the land surface. Current global climate models

forced with observed sea surface temperature tend to overestimate year-to-year summer SAT

variations, notably in the central US, which has been identified as a "hot spot" of land-atmosphere

xvi



interaction. Chapter 2 explores the hypothesis that models are overly sensitive to variations in soil

moisture in the central US. Evidence is presented that links central US SAT variability in models

to sensible heat flux variability, an indicator of soil moisture influence. However, the "true"

influence of the land surface on SAT is not well constrained by observations and is challenging

to characterize in the presence of internal atmospheric variability.

A technique called dynamical adjustment is used to separate the influence of atmospheric

circulation on SAT from the influence of the land surface on SAT. It is shown in Chapter 3

that removing the effect of circulation on SAT strengthens the correlation between preseason

soil moisture and SAT in the central US. Uncertainty associated with dynamical adjustment is

assessed in Chapter 4, and it is confirmed that the influence of the land surface on SAT can

be characterized using solely SAT and atmospheric pressure, which are well-observed fields.

Extreme summer SAT in Europe is also influenced by atmospheric circulation and the land

surface; the impact of preseason soil moisture on a seasonally persistent European heat wave

event is assessed in Chapter 5. By superposing the same heat wave circulation pattern on an

initial condition ensemble, it is shown that a heat wave following a dry spring can be up to 3◦C

hotter than a heat wave following a wet spring.

xvii



Chapter 1

Introduction

Climate models are important tools. They help us to better understand climate variability

and allow us to make conjectures about future climate change. While we will have to wait

to determine the accuracy of climate model projections, we can assess a model’s ability to

represent things like surface air temperature (SAT) variability, which have been carefully observed

(Brohan et al., 2006). Broadly, this dissertation focuses on the simulation of SAT in climate

models, in order to improve understanding of the physical processes that contribute to interannual

fluctuations and seasonal extremes. More specifically, we assess summer SAT over land in the

Northern Hemisphere (NH) midlatitudes and demonstrate how its year-to-year variability and

its intensity during a heat wave can be used to characterize the more complex, more sparsely

observed land surface feedback.

Summer is a season of socioeconomic importance in both the United States (US) and

Europe, and exceptionally hot summers pose risks to human health and livelihood which are and

will continue to be difficult to cope with (Hansen et al., 2012). Prior notice of an exceptionally

warm summer would be valuable, but such predictions can only be made if climate models

accurately represent observed climate. Current climate models tend to share systematic biases,

and notably overestimate year-to-year variations in summer SAT in the central US (Mueller and

1



Seneviratne, 2014; Berg et al., 2014; Merrifield and Xie, 2016).

Model biases are often caused by a misrepresentation of underlying physical processes.

Summer SAT variability in the central US is controlled by midlatitude atmospheric circulation

patterns, but the region has also been identified as a "hot spot" of land-atmosphere interaction (e.g.

Koster et al., 2004a). SAT biases in the central US may be related to an excessive land-atmosphere

interaction in models; we investigate this hypothesis in Chapter 2.

The land surface influences the atmosphere through a series of nonlinear processes,

which link soil moisture and vegetation with evapotranspiration, the evolution of the planetary

boundary layer, cloud formation and precipitation (e.g. Findell and Eltahir, 2003a; Tawfik et al.,

2015a,b; Santanello et al., 2017). These processes feedback on one another and modify SAT on

diurnal to synoptic timescales in ways that are difficult, if not prohibitively expensive to directly

observe (Jimenez et al., 2014; Ferguson et al., 2012). Due to a lack of long, large-scale, direct

measurements of land surface properties (and the spatial and temporal heterogeneity of the land

surface), the coupling between the land surface and atmosphere is not yet well constrained (e.g.

Findell, 2015; Santanello et al., 2017).

On climate time-scales of a month or longer, the complexity of the land surface’s influence

on SAT can be represented to first order by soil moisture and surface fluxes (Seneviratne et al.,

2010, 2013). The notion of hot spots comes from the theory that, in certain regions, the presence

(absence) of soil moisture partitions the outgoing turbulent heat flux towards evapotranspiration

(the sensible heat flux). Because the phase change of water requires energy, SAT tends to be

cooler over a wetter land surface. When conditions are dry, there is more sensible heating of the

atmosphere. There are two primary factors that determine if soil moisture variability is driving

variations in SAT: its control on evapotranspiration and its magnitude. Evapotranspiration is a key

component of global water and energy cycles, recycling around 60% of terrestrial precipitation

(Oki and Kanae, 2006) and using more than half of the total solar energy absorbed by the land

surface (Trenberth et al., 2009). In regions where water is scarce, such as the arid southwestern

2



US, evapotranspiration is strongly controlled by soil moisture, but soil moisture has little impact

on SAT variability because the absolute magnitude evapotranspiration is near zero. In wet regions,

such as the humid eastern US, the absolute magnitude of evapotranspiration is large enough to

influence the atmosphere, but its variability is controlled by the availability of incoming energy

rather than the availability of water. Therefore, hot spots, where soil moisture exerts influence on

SAT through surface fluxes are located in transition regions between arid and humid climate

zones, like the central US (Findell and Eltahir, 2003b; Seneviratne et al., 2010; ?).

Hot spots were first defined within a climate model framework, in part because models

allow for the comparison between coupled and uncoupled land-atmosphere regimes (Lorenz

et al., 2015). The Global Land-Atmosphere Coupling Experiment (GLACE) was initiated

by Koster et al. (2006, 2011) as a means of comprehensively evaluating the land-atmosphere

coupling strength in climate models. In GLACE, the strength of the soil moisture-SAT coupling

is determined by comparing SAT variance in interactive and prescribed soil moisture simulations.

Regions where multiple models agree that SAT variability is enhanced in the coupled simulation

when compared to the prescribed soil moisture simulation were defined as hot spots. Though

models may agree on hot spots because they share the same biases (Koster et al., 2006), the

GLACE-derived hot spot in the central US remains well accepted by the climate modeling

community (e.g. Seneviratne et al., 2006a; Zhang et al., 2008; Krakauer et al., 2010; Guo and

Dirmeyer, 2013; Berg et al., 2014; ?).

Although there is model consensus that the land-atmosphere coupling is strong in the

central US, observational evidence for the hot spot is less conclusive (e.g. Findell et al., 2011;

Song et al., 2016). Miralles et al. (2012) and Ford and Quiring (2014) presented evidence in

support of the central US. land-atmosphere hotspot in reanalysis products and in-situ observations

respectively. Using remote sensing measurements of the land surface, ?Ferguson et al. (2012)

determined that land-atmosphere coupling strength is generally overestimated by land models,

but didn’t rule out a central U.S. hotspot relative to other parts of the world. Phillips and Klein

3



(2014) indicate that the energetic forcing of the atmosphere on the land surface is substantial

in the central US, but the land’s energetic feedback on the atmosphere is comparatively weak.

Assessments of North American hydroclimate variability report that local evaporation in the

central US can be up to 4 times larger in models than in observationally constrained estimates,

suggesting land-atmosphere interactions are overemphasized in models (Ruiz-Barradas and

Nigam, 2005; Wu and Dickinson, 2005; Ruiz-Barradas and Nigam, 2006, 2013).

It is unclear if this disaccord betweenmodels and observations is due to amisrepresentation

of the land surface feedback in models or due to a lack of relevant land surface observations.

Reconciling models with observations will likely require a new way to characterize the land

surface feedback on SAT, one that doesn’t rely on specialized experiments or land surface

properties that are difficult to measure. The logical basis for a land surface feedback metric is

SAT variability, as demonstrated in GLACE (Koster et al., 2004b), but characterizing the "land

surface driven" portion of SAT variability is difficult because SAT variability depends also on

atmospheric circulation patterns (Wallace et al., 1995; Branstator and Teng, 2017). The influence

of atmospheric circulation on SAT must be accounted for in order to determine the influence of

the land surface.

A way to account for the influence of atmospheric circulation on SAT is through dynamical

adjustment. Traditionally, dynamical adjustment methods have been developed to identify and

remove the contribution of atmospheric circulation from SAT trends (?Wallace et al., 2012;

Smoliak et al., 2015; Saffioti et al., 2017). However, the method developed by Deser et al.

(2016) (henceforth, "dynamical adjustment"), can also be used to characterize the influence

of atmospheric circulation on interannual SAT variability. Dynamical adjustment leverages

the relationship between circulation and SAT (Lorenz, 1969) to empirically characterize the

SAT pattern associated with the large-scale atmospheric circulation present in a given month.

Removing this "dynamic" component of SAT leaves behind SAT anomalies that are likely related

to thermodynamic processes, such as the land surface feedback in the summer. Chapters 3

4



and 4 of this dissertation focuses on whether dynamical adjustment can be used to define a

land-atmospheric hot spot metric based solely on SAT and an indicator of circulation, such as

geopotential height or sea level pressure (SLP).

During extreme heat wave events, the influence of the land surface on SAT can extend

beyond interannual land-atmosphere hot spots. A region where this has been shown to occur

is continental Europe (Fischer et al., 2007a; Lorenz et al., 2010; Vogel et al., 2017). Europe

is situated in the vicinity of the polar jet stream and susceptible to persistent blocking events

that cause heat waves (Egger, 1978; Perkins, 2015). As the climate system warms, these

blocking-induced heat waves may become more frequent, intense, and persistent (e.g Schär and

Jendritzky, 2004; Meehl and Tebaldi, 2004; Beniston et al., 2007).

Soil conditions amplify or damp heat wave SAT. Beneath a blocking high, heat builds

and evaporative demand increases throughout the day as large-scale horizontal advection and

enhanced entrainment bring warm air to the boundary layer. The heat then remains beneath the

nocturnal boundary layer and accumulates, causing soils to dry further (Miralles et al., 2014).

By this mechanism, dry initial soil conditions increase the risk of dangerously extreme heat; with

no water to evaporate, the sensible heat flux exacerbates the event. Using an initial condition

ensemble of summers with the same heat wave circulation pattern and different initial land surface

states, we assess to what extent preseason soil moisture conditions exacerbate an exceptionally

hot European summer in Chapter 5.

5



Chapter 2

Summer U.S. Surface Air Temperature

Variability: Controlling Factors and AMIP

Simulation Biases

6
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ABSTRACT

This study documents and investigates biases in simulating summer surface air temperature (SAT) vari-
ability over the continental United States in the Atmospheric Model Intercomparison Project (AMIP) ex-
periment from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Empirical orthogonal
function (EOF) and multivariate regression analyses are used to assess the relative importance of circulation
and the land surface feedback at setting summer SAT over a 30-yr period (1979–2008). Regions of high SAT
variability are closely associated withmidtropospheric highs, subsidence, and radiative heating accompanying
clear-sky conditions. The land surface exerts a spatially variable influence on SAT through the sensible heat
flux and is a second-order effect in the high-variability centers of action (COAs) in observational estimates.
Themajority of theAMIPmodels feature high SAT variability over the central United States, displaced south
and/or west of observed COAs. SAT COAs in models tend to be concomitant and strongly coupled with
regions of high sensible heat flux variability, suggesting that excessive land–atmosphere interaction in these
models modulates U.S. summer SAT. In the central United States, models with climatological warm biases
also feature less evapotranspiration than ERA-Interim but reasonably reproduce observed SAT variability in
the region. Models that overestimate SAT variability tend to reproduce ERA-Interim SAT and evapo-
transpiration climatology. In light of potential model biases, this analysis calls for careful evaluation of the
land–atmosphere interaction hot spot region identified in the central United States. Additionally, tropical sea
surface temperatures play a role in forcing the leading EOF mode for summer SAT in models. This re-
lationship is not apparent in observations.

1. Introduction

There are many socioeconomic consequences of ex-
ceptionally warm summers in the continental United
States. Extreme summer temperatures can cause hun-
dreds of millions of dollars in crop damage (NOAA/
NWS 2015) and strain water resources in drought-prone
regions like the Southwest. In recent years, excessive
heat has become the number-one weather-related killer,
surpassing hurricanes, floods, tornadoes, and lightning
strikes (Thacker et al. 2008). Around 500 heat-related
deaths occurred in a one-week period during the 1995
Chicago heat wave (Whitman et al. 1997). Accurate
forecasts of U.S. summer surface air temperature (SAT)
will becomemore crucial as the climate systemwarms; it
is anticipated that North American heat waves will

become more intense, occur more frequently, and persist
longer in duration in the second half of the twenty-first
century (Meehl and Tebaldi 2004; Ganguly et al. 2009).
General circulationmodels (GCMs)must be shown to

simulate the current mean state and variability of sum-
mer SAT to bolster confidence in future projections of
summer climate, as processes governing SAT operate in
response to increased CO2 (Xie et al. 2015). SAT cli-
matology is determined by the distribution of solar in-
solation and orography. Interannual variations in SAT
about the mean state are driven by atmospheric circu-
lation and are much more challenging to simulate spa-
tially than global mean SAT. Because the atmosphere
loses memory of its initial state on subseasonal time
scales, models must rely on the slowly varying states of
the ocean and land surface for predictive skill (Koster
et al. 2006). Even if the model atmosphere responds
perfectly to forcings at the surface, near-term (from
annual to decadal) predictive skill is diminished by in-
ternal variability, which is intrinsic to chaotic systems
and inherently unpredictable because of its random
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temporal phase (Deser et al. 2012). Further uncertainty
arises from computational limitations that require sim-
plified numerical formulations and parameterizations of
subgrid-scale physical processes.
Despite the complexity of the climate system and the

practical limits of models, atmospheric GCMs forced
with observed sea surface temperatures (SSTs) are
generally skillful at capturing both the mean state and
variability of winter SAT over the continental United
States (Sheffield et al. 2013; Deser et al. 2014). In the
winter [December–February (DJF)], tropical forcings
are strong. SST anomalies associated with El Niño–
Southern Oscillation (ENSO) peak and exert influence
on the extratropical atmosphere through eddy-driven
changes in mean meridional circulation and stationary
planetary waves in the Pacific–North American (PNA)
sector (Seager et al. 2003; Kushnir et al. 2010; Zhou et al.
2014). The distribution of solar radiation in winter sets
up a strong meridional temperature gradient in the
Northern Hemisphere. In the free troposphere, the
meridional temperature gradient sustains tropical–
extratropical teleconnections by maintaining the zonal
jet stream. At the surface, atmospheric circulation
anomalies dictate SAT patterns by advecting air par-
cels across these gradients. The predictability of U.S.
winter SAT is enhanced because of the SST-forced
component of atmospheric variability.
In contrast during the summer [June–August (JJA)],

U.S. SAT variability is, to first order, the product of in-
ternal variability in the midlatitude atmosphere (Wallace
et al. 1995, 2015). The strong temperature gradient that
maintains the zonal structure of the westerly jet in the
winter weakens in the summer. Meanders in the upper-
tropospheric flow create high pressure systems that can
persist for weeks in the free troposphere (Charney and
DeVore 1979; Egger 1978). Subsiding air beneath these
blocking anticyclones warms adiabatically and is ac-
companied by clear skies and light winds, which are
conditions conducive to summer warming (Meehl and
Tebaldi 2004; Lau and Nath 2012). At the surface, the
semipermanent Pacific and Bermuda highs direct north-
westerly flow into the Pacific Northwest and southeast-
erly flow over the eastern seaboard. The circulation
reaching the continental interior also is anticyclonic in
structure, with a southerly jet along the SierraMadre that
brings moisture from the Gulf of Mexico to the Great
Plains (Nigam and Ruiz-Barradas 2006). Thermal anti-
cyclones also tend to form in July over cold polar regions,
like the snow and ice fields of Canada, and propagate
southeast over the continental United States (Zishka and
Smith 1980). The primary North American anticyclone
track lies over the Great Lakes and north-central United
States (Davis et al. 1997).

Although tropical SST is not the dominant driver of
U.S. summer SAT variability (Barlow et al. 2001), many
studies have noted a connection between tropical SST
forcing regions on the midlatitude summer atmosphere
(e.g., Shaw and Voigt 2015; Arblaster and Alexander
2012; Pegion and Kumar 2010; Schubert et al. 2009; Lau
et al. 2006; Sutton andHodson 2005;McCabe et al. 2004;
Higgins et al. 2000). Protracted La Niña events have
been associated with persistent droughts, notably the
large-scale midlatitude drying between 1998 and 2002
(Hoerling and Kumar 2003), the Texas drought and
heatwave of 2011 (Hoerling et al. 2013), and the Dust
Bowl of the 1930s (Schubert et al. 2004; Seager et al.
2005). Some studies (Ding and Wang 2005; Ding et al.
2011) suggest that model skill derives from the predict-
able zonal mean component of the circumglobal tele-
connection. Wang and Ting (1999) and Ting (1994)
showed that nonlinear interactions among monsoonal
heating-induced flows link U.S. summer climate to
convective regions near Asia in the NCEP–NCAR re-
analyses and GCMs. Kushnir et al. (2010) showed that
warm SSTs in the tropical North Atlantic can exert an
‘‘upstream’’ control on SAT by weakening the sub-
tropical North Atlantic anticyclone, driving northerly
cold advection and anomalous subsidence over North
America. SSTs associated with decadal modes of vari-
ability, such as the Atlantic multidecadal oscillation
(AMO) and Pacific decadal oscillation (PDO), can influ-
ence U.S. summer SAT by modulating the Great Plains
low-level jet, which brings warm,moist air from theGulf of
Mexico to the central United States (Weaver 2013).
Land surface conditions can also affect summer SAT

variability (Seneviratne et al. 2006; Lorenz et al. 2010),
in not too wet (energy limited) and not too dry (moisture
limited) soil moisture (SM) ‘‘hot spot’’ regions like the
central United States (Koster et al. 2004a,b, 2006;
Dirmeyer 2011; Berg et al. 2014). To describe relation-
ships between the atmosphere and the land surface, we
use ‘‘interaction’’ to refer to a general association be-
tween two variables, ‘‘coupling’’ to refer to the degree
one variable controls another, and ‘‘feedback’’ to refer
to a two-way coupling, following Lorenz et al. (2015).
For example, soil moisture–climate coupling refers to
the soil moisture control on SAT variability through the
sensible heat flux. Zhang et al. (2008) investigated
the role of the land–atmosphere coupling on U.S. sum-
mer climate variability using regional climate models
and found that the strong coupling between soil mois-
ture and daily mean temperature contributed 30%–60%
of the total interannual SAT variance in the south-
western, north-central, and southeastern United States.
Land–atmosphere interactions occur primarily through

the surface energy balance. Terrestrial water acts to
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partition outgoing energy into latent heat flux at the
expense of sensible heat fluxQH, resulting in cooler SAT
(Seneviratne et al. 2010). When atmospheric conditions
are stable under anticyclones, the positive feedback
between the land and atmosphere allows the sensible
heat flux to enhance warm temperatures and increase
SAT variability. Warm, dry conditions come with a high
atmospheric demand for water, reducing soil moisture.
Without water to evaporate, more outgoing energy is
available to heat the atmosphere (Seneviratne et al.
2010; Miralles et al. 2012). Soil desiccation has been
shown to contribute to mega-heat waves in Europe
(Fischer et al. 2007a,b; Miralles et al. 2014), but fewer
studies have assessed the impact of the land surface
on severe temperature extremes in the United States
(Diffenbaugh et al. 2005). Assessments of North Amer-
ican hydroclimate variability suggest that land–atmosphere
interactions are overemphasized in models during
the warm season and report that local evaporation in
the central United States can be up to 4 times larger
in models than in observationally constrained esti-
mates (Ruiz-Barradas and Nigam 2005; Wu and
Dickinson 2005; Ruiz-Barradas and Nigam 2006,
2013). Mueller and Seneviratne (2014) also document
land hydrological and climate biases and highlight the
overestimation (underestimation) of temperature (evap-
oration) in central U.S. climatology in CMIP5 simula-
tions. Quantification of land surface coupling during the
warm season is cited as a high research priority (Perkins
2015), and the land surface is thought to be key in im-
proving model forecasts of SAT on seasonal time scales
(Koster et al. 2011).
While the circulation and land surface controls on

summer SAT variability are generally recognized, gaps
exist in quantifying the relative importance of the in-
volved physical mechanisms (Perkins 2015) and in sys-
tematically evaluating summer variability in climate
models.Models are important for prediction, projection,
and attribution, but careful investigation and docu-
mentation of their skills and errors are required before
their output can be used with confidence. The present
study evaluates the performance of atmospheric models
in simulating summer SAT variability over the conti-
nental United States; this is one of few such CMIP5 as-
sessments to our knowledge. Evaluations of model SAT
benefit from the excellent accuracy and coverage of U.S.
SAT measurements, which constrain gridded products
from atmospheric reanalyses. In addition, summer SAT
is strongly affected by land–atmosphere interactions,
which in turn can be evaluated using SAT. To document
model skill, we present maps of U.S. summer SAT var-
iability and contrast them with their winter, higher-skill
counterparts. In summer, the regions of high SAT variance

differ spatially between observations and models, a dis-
crepancy that we suggest is due to an excessively strong
central U.S. land–atmosphere interaction in models. To
evaluate this hypothesis, we assess the relative importance
of circulation and the land surface at setting summer SAT
and examine the effects of the SST-forced and internal
components of variability in the midlatitude summer at-
mosphere. This study assesses the nature and sources of
U.S. summer SAT variability in the AMIP experiment,
with the aim of validating its predictive capability.
We organize the remaining sections as follows. The

observational datasets, model experiments, and methods
are described briefly in section 2.Observational andmodel
estimates of U.S. summer SAT climatology and variability
are documented in section 3, and model skill is contrasted
between summer and winter. In section 4, the relative
importance of circulation and the land surface on observed
and simulated JJA SAT variability is evaluated. The land
surface’s role in climatological SAT model biases is also
assessed. Other potential causes for model biases are ex-
plored in section 5, including differences in SST forcing
regions and the lead–lag response to ENSO variability. A
summary of findings and discussion of the complexities of
the land–atmosphere interaction are given in section 6.

2. Observational estimates, simulations,
and methods

a. Observational estimates

We use the European Centre for Medium-Range
Weather Forecasts (ECMWF) interim reanalysis
(ERA-Interim) for monthly mean SAT, 500-hPa geo-
potential heightZ500, and surface fluxes (Dee et al. 2011)
on a 1.58 latitude3 1.58 longitude grid from 1979 to 2008.
For verification, we use NCEP North American Re-
gional Reanalysis (NARR;Mesinger et al. 2006). Spatial
patterns of variability are similar for the reanalysis
products, so for conciseness we present maps based on
the ERA-Interim fields. (Relationships between SAT,
Z500, and the land surface in Figs. 5 and 6, described in
greater detail below, are presented for both ERA-
Interim and NARR.)
ERA-Interim 30-yr JJA SAT, Z500, QH climatology,

and regions of the United States used to describe the
spatial structure of the considered fields are shown in
Fig. 1. For clarity, we will refer to ERA-Interim SAT
and Z500 as observed because the fields are well mea-
sured and thus well constrained in reanalysis products.
However, it is important to acknowledge shortcomings
in reanalysis surface flux estimates. By design, water and
energy budgets are not closed in reanalysis products,
and surface flux observations are spatially sparse and
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temporally limited. Because surface fluxes are not well
constrained, studies recommend exercising great caution
when using them (e.g., Trenberth et al. 2011; Ferguson
et al. 2012). For this reason, we will consider interannual
variations and spatial patterns of ERA-Interim surface
flux estimates in this assessment but not base any conclu-
sions on the magnitude of the fluxes themselves.

b. AMIP experiments

For comparison with reanalysis fields, we use monthly
mean SAT, Z500, and surface fluxes from 14 models in
the CMIP5 AMIP experiment (Taylor et al. 2012). In
each model, AMIP runs are initialized months prior to
January 1979 with different atmospheric states to form
initial condition ensembles with between 2 and 10 en-
semble members. All 14 initial condition ensembles are
combined to form an all-model ensemble with 58
members. In addition to time-evolving external forcings,
the AMIP runs are forced by observed SST and sea ice
states. Land surface states interact with the atmosphere
and vary among modeling groups. Salient information
about each model used is given in Table 1, with further
details given in Table 9.A.1 of the Intergovernmental
Panel on Climate Change (IPCC) Fifth Assessment
Report (AR5; Flato et al. 2013). The CMIP5 all-model
ensemble climatologies are shown in Fig. 1 (right).
Models vary in their ability to capture observed SAT
climatology over the continental United States, and
many feature warm biases in the central United States.
We will consider model climatological biases as we as-
sess model performance in depicting SAT variability.

c. Methods

SAT variability is characterized as the standard de-
viation in seasonally averaged, ocean-masked SAT fields
within 248–528N and 458–1458W. Winter averages are
formed over DJF and summer averages over JJA. For the
AMIP ensembles, the interannual variance of the 30-yr
record (1979–2008) is computed for each member, then
averaged over the ensemble and square rooted to avoid
suppressing the internal component of variability. To
emphasize spatial variability, the standard deviations de-
picted in Figs. 2 and 3 are scaled by their domain-average
standard deviations, which are reported in the lower right
corner of each panel. Model fields are plotted on their
native grids in Figs. 2 and 3 and are regridded to the re-
analysis grid (1.58 3 1.58) for the remaining figures.
Empirical orthogonal function (EOF) analysis is used

to describe dominant modes of JJA SAT variability.
EOFs are computed after removing a mean and linear
trend from the JJA SAT time series and applying a
square root cosine latitude spatial weighting. Each EOF
spatial mode has an associated temporal coefficient, or
principal component (PC). For the AMIP ensembles, an
EOF analysis is performed on both 1) the ensemble
mean and 2) the concatenated n by 30-yr record of the
JJA averaged fields, where n is the number of member
runs for each model. Averaging across ensemble members
suppresses the internal variability present in each indi-
vidual realization, emphasizing the model’s response to
external forcing (Deser et al. 2015). Concatenating
realizations preserves both the forced and internal
components that comprise the observed variability.

FIG. 1. The 30-yr climatology (1979–2008) of (top) SAT, (middle)Z500, and (bottom)QH for (left) ERA-Interim and
(right) the all-model ensemble.
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Correlations of the leading JJA SAT principal com-
ponent (PC1) with Z500 and QH are computed for each
grid point. This method highlights regions of temporal
covariability between SAT and potential dynamic (cir-
culation) and thermodynamic (surface flux) controls.
The 95% significance is determined by assuming a Stu-
dent’s t distribution with N 2 2 degrees of freedom,
where N is the number of years in the record. When
anomalies are spatially similar, temporally coincident, and
physically consistent, we infer relationships between fields.
A local multivariate regression analysis and calcu-

lation of the soil moisture–climate coupling proposed
by Dirmeyer (2011), Dirmeyer et al. (2013a,b), and
Dirmeyer et al. (2014) are used to further examine re-
lationships between JJA SAT, Z500, and QH. JJA SAT,
Z500, and QH are averaged in boxed regions within the
SAT centers of action (COAs), and the resulting time

series are normalized by their standard deviations. We
interpret the Z500 andQH regression coefficients bZ and
bQ as indicators that SAT variability within the COA is
associated with atmospheric circulation and local sen-
sible heat flux, respectively.
The pathway for SM anomalies to influence the at-

mosphere in the COA is assessed through the Dirmeyer
soil moisture–climate coupling metric ISM–SAT described
in Lorenz et al. (2015):

ISM–SAT 5s(SAT)r(SM,Q
H
)r(Q

H
, SAT). (1)

The metric ISM–SAT accounts for the terrestrial segment
(SM–QH) and atmospheric segment (QH–SAT) of the land
surface feedback through correlations r and is suppressed in
regions of low SAT variability by s(SAT) (Dirmeyer
2011; Dirmeyer et al. 2013a,b, 2014). We evaluate the

TABLE 1. Salient information about the CMIP5 AMIP experiments used. The values in parentheses under the gridpoint resolution
column are the spectral truncation of the model resolution. (Expansions of acronyms are available online at http://www.ametsoc.org/
PubsAcronymList.)

Model acronym Abbreviation Institute Members
Gridpoint resolution

(lat 3 lon) Citation

All-model ensemble All 58 121 3 240
BCC_CSM1.1(m) BCC Beijing Climate Center 3 160 3 320 (T106) Wu et al. (2014)
CanAM4 CAN CanadianCentre for Climate

Modelling and Analysis
4 64 3 128 (T42) Arora et al. (2011)

CMCC-CM CMCC Centro Euro-Mediterraneo
per I Cambiamenti
Climatici

3 240 3 480 Scoccimarro et al. (2011)

CSIRO Mk3.6.0 CSIRO Commonwealth Scientific
and Industrial Research
Organisation in collabo-
ration with the Queens-
land Climate Change
Centre of Excellence

10 96 3 192 (T63) Rotstayn et al. (2012)

GFDL CM3 GFDL Geophysical Fluid Dynamics
Laboratory

5 90 3 144 Donner et al. (2011)

GISS-E2-R GISS NASAGoddard Institute for
Space Studies

6 90 3 144 Kim et al. (2012)

IPSL-CM5A-LR IPSL L’Institut Pierre-Simon
Laplace

5 96 3 96 Dufresne et al. (2013)

FGOALS-s2 LASG LASG, Institute of Atmo-
spheric Physics, Chinese
Academy of Science

3 108 3 128 Bao et al. (2013)

MIROC5 MIROC Atmosphere and Ocean
Research Institute (The
University of Tokyo),
National Institute for
Environmental Studies

2 128 3 256 (T85) Watanabe et al. (2010)

HadGEM2-A MOHC Met Office Hadley Centre 3 145 3 192 Collins et al. (2011)
MPI-ESM-MR MPI Max Planck Institute for

Meteorology
3 96 3 192 (T63) Giorgetta et al. (2012)

MRI-CGCM3 MRI Meteorological Research
Institute

3 160 3 320 (T106) Yukimoto et al. (2012)

CCSM4 NCAR National Center for Atmo-
spheric Research

5 192 3 288 Gent et al. (2011)

NorESM1-M NCC Norwegian Climate Centre 3 96 3 144 Bentsen et al. (2013)
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relationship between mean SAT and mean evapotranspi-
ration with a second soil moisture–temperature coupling
estimate proposed by Seneviratne et al. (2006), r(evapo-
transpiration, SAT), which gives insight into climatological
biases in the central United States. Finally, we consider the
role of the global ocean through remote atmospheric
pathways on U.S. summer SAT by regressing SSTs and
300-hPa heights Z300 on JJA SAT PC1.

3. SAT variability—DJF versus JJA

In boreal winter, the jet stream is strong and tropical
SST anomalies peak, providing the foundation for tele-
connections such as the PNA pattern to influence U.S.
SAT. Standard deviationmaps (Fig. 2) illustrate how the
various models depict spatial patterns of winter SAT
variability. The 30-yr DJF SAT climatology is shown in
black contours, with values ranging from2158 to 158C in
58C increments. Both observed and modeled winter
SAT climatologies have a zonal-banded structure, with
the exception of lower temperatures at high altitude
over the Rocky Mountains. From year to year, winter
temperatures fluctuate most1 by up to 2.98C in a region

that extends down from western Canada over the north-
central United States. Because advection of the mean
SAT gradient by anomalous circulation dominates over
other mechanisms (Thompson and Wallace 2000), this
feature is captured inmost AMIPmodels and the spatial
structure of DJF SAT variability is well represented in
CMIP5. The magnitude of DJF SAT variability in the
domain tends to be higher in models than in observa-
tions, which is due to higher values of variability in the
southeastern and south-central United States. Models
with more members, such as CSIRO Mk3.6.0, have
higher skill in reproducing observed variability, illus-
trating the power of larger ensembles to represent re-
alistic internal variability in the presence of model error
(Kay et al. 2015).
Model simulations of SAT variability over the con-

tinental United States are less similar to observational
estimates in the summer than they are in the winter
(Fig. 3). In the summer, observed climatological tem-
peratures range from about 108C over the Rocky
Mountains to 358C in the Mojave and Sonoran Desert
regions of the Southwest. Aside from these regions, the
observed JJA SAT climatology also has a zonal structure.
A major discrepancy between observed and modeled JJA
SAT climatology is a meridional warm bias spanning the
central United States, which occurs in 9 of the 14 models
and in the all-model ensemble [Fig. 1 (top right) and

FIG. 2. DJF SAT standard deviation maps (color) for 1979–2008. The observed variability is presented in the panel labeled ‘‘ERA-
Interim.’’ Eachmap contains themean SAT (8C; black contours ranging from2158 to 158Cwith an interval of 58C).Maps are scaled by the
domain-average standard deviation (given in red in the lower right corner).Models reproduce the spatial structure ofDJF SATvariability,
which is largest in the north-central United States.

1While the maps in Figs. 2 and 3 are scaled by their domain-
averaged s, values of variability reported in section 3 are unscaled.
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Fig. 3]. Causes of this warm bias are investigated in
section 4.
Interannual variations in SAT are less localized and

less pronounced in summer than in winter. ERA-
Interim JJA temperatures vary by 18–1.28C over much
of the United States, with lower variability (;0.58C)
along the southeastern seaboard due to the thermal in-
ertia of the Gulf Stream. The largest JJA SAT vari-
ability (1.68C) occurs in the southern northwest Great
Basin cold desert and north-central Great Plains, on
either side of the RockyMountain range. This pattern of
summer SAT variability is poorly simulated in most of
the AMIP models, which tend to feature regions of high
variability in the central United States. Most models
feature either a large swath of variability over the north-
central United States [e.g., BCC_CSM1.1(m), CSIRO
Mk3.6.0, and CCSM4] or a highly localized COA in the
south-central United States (e.g., CMCC-CM, GISS-
E2-R, and MRI-CGCM3). In MRI-CGCM3, SAT vari-
ability over Kansas and the Oklahoma Panhandle exceeds
2.18C, doubling observed values in the region.
Models with JJA SAT COAs in the south-central

United States tend to have SAT climatologies that are
similar to observed. Models with JJA SAT COAs in the
north-central United States have pronounced warm
biases in the south-central United States. We conjecture
that model skill in simulating U.S. summer SAT will
improve if the causes of the warm bias and spurious

variability in the central United States are identified and
managed.

4. Relative importance of circulation versus
land–atmosphere coupling

We examine summer SAT interannual variability in
theAMIPmodels by considering the leading EOFmode
(EOF1; Figs. 4a,d). The associated time series (PC1) is
correlated with JJA Z500 (Figs. 4b,e) andQH (Figs. 4c,f)
time series at each grid point. This method is used to
demonstrate association between SAT and the main
physical processes that are expected to contribute to its
variability and to identify the relative importance of
these contributions in the central U.S. model COAs.We
focus on EOF1 because it features a dominant COA
centered in the north-central United States and
captures a sizable percentage (38%) of the domain-
integrated, normalized variance in the 30-yr reanalysis
record. Model EOF1s feature the regions of high SAT
variability (Fig. 3) that we are interested in evaluating.
The boxed region (98 3 158) in each panel corresponds
to the region of highest SAT variability in each EOF1.
In the observed COA, SAT interannual variability

correlates highly with Z500, indicating the importance of
midtropospheric highs in establishing warm SATs in this
region (Meehl and Tebaldi 2004; Lau and Nath 2012).
ERA-InterimQH and SAT are marginally correlated in

FIG. 3. As in Fig. 2, but for JJA SAT. Models show a discrepancy in the position and strength of high-variability COAs in JJA SAT.
Model COAs tend to occur over the south-centralUnited States, a region that also features a climatological warmbias inmanymodels (8C;
black contours ranging from 158 to 358C with an interval of 58C).
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the COA, positively correlated in the southeastern and
south-central United States, and negatively correlated
in the Southwest. ERA-Interim correlations that exceed
60.36 are different than zero at the 95% significance
level and are stippled in Fig. 5. Significant positive SAT–
QH correlations in the eastern United States indicate a
prominent land surface feedback, with warm SATs in
the region amplified by soil desiccation (Findell and
Eltahir 2003). Correlations in the southwestern portion
of the United States fall below the 95% significance
threshold likely because the region is moisture limited
(Seneviratne et al. 2010) so surface fluxes are rarely
large enough to influence SAT variability.
In theAMIP experiment, all but twomodels have JJA

SAT EOF1s that resemble the observed north-central
U.S. COA pattern. However, model COAs tend to ex-
tend either farther west (CanAM4, CSIRO Mk3.6.0,

MIROC5, and IPSL-CM5A-LR) or south (CMCC-CM,
GFDL CM3, MPI-ESM-MR, and NorESM1-M) than
observed. The two model exceptions have COAs in the
Southwest (GISS-E2-R) and south-central United
States (MRI-CGCM3), similar to their respective vari-
ability patterns in Fig. 3. As in observations, models tend
to capture the relationship between surface temperature
and midtropospheric circulation, with high SAT–Z500

correlations in the COAs. However, the highest model
SAT–Z500 correlations are not centered within the
boxed region of highest SAT variability in all cases (e.g.,
CMCC-CM, HadGEM-A, and NorESM1-M).
A notable difference between the models and ERA-

Interim is the high model SAT–QH correlations found
within the COA regions (boxed regions in Figs. 4c,f).
Moreover, the general shape and position of the
COA closely resemble the QH projection. In contrast,

FIG. 4. (a),(d) JJA SATEOF1 and correlations between PC1 and (b),(e) Z500 and (c),(f)QH. Percent of normalized variance explained
by SAT EOF1 is given in the lower right of (a),(d). Boxes show the location of high-variability SAT COA regions that will be used for
a local regression analysis.
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ERA-Interim shows weak SAT–QH correlations in the
north-central U.S. COA. We interpret the high SAT–
QH model correlations as an indication that spurious
SAT variability in the AMIP models may be due to QH

fluctuations contributing an unrealistically high land–
atmosphere coupling compared to observational estimates.
To examine further the relationships between JJA

SAT and Z500 and QH, we apply a multivariate re-
gression analysis within SAT COAs. Each variable is
spatially averaged within the boxed regions indicated in
Fig. 4 and normalized by the standard deviation. We
regress SAT onto Z500 and QH to obtain regression co-
efficients bZ and bQ, respectively, with confidence in-
tervals computed assuming serially independent time
series. If bZ exceeds bQ, we categorize variability in the
SAT COA as more closely associated with atmospheric
circulation patterns than with the land surface (green
region in Fig. 5a). In ERA-Interim, bZ (0.92) exceeds

bQ (0.09), demonstrating a clear association between at-
mospheric circulation and SAT variability in the COA.A
similar relationship is found in NARR, with bZ 5 0.91
and bQ5 0.14.Only onemodel, FGOALS-s2, has similarly
attributed COA SAT variability, with bZ 5 0.93 and bQ 5
0.07. The majority of models fall within the circulation-
associated regime with less separation than ERA-Interim
between theZ500 andQH regression coefficients; in the all-
model ensemble, bZ 5 0.62 and bQ 5 0.46.
If bQ exceeds bZ, variability in the SAT COA is cat-

egorized as more closely associated with variations in
the local sensible heat flux than with circulation (red
region of Fig. 5a). AMIP models with shifts in the po-
sition of the COA relative to observed, such as GISS-
E2-R, fall within the surface-flux-dominated regime.
Models with striking regions of high SAT variability in
the central United States (CMCC-CM, MPI-ESM-MR,
and MRI-CGCM3) have a large discrepancy in SAT
control attribution with their average bQ (0.72) doubling
their bZ (0.36).
To accompany the regression analysis, the Dirmeyer

soil moisture–climate coupling metric [Eq. (1)] and its
constituents for the box-averaged regions within the
COAs are shown in Fig. 5b. The metric comprises the
correlations between soil moisture and sensible heat flux
(the terrestrial segment, blue bar) and between sensible
heat flux and SAT (the atmospheric segment, cyan bar),
which are weighted by the standard deviation of SAT
(red bar). For the CMIP5 models, we use total soil
moisture content because it is an output provided by all
but two modeling centers (GFDL and LASG). Root
zone (;0–70 cm) soil moisture is likely more suitable for
this analysis, but Dirmeyer (2011) showed that although
total column soil moisture–based metric values are muted
with respect to surface soil moisture–based values, their
spatial patterns are consistent.
Most models and the all-model ensemble show values

of ISM–SAT that exceed both ERA-Interim (20.35) and
NARR (20.44) values (average dashed in Fig. 5b),
supporting the visual evidence of a strong relationship
between the land and atmosphere in the COA. IPSL-
CM5A-LR and MIROC5 have lower values of the soil
moisture–climate coupling because of lower than aver-
age SAT variability combined with a weak terrestrial
(MIROC5) or atmospheric (IPSL-CM5A-LR) coupling
segment. Models with the largest ISM–SAT are surface-
flux-dominated models, MPI-ESM-MR (21.18), MRI-
CGCM3 (21.07), and CMCC-CM (21.00). In the same
regions, ERA-Interim and NARR ISM–SAT do not ex-
ceed 20.49 (not shown). These regions of strong land–
atmosphere coupling in the surface-flux-dominated
models roughly coincide with the land–atmosphere in-
teraction hot spot region defined in other studies (e.g.,

FIG. 5. (a) A comparison of Z500 andQH multivariate regression
coefficients (bZ and bQ), with 95% confidence intervals, and (b) the
Dirmeyer soil moisture–climate coupling metric and its constitu-
ents calculated in the boxed averaged region within the COA. If bZ
exceeds bQ, as it does in observations (ERA-Interim in black and
NARR in gray), variability in the SAT COA is more closely as-
sociated with atmospheric circulation patterns (green region). If bQ
exceeds bZ, variability in the SAT COA is more closely associated
with variations in the local sensible heat flux (red region). In (b),
the red bars are the box-averaged standard deviation of SAT, blue
bars are the magnitude of the soil moisture–QH correlation (which
is negative), and teal bars are theQH–SAT correlation. All but one
model ISM–SAT (black bars) exceed the average observed ISM–SAT

(20.42, dashed line).
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Ruiz-Barradas and Nigam 2005; Koster et al. 2004a,b).
However, land–atmosphere interactions in these hot
spot regions appear to be both excessive with respect
to observational estimates and a main contributor
to spurious model SAT variability in the central
United States.
Biases inmean summer SAT also have been related to

biases in evapotranspiration (Mueller and Seneviratne
2014). We evaluate the relationship between mean SAT
and evapotranspiration (Fig. 6) and focus on 338–458N,
928–1018W, a region of climatological warm bias in the
central United States, where SAT in the all-model en-
semble exceeds observed SAT bymore than 58C (Fig. 6a).
The region coincides with the meridional strip of evapo-
transpiration bias, where ERA-Interim values exceed
all-model ensemble values by more than 1.5mmday21.
Mean SAT in the region is plotted against mean
evapotranspiration in Fig. 6b, and there is a statistically
significant linear relationship between SAT and evapo-
transpiration. Higher (lower) evapotranspiration means
less (more) energy is available to heat the atmosphere,

so wetter (drier) models tend to be less warm (warmer)
in the central United States.
Models with near observed mean SAT in the region

are the same models that have excessive, land surface–
linked SAT variability in the central United States
(Fig. 6b, diamonds). In this case, themodels have similar
values of mean central U.S. evapotranspiration to ERA-
Interim but larger interannual surface flux variations in
the region, with standard deviations exceeding ERA-
Interim by up to 0.45mmday21. Models with a clima-
tological warm bias in the central United States can be
up to 88C warmer than observed but have circulation-
associated SAT variability in their COAs, similar to
observed (Fig. 6b, squares). Because these models have
lower mean values of evapotranspiration, fluctuations in
soil moisture have less effect on the atmosphere.
The land–atmosphere coupling strength is estimated

through the correlations between seasonal mean SAT
and evapotranspiration, a relationship that has shown
pattern agreement with more rigorous measures of land–
atmosphere coupling obtained through performing

FIG. 6. (a) ERA-Interim–all-model ensemble (left) SAT and (right) evapotranspiration showing the climato-
logical warm and dry bias in the central United States (boxed region; 338–458N, 928–1018W). (b) The average
evapotranspiration (mm day21) vs average SAT (8C) in the central United States showing a linear relationship in
the central United States; less evapotranspiration leads to a climatological warm bias in models. Squares indicate
models with circulation-associated SAT variability, and diamonds indicate models with surface-flux-associated
SAT variability in the COA. (c) Correlations between box-averaged evapotranspiration and SAT give an estimate
of land–atmosphere coupling strength.
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prescribed and freely varying soil moisture experiments
(Koster et al. 2006; Seneviratne et al. 2006). Negative
correlations suggest a soil moisture control on fluxes to
the atmosphere and temperature, although correlations
become less meaningful as the magnitude of evapo-
transpiration diminishes (Seneviratne et al. 2006). The
central United States is considered a transition region,
limited by the availability of neither moisture nor radi-
ation (Seneviratne et al. 2010), so we feel that the
evapotranspiration–temperature correlation gives in-
sight into the land–atmosphere coupling in our region of
interest. All models have high evapotranspiration–
temperature correlations in the region, exceeding
ERA-Interim (NARR) correlations by 0.55 (0.41) on
average, which further indicates models have a more
robust land–atmosphere coupling than has been ob-
servationally estimated.
In summary, local regression analysis supports the

visual SAT–control relationships established in our
EOF analysis. We find that the land surface plays a
larger role in setting U.S. summer SAT variability in the
AMIP experiment than in ERA-Interim. The land–
atmosphere coupling is considerably stronger in models
than in ERA-Interim, both in regions of high SAT var-
iability and in regions of climatological warm biases.
Models with high SAT variability in the south-central
United States feature clear covariability between COA
SAT and QH. Models with more realistic SAT variability
in the central United States tend to have a climatological
warm bias. We conclude that strong land–atmosphere in-
teractions along with climatological surface flux biases are
responsible for spurious U.S. summer SAT variability in
the AMIP ensemble.

5. SST forcing

While we attribute spurious U.S. summer SAT vari-
ability to an enhanced land surface feedback in the
AMIP ensemble, other forcing biases can also contrib-
ute. SST variability in the equatorial Pacific, tropical
Atlantic, and Indian Oceans can influence the mid-
latitude atmosphere and thus SAT variability over land.
Regressing global SSTs onto JJA SAT PC1 illustrates
potential SST forcing regions that impact common pat-
terns of U.S. summer SAT. SSTs are prescribed over the
30-yr AMIP period, so biases arise from how the modeled
atmosphere responds to slowly varying ocean states.
To evaluate model bias in SST forcing, correlations

among SAT model PCs, defined as r(Mi, Mj) for the
correlation between model i and model j, are scattered
against the average of the observed (obs)–model cor-
relation pair [r(Mi, obs)1 r(Mj, obs)]/2 in Fig. 7. Be-
cause observed SAT variability includes an internal

component as well as an SST-forced component, both
ensemble mean PC pairs [black circles in Fig. 7 (top),
forced component] and the average of individual re-
alization PC pairs [red triangles in Fig. 7 (top), both
forced and internal components] are considered. Cor-
relations between observed and model PCs are all pos-
itive, which suggests a robust SST forcing. The black
circles fall to the right of the one-to-one line, with cor-
relations among ensemble mean PCs exceeding those
between ensemble mean and observed PCs. This in-
dicates that the models have similar, robust responses to
the prescribed ocean forcing, despite having differences
in physical and numerical formulations. Individual re-
alization PCs correlate less strongly with observed than
ensemble mean PCs (Fig. 7, bottom), and the scatter of
red triangles around the one-to-one line is consistent
with the effect of random internal variability. In the
presence of internal variability, models are no more cor-
related with each other than they are with observations.

FIG. 7. (top) JJA SAT principal component correlations among
model pairs (x axis) and average reanalysis–model pair correlation
(y axis). Ensemble mean PC1s represent the forced component of
variability (black circles) and individual realization PC1s represent
the forced and internal components of variability (red triangles).
(bottom) Correlations between modeled and observed JJA SAT
PC1s, with the threshold for 95% significance indicated by the
lower boundary of the gray shaded region.
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The bar graph in Fig. 7 (bottom) also shows which models
share a forced component of summer SAT variability with
ERA-Interim.Models in theAMIP experiment are forced
with observed SSTs, so significant correlations between
modeled and observed PCs arise from a common response
to the shared boundary condition. For those models ex-
hibiting significant correlations, we evaluate SST and cir-
culation patterns associated with JJA SAT EOF1.
Potential regions of SST forcing (color) are high-

lighted in JJA SAT PC1–SST regression maps in Fig. 8.
SSTs are regressed onto SAT PC1s, normalized by their
standard deviation, to illustrate the variation (8C) in SST
per standard deviation of SAT variability. Regions of
the global ocean where SST correlates significantly
(95%) with JJA (ensemble mean) SAT PC1 are stip-
pled. SST influence can be felt over land through the
atmosphere, so upper-tropospheric heights (i.e., Z300),
regressed on normalized JJA SAT PC1, are contoured
to show the associated circulation patterns.
In ERA-Interim, sizable patches in the North Pacific,

the tropical and North Atlantic, and the Caribbean Sea
covary with the leading mode of JJA SAT. Correlations
are notably not significant in the equatorial Pacific
ENSO forcing region, emphasizing that there is not a
substantial pathway for ENSO to influence the extra-
tropical atmosphere over the United States in boreal
summer (Barlow et al. 2001). Significant correlations in
the Caribbean Sea illustrate the pathway for surround-
ing oceans to influence summer climate in the conti-
nental interior through the Great Plains low-level jet
(Ruiz-Barradas and Nigam 2006; Weaver 2013). The
wavy structure of observedZ300 anomalies in theNorthern
Hemisphere midlatitudes is characteristic of spatially or-
ganized internal variability. Significant correlations be-
tween JJA SAT PC1 andmidlatitude Atlantic SST appear
to be due to the covariability between COAs within the
internally generated midlatitude zonal wave train.
The AMIP models, however, appear to be highly

sensitive to ENSO’s influence in the concurrent summer.
Significant negative correlations in the eastern equatorial
Pacific and positive correlations in the western tropical
Pacific tie model summer warming to an ocean described
as ‘‘perfect’’ for widespread midlatitude drying (Hoerling
andKumar 2003).Models shown do not feature significant
correlations in the Caribbean Sea, suggesting an absence
of Great Plains low-level jet–driven climate variability in
AMIP simulations, consistent with the findings of Ruiz-
Barradas and Nigam (2006). Model Z300 anomalies are
generally positive in themidlatitudes in either hemisphere.
The interhemispheric symmetry of these zonal bands of
high pressure is indicative of tropical SST forcing.
Lead–lag correlations betweenU.S. summer SAT and

the seasonally averaged Niño-3.4 index show how

models are sensitive to ENSO conditions (Fig. 9). Ob-
served lead–lag correlations (thick black line in Fig. 9) are
compared to ensemble mean PC correlations (colored
lines in Fig. 9a) and to individual model realizations (thin
gray lines in Fig. 9b). The realization that most resembles
observations in Fig. 9b is highlighted in blue. Correlations
that fall within the shaded regions are significant at 95%.
In observations, JJA SAT PC1 does not significantly
correlate with the Niño-3.4 index until the subsequent
winter–spring [from February–April (FMA) toMay–July
(MJJ)], indicating an association between JJASATEOF1
and a developing ENSO event. All but two ensemble
mean PC1s, representing SST-forced SAT variability,
correlate significantly with the Niño-3.4 index in the an-
tecedent winter–spring, with correlations peaking at a
two-month lead [April–June (AMJ)]. All ensemble mean
PC1s correlate with the Niño-3.4 at lag 0, illustrating the
role La Niña conditions may play in warm summer con-
ditions over the United States in models. Individual re-
alizations show a complex correlation picture owing to the
presence of internal variability in each PC1. The average
across all realization correlations is shown in red in Fig. 9,
which crosses the 95% significance threshold in AMJ.
Because the preseason ENSO-forced signal emerges even
in the presence of internal variability, the response of the
model atmosphere to SST variability must also be ad-
dressed to reduce summer SAT biases.

6. Conclusions

We show that while winter SAT variability over the
continental United States is well represented in the
AMIP experiment, the AMIP models do not reproduce
observed patterns of U.S. SAT variability in boreal
summer. TheAMIPmodels evaluated here feature either a
spurious region of high summer SAT variability displaced
south and/or west of observed or a significant climatologi-
cal warmbias in the centralUnited States. To address these
errors, we investigate potential sources of excessive U.S.
summer SAT variability in the AMIP experiment. In
observations, the leading mode of U.S. summer SAT var-
iability between 1979 and 2008 is associated with a large-
scale anticyclone over the north-central United States.
Significant correlations between SAT EOF1 and QH

suggest that the land surface contributes to variability on
the margins of the observed COA but is a second-order
influence in the region of highest SAT variability. The
majority of models have JJA SAT EOF1s that resemble
the observed COA, but all feature variability extending
farther south and/or west than observed to coincide with
regions of high sensible heat variability. Models with
enhanced SAT variability over the central United States
show high temporal correlations between SAT and QH
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in their COAs, which suggests a robust land–atmosphere
coupling in that region.
To quantify the relative contributions of circula-

tion (Z500) and the land surface (QH) on JJA SAT
variability, a multivariate regression is performed in
the regions of highest variability within each SAT

EOF1 COA. Spurious central U.S. SAT variability
associates more closely with variations in sensible heat
than with variations in circulation and occurs in regions
where the land and atmosphere are strongly coupled.
Models with QH-dominated SAT variability have higher
values of mean evapotranspiration in the central United

FIG. 8. Maps show regression of SST (color) and Z300 (contours) on normalized JJA (ensemble mean) SAT PC1.
Regions of significant correlations (95% confidence) between SAT PC1 and SST are stippled. Models shown have
statistically significant correlations between their ensemble mean JJA SAT PC1 and observed JJA SAT PC1 (Fig. 7,
bottom). Positive Z300 contours (black) range from 2 to 30m, and negative contours (light gray) range from 22 to
214m in 4-m intervals. The 0m contour is dashed in dark gray. The regressions can be interpreted as the di-
mensioned variation in SST (8C) or Z300 (m) per standard deviation of SAT PC1.
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States than models with circulation-associated SAT vari-
ability. These higher values aid in setting realistic SAT
climatology in the central United States but contribute
to additional SAT variability. Models with circulation-
dominated SAT variability tend to have a climatological
warm bias in the central United States, with mean
summer temperatures up to 88C warmer than observed.
This warm bias is tied to lower mean evapotranspiration
in the region than observed, which results in the land
surface having a more realistic influence on SAT vari-
ability. All models evaluated appear to have land surface–
associated SAT biases in the central United States.
Addressing issues with the bulk land–atmosphere in-

teraction is challenging as the exchanges of energy,
water, and momentum between the surface and atmo-
sphere are complex and largely taking place at subgrid
scales (e.g., Ek and Holtslag 2004; Sellers et al. 1997).
Our understanding of large-scale land–atmosphere in-
teractions is rapidly improving, but current observations
are spatially and temporally insufficient to be used to
‘‘tune’’ relevant model parameters. Land surface model
grid cells are forced by the model atmosphere, where
biases in precipitation and cloud radiative processes
affect water and energy cycles (e.g., Ruiz-Barradas and
Nigam 2006; Vial et al. 2013). Grid cells are mosaicked
with different land-cover types to account for urban and
vegetated areas. Vegetated areas are further subdivided
by plant functional type to account for variations in
plant morphology, such as leaf and stem area and can-
opy height (Bonan et al. 2002).Manymodels account for
land-use changes from harvests, fires, and urbanization

on seasonal time scales, as green vegetation fraction
impacts the surface energy budget (Ek et al. 2003). The
type and vertical layer structure of soils must be con-
sidered to replicate the effects of surface albedo and soil
moisture memory. The aggregate of physical parame-
terizations are ultimately integrated to pass information
to the atmosphere on a gridbox scale. Process scale assess-
ments and a detailed understanding of the model physics
are necessary to identify specific processes that cause the
land–atmosphere issues in the AMIP experiment.
Tropical SST forcing contributes to summer SAT

variability over the United States. Models respond to
SST patterns that are different than observed but similar
to one another. High correlations between JJA SAT
PC1 and SST in the equatorial Pacific, accompanied by
interhemispherically symmetric bands of high pressure
in the upper troposphere, indicate that the ENSO con-
tribution to extratropical climate variability in the summer
is too high in models. Most models are sensitive to ENSO
conditions in the antecedent spring and all models sig-
nificantly correlate with the Niño-3.4 index at lag 0.
This forced signal emerges above internal variability.
We conclude that an excessive land surface feedback

is responsible for spurious U.S. summer SAT variability
in the AMIP experiment. Further examination of the
AMIP land surface feedback is warranted, particularly
in conjunction with regional observations and on time
scales conducive to assessing the directionality of control–
response relationships. The AMIP biases documented in
this study affect regions identified from models as hot
spots of land–atmosphere interaction (Koster et al.

FIG. 9. Lead–lag correlations between the seasonally averaged Niño-3.4 index and JJA SAT
PC1. (a) Observed correlations (thick black line) compared to the model ensemble mean
correlations. (b) Observed correlations are compared to correlations of each model realization
(thin gray lines). The realization correlation that most resembles observations is highlighted in
blue. The average across all realization correlations is shown in red. Correlations that fall within
the shaded regions are significant at 95%.
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2004a) and limit the skill of model-based attributions of
extreme heat wave events (Stott et al. 2004). Evaluating
physical parameterizations that contribute to the bulk
land surface feedback, precipitation variability, and
cloud biases is key to improvingmodel skill in simulating
summer climate variability.
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Abstract Interannual variability of summer surface air temperature (SAT) in the central United States
(U.S.) is influenced by atmospheric circulation and land surface feedbacks. Here a method of dynamical
adjustment is used to remove the effects of circulation on summer SAT variability over North America
in the Community Earth System Model Large Ensemble. The residual SAT variability is shown to reflect
thermodynamic feedbacks associated with land surface conditions. In particular, the central U.S. is a
“hot spot” of land-atmosphere interaction, with residual SAT accounting for more than half of the total SAT
variability. Within the “hot spot,” residual SAT anomalies show higher month-to-month persistence through
the warm season and a redder spectrum than dynamically induced SAT anomalies. Residual SAT variability
in this region is also shown to be related to preseason soil moisture conditions, surface flux variability,
and local atmospheric pressure anomalies.

1. Introduction

Adverse impacts from anthropogenic climate change are likely to be exacerbated in summer when temper-
atures are already at their seasonal maximum. Indeed, exceptionally warm summers projected by climate
models will jeopardize crops, strain water resources, and tax human health (Romero-Lankao et al., 2014;
Lehner, Wahl, et al., 2017). With a surfeit of solar radiation present, summer SAT over land is set by large-scale
atmospheric circulation patterns, topography, and cloud cover and modified regionally by land surface
conditions.

The land surface influences the atmosphere through a series of nonlinear processes, linking soil moisture
with evapotranspiration, cloud formation and precipitation (e.g., Findell & Eltahir, 2003; Tawfik et al., 2015a,
2015b). Modeling studies identify a “hot spot” of land-atmosphere interaction in the central U.S. (e.g., Koster
et al., 2006; Lorenz et al., 2015; Zhang et al., 2008). There are indications, however, that the land-atmosphere
coupling in such hot spot regions might be overestimated in climate models (Fischer et al., 2012; Sippel
et al., 2017; Stegehuis et al., 2013). In the central U.S., for example, models tend to feature warmer mean
SAT (Mueller & Seneviratne, 2014) and more interannual SAT variability (Berg et al., 2014; Merrifield & Xie,
2016) than observed. The land surface influence on SAT is challenging to quantify (Yang et al., 2004) due to
the confounding influence of internal atmospheric variability (Deser et al., 2012; Wallace et al., 1995, 2015).
For example, hot extremes brought about by persistent anticyclonic conditions in the atmosphere are often
intensified by dry soils (Durre et al., 2000; Miralles et al., 2014; Vogel et al., 2017).

This study uses the empirical method of “dynamical adjustment” (Deser et al., 2016; Lehner, Deser, et al.,
2017) to remove the circulation-induced component of SAT variability in the Community Earth System Large
Ensemble. We examine the relative magnitude, spatial pattern, and temporal persistence of circulation versus
thermodynamic drivers of summer SAT variability over the U.S., with particular attention on the central U.S. hot
spot region identified in previous studies. Specifically, we evaluate whether the thermodynamic component
of SAT variability helps isolate influences of anomalous land surface conditions. The remainder of the paper is
structured as follows. Section 2 introduces the model simulations and dynamical adjustment methodology.
Results are presented in Section 3, beginning with two case studies and then generalizing to characterize the
dynamic and thermodynamic contributions to SAT variability in the Community Earth System Model Large
Ensemble. Sections 4 and 5 provide a summary and discussion, respectively.
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2. Climate Model Simulations and Dynamical Adjustment Methodology

We analyze the role of the atmospheric circulation and land surface condition on summer SAT variability over
the historical period (1920–2005) in the 30 member ensemble of simulations conducted with the National
Center of Atmospheric Research (NCAR) Community Earth System Model version 1 (CESM1), hereafter referred
to as the CESM Large Ensemble (CESM-LE) (Kay et al., 2015). The CESM-LE is a fully coupled, 1∘ horizontal
resolution initial condition ensemble; each ensemble member is subjected to identical CMIP5-based external
forcing scenarios. The members differ slightly from one another in their initial atmospheric state. Large ensem-
bles allow us to sample internal variability in the presence of forced climate changes, thereby providing a
range of possible climate trajectories to analyze (Deser et al., 2012; Lehner et al., 2016).

We employ constructed circulation analogues to dynamically adjust monthly mean SAT fields in the CESM-LE.
The method is summarized briefly here and in more detail in the supporting information; the reader is referred
to Deser et al. (2016) for a full description.The method relies on the ability to reconstruct a given monthly
mean circulation field (“target month”), represented here by monthly mean 500 mb geopotential height
(Z500) as opposed to SLP as in Deser et al. (2016), from a large set of imperfect analogues obtained from the
CESM1 preindustrial control simulation (Kay et al., 2015) with the same model setup. The closest analogues
(in terms of Euclidean distance from the target month over the domain 20–90∘N, 180–10∘W) are linearly
combined with an optimal set of weights, to reconstruct the target Z500 field in the CESM-LE. The same opti-
mal linear combination is then applied to the accompanying SAT fields in the control simulation to construct
the dynamically induced component of SAT. This dynamical component is then subtracted from the original
SAT field of the target month to obtain the residual SAT component, which we interpret as being primarily
thermodynamically induced and potentially land surface driven.

3. Results
3.1. Two Julys With Similar Circulation but Different SAT
In the central U.S., different SAT anomalies can exist under similar atmospheric circulation conditions
(Figure 1). To illustrate this, we select two Julys from the CESM-LE (July 1963 of member 15, and July 1925 of
member 22) featuring similar midlatitude bands of high pressure at 500 hPa (Z500) with centers in the vicinity
of the Aleutian islands and the west coast of the U.S. and a low-pressure center over western Canada, similar
to the pattern described by McKinnon et al. (2016). SAT anomalies in the two cases differ most notably in
the central U.S., while they are broadly similar elsewhere. The configuration of SAT anomalies associated with
the Z500 pattern indicate that atmospheric circulation anomalies are largely responsible for the warm (cool)
anomalies in the western U.S. (Canada) (Figures 1c and 1d). The local warm anomaly over the central U.S. in
case 2 (Figure 1f ), which exceeds average central U.S. SAT by more than 5∘C, is not accounted for by dynam-
ical adjustment and might hence be of thermodynamic origin. In contrast, there is no significant central U.S.
SAT anomaly present in case 1 (Figure 1e). To investigate possible mechanisms explaining the differences in
residual SAT anomaly over the central U.S., we compare area-averaged land surface parameters in the region
shown in Figures 1e and 1f (32.5–41.9∘N, 90–101.25∘W). We consider soil moisture, sensible and latent heat
fluxes, the shortwave cloud radiative effect, which is the difference between all-sky and clear-sky downward
shortwave radiation at the surface (Cheruy et al., 2014), and the diurnal temperature range, which serves as
proxy for local boundary layer moisture conditions (Dai et al., 1999; Lewis & Karoly, 2013). The land surface
anomalies are presented in terms of percent difference from their long-term averages.

In case 1 (green bars in Figure 1g), soils are 4% wetter than average. The surface heat flux is partitioned in
favor of latent (8%) over sensible (−14%) heating. Local atmospheric conditions were largely unremarkable,
with modest reductions in cloud cover (−11%) and diurnal temperature range (−2%). In case 2 (blue bars in
Figure 1g), soils are 11% drier than average. Anomalously dry soil conditions exist in the previous spring in
case 2, from a −4% anomaly in April to a −10% anomaly in June (not shown). The sensible heat flux in the
region is more than twice the long-term average (102%), in conjunction with a 25% reduction in the latent
heat flux due to drier soils. Cloud cover is below average in case 2 (−30%), which suggests that the increase of
incoming shortwave radiation that accompanies reductions in cloud cover contribute to the SAT anomaly in
the region. The diurnal temperature range is 30% larger than average, which is consistent with drier boundary
layer conditions that result in enhanced radiative warming during the day and cooling at night. The residual
SAT anomaly in case 2 likely originated from heat flux partitioning by the land surface with reduced cloud
cover playing a role, a narrative consistent with other case studies (e.g., Namias, 1982; Orth & Seneviratne,
2017; Perkins, 2015).
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Figure 1. (a, b) Total, (c, d) dynamical, and (e,f ) residual SAT anomalies (color) in two Julys with similar attendant
circulation (Z500; contours) in the CESM-LE. Anomalies are calculated from the historical period mean (1920–2005).
Z500 contours range from 5 to 95 m (solid) and −5 to −50 m (dashed) in 15 m intervals. (g) Area-averaged surface
conditions for each July, expressed as percent difference from the historical period mean.

3.2. Defining the Hot Spot
The selected cases in Figure 1 demonstrate how residual SAT can help to identify the spatial extent and esti-
mate the magnitude of the land surface’s influence on summer SAT. To take a more general look at the SAT
variability that might be driven by land surface conditions, we calculate the standard deviation (!) of dynamic
and residual SAT anomalies across all summers (June–August; JJA) of the historical portion of each member
of the CESM-LE and then average the 30 ! values. Note that for each year and grid point, the ensemble-mean
dynamic (residual) SAT has been subtracted from each ensemble member’s dynamic (residual) SAT before
computing !, thereby isolating the contribution from internal variability. Interannual variability of dynamic
JJA SAT in the CESM-LE is of comparable magnitude over the western and central U.S., though dynamics
explain over three quarters of the total SAT ! in the former and less than half in the latter region (Figure 2a).
Residual JJA SAT variability is highest along the arc of the Great Plains with almost no residual variability in
the western U.S. (Figure 2b). The lack of residual ! west of the Rocky Mountains is consistent with the region
being too dry overall for moisture variations to influence SAT (Kamae et al., 2016; Seneviratne et al., 2010).
In the central U.S., the magnitude of residual variability suggests that the land surface feedbacks may be
responsible for more than a quarter of total SAT !. The southern central US (32.5–41.9∘N, 90–98.75∘W) stands
out as a “hot spot,” with more than half of the total SAT ! considered thermodynamic. Hereafter, SAT averaged
over this region is defined as hot spot SAT.

The land surface’s influence on SAT can also be inferred from temporal characteristics of dynamic and resid-
ual SAT within the hot spot region. Evidence of the land surface feedback can be seen on intraseasonal
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Figure 2. Standard deviation of (a) dynamic and (b) residual JJA SAT in color, overlaid with percent of total JJA SAT
variance explained in black contours, averaged across 30 members of CESM-LE over the historical period. (bottom)
Temporal features of hot spot region dynamic (blue) and residual (red) SAT. (c) August hot spot SAT autocorrelation
and (d) spectra of JJA hot spot SAT, in terms of ensemble average (solid line) and 1! ensemble spread (shading).

(Figure 2c) to multidecadal (Figure 2d) timescales. Autocorrelation of dynamic (blue) and residual (red) August
SAT anomalies are shown in Figure 2c, where the solid curve shows the average and the shading shows
the range across the 30 members of the CESM-LE. Although there is considerable spread in autocorrelations
among the 30 model runs for both dynamic and residual SAT, on average, residual SAT has a longer decor-
relation timescale than dynamic SAT. Residual autocorrelation significant at 95% (above gray dashed line in
Figure 2c, see supporting information) arises in June and continues until September, which suggests that
residual SAT originates from a persistent surface forcing which exerts influence throughout the warm season.
Dynamic SAT reflects the shorter-lived influence of atmospheric circulation that is not significantly correlated
from month to month. The spectra of dynamic (blue) and residual (red) JJA SAT anomalies over the 86 year
historical period are shown in Figure 2d, where the solid curve shows the average and the shading shows
the range across the ensemble. The spectrum of dynamic JJA SAT has approximately equal power at all
frequencies, while the spectrum of residual JJA SAT has more energy at lower frequencies. The redder resid-
ual spectrum is consistent with the notion that residual SAT reflects the integration of stochastic atmospheric
forcing by the land surface (Delworth & Manabe, 1993).

3.3. Developing a Thermodynamic Narrative
The above results suggest that residual SAT variability in the hot spot region might be land surface driven.
Within the model, we can attempt to develop a thermodynamic narrative for this land surface influence.
We explore several aspects of the land surface feedback in the JJA SAT hot spot region: the relationship
between SAT and soil moisture (Figure 3) and between SAT and local SLP (Figure 4). We quantify the former by
showing correlation maps of the components of JJA hot spot SAT and total soil moisture from the antecedent
spring through the subsequent fall (Figure 3). Correlations (r) are computed from a concatenated record of
2,580 model years (30 simulations, 86 years each) and are determined to be significant at 95% if they exceed
about 0.03 in absolute value (see supporting information). Total JJA hot spot SAT is negatively correlated
with spring (March–May; MAM) soil moisture from the Gulf Coast through the central Great Plains (Figure 3i).
The spatial structure of the correlation suggests that moist southerly flow from the Gulf provides the mois-
ture necessary for the land surface to influence the atmosphere (Kushnir et al., 2010; Feng et al., 2011).
The maximum of these lagged correlations (r=−0.25) occur in the southern portion of the hot spot. The aver-
age correlation of dynamic JJA hot spot SAT with MAM soil moisture in the hot spot is very low (r=−0.05;
Figure 3ii), which suggests that the spring soil moisture state in the central U.S. does not influence the
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Figure 3. Correlation maps of (i, iv, vii) total, (ii, v, viii) dynamic, and (iii, vi, ix) residual JJA hot spot SAT with total column soil moisture at each grid point. The left
column shows correlation with preseason (MAM) soil moisture, the middle with concurrent JJA soil moisture, and the right with postseason (SON) soil moisture.
Normalized regression coefficients for JJA cloud cover (bcld; gray) and sensible heat flux (bshf; red) regressed on each component of JJA SAT are inlaid in
Figures 3iv–3vi. Bars (whiskers) represent ensemble average (spread).

atmospheric circulation patterns that follow. Removing the influence of dynamics, however, leads to higher
correlations between MAM soil moisture and JJA SAT (Figure 3iii). In fact, residual JJA hot spot SAT is more
highly correlated with MAM soil moisture in the hot spot than total SAT is (r=−0.36). This supports our
hypothesis that removing circulation-induced SAT variability allows us to better characterize SAT variability
driven by the land surface feedback.

Instantaneous correlations in the hot spot are of similar magnitude for total and residual JJA SAT and JJA
soil moisture, and dynamic SAT correlations remain weaker (Figures 3iv–3vi). Fall (September–November;
SON) soil moisture is more highly correlated with JJA SAT and its components than MAM soil moisture is
(Figures 3vii–3ix). Correlations of SON soil moisture with dynamic and residual hot spot SAT are of similar
magnitude, which suggests that a hot summer dries soils in the hot spot whether the warm anomaly was circu-
lation induced or land surface driven. To strengthen the case that residual hot spot SAT is land surface driven,
we determine the relative influence of cloud cover and surface fluxes through a multivariate regression of the
shortwave cloud radiative effect and the sensible heat flux on JJA hot spot SAT (bars inlaid in Figures 3iv–3vi).
In each ensemble member, all fields are normalized by standard deviation at each grid point. A multivari-
ate regression is then carried out at each grid point and the resulting normalized regression coefficients,
bcld and bshf, are averaged over the hot spot to estimate relative contribution of clouds versus the land
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Figure 4. (a) Correlation map of total JJA hot spot SAT with SLP in color and with Z500 in contours. Z500 correlation
contours range from 0.1 to 0.8 (solid) and −0.1 to −0.3 (dashed) in intervals of 0.1. (b) Same as Figure 4a, but with
residual JJA hot spot SAT. (c) Difference in the standard deviation of JJA residual SAT (∘C; color) using Z500 versus SLP to
represent circulation. The residual SAT variability difference map is overlaid with a map of the correlation between SLP
and Z500 (contours). Correlation contours range from 0.1 to 0.8 (solid) and −0.1 to −0.4 (dashed) in intervals of 0.1.

surface feedback. Bars in Figures 3iv–3vi show the average, and whiskers show the range in bcld and bshf across
the ensemble. Cloud cover and the sensible heat flux play comparable roles in setting total JJA hot spot SAT,
with an average bcld of 0.34 and bshf of 0.48 (Figure 3iv). This supports the narrative posited in Figure 1 that
warm SAT anomalies in the hot spot occur in conjunction with clear skies, more incoming shortwave radiation,
and an increased sensible heat flux. Regression on the components of JJA hot spot SAT confirm that variations
in dynamic and residual SAT have different physical underpinnings. Dynamic SAT variability (Figure 3v) relates
primarily to variations in cloud cover (bcld = 0.46), as large cloud systems that impact radiation tend to be cou-
pled to large-scale atmospheric circulation (Bony et al., 2015). Residual SAT variability (Figure 1vi) is primarily
driven by variations in the sensible heat flux (bshf = 0.64), which reflects the thermodynamic partitioning of
surface fluxes by soil moisture in the hot spot region (Seneviratne et al., 2010). This illustrates the efficacy of
dynamical adjustment in separating circulation induced from thermodynamic anomalies, as the method is
able to reveal relationships between hot spot SAT and multiple aspects of the land surface feedback.

In winter, dynamic SAT and SLP are expected to show a quadrature relationship consistent with horizontal
advection. In summer, surface lows form over hot, dry land surfaces and in regions of differential heating
such as coastlines and are identifiable by a local anticorrelation between SAT and SLP (Rowson & Colucci,
1992). Because thermal lows are associated with local land surface conditions, their presence is not necessar-
ily reflective of the large-scale circulation patterns that drive dynamic SAT. Over the ocean, the midlatitude
atmosphere tends to feature SLP anomalies of the same sign as Z500 anomalies (Figure 4a). In the hot spot,
positive (negative) correlations between JJA SAT and Z500 (SLP) are highest locally (Figure 4a). Low pressure
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at the surface and high pressure aloft is representative of the atmospheric baroclinicity that sets up thermo-
dynamically over hot, dry land surfaces. Dynamical adjustment removes covariability between hot spot SAT
and Z500 as expected, both locally and remotely (Figure 4b). Correlations between residual hot spot SAT and
SLP, however, remain almost unchanged over the hot spot region. After dynamical adjustment, local corre-
lation between SAT and Z500 is reduced from 0.80 to 0.31 while local correlation between SAT and SLP is
only reduced from −0.73 to −0.60. The magnitude of the remaining residual SAT-SLP correlation supports
the thermodynamic interpretation of SAT variability in the hot spot region, that the state of the land sur-
face (e.g., soil moisture) influences local SAT, which in turn sets up a spatially concomitant SLP signature.
The remaining residual SAT-Z500 correlation is substantially reduced but not negligible, which is expected in
a coupled system. The relationship may reflect the influence of large-scale circulation on soil moisture or vice
versa (Fernando et al., 2016; Koster et al., 2016).

We have repeated the dynamical adjustment method using SLP (rather than Z500) as an indicator of
circulation. Residual SAT ! from the two methods are compared in Figure 4c. More SAT variance is removed
with SLP analogues than with Z500 analogues (i.e., Z500-derived residual ! is larger than SLP-derived
residual !) along the arc of the Great Plains, in the U.S. Southwest and Northern Mexico, and in coastal regions.
These are regions where thermal lows are known to occur (Johnson, 2003) with feature of a negative cor-
relation between Z500 and SLP (Figure 4c; dashed contours) representative of the baroclinic thermal low
signature.

4. Summary

We have presented evidence that a method of dynamical adjustment developed by Deser et al. (2016) can be
used to evaluate land surface-driven SAT variability in the CESM-LE. The dynamic and residual components
of summer SAT are presented in terms of interannual variability, and the central U.S. hot spot of land surface-
driven SAT is defined where residual variability accounts for more than half of the total JJA SAT variance.
Temporal characteristics of the dynamic and residual (i.e., thermodynamic) hot spot SAT suggest that the
latter is land surface driven. Finally, a general thermodynamic narrative is developed for residual SAT using
the entire CESM-LE. Dynamical adjustment is able to reveal clear relationships between summer SAT and two
key aspects of the land surface feedback (preseason soil moisture and sensible heat flux variability) that are
normally obscured by the influence of atmospheric circulation. Dynamical adjustment performed with Z500
rather than SLP also leaves behind a thermodynamic, surface low signature that accompanies warm SAT in
the hot spot. We conclude that dynamical adjustment can be used to empirically estimate the magnitude and
spatial extent of land surface-driven SAT variability.

5. Discussion

Dynamical adjustment was previously employed to develop a physical understanding of SAT trends
(Deser et al., 2016; Lehner, Deser, et al., 2017). The method also gives insight into interannual variability,
allowing us to determine why one summer is hotter than another. Residuals tend to be larger in the summer
than in the winter when horizontal advection plays a more prominent role in setting SAT (Deser et al., 2014;
Sheffield et al., 2013). This does not necessarily mean that dynamical adjustment is not useful in the summer,
just that thermodynamic processes play a role in setting SAT that is comparable in magnitude to dynamics.
Determining the thermodynamic basis for the summer residual both validates dynamical adjustment as a
method and indicates where land-atmosphere interactions may be meaningful.

We evaluate dynamical adjustment in a model, where there are thousands of years of simulation from which
to pick analogues, and land surface information is temporally and spatially complete. Because dynamical
adjustment is an empirical method, having as many analogues as possible is key to effectively characterizing
circulation (van den Dool, 1994). Analogues may capture one aspect of circulation in the domain but have dif-
ferent features elsewhere and are therefore “imperfect.” Additionally, care must be taken when using a linear
method to explain features of a nonlinear coupled system. Land-atmosphere interactions are two way, which
makes separating the forcing and response a challenge, particularly on monthly timescales (Levine et al.,
2016). Further assessment of dynamical adjustment is warranted, particularly regarding its application to
observational data sets (Lehner, Deser, et al., 2017). Temperature is a well-measured field, both spatially and
temporally, while land surface observations tend to be limited. Developing a land-atmosphere hot spot
definition based solely on temperature would allow us to leverage the observational record prior to the
satellite era, ensuring robust statistics.
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Letters, 2017: Anna L. Merrifield, Flavio Lehner, Shang-Ping Xie, and Clara Deser, "Removing

Circulation Effects to Assess Central U.S. Land-Atmosphere Interactions in the CESM Large

Ensemble." The dissertation author was the primary investigator and author of this paper.
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Chapter 4

Evaluation of Summer Dynamical

Adjustment: Method Uncertainty and

Sensitivity Analysis

4.1 Introduction

In Chapter 2, a method to remove the effects of circulation on summer surface air

temperature (SAT) variability over North America was presented. This method, dynamical

adjustment, performed on the Community Earth System Model version 1 (CESM1) Large

Ensemble, was shown to reveal the central US as a region where SAT variability is influenced by

both circulation and land surface processes in approximately equal measure (Merrifield et al.,

2017). The central US is a well known "hot spot" of land-atmosphere interaction (e.g. Koster

et al., 2004b,a, 2006; Dirmeyer, 2011; Berg et al., 2014), and the fact the hotspot region can be

identified by a method that requires only temperature and pressure records is promising. SAT and

sea level pressure (SLP) are among the most comprehensively measured atmospheric fields prior

to the satellite era (Trenberth and Paolino, 1980). In contrast, land surface observations tend
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to be both spatially and temporally limited (Seneviratne et al., 2010; Betts et al., 1996), which

hinders understanding of the land surfaces’ influence year-to-year on continental scales.

While summer dynamical adjustment has been shown to highlight a known hot spot

of land-atmosphere interaction in CESM, the method requires further evaluation to determine

its efficacy in an observational framework. The ideal circumstances for dynamical adjustment,

which is an empirical method, can be achieved in a model framework. In observations, there are

practical limitations to the method, mainly due to the length of observational records (van den

Dool, 1994). Dynamical adjustment is conceptually similar to the analogue method of weather

forecasting (Lorenz, 1969), but leverages the relationship between atmospheric circulation and

SAT on monthly timescales rather than daily timescales. The method relies on the ability to

reconstruct a monthly mean circulation field (e.g. July 2005), which will be represented in this

chapter by SLP as in Deser et al. (2016), from a large set of analogues. In a model, the large

set of SLP analogues can be selected from thousands of years of possible Julys in a control run

(Lehner et al., 2017; Deser et al., 2016). In observations, SLP analogues must be selected from

approximately 100 Julys in the observational record. This version of dynamical adjustment,

referred to as the "leave-one-out" method, will be used in this chapter in order for conclusions to

be applicable to observed dynamical adjustment. The name leave-one-out comes from the fact

analogues come from the same record as the target month, therefore the target month must be

excluded from the record prior to analogue selection.

It is important to acknowledge that because of the paucity of analogue choices in leave-

one-out dynamical adjustment, the term "analogue" is a bit of a misnomer. The term evokes

the idea of a match, though in practice, analogues may not closely resemble the target which is

discussed in more detail in the following paragraph. For convenience, we will continue to refer to

the months used in target SLP construction as "analogues", but we do so with the understanding

that target and analogue patterns may differ over the selection domain.

A month is determined to be an analogue of the target month if the Euclidean distance
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between target and analogue SLP is small. Euclidean distance is computed at each grid point

and averaged over the domain 20-90◦N, 180-10◦W. This selection metric, therefore, does not

require an analogue to match the target month spatially over the whole domain. This is necessary

because, with O(100) possible options, it is statistically unlikely that a "perfect" analogue will

exist for a particular target month. (van den Dool, 1994) found that it would take on the order of

1030 years to find two Northern hemisphere circulation patterns that match within observational

uncertainty. With this in mind, a smaller than hemispheric domain (20-90◦N, 180-10◦W)

and iterative averaging schemes are employed in dynamical adjustment to make the most of

"imperfect" analogues available (Wallace et al., 2012; Deser et al., 2014, 2016).

Once the Euclidean distances are determined, the Na closest SLP analogues are chosen,

and the iterative process of selecting Ns of Na SLP analogues and optimally reconstructing target

SLP commences. For sections 3a-c of this chapter, we use Na = 80 and Ns = 50, following

Lehner et al. (2017). A sensitivity analysis to Ns is presented in section 3d. The optimal

reconstruction of target SLP is mathematically equivalent to multivariate linear regression; each

analogue is assigned a weight (βi) such that a weighted linear combination of analogues produces

a least-squares estimate of the target SLP. The analogue weighting scheme ensures that analogues

which are further from (closer to) the target, in a Euclidean distance sense, contribute less (more)

to the constructed SLP field.

Once SLP is constructed, the weights derived for each SLP analogue are applied to their

corresponding monthly-averaged SAT fields. Prior to the application of weights, a quadratic

trend representing anthropogenic warming is removed from the SAT record at each point in

space. The purpose of this detrending is discussed in section 3c and in Deser et al. (2016).

The weighted, detrended SAT fields are then used to construct a dynamic SAT anomaly field

for the target month. SLP, which is a representative of low-level atmospheric circulation, and

SAT are physically related; SLP-derived weights are applied to SAT to empirically construct

that relationship. Conceptually, dynamic SAT anomalies are those that would occur given the
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attendant circulation pattern. The second through fifth steps of dynamical adjustment (selection

of Ns of Na SLP analogues, optimal reconstruction of target SLP, and construction of dynamic

SAT) are then repeated Nr times. In this chapter, Nr = 100, following Lehner et al. (2017). The

dynamic component of SAT in the target month is the average of the Nr constructions.

Once dynamic SAT has been determined, residual SAT is computed as the difference

between total and dynamic SAT for each month. By removing the effect of circulation from total

SAT, residual SAT is believed to reflect the influence of thermodynamic processes associated

with the state of the land surface (Deser et al., 2016; Lehner et al., 2017). In winter, a lack of

snow cover or sea ice in Hudson Bay may induce a residual warm anomaly due to the reduction

of albedo (Deser et al., 1993). In summer, a lack of soil moisture in a land-atmosphere hot spot

region may cause a residual warm anomaly due to an enhanced sensible heat flux (Seneviratne

et al., 2010; Miralles et al., 2012). Over North America, residual SAT anomalies are relatively

small in comparison to dynamic SAT anomalies in boreal winter (December-January-February;

DJF). In boreal summer (June-July-August; JJA), however, residual SAT anomalies are often as

large as dynamic SAT anomalies.

There are several possible explanations for the difference in relative magnitude of residual

SAT between DJF and JJA. Residual SAT anomalies arise from either physical processes (i.e.

surface feedbacks due to snow cover or soil moisture), methodological error, or a combination of

the two. In DJF, conditions are conducive for the dynamic SAT to be the dominant component of

total SAT and residual SAT to be minimal. Physically, horizontal advection at the surface sets

SAT, while the westerly jets, maintained by the hemispheric meridional temperature gradient,

advect barotropic planetary waves that set SLP patterns over North America (e.g. Hurrell, 2015;

Sheffield et al., 2013; Deser et al., 2014). Methodologically, the strength and organized structure

of winter tropical-extratropical teleconnections (e.g. Seager et al., 2003; Kushnir et al., 2010;

Zhou et al., 2014) allow for plenty of close SLP analogues choices. These three ingredients:

(1) close analogues available to construct SLP patterns, (2) SLP representing the large-scale
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circulation and (3) the influence of large-scale circulation on SAT, combine to ensure DJF

dynamic SAT is accurately represented as the dominant component of SAT variability.

In JJA, conditions allow residual SAT to reach a maximum. Physically, radiation

throughout the summer hemisphere weakens the meridional temperature gradient, which

weakens the zonal mean zonal wind and diminishes the amplitude of both free tropospheric and

quasistationary Rossby waves that govern midlatitude climate (Petoukhov et al., 2013; Coumou

et al., 2015). In conjunction with an overall weakening of atmospheric circulation in the summer,

SLP over the North American continent can be influenced by thermally-induced features (Fast and

McCorcle, 1991; Johnson, 2003) that introduce baroclinicity beneath large-scale disturbances.

Locally-influenced SLP patterns are spatially concomitant with SAT, which is different from

the out of phase relationship associated with frontal systems. Finally, as previously described,

land surface processes can modify summer SAT (Seneviratne et al., 2010). Therefore, residual

summer SAT may stem from methodological challenges (an inability to reconstruct SLP patterns,

inconsistent relationships between SLP and the large-scale circulation, and SLP and SAT) as

well as thermodynamic processes.

By evaluating summer dynamical adjustment, we aim to determine if residual SAT

is representative of the land surface feedback, as posited in Merrifield et al. (2017), or is

representative of methodological shortcomings, which are in part due to the nature of summer

dynamics. We address three aspects of summer dynamical adjustment in this chapter. First, we

obtain an estimate of the fraction of residual SAT that is due to intrinsic method uncertainty vs.

land surface processes. Second, we determine if land surface processes in analogues contribute

to and "contaminate" dynamic SAT. Third, we document sensitivities of summer dynamical

adjustment to analogue selection period and the number of analogues selected. Implications for

the potential observational application of summer dynamical adjustment is discussed in section 4.

Findings from this method evaluation are summarized in section 5.
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4.2 Global Land Atmosphere Coupling Experiment-Coupled

Model Intercomparison Project (GLACE-CMIP5)

The Global Land Atmosphere Coupling Experiment-Coupled Model Intercomparison

Project (GLACE-CMIP5) is a coordinated effort by several modeling centers to investigate the

role of soil moisture in a changing climate system (Seneviratne et al., 2013). The GLACE-CMIP5

framework is an extension of the GLACE model intercomparison study initiated by Randal

Koster (Koster et al., 2004a, 2006; Guo et al., 2006), which assessed the global land-atmosphere

coupling in boreal summer, identifying regions where models agreed that land surface anomalies

affect temperature and precipitation.

In GLACE, two simulations are compared: the first with interactive soil moisture

(hereafter, CTL) and the second with prescribed soil moisture (hereafter, SMclim following

Lorenz et al. (2016)). SMclim is equivalent to expA in Seneviratne et al. (2013). The two

simulations otherwise have the same configuration; identical sea surface temperatures (SST),

sea ice, land use, and CO2 concentrations are prescribed (Seneviratne et al., 2013). This setup

isolates the influence of soil moisture variability on surface climate, provided that each simulation

has similar internal atmospheric variability.

In this chapter, we use the National Center of Atmospheric Research (NCAR) contribution

to GLACE-CMIP5 (hereafter "CESM GLACE") to evaluate summer dynamical adjustment

(Neale et al., 2013; Lawrence et al., 2011). Using CESM GLACE allows us to assess the validity

of conclusions made using the CESM1 Large Ensemble in Merrifield et al. (2017). CESM

GLACE and the CESM1 Large Ensemble use the same Community Land Model (CLM4), but

CESM GLACE uses an older version of the Community Atmospheric Model (CAM4 vs. CAM5)

(Meehl et al., 2013). The two simulations we are considering are the CTL simulation, which is the

r6i1p1 contribution to CMIP5, and the SMclim simulation, which has prescribed climatological

soil moisture computed from the CTL simulation (Seneviratne et al., 2013). Climatological soil
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moisture is from computed in terms of monthly averages over the 1971-2000 reference period

and resulting seasonal cycle is imposed by interpolating between the midpoints of the adjacent

months at each simulation timestep (Berg et al., 2017). Time-evolving SST, sea ice, land use

from the CTL simulation are also prescribed in SMclim. The two runs both experience historical

(1950-2005) and RCP8.5 (2006-2100) forcing scenarios, as per the CMIP5 protocol (Taylor et al.,

2012). We focus on the historical period in this chapter, as in Merrifield et al. (2017).

4.3 Dynamical Adjustment of the CESMGLACE Simulation

Several aspects of summer dynamical adjustment can be evaluated by dynamically

adjusting the CESM GLACE simulations. The first two evaluation opportunities stem from

the difference in land-atmosphere coupling in the CTL and SMclim simulations. Interannual

variability of JJA SAT, the latent heat flux, and soil moisture over the historical period are shown

for the CTL and SMclim simulations in Figure 4.1, a-f. The three fields are involved in the

canonical land-atmosphere coupling, where the presence or absence of soil moisture partitions

the surface turbulent heat flux to either cool or warm SAT (Seneviratne et al., 2010; Dirmeyer,

2011; Berg et al., 2014). The central US stands out as a region where soil moisture, latent heat,

and SAT vary in the CTL simulation and do not in SMclim. With soil moisture, this difference in

variability is by construction (SMclim soil moisture is prescribed to climatological values). A

timeseries of monthly mean soil moisture at 36.28◦N, 103.75◦W is shown for CTL (black) and

SMclim (red) in Figure 4.1 g. Because an interactive (passive) land surface induces (suppresses)

SAT variability in the central US, the region is identified as a land-atmosphere hot spot (Koster

et al., 2004a).

A schematic midlatitude cross-section, shown in Figure 4.2, helps to illustrate the

opportunities for evaluating dynamical adjustment afforded by SMclim. In both CTL (Figure 4.2,

left) and SMclim (Figure 4.2, right), atmospheric circulation patterns (black contours) establish
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Figure 4.1: (a-f) Standard deviations (σ) of June-July-August (JJA) fields and (g) monthly
mean soil moisture at a grid point (36.28◦N, 103.75◦W) in the CESM GLACE simulations.
(a,b) SAT (◦C) and (c,d) latent heat fluxes (LHF; W/m2) vary notably more year-to-year in the
central US in the CTL simulation than in SMclim. This difference is understood to result from
the absence of interannual soil moisture variability (kg/m2) in SMclim (f).
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Figure 4.2: Schematic representation of the GLACE experiments evaluated. (left) In the
control simulation (CTL), atmospheric circulation patterns establish SAT anomalies that are
modified by surface fluxes partitioned by the presence or absence of soil moisture. (right) In
the prescribed soil moisture simulation (SMclim), soil moisture is set to climatological values
(computed as the 1971-2000 average), severing the land surface feedback on SAT (Seneviratne
et al., 2013).

SAT anomalies (color); the schematic represents an idealized ridge-trough pattern that sets up a

cooler northerly flow and warmer southerly flow. In the CTL simulation, the SAT anomalies

are modified by surface fluxes (arrows), which are themselves modified by radiation availability

and the presence or absence of soil moisture. Rainfall, which tends to accompany southerly

flows, moistens soils and limits incoming shortwave radiation (due to an increase in cloud cover).

The presence of soil moisture partitions outgoing surface energy into the latent heat flux (blue

arrows), which serves to damp the warm SAT anomaly set by circulation. In regions with clearer

skies and drier soils, outgoing surface energy warms SAT through the sensible heat flux (red

arrows), notably amplifying the warm SAT anomaly.

Ideally, dynamical adjustment will characterize the dynamic SAT as the anomalies that

are due to the attendant circulation pattern, but will not capture the amplification or damping

contributed by the land surface feedback. The removal of dynamic SAT anomalies from total

SAT would then reveal residual SAT anomalies that reflect this land surface influence. In practice,

residual SAT anomalies reflect method uncertainty and thermodynamic processes that have not

been accounted for in addition to the thermodynamic contribution of the land surface feedback.

While a thermodynamic narrative can be developed for residual SAT anomalies (i.e. a warm
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anomaly is related to an enhancement of the sensible heat flux due to drier than average soils),

there is no formal way to separate physical contributions to residual SAT from methodological

uncertainty in the CTL simulation.

In order to quantify the magnitude of method uncertainty, we evaluate a model simulation

(SMclim) that does not have a land surface feedback. In the SMclim simulation, there are no soil

moisture anomalies to partition surface fluxes (by design). The lack of anomalous soil moisture

suppresses surface flux variation and severs the land surface feedback (black x’s). Therefore,

SAT anomalies in SMclim should be largely dynamic in nature and residual SAT anomalies

should reflect method uncertainty, which includes the uncertainty associated with the empirical

construction of the dynamic SAT and uncertainty associated with thermodynamic processes that

have not been accounted for.

4.3.1 Quantifying Method Uncertainty

While this chapter focuses on summer dynamical adjustment, method uncertainty is

estimated in all seasons for comparison purposes and to inform future applications of dynamical

adjustment. Method uncertainty is determined through leave-one-out dynamical adjustment on

SMclim. Because method uncertainty is heterogeneous over the domain, four regions of North

America are considered with regional boundaries shown in Figure 4.3. The regions are based on

CESM’s orography (Figure 4.3, color) and magnitude of seasonally-averaged SAT variability

in SMclim, which is shown in terms of standard deviation (σ; ◦C) scaled by domain average

standard deviation of total SAT (σmean; ◦C) in Figure 4.4. The North region (Figure 4.3, "N")

includes most of Canada and Alaska. The US and Northern Mexico are split into three regions

with the West region (Figure 4.3, "W") covering the majority of the North American Cordillera,

the Central region (Figure 4.3, "C") covering the US Great Plains, and the East region (Figure 4.3,

"E") covering the US East Coast.

Throughout this chapter, the dynamic and residual components of SAT derived from
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Figure 4.3: Four regions used in the study: North (N), which includes most of Canada and
Alaska, West (W), which includes the western mountain ranges, Central (C), which includes the
US Great Plains, and East (E), which covers the US East Coast. Boundaries are superposed on
CESM’s orography (color; m above the geiod).
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dynamical adjustment will be presented in terms of standard deviation. This provides a general

measure of the contribution of circulation to interannual SAT variability (dynamic) and, in the

case of SMclim, the uncertainty associated with dynamical adjustment (residual). Total (i),

dynamic (ii), and residual (iii) North American SAT variability are shown for boreal winter (DJF;

a), spring (MAM; b), summer (JJA; c), and fall (SON; d) in Figure 4.4. To allow for comparison

across seasons, each variability map is divided by the domain-averaged standard deviation of total

SAT (σmean) at each grid point, given for each season in the top left of Figure 4.4 panels a-d. i.

SMclim SAT variability is largest in DJF (Figure 4.4 a.i) and smallest in JJA (Figure 4.4

c.i), with maximum absolute magnitudes exceeding 4◦C and less than 1.4◦C respectively. In

all seasons, variability is largest in the North, where SAT fluctuations are associated with

the strength and location of the polar jet (Lewis, 2003). Dynamic SMclim SAT variability,

empirically constructed through dynamical adjustment, is shown in Figure 4.4 a-d ii. In terms of

spatial pattern, dynamic SAT variability resembles total SAT variability in all seasons, which

supports our hypothesis that SAT variability is largely dynamic in nature in SMclim. In terms of

magnitude, dynamic SAT variability is not as large as total SAT variability, particularly in the

North region. In DJF, total SAT variability exceeds dynamic SAT variability by approximately

0.5 − 1◦C in absolute magnitude. Residual SMclim SAT variability (Figure 4.4 a-d iii) is

non-zero in SMclim and is on the order of 0.5◦C in all seasons. Relative to σmean, residual SAT

variability is approximately twice as large in JJA than it is in DJF. This suggests that some of the

method uncertainty is due to the seasonal difference in the strength and structure of atmospheric

circulation. Due to the spatial similarity of total and dynamic SAT variability, residual SAT

variability does not share regional maxima with total SAT variability. The relative magnitude of

residual SAT variability in each region is presented in terms of percent of total SAT variance

explained by residual SAT in Figure 4.5.

The dynamical adjustment of SMclim allows us to quantify method uncertainty in terms

of residual SAT variability. Ultimately, this definition of method uncertainty will help us to
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Figure 4.4: Standard deviations (σ; ◦C) of seasonally-averaged SMclimSAT and its components,
scaled by the domain average standard deviation of total SAT (σmean; ◦C).

48



Centralc.

10%

20%

30%

40%

50%

60%

70%

0%

North

Pe
rc

en
t o

f T
ot

al
 V

ar
ia

nc
e 

Ex
pl

ai
ne

d 
by

 R
es

id
ua

l
Pe

rc
en

t o
f T

ot
al

 V
ar

ia
nc

e 
Ex

pl
ai

ne
d 

by
 R

es
id

ua
l

a.

10%

20%

30%

40%

50%

60%

70%

0%

West

Month

d.

10%

20%

30%

40%

50%

60%

70%

0%

Month

Eastb.

10%

20%

30%

40%

50%

60%

70%

0%

Figure 4.5: Percent of total SAT variance explained by residual SAT in SMclim, averaged over
the four regions shown in Figure 4.3. Colored bars show the percent of monthly mean variance
explained. Gray bars show the percent of seasonally-averaged (DJF, MAM, JJA, and SON)
variance explained. The criteria used to define hot spot SAT in Merrifield et al. (2017), residual
SAT explains ≥ 50% of total SAT variance, is shown as a dashed line.
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formalize a residual SAT-based land-atmosphere hot spot metric. In Merrifield et al. (2017), we

defined the land-atmosphere hot spot as a region where residual SAT explains ≥ 50% of total

SAT variance (Figure 4.5, dashed black line). The 50% variance explained threshold identified

(ruled out) the central (western) US as a land-atmosphere hot spot region, which was in line with

the finding of others (e.g. Koster et al., 2004a; Findell and Eltahir, 2003b). However, there was

no way to definitively verify that exceedance of the 50% threshold was not due to large method

uncertainty. If this is the case, our hot spot definition is not identifying regions where land

surface processes contribute to SAT variability, rather it likely identifies regions where dynamic

SAT isn’t being effectively characterized. Because the SMclim residual reflects method error,

we can use it to determine the point at which we confidently attribute residual SAT variance to

physical processes.

For comparisonwith the land-atmosphere hot spot threshold, we definemethod uncertainty

as the percent of total SAT variance explained by residual SAT. Percent variance explained is

computed using linearly detrended monthly-averaged (Figure 4.5, colored bars) and seasonally-

averaged (Figure 4.5, gray bars) SAT records at each grid point, which are subsequently

area-averaged over the regions shown in Figure 4.3. Method uncertainty falls below the hot spot

requirement of ≥ 50% every month in an aggregate sense, but not necessarily at each grid point

in space (not shown). Notable exceptions in JJA include the Canadian Arctic north of 70◦N

and regions south of 40◦N in the West, East, and Central regions. In both exceptional regions,

total SAT variability is relatively low, less than 0.75◦C. This suggests that method uncertainty

becomes larger when total SAT variability approaches zero. It also excludes potential hot spot

regions from being exceptional in terms of method uncertainty, as hot spot regions tend to have

relatively large variability.

In the North region (Figure 4.5 a), method uncertainty ranges between a minimum of

24% in August to a maximum of 37% in October. Seasonally-averaged method uncertainty is

about 7% larger in MAM (37%) and SON (36%) during the warm-cold seasonal transitions than
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in DJF and JJA (29%). In the East region (Figure 4.5 b), method uncertainty ranges between a

minimum of 23% (October) and a maximum of 40% (February). JJA method uncertainty in the

East is relatively large (44%), but this again is likely due to minimal total SAT variability in the

region (< 0.5◦C) more than it is due to issues with dynamical adjustment.

In the Central region (Figure 4.5 c), method uncertainty is at a minimum in September

(19%) and at a maximum in March (40%). Uncertainty approximately doubles from June (20%)

to August (39%), resulting in JJA method uncertainty of 37% which must be exceeded for SAT

variability to be ascribed to the land surface feedback. JJA method uncertainty in the hot spot

region defined in Merrifield et al. (2017) (32.5-41.9◦N, 90-98.7◦W) is 43% (not shown). This

level of hot spot method uncertainty supports the conclusion that hot spot SAT variability is land

surface driven in the CESM large ensemble.

In the West region (Figure 4.5 d), method uncertainty ranges between 28% (October) and

43% (July). Seasonally, however, the hot spot requirement (residual SAT explaining ≥ 50% of

total SAT variance) is exceeded in JJA. We posit this is due to the regions’ complex topography.

Because SLP is a derived and somewhat noisy quantity at altitude (Jeff Strong, personal comm.),

it may not characterize dynamic SAT anomalies as well as it does at altitudes closer to sea level,

thus leaving behind larger residual SAT that explains more total SAT variance. In Merrifield et al.

(2017), this hypothesis was supported by comparing dynamical adjustment using the 500mb

height field (Z500) as an indicator of circulation to the traditional method of using SLP. While

Z500 may be a superior choice of circulation indicator for summer dynamical adjustment, we

do not evaluate it here because it cannot be used for observational dynamical adjustment due to

lack of direct observations before 1948 (Kalnay et al., 1996). Further, Z500 is not suitable for

GLACE dynamical adjustment because analogues are selected from the 1951-2100 period over

which Z500 is subject to forced change due to atmospheric expansion. Issues associated with

forced changes in analogues are further discussed in section 3c.

Regardless of limitations, method uncertainty remains at approximately 20-45% in all
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regions and seasons. This threshold does not prohibit the use of leave-one-out dynamical

adjustment to define hot spots of land surface driven variability, as residual SAT variability in

excess of 45% may therefore be attributed to thermodynamic land surface processes. However, we

recommend that care be taken in interpreting residual SAT in regions where total SAT variability

is less than 0.75◦C and over altitudes of approximately 1000 m or more above sea level.

4.3.2 Interactive vs. Fixed Soil Moisture Analogues

The CESM GLACE simulations also can be used to assess the potential contribution of

the land surface feedback to the constructed dynamic component of SAT. This "thermodynamic

contamination" arises from the existence of the land surface feedback in analogues. In theory,

each analogue has different land surface conditions. The iterative random selection process

then samples the distribution and after averaging, provides a dynamic component that is not

influenced by the state of the land surface in any particular analogue. In practice, analogues

of a particular target month may share similar land surface states i.e. analogues featuring a

persistent blocking high may also share drier than average soil conditions. It is also possible that

a particular analogue with a strong SAT anomaly that is related to the state of the land surface

may be selected multiple times and may thus bias dynamic SAT.

Possible thermodynamic contamination can be assessed through dynamical adjustment of

the CESM GLACE CTL simulation. Two CTL simulation adjustments are performed. The first

is a leave-one-out dynamical adjustment using analogues selected from the CTL simulation with

interactive soil moisture. The second is a dynamical adjustment using analogues selected from

SMclim with fixed soil moisture. Unlike CTL simulation analogues, SMclim analogues have no

land surface feedback to contaminate dynamic SAT. If there is no thermodynamic contamination

by CTL run analogues, both methods will have similar dynamic SAT.

Before the CTL simulation dynamical adjustments are performed, we verify that the CTL

and SMclim simulations have statistically similar SLP patterns. This ensures that analogues
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Figure 4.6: Climatology and variability of SLP (m) over the historical forcing period (1951-
2005) in June (a-d), July (e-h), and August (i-l) for the CTL and SMclim simulations.

of CTL SLP can be found in SMclim simulation. A comparison of the June (a-d), July (e-h),

and August (i-l) SLP historical period means and standard deviations are shown in Figure 4.6.

The CTL and SMclim simulations have very similar mean state SLP throughout the summer,

featuring the semi-permanent North Pacific and North Atlantic Subtropical highs (Davis et al.,

1997; Nigam and Ruiz-Barradas, 2006; Li et al., 2011) and lower pressure at high latitudes that

extends into the central US. The high pressure centers are slightly larger in magnitude in the CTL

simulation (Figure 4.6 a,e,i) than SMclim (Figure 4.6 b,f,j), but otherwise the two experiments

have near equivalent climatology. CTL and SMclim also have similar SLP variability patterns,

with a general meridional increase in variability and a higher (lower) variability excursion on the

northern (western) edge of the North Pacific high. The main spatial difference in SLP variability

occurs on the northern edge of the North Atlantic Subtropical High in June (Figure 4.6 c,d) and

August (Figure 4.6 k,l).

Beyond means and standard deviations, CTL and SMclim have statistically similar modes

of SLP variability determined through empirical orthogonal function (EOF) analysis. Figure 4.7
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Figure 4.7: SLP Empirical Orthogonal Function (EOF) mode 1 in the CTL (a,d,g) and SMclim
(b,e,h) simulations are similar in June, July and August. (c,f,i) The CTL (black solid line) and
SMclim (gray dashed line) simulations also have subsequent EOF modes that explain similar
amount of SLP variance.

shows SLP EOF1 spatial modes and the percent variance explained by SLP EOF modes 1-20 for

the CTL and SMclim simulations. In June (Figure 4.7 a-c), SLP EOF1 is spatially similar for

CTL and SMclim, but the mode explains about 4% less of the total SLP variance in SMclim

than it does in CTL. In July (Figure 4.7 d-f), CTL and SMclim SLP EOF1 differ in sign over

Alaska and in magnitude over Greenland, but are near identical in terms of percent variance

explained by EOF1 and subsequent modes. In August (Figure 4.7 g-i), spatial differences in CTL

and SMclim SLP EOF1 occur over the North Pacific and North Atlantic, but as in July, percent

variance explained is nearly identical in both simulations.

Because CTL and SMclim SLP patterns are similar, the two dynamical adjustments

necessary to detect thermodynamic contamination can be performed. We compare the dynamic

component of SAT variability constructed using CTL analogues (i) with the dynamic component

constructed using SMclim analogues (ii) for each season in Figure 4.8. There is little difference

between the CTL and SMclim-derived dynamic components of SAT variability in boreal winter,
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spring, and fall (Figure 4.8 a,b,d). The similarity indicates that the land surface feedback does not

contribute to the dynamic component in these seasons. In JJA, however, CTL-derived dynamic

SAT variability (Figure 4.8 ci) features a region of variability in the southern central US that is

0.7◦C larger than dynamic SAT variability constructed with SMclim analogues (Figure 4.8 cii).

Furthermore, the region is the same shape and in the same location as the region where total

SAT variability is elevated by the active land surface feedback in CTL as compared to SMclim

(Figure 4.1 a,b).

To explore this evidence of thermodynamic contamination, we select a July from the CTL

simulation which features an SAT anomaly in the central US and thus contributes to the elevated

total JJA SAT variability in the region. Total SAT (◦C; color) and SLP (m; contours) anomalies

in July 1996 are shown in Figure 4.9 a. SAT is approximately 4◦C warmer than the historical

period average in the central US, but there is no accompanying local SLP anomaly that would

direct analogue selection and favor a dynamic SAT anomaly in the region. Therefore, the warm

SAT anomaly should not be captured by dynamical adjustment. A dynamic SAT anomaly in

the region would likely result from thermodynamic contamination by the land surface feedback

in analogues. This is borne out when the July 1996 dynamic SAT anomaly constructed using

CTL analogues (Figure 4.9 b) is compared to the July 1996 dynamic SAT anomaly constructed

using SMclim analogues (Figure 4.9 c). With an active land surface feedback in the analogues

(Figure 4.9 b), there is a warm anomaly in the dynamic component. Without an active land

surface feedback in the analogues (Figure 4.9 c), there is no warm anomaly in the central US in

dynamic SAT. The difference suggests thermodynamic contamination; CTL simulation analogues

tend to have large SAT anomalies in the central US which contribute to dynamic SAT even when

anomalous SAT is not necessitated by circulation.

The thermodynamic contamination hypothesis is further supported by assessing the land

surface conditions in two Julys with similar atmospheric circulation, but different land surface

states. A SMclim July, commensurate to July 1996 in the CTL simulation, was selected through
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Dynamical Adjustment 
with CTL analogues

Dynamical Adjustment 
with SMclim analogues
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c. JJA σ / σmean σmean = 1.39˚C 

d. SON σ / σmean σmean = 1.65˚C 

b. MAM σ / σmean σmean = 2.00˚C 

0 0.4 0.8 1.2 1.6 2.0
St. dev. of Dynamic SAT (σ), scaled by σmean

i. ii.

i. ii.

i. ii.

Figure 4.8: Standard deviations (σ; ◦C) of the seasonally-averaged dynamic component of
CTL SAT, scaled by the domain average standard deviation of total SAT (σmean; ◦C). Panels a-d
i (ii) show CTL dynamic SAT variability computed from dynamical adjustment using analogues
from CTL (SMclim).
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a. Total SAT & SLP from CTL, July 1996

b. Dynamic SAT & Constructed SLP, July 1996 
(analogues from CTL)

c. Dynamic SAT & Constructed SLP, July 1996 
 (analogues from SMclim)
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Figure 4.9: (a) July 1996 total SAT (◦C) and SLP (m) anomalies in CTL. (b) July 1996 dynamic
SAT (◦C) and SLP (m) constructed using analogues from CTL. (c) July 1996 dynamic SAT
(◦C) and SLP (m) constructed using analogues from SMclim.
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spatial correlation of Z500 anomaly fields, which are shown in contours in Figure 4.10 a and b.

Z500, as opposed to SLP, is used for case selection because Z500 is anomalous locally over the

central US, whereas SLP is not.

Differences in the Z500 fields of the two cases demonstrate that it is challenging to

find a "perfect" analogue of a particular circulation pattern. July 1965 in SMclim was selected

because it featured a center of action over the central US and midlatitude - high latitude pressure

dipole over most of the domain as in July 1996 in the CTL simulation, but the two Julys are

actually negatively correlated. For comparison purposes, the negative of July 1965 Z500 and

SAT anomalies are shown in Figure 4.10 b.

Both cases feature Z500 anomalies of similar magnitude that are spatially concomitant

with SAT in the central US, but the maximum anomaly in CTL July 1996 is 2◦C than hotter than

the (negative) maximum anomaly in SMclim July 1965. This difference in SAT is physically

consistent with the difference in sensible heat flux anomalies in the two cases (Figure 4.10

c,d). Sensible heat flux anomalies represent the energetic pathway through which soil moisture

can influence SAT (Seneviratne et al., 2010). July 1965 has no soil moisture anomalies by

design (Figure 4.10 f), and a slightly negative sensible heat flux anomaly which may contribute

somewhat to the 2◦C difference in central US SAT anomalies (Figure 4.10 d). July 1996 does

have drier than average soil conditions (Figure 4.10 e) in the vicinity of the central US SAT and

sensible heat flux anomalies, but the soil moisture anomalies are not exceptional over the record

(not shown). The relatively large sensible heat flux response to a relatively small soil moisture

anomaly suggests that the atmosphere is very sensitive to land surface perturbations in the central

US in CESM (Merrifield and Xie, 2016).

Anomalies in Figure 4.10 confirm that heat flux anomalies resulting from soil moisture

variability underpin SAT anomalies in the central US in the CTL simulation. Though the

land surface influence in CTL analogues does thermodynamically contaminate dynamic SAT

somewhat, there is no observed equivalent to SMclim from which analogues can be picked.
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Figure 4.10: Total SAT (◦C; color) and Z500 (m; contours) anomalies for (a) July 1996 in CTL
and (b) July 1965 in SMclim, shown with the opposite sign for comparison purposes. Sensible
heat flux (W/m2) and soil moisture (kg/m2) anomalies for the two Julys are shown in panels c, d
and e,f respectively.
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Figure 4.11: As in Figure 4.5, percent of total SAT variance explained by residual SAT,
averaged over the four regions shown in Figure 4.3. Gray bars indicate method uncertainty
determined from the dynamical adjustment of SMclim SAT using SMclim analogues. Lighter
colored bars show the relative magnitude of the interactive analogue residual obtained through
dynamical adjustment of CTL SAT using CTL analogues. Darker colored bars show the relative
magnitude of the fixed soil moisture analogue residual obtained through dynamical adjustment
of CTL SAT using SMclim analogues.

Because observed dynamical adjustment must be donewith interactive soil moisture analogues, we

evaluate whether JJA residual SAT exceedsmethod uncertainty (gray bars) despite thermodynamic

contamination in Figure 4.11. JJA residual SAT computed from SMclim analogues (Figure 4.11,

darker colored bars) explains more of total SAT variance than JJA residual SAT computed from

CTL analogues (Figure 4.11, lighter colored bars) in all regions. CTL analogue-derived residual

SAT exceed method uncertainty by only 2% in the East (green), 3% in the West (teal), and 10%

in the North (blue). In contrast, 20% more variance is explained in the Central region, which

suggests the region is distinct and a land-atmosphere hot spot.

4.3.3 Sensitivity to Analogue Selection Period

The remainder of this chapter focuses on leave-one-out dynamical adjustment of the CTL

simulation and two potential sensitivities of the method in the summer. The setup emulates

60



observed dynamical adjustment and can therefore inform analogue specifications and parameter

choices.

First, we assess whether dynamical adjustment is sensitive to analogue selection period.

For leave-one-out dynamical adjustment of the CTL, analogues are selected from the 150-year

CESM GLACE experiment period of 1950-2100. The CTL simulation, however, is also a part

of the CMIP5 archive, and as such has a historical forcing period that extends back to 1850.

We leverage this 155-year extended historical record and repeat the dynamical adjustment of

the CTL simulation using analogues selected from 1850-2005. The two adjustments differ

because the analogues of SLP and SAT experience different radiative forcings. Both analogue

selection periods sample the (extended) historical forcing period from (1850) 1950 to 2005,

but leave-one-out CTL dynamical adjustment also samples the RCP8.5 forcing period from

2006-2100 (Riahi et al., 2011). The 8.5 W/m2 increase in radiative forcing from 2006-2100

induces a forced trend in SAT and results in a warmer mean climate by the end of the CTL

simulation. Due to this mean warming, an SLP analogue selected from the end of the CTL

simulation will have corresponding SAT anomalies that are warmer than an SLP analogue

selected from the beginning of the CTL simulation (Lehner et al., 2017). To correct for the

forced warming, a quadratic least-squares fit is removed from CTL SAT at each grid point. The

quadratic detrending and other high-pass filtering techniques are discussed in more detail in

Deser et al. (2016).

Ultimately, the quadratic detrending of SAT should ensure that SLP analogues have

corresponding unforced SAT anomalies throughout the extended CTL simulation. Selecting

analogues from the 1850-2005 period should be equivalent to selecting analogues from the

1950-2100 period. The dynamic components of SAT variability for the 1950-2100 (i) and

1850-2005 (ii) analogue selection periods are shown for each season in Figure 4.12. Despite

analogues being selected from different portions of the CTL simulation, dynamic SAT variability

is similar both spatially and in terms of magnitude in the two cases. This supports the hypothesis
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that the method of dynamical adjustment relatively insensitive to analogue selection period as a

result of forced SAT trend removal.

In JJA, both analogue selection periods result in a region of elevated dynamic SAT

variability in the central US (Figure 4.12 c). This suggests that thermodynamic contamination is

also insensitive to analogue selection period. To summarize the sensitivity of summer dynamical

adjustment to analogue selection period, Figure 4.13 shows regional averages of percent variance

explained by JJA residual SAT. Solid colored bars signifying analogue selection from the

1950-2100 period and outlined bars signifying analogue selection from the 1850-2005 period.

As in Figure 4.11, gray bars show the method uncertainty threshold for each region. On average,

JJA residual SAT explains approximately 38% of total SAT variance in the North (Figure 4.13

blue bars) for both the selection periods. In other regions, percent variance explained is similar

for the two selection periods (within ±5%).

4.3.4 Sensitivity to Number of Analogues (Ns)

The final aspect of summer dynamical adjustment we evaluate is the sensitivity of

constructed SLP and dynamic SAT to the number of analogues (Ns) used in their formation. We

perform ten additional leave-one-out dynamical adjustments on the CTL simulation varying Ns

from 5 to 55 analogues in five analogue increments. The Ns analogues are selected from Na = 80

possibilities and the process is repeated Nr = 100 times, as in other dynamical adjustments in

this chapter.

To assess sensitivity, we compare the spatial match of total and constructed SLP for each

year of the historical period (Figure 4.14). Spatial match is determined through SLP spatial

correlation over the North American domain (20 − 75◦N, 50 − 170◦W). SLP spatial correlations

are, on average, above 0.90 in each season, regardless of the number of analogues used in

construction. This confirms dynamical adjustment is successful in reconstructing SLP, even with

as few as 5 analogues. Spatial correlations are lower and more variable in MAM (Figure 4.14,

62



a. DJF σ / σmean σmean = 2.79˚C 

Dynamical Adjustment 
with 1950-2100 
CTL analogues

Dynamical Adjustment 
with 1850-2005 
CTL analogues

i. ii.

c. JJA σ / σmean σmean = 1.39˚C 

d. SON σ / σmean σmean = 1.65˚C 

b. MAM σ / σmean σmean = 2.00˚C 

i. ii.

i. ii.

i. ii.

0 0.4 0.8 1.2 1.6 2.0
St. dev. of Dynamic SAT (σ), scaled by σmean

Figure 4.12: Standard deviations (σ; ◦C) of the seasonally-averaged dynamic component of
CTL SAT, scaled by the domain average standard deviation of total SAT (σmean; ◦C). Panels a-d
i (ii) show CTL dynamic SAT variability computed from dynamical adjustment using analogues
from years 1950-2100 (years 1850-2005) of the CTL simulation.
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Figure 4.13: As in Figure 4.5 and Figure 4.11, percent of total SAT variance explained
by residual SAT, averaged over the four regions shown in Figure 4.3. Gray bars indicate
method uncertainty determined from the dynamical adjustment of SMclim SAT using SMclim
analogues. Solid bars show the relative magnitude of the CTL residual obtained through
dynamical adjustment using the CTL 1950-2100 analogue period. Outlined bars show the
relative magnitude of CTL residual obtained through dynamical adjustment using the CTL
1850-2005 analogue period.

cyan) than in other seasons. As more analogues are used to construct SLP (increasing Ns),

correlations approach unity. Spread is reduced to values of 10−3 by Ns = 30 in JJA and SON,

and by Ns = 35 in DJF. In MAM, spread remains larger than 10−3 by Ns = 55. Correlations have

converged to average values of 0.997-0.999 in each season by Ns = 50, which is the value used

for the other dynamical adjustments in this chapter.

Another way to assess sensitivity to the number of analogues is through the dynamic

component of SAT, which is shown in terms of percent of total variance explained as a function

of Ns in Figure 4.15. Dynamic SAT explains less total SAT variance when fewer analogues are

used in its construction, which confirms that the efficacy of dynamical adjustment relies on the

having a large pool of analogues to pick from. Averaged over the whole North American domain,

the percent of DJF SAT variance explained by dynamic SAT increases from 40% for Ns = 5

to 63% by Ns = 40 (Figure 4.15, blue). A similar evolution with increasing Ns occurs in JJA,
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Figure 4.14: Spatial correlation between SLP and constructed SLP, constructed by selecting Ns

analogues from a set of 80 possibilities, where Ns is 5 through 55 in steps of 5. Lines indicate
the average spatial correlation and the shading indicates ±1σ spread in spatial correlation across
the 55 years in the historical period (1951-2005). DJF (blue) and JJA (red) correlations are
shown in the left panel. MAM (cyan) and SON (magenta) correlations are shown in the right
panel.

with the percent variance explained by dynamic SAT increases from 24% for Ns = 5 to 44%

by Ns = 30, and remains between 44 − 45% thereafter (Figure 4.15, red). In MAM, however,

percent of variance explained by dynamic SAT increases to 53% by Ns = 30 and then decreases

to 48% by Ns = 55 (Figure 4.15, cyan). The percent of SON SAT variance explained by dynamic

SAT also decreases, from 43% for Ns = 25 to 40% for Ns = 55 (Figure 4.15, magenta). Based on

the sensitivity analysis of SLP and dynamic SAT, we advise further evaluation of the optimal

parameters to use for dynamical adjustment of MAM and SON SAT.

4.4 Developing an Observation-Based Land-Atmosphere Hot

Spot Metric

One of the objectives of evaluating the dynamical adjustment of the CESM GLACE

experiment is to inform the development of a land-atmosphere hot spot metric that leverages

the longer, more spatially complete observational records of SAT and SLP. With this in mind,
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Figure 4.15: Percent of total SAT variance explained by dynamic SAT for different values of
Ns, for each season, averaged over the full North American domain.

we used the same version of dynamical adjustment, the leave-one-out method, that is used to

dynamically adjust observations (Deser et al., 2016; Lehner et al., 2017). Analogues are selected

from a 150-year long record, which approximately corresponds to the record length of SAT and

SLP observations. We provide evidence that the method is relatively insensitive to selection

period, provided SAT is first quadratically-detrended to remove any forced warming trend, and to

the number of analogues used, provided that Ns is greater than 30.

Beyond guiding methodological choices, the dynamical adjustment of the SMclim

simulation demonstrates that method uncertainty accounts for 20-45% of total SAT variance,

depending on region, season, and possibly on orography. The implication of this is that dynamical

adjustment should not be used as a black box. If residual SAT explains less than 45% of total

SAT variance, a case must be made for its physical basis. Similar care must be taken in regions

where total SAT variability is low (unlikely to be a hot spot due to a lack of signal) or regions

where elevations are 1000 m or more above sea level (where method error is largest). However, if

a region has both relatively larger SAT variability and a residual component that explains more
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than 45% of total SAT variance, it can be identified as a land-atmosphere hot spot.

Finally, it is important to recognize that an analogue method has limitations, which could

affect one’s ability to use dynamical adjustment to characterize the dynamic or thermodynamic

contribution to individual events. The summer stands out as the season most susceptible to

contamination of the dynamic component by thermodynamically-driven SAT anomalies in

analogues. Thermodynamic contamination in the summer often leads to an underestimate of

residual SAT and could affect the land-atmosphere hot spot metric. We recommend determining

the soil moisture conditions in each analogue as a way to document that you are averaging across

a variety of different land surface states and therefore less likely to contaminate the dynamic

component of SAT with the thermodynamic signal you wish to evaluate.

4.5 Summary

In this chapter, we present a systematic evaluation of summer dynamical adjustment and

conclude that the method can be used to remove the effect of circulation on SAT to reveal a North

American hot spot of land-atmosphere interaction. We find is no methodological limitation

that would prevent using dynamical adjustment to identify land-atmosphere hot spots in an

observational framework. Method uncertainty was demonstrated to be smaller than the land-

atmosphere hot spot threshold defined in (Merrifield et al., 2017), which confirms that residual

SAT in the central US hot spot had a physical basis. We suggest that is residual SAT explains

more than 45% of total SAT variance in a region, the region is a candidate land-atmosphere hot

spot and should be explored further.

There are several caveats to the 45%variance explained land-atmosphere hot spot threshold,

which are discussed in section 4. The main limitation of summer dynamical adjustment, however,

is the potential for thermodynamic contamination of the dynamical component. Contamination

is likely to occur in regions of strong land surface feedback and is another source of method
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uncertainty. While it is recommended that as many analogues as possible are used, SLP can be

effectively reconstructed in DJF and JJA using 100 30 analogues sets. The dynamic components

of DJF and JJA SAT become insensitive to the number of analogues per set for sets of more than

45 analogues. Further analysis of parameter sensitivity in MAM and SON is warranted.
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Chapter 5

The Role of the Land-Atmosphere

Interactions during a Persistent European

Heat Wave

5.1 Introduction

In prior chapters, we explored the role of soil moisture on year-to-year variations of

summer surface air temperature (SAT) in the central United States. While understanding the

relationship between soil moisture and interannual SAT variability is useful, it is also important

to understand the role of soil moisture during heat waves. Heat waves are socioeconomically

impactful throughout the Northern Hemisphere midlatitudes but are of particular concern in

densely populated Europe. Recent persistent hot extremes, including the 2003 heat wave in

western Europe, have caused billions of dollars of agricultural losses (Heck et al., 2001) and tens

of thousands of excess deaths (Robine et al., 2008). Moreover, as the climate system warms, it is

anticipated that European heat waves will become more frequent, intense, and persistent (e.g

Schär and Jendritzky, 2004; Meehl and Tebaldi, 2004; Beniston et al., 2007).
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Soil moisture has been identified as a key contributor to the intensity and duration of

European heat waves (e.g Vautard et al., 2007; Lorenz et al., 2010; Jaeger and Seneviratne,

2011). Using a regional climate model, Fischer et al. (2007b) concluded that wetter soils could

have mitigated the exceptional summer temperatures during the 2003 heat wave by up to 40%;

climatological soil moisture would have offered up to 2◦C of relief. Primarily, soil moisture

influences surface climate through the partitioning of outgoing surface energy between the latent

and sensible heat fluxes (Seneviratne et al., 2010; Berg et al., 2014). Under typical circumstances,

the partitioning of fluxes by soil moisture affects SAT only in not too wet, not too dry “hot

spots" of land-atmosphere interaction (Koster et al., 2004a), such as the Mediterranean region

in southern Europe (Seneviratne et al., 2006b; Hirschi et al., 2011; Diffenbaugh et al., 2007).

During heat waves, however, as soils dry out under above average SAT, the land surface feedback

can occur on a continental scale (Fischer et al., 2007a).

While the land surface can amplify or damp extreme SAT, heat waves are set in the

atmosphere. In most cases, heat waves accompany persistent, stationary high pressure systems, or

blocking highs (Charney and DeVore, 1979; Hurrell, 2015). Blocking highs over Europe tend to

form in the quiescent region between splits in the polar jet (Egger, 1978; Barnes and Screen, 2015)

and can be amplified by the quasi-stationary component of both free and thermally/orographically

forced atmospheric Rossby waves (Schubert et al., 2011; Petoukhov et al., 2013; Coumou et al.,

2015). Blocking highs tend to be dynamically linked to low pressure systems, which help to stall

them (Perkins, 2015), and may occur more frequently during episodes of anomalous tropical

Atlantic convective heating (Cassou et al., 2005). Once established, blocking highs bring clear

skies, light winds, subsidence, and warm air advection, all of which contribute to heat wave

conditions (Meehl and Tebaldi, 2004; Fischer et al., 2007b).

On synoptic timescales, the circulation and the land surface operate in tandem to amplify

SAT. The feedback process is summarized by Miralles et al. (2014). In the atmosphere, advection

and enhanced entrainment bring warm air to the boundary layer during the day, which dries
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soils. An inversion traps the day’s heat in the boundary layer overnight. Over several days, heat

accumulates and the surface atmosphere is warmed further by the continual desiccation of soil

moisture, resulting in a heat wave. By this mechanism, dry initial soil conditions increase the

risk of dangerously extreme heat. Quesada et al. (2012) documented the asymmetry in heat

wave influence, finding that summer temperature is more sensitive to the occurrence of blocking

regimes when soils are initially dry.

While there are many ways to define a heat wave (Meehl and Tebaldi, 2004; Perkins,

2015), we assess a persistent seasonal hot extreme (Figure 5.1 a, red dot), which for clarity,

will be referred to as a heat wave following Fischer et al. (2007b) and Zampieri et al. (2009).

In this chapter, we aim to quantify to what extent dry spring soils exacerbate a summer heat

wave in central Europe. We use a Community Earth System Model (CESM) preindustrial

control simulation to create three ensembles with varying degrees of internal atmospheric

variability to establish the relationship between preseason land surface conditions and SAT.

Relationships between summer SAT and other concurrent dynamic and thermodynamic controls

are also explored. The remainder of this chapter is structured as follows. Section 2 details the

experimental design, section 3 presents the results and section 4 provides a summary.

5.2 Experimental Design

To assess the role of preseason soil moisture on a subsequent European heat wave, a

model experiment was performed within a CESM preindustrial control framework, which is

summarized in Table 1. A 306-year control simulation, henceforth referred to as CTL, was used

as the basis of the experiment. CTL experiences preindustrial (1850) radiative forcing levels

and has prescribed climatological sea surface temperature (SST) and sea ice. SST and sea ice

climatology is calculated as the average of years 401-1399 of the CESM Large Ensemble 1850

control simulation (Kay et al., 2015). The AMIP-style (Gates, 1992), preindustrially forced CTL
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allows for the isolation of internal atmospheric variability, as ocean-atmosphere feedbacks are

suppressed by the prescription of climatological SST and the atmosphere experiences no change

in radiative forcing from 1850 levels. The only component of the climate system coupled with

and capable of modifying atmospheric conditions is the land surface.

Table 5.1: Description of CESM simulation experiments used in this chapter.

Experiment Abbreviation Description

Control Simulation CTL 306 year AMIP-style simulation, with prescribed
climatological SST from years 401 - 1399 of the
CESM Large Ensemble control run and preindustrial
(1850) radiative forcing.

Heat wave Case Year 200 Year selected from CTL to evaluate conditions during
a seasonally persistent heat wave.

Prescribed Circulation
Ensemble

PCE Ensemble of 44 CTL years, branched from June 1 and
with Year 200 circulation imposed above 322 hPa.

Prescribed
Circulation Ensemble,
Full Column

PCEfull Ensemble of 44 CTL years, branched from June 1
and with Year 200 circulation imposed over the full
vertical column.

5.2.1 Control Simulation

Interannual summer SAT variability in CTL simulation is illustrated in Figure 5.1 a.

The CTL timeseries (Figure 5.1 a, black) shows June-July-August (JJA) SAT, area-averaged

over the boxed region which encompasses central Europe (Figure 5.1 a, inlay; 41.94◦-53.25◦N,

1.25◦W-23.75◦E). Throughout this chapter, CEU is used to refer to fields area-averaged over

this region. The CEU region also approximately bounds the region that experienced the 2003

European summer heat wave (Black et al., 2004).

A seasonally-persistent European heat wave occurs in Year 200 of the CTL simulation.

JJA CEU SAT in the Year 200 (Figure 5.1 a, red dot) is 21.9◦C, 2.5◦C above the long-term average

for the region. The May-September evolution of the Year 200 heat wave, in terms of monthly
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a. Box-Averaged JJA SAT (˚C), Central Europe (CEU)

Control Run Year

heat wave
(Year 200)

SA
T 

(˚C
)

44 years selected for the Prescribed Circulation Ensemble (PCE)

SAT Anomaly (˚C)
[2 : 2 : 12]SLP Anomaly (m) [-12 : 2 : 2]

Aug SepMay Jun Jul
b. Evolution of the Year 200 heat wave

Figure 5.1: (a) June-July-August (JJA) Surface Air Temperature, box-averaged over central
Europe (CEU; inlay), in an AMIP-style preindustrial control run. The year with the highest
average SAT (Year 200; red dot) is selected as the heat wave case. Years selected to comprise the
Prescribed Circulation Ensemble (PCE) are indicated with blue dots. The PCE is a set of runs
branched from the control run with Year 200 winds imposed from June to September. Initial
land surface states differ between PCE members. (b) SAT (◦C; color) and SLP (m; contours)
anomalies during the Year 200 heat wave.
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mean SAT (color) and sea level pressure (SLP; contours) anomalies, is shown in Figure 5.1 b.

Anomalies in this chapter are computed with respect to the 306-year climatology unless otherwise

noted.

In May, prior to the heat wave, Year 200 SAT is between 1.5 and 3◦C above average in

the CEU, with anomalies largest in Northern France, Belgium, and the Netherlands (Figure 5.1

b). The warm temperatures accompany a ridge of SLP that extends from the North Atlantic to

northern Europe. The heat wave starts in earnest in June, with SAT anomalies reaching 5◦C over

Hungary and Slovakia. A high pressure system remains over continental Europe, now centered

over eastern Europe. By July, nearly the whole of Europe is experiencing above average SAT,

while the high pressure block remains over the continent for a third consecutive month. By

August, the persistent blocking high weakens, alleviating heat wave conditions in most of the

CEU. Temperatures in France, however, still remain over 4◦C hotter than average. In September,

a strong high pressure system returns, but SAT in the CEU remains less than 3◦C above average.

With consistent blocking conditions in the atmosphere and a large spatial extent, the Year 200

heat wave is optimal for a land surface feedback assessment.

5.2.2 Prescribed Circulation Ensembles (PCEs)

With the target heat wave chosen, 44 other years are selected to provide a representative

distribution of the CTL (Figure 5.1 a, blue dots). The CTL is then branched from of each of these

44 years. Starting June 1 of, for example, Year 2, zonal (u) and meridional (v) winds are linearly

relaxed from Year 2 values towards Year 200 values. U and v are updated in the model every 6

hours and are linearly interpolated between time steps; the linear relaxation is towards the linearly

interpolated values and takes place between the interval. This process effectively prescribes the

atmospheric circulation that sets the Year 200 heat wave onto an initial condition ensemble, thus

creating a Prescribed Circulation Ensemble (PCE). Year 200 conditions are prescribed through

the summer, culminating September 30.
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Two PCEs of June through September monthly-averaged fields are considered in this

chapter. The primary ensemble considered is the PCE, which has circulation prescribed above

322 hPa (top 16 pressure levels of the CESM atmosphere model, CAM5). Secondarily, we

consider the PCEfull, which has circulation prescribed over the full atmospheric column (each of

the 30 pressure levels in CAM5 from 992.6 to 3.6 hPa). To compare with the PCEs, an ensemble

of the original 44 years from the CTL, or CTL ensemble, is also considered.

The CTL, PCE, and PCEfull ensembles can also be interpreted in terms of their respective

levels of internal atmospheric variability. The CTL ensemble has full internal variability; each of

the 44 years encounters a different set of atmospheric circulation patterns through the summer.

The PCE has partial internal variability, atmospheric circulation is fixed to Year 200 conditions

at the top of the troposphere, but left free to vary beneath. The PCEfull has the least amount

of internal variability, as atmospheric conditions present during the Year 200 heat wave are

prescribed over the full atmospheric column. We anticipate that the land surface feedback on

SAT will be damped in the PCEfull by the atmospheric constraint, because SAT modified by dry

soil conditions will not experience amplification associated with the feedback between SAT and

atmospheric circulation (Fischer et al., 2007b; Haarsma et al., 2009; Koster et al., 2016).

5.2.3 Initial land surface states

Though the three ensembles differ in aspects of atmospheric circulation, the PCE, PCEfull,

and CTL ensemble share a set of initial conditions, represented by soil moisture in Figure 5.2.

Throughout this chapter, soil moisture refers to the average of soil liquid water (SOILLIQ) over

the top 8 levels (approximately 1 m) of CESM’s land model, CLM4.5, which approximately

corresponds to the root zone (Shukla and Mintz, 1982; Hirschi et al., 2014). May soil moisture

anomalies (kg/m2) for each of the 44 ensemble member years and Year 200 (bottom right, gray

background) are shown in Figure 5.2 a, with the CEU region boxed on each panel. The distribution

of May CEU soil moisture is shown in Figure 5.2 b. 283 CTL run years have soil moisture output
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available from May through September (Figure 5.2 b, gray bars); CEU anomaly values range

from -20.7 to 17.7 kg/m2. Year 200 soil moisture is anomalously dry in May, (Figure 5.2 b, red

line), but at -20.0 kg/m2, it is not the driest initial state in the CTL distribution. Mays that are

drier than Year 200 in the CTL are not followed by a Year 200-level heat wave, which indicates

that preseason soil dryness must be accompanied by heat wave favorable circulation to instigate

an exceptionally hot summer.

The 44-year distribution of initial conditions (Figure 5.2 b, black bars) is representative

of the 283 year CTL distribution, though does not capture the full extent of the dry side tail.

Two extreme initial condition years are indicated in Figure 5.2 b with vertical lines; the driest

CEU May, Year 54, is shown in magenta, and the second wettest CEU May, Year 55, is shown in

cyan. Year 54 is slightly drier than Year 200 in an area-average sense, and is notably drier in the

southern portion of the CEU domain, the Mediterranean region where an active land surface

feedback has been identified (Seneviratne et al., 2006b; Vidale et al., 2007; Fischer and Schär,

2009). A dry anomaly in the northern portion of the CEU domain keeps Year 55 from being

the wettest CEU May, but a relatively large positive soil moisture anomaly in the Mediterranean

portion of the CEU domain make it among the wettest in the distribution.

5.3 Results

5.3.1 Evolution of Prescribed Heat Waves

Year 54 in the PCE, which starts out with the driest May soil moisture anomaly, has

the maximum June through August heat wave in the PCE (Figure 5.3 a, i-iii). With initial soil

moisture conditions on the other extreme, Year 55 has the minimum June through August heat

wave in the PCE (Figure 5.3 a, iv-vi). All PCE (and PCEfull) ensemble members feature heat

waves that are spatially similar to the Year 200, but differ in SAT anomaly magnitude. This

confirms that the atmospheric circulation pattern we prescribe is responsible for setting SAT
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a. Initial Soil Moisture Conditions

b. Distribution of May CEU Soil Moisture 
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Figure 5.2: (a) May soil moisture anomalies (kg/m2), which represent initial land surface
states for each of the 44 PCE members and the Year 200 (bottom right, gray background). The
index in the bottom left of each panel indicates the CTL year each member was branched from.
The CEU averaging region is boxed in each panel. (b) Histograms of May CEU soil moisture
anomalies (kg/m2), for all available CTL years (gray bars) and the 44 CTL years selected for the
PCE (black). Lines represent May CEU soil moisture anomalies for the Year 200 (red), and two
extreme members of the PCE, Year 54 (magenta) and Year 55 (cyan).
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Figure 5.3: (top) June, July, and August (a) SAT anomalies (◦C) and (b) soil moisture anomalies
(kg/m2) for Year 54, the hottest member of the PCE (i-iii) and Year 55, the coolest member of
the PCE (iv-vi). (bottom) Box-and-whisker plots illustrating the PCE (blue) and PCEfull (teal)
distributions of CEU (c) SAT (◦C) and (d) soil moisture (kg/m2) anomalies from June through
August. Year 200 values are indicated in red.

patterns in this CESM framework. Soils dry beneath the heat wave in both years (Figure 5.3 b),

with Year 54 reaching a CEU average anomaly of -44.6 kg/m2. Year 55 reaches a CEU average

anomaly of only -20.9 kg/m2. Consistent with the canonical land surface feedback (Seneviratne

et al., 2010), Year 54 starts drier and evolves to be hotter than Year 55.

The effect of partial vs. full column prescribed circulation can be assessed by comparing

the CTL, PCE, and PCEfull CEU distributions. The box and whisker plots of SAT (Figure 5.3 c)

and soil moisture (Figure 5.3 d) anomalies demonstrate that the PCE heat waves (blue) span a
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larger range of SAT and a comparable but slightly drier range of soil moisture than PCEfull heat

waves (teal). Without the circulation constraint, CTL CEU SAT and soil moisture anomalies

(black) are distributed more uniformly about the mean. Missing CTL soil moisture values in July

and August are replaced with alternate CTL years in order for n = 44 in each distribution. The

box and whisker elements show the interquartile range (between the 25th and 75th percentiles)

and the maximum and minimum CEU values. Year 200 CEU values are shown in red.

In Figure 5.3 c, CEU SAT anomalies range from 1.3 to 3.4 ◦C in the PCE and 1.8 to

3.1◦C in the PCEfull in June; Year 200 CEU SAT (3◦C) falls within the upper quartile of both

distributions. In July and August, Year 200 CEU SAT falls below the 75th percentile of the PCE

distribution, but above the maximum of the PCEfull. The narrowing of the PCEfull to span less

than 0.7◦C by July suggests that the atmospheric circulation constraint also strongly constrains

SAT.

The PCE and PCEfull have similar CEU soil moisture distributions (Figure 5.3 d), which

allows us to rule out soil moisture as the cause of reduced SAT spread in the PCEfull. Though the

CTL, PCE, and PCEfull ensembles share initial soil moisture, exposure to the heat wave causes a

systematic drying of all PCE and PCEfull members. By July, the PCE and PCEfull contain only

members that are drier than average. PCEfull members do not dry out enough for Year 200 CEU

soil moisture to fall within the distribution, which suggests that the atmospheric constraint on

SAT damps the land surface feedback in the PCEfull. Because the PCE has approximately twice

the SAT spread of the PCEfull and members that are drier than Year 200, we focus on evaluating

the land surface feedback in the PCE in this chapter.

Because PCE atmospheric circulation is set only in the upper troposphere, circulation

patterns beneath may vary. Differences in the unconstrained portion of the troposphere could be

due to differences in land surface states and/or to random fluctuations that occur internally in

the atmosphere. The extent of tropospheric differences in the PCE can be explored in vertical

longitude sections (Figure 5.4). We chose the center latitude of the CEU, (47.6◦N; dashed line), as
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representative of the heat wave circulation pattern, based on Year 200 SLP anomalies (Figure 5.4

a). Geopotential height (Z; m) anomalies, from 60◦W to 45◦E and 992.6-200 hPa, for Year 200,

PCE Year 54, and PCE Year 55 are shown in Figure 5.4 b-d respectively. The sections cross the

Alps and the western slope of the Carpathian mountain range, which are shown in each panel

in black; orographic features in the CEU are discussed further in Figure 5.5. As a guide, the

longitudinal boundaries of the CEU (1.25◦W-23.75◦E) are also marked in each panel by dotted

lines.

Prescribing atmospheric circulation above 322 hPa results in PCE members having the

same geopotential height anomaly pattern as Year 200 (Figure 5.4 b-d). In June (i), atmospheric

circulation takes the form of a wave train with low pressure center west of the CEU region, a

strong high pressure center over the CEU region, and low pressure to the east. This blocking

pattern is similar to the one that occurred in June during the 2003 heat wave (Ferranti and Viterbo,

2006; Della-Marta et al., 2007). In July (ii), a dipole pattern is present. In August (iii), the high

pressure center that remains has shifted to the west of the CEU region, consistent with the heat

wave contracting westward.

As the extremes of the PCE, the maximum heat wave in Year 54 (Figure 5.4 c) and

minimum heat wave in Year 55 (Figure 5.4 d) are likely to have the largest Z anomaly differences.

In terms of magnitude, the maximum (minimum) PCE heat wave has a stronger (weaker) high

pressure center over the CEU region in June, July, and August. In addition to being stronger, the

CEU high pressure center is also broader in the Year 54 maximum heat wave than in Year 55

minimum heat wave throughout the summer. Outside of the CEU, low pressure anomalies tend

to be weaker in Year 54 than Year 55, particularly in July over the North Atlantic.

An awareness of the orography in the CEU is important for the interpretation of

relationships between SAT and other fields. CESM orography, in m above the geoid, is shown in

Figure 5.5. The CEU encompasses the lower elevation Northern European plain between the

southwestern United Kingdom and Poland as well as the higher elevation Pyrenees, Alps, and
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Figure 5.4: June, July, and August (i-iii) anomalies of (a) Year 200 SLP (m) and (b)-(d)
geopotential height (Z; m), shown in longitude vertical sections above 47.6◦N (dotted line in a).
Z anomalies are shown for Year 200 in b, for Year 54 (hottest PCE member) in c, and for Year
55 (coolest PCE member) in d.
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Figure 5.5: CESM’s orography (m above the geiod) in the CEU box region.

Balkan mountain ranges. Because the nature of the land surface feedback changes at elevation

(Wilson and Barros, 2017), orographic features more than 600 meters above the geoid are shown

in black dashed contours as a visual guide in Figures 5.6, 5.9 and 5.12.

5.3.2 Concurrent relationships in the PCE

Before the role of preseason soil moisture conditions on a heat wave can be ascertained,

it must be demonstrated that soil moisture influences SAT in the PCE. The first order influence of

soil moisture on SAT occurs through the partitioning of the outgoing surface turbulent heat flux

between sensible (QH) and latent (QE) heat fluxes (e.g. Seneviratne et al., 2010; Dirmeyer, 2011;

Miralles et al., 2012). In the case of a heat wave, dry soils lack water to evaporate, leaving more

outgoing energy available to heat the atmosphere through QH. Therefore, we anticipate that PCE

members with drier soils will also have more total outgoing energy (QH + QE) in the sensible
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heat flux (QH).

To determine if soil moisture dictates QH fraction (QH/(QH + QE)) in the PCE, we regress

the latter on the former at each grid point (Figure 5.6 a). Prior to the regression, soil moisture is

normalized at each grid point by subtracting the PCE mean and dividing by the PCE standard

deviation. Regression coefficients are negative and can be interpreted as the percent increase in

QH fraction per standard deviation of soil moisture (σSM) reduction.

In June (i), changes in soil moisture result in the largest changes in QH fraction, up to

6% per σSM, in the southern and eastern portions of the CEU region. By July (ii), QH fraction

is sensitive to soil moisture over the whole CEU region except at altitude (dotted contours in

Figure 5.6 a mark elevations above 600 m). The scatter plots in Figure 5.6 b show the relationship

between normalized CEU soil moisture (σSM) and CEU QH fraction for June (yellow), July

(orange) and August (red). Least squares regression lines of best fit for the CEU relationships

(Figure 5.6 b) suggest that years that are one σSM drier than average have a 2% larger QH fraction.

In Year 54 of the PCE, when soils are driest and SAT is the hottest, CEU QH fraction ranges from

0.41 in June to 0.56 in August. On the other extreme, in Year 55 of the PCE, CEU QH fraction

ranges from 0.35 in June to 0.48 in August. The relationship between drier soils and a larger QH

fraction among PCE members suggests that the land surface influences heat wave SAT in central

Europe.

Along with the land surface feedback, other processes may contribute to the intensity

of heat waves in the PCE. Two possible atmospheric contributors are the shortwave cloud

radiative effect (SWCRE; W/m2) and vertical velocity at 700 hPa (Ω700; Pa/s). The SWCRE is

the difference between all-sky and clear-sky downward shortwave radiation at the surface, and

represents the reflectivity of clouds (Cheruy et al., 2014). More shortwave radiation reaches

the surface when skies are clear, so the SWCRE is always negative. Larger negative values

correspond to more cloud cover. Ω700 is the vertical wind velocity in pressure coordinates across

the 700 hPa pressure level, with negative values representing upward motion and positive values
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Figure 5.6: (a) Regression coefficient at each grid point, of the sensible heat flux fraction
(QH/(QH+QE)) regressed on normalized concurrent soil moisture (σSM) for June (i), July (ii),
and August (iii) in the PCE. (b) Scatter plot for June (yellow), July (orange), and August (red)
CEU σSM vs. (QH/(QH+QE)), with coefficients of linear least-squares regressions for each
month listed in the top right of the panel.
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representing subsidence (Trenberth, 1978).

The climatology of (a) the SWCRE (W/m2), (b)Ω700 (Pa/s), (c) SAT (◦C), (d) QH fraction

(dimensionless),and (e) soil moisture (kg/m2) are shown in the left panel of Figure 5.7. In all

summer months, there tends to be more cloud cover in the center of the CEU (over the Alps) and

clearer skies in the southern CEU (Figure 5.7, left, row a). This cloud distribution is consistent

with the climatological regions of positive and negative Ω700 (Figure 5.7, left, row b), as clouds

form in regions of rising air (negative values of Ω700) and clear skies tend to be associated with

subsidence (positive values of Ω700). SAT is coolest (warmest) at higher (lower) elevations and

latitudes and warmer in the eastern than western CEU (Figure 5.7, left, row c). The distributions

of QH fraction (Figure 5.7, left, row d) and soil moisture (Figure 5.7, left, row e) are also

consistent with one another, larger QH fractions occur over the drier southern and eastern CEU.

Between June (i) and August (iii), the largest evolution occurs in the southeastern corner of the

CEU for the SWCRE, QH fraction, and soil moisture. The region becomes less cloudy, has an

increase in QH fraction, and dries by more than 60 kg/m2. SAT and Ω700 increase from June to

August in the southern CEU.

The right panel of Figure 5.7 shows Year 200 anomalies for the SWCRE, Ω700, SAT, QH

fraction and soil moisture. During the Year 200 heat wave, the SWCRE is more positive than

average (less cloudy) over the majority of the CEU, most strikingly in June (Figure 5.7, right, ai).

Ω700 (Figure 5.7, right, row b) also becomes positive, indicating subsidence, in the regions of

the CEU that are beneath the high pressure system shown in Figure 5.4 b. The SAT anomalies

(Figure 5.7, right, row c) in Year 200 are physically consistent with clear skies and subsiding air,

but are largest in regions where the QH fraction is larger than average (Figure 5.7, right, row d).

Soil moisture is drier than average over the whole CEU domain (Figure 5.7, right, row e), but

the dry conditions only elevate the QH fraction in the regions of land surface feedback shown in

Figure 5.6 a.

The PCE is an ensemble of 44 Year 200 heat waves, which can be assessed in terms
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Figure 5.7: June, July, and August (i-iii) CTL climatology (left) and anomalies of Year 200
(right). Atmospheric fields are shown in the top two rows: (a) shortwave cloud radiative effect
(SWCRE; W/m2) and (b) vertical velocity in pressure coordinates at 700 hPa (Ω700; Pa/s). SAT
(◦C) is shown in row (c). Field related to the land surface feedback are shown in the bottom two
rows: (d) sensible heat flux fraction (QH/(QH+QE); W/m2) and (e) soil moisture (SM; kg/m2).
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Figure 5.8: (left) As in Figure 5.7, but for the mean of the PCE anomalies. (right) As in
Figure 5.7, but for the standard deviation across the PCE.

of ensemble mean (Figure 5.8, left) and standard deviation (Figure 5.8, right). The ensemble

mean anomalies for all fields have similar spatial patterns to their Year 200 counterparts. This

spatial similarity is not guaranteed, as only horizontal upper tropospheric winds are explicitly

prescribed in the PCE. Owing to the diversity of initial soil moisture condition (Figure 5.2 a) and

soil moisture memory, the ensemble mean of PCE soil moisture anomalies (Figure 5.8, left, row

e) only slightly negative in June but converges to within about 35% of Year 200 in August.

The ensemble spread in the PCE is larger in June (i) than in August (iii) for all fields.

For SAT (Figure 5.8, right, row c), the PCE spread is largest in the regions of maximum SAT

anomaly: in the eastern CEU in June (i) and July (ii), and in the western CEU in August (iii). The

SAT PCE spread is also elevated in the northeastern portion of the CEU in June (i), which then

become the region of maximum SAT anomaly in July (ii), and western portion of the CEU in July

(ii), which then becomes the region of maximum SAT anomaly in August (iii). The coincidence
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between elevated SAT spread and maximum anomaly the following month suggests that it may

be possible to identify where a heat wave will be most amplified a month in advance.

The evolution of heat wave SAT suggests that anticipating regions of extreme heat requires

an understanding of the processes that introduce spread in PCE SAT. The land surface feedback

is a candidate because the pattern of SAT PCE spread more closely resembles the pattern of QH

fraction PCE spread (Figure 5.8,right, row d) than the patterns of SWCRE (Figure 5.8, right, row

a) and Ω700 (Figure 5.8, right, row b) PCE spread. QH fraction PCE spread is larger (smaller) in

regions where it is anomalously above (below) average (Figure 5.8, left, row d) and is nearly

identical spatially to the QH fraction - soil moisture regression maps shown in Figure 5.6 a. This

suggests that the land surface feedback is the process that introduces spread and amplifies PCE

SAT the following month. Regions of maximum PCE soil moisture spread occur in the vicinity

of the colocated SAT and QH fraction maximums, but are situated to the southwest of the eastern

CEU maximum in June (Figure 5.8, right, ei) and July (Figure 5.8, right, eii) and to the southeast

of the western CEU maximum in July. In August (Figure 5.8, right, eiii), the maximum PCE

spreads of SAT, QH fraction, and soil moisture are all spatially colocated in the western CEU.

While colocated spread is suggestive of a relationship, correlations between CEU SAT

and its associated fields provide a clearer picture of what makes one PCE member hotter than

another. In Figure 5.9 b, we compare the CTL ensemble correlations with PCE correlations to

determine the atmospheric and land surface associations with SAT in each case. Correlations

between the June, July, and August CEU SAT timeseries’ and concurrent SWCRE (i-iii), Ω700

(iv-vi), QH fraction (vii-ix), and soil moisture (x-xii) at each grid point are shown in the left panel

of Figure 5.9 b for the CTL ensemble and in the right panel of Figure 5.9 b for the PCE. White

regions of the maps indicate where correlations are not significant at the 95% confidence level

(±0.3 determined through a StudentâĂŹs T-test).

The CTL ensemble has approximately twice the spread of the PCE (Figure 5.9 a). We

posit that SAT ensemble spread in the CTL is due to internal atmospheric variability. Each CTL
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Figure 5.9: (left) The standard deviation of SAT (◦C) across the CTL for June, July, and August
(i-iii) are shown in (a). The correlation between CTL CEU SAT and associated fields at each
grid point (color) are shown in (b). Dotted contours show orographic features above 600 m.
Correlations with atmospheric fields, SWCRE (i-iii) and Ω700 (iv-vi), and surface fields, QH
fraction (vii-ix) and SM (x-xii) illucidate potential relationships with CTL SAT ensemble spread.
Because SM is not available for every CTL ensemble member, panels x-xii show correlations
between CEU SAT and SM at each grid point for CTL years 1-44 (labelled SM∗). (right) As in
the left panel, but for the PCE.
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ensemble member experiences a different atmospheric circulation pattern, which sets a different

SAT pattern. Because of this atmospheric control, we expect that CEU SAT in the CTL ensemble

will be highly correlated with the SWCRE, which is influenced by dynamics, and Ω700, which is

a direct indicator of dynamics.

The positive correlation between CTL CEU SAT and SWCRE over most of the CEU

in June, July, and August suggest that cloud cover is key to whether or not a summer is hot

(Figure 5.9 b, left, i-iii). As in the Year 200, hotter SAT accompanies clearer skies (less negative

SWCRE). Correlations are higher in the northern portion of the CEU, where conditions are

climatologically cloudier, than in the climatologically clearer southeastern CEU (Figure 5.7, left,

row a). There is also a positive correlation between CTL CEU SAT and Ω700 in the northern

portion of the CEU (Figure 5.9 b, left, iv-vi), which indicates that summers with more subsidence

are hotter. Negative CEU SAT-Ω700 correlations are found in the southwestern portion of the

CEU, in a region where, on average, downward motion is experienced (Figure 5.7, left, row b).

Correlations between CTL CEU SAT and QH fraction (Figure 5.9 b, left) are mixed in

the CEU in June (vii), but tend to be not significant in the majority of the CEU in July (viii)

and August (ix). This suggests that SAT in the CTL ensemble is more closely associated with

atmospheric processes than land surface processes over most of the CEU domain. However,

positive SAT-QH fraction correlations do occur in the CTL ensemble in the Mediterranean

throughout the summer.

Because soil moisture is not available for every CTL ensemble year, we perform

correlations between CEU SAT and soil moisture for years 1 through 44 of the CTL simulation

(Figure 5.9, left panel, x-xii). The negative correlation between CEU SAT and soil moisture

indicates that dry soils and hot summers coincide. While soil moisture can influence SAT, dry

soils won’t necessarily cause a summer to be hotter. A hotter summer will cause soils to be drier

though, leading to the negative correlation.

By comparing CTL and PCE correlations, we aim to determine if the processes that
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underpin CTL ensemble spread also govern heat wave intensity in the PCE. Overall, correlations

between PCE CEU SAT and associated fields are of the same sign as their CTL counterparts,

with the exception of Ω700 (Figure 5.9 b, right). This confirms that a hotter heat wave tends

to have less cloud cover, a larger QH fraction, and drier soil moisture than a less intense heat

wave. The lack of correlation between PCE CEU SAT and Ω700 is likely related to the minimal

Ω700 spread in the PCE (Figure 5.8 b, right panel) that results from the prescribed atmospheric

circulation constraint. Correlations between PCE CEU SAT and SWCRE (Figure 5.9 b, right,

i-iii) are also weaker and occur over less of the CEU domain than the CTL CEU SAT and SWCRE

correlations (Figure 5.9 b, left, i-iii). In contrast, the land surface process indicators, QH fraction

and soil moisture, are more strongly correlated with PCE CEU SAT than CTL CEU SAT. The

correlation between PCE CEU SAT and QH fraction is largest in regions where the PCE SAT

spread is the largest and QH is influenced by soil moisture (Figure 5.6 a). This, in conjunction

with strong negative correlations between PCE CEU SAT and soil moisture in the same CEU

regions, suggests the land surface feedback affects the intensity of central European heat waves.

5.3.3 Role of preseason soil moisture

Because the land surface feedback has been shown to operate during a European heat

wave, preseason soil moisture conditions may provide insight into the potential severity of a

subsequent heat wave should atmospheric circulation induce one. Our objective is to quantify to

what extent dry soils in May exacerbate heat wave conditions in the months that follow.

The heat wave we evaluate in the PCE begins in June and continues through August,

which results in soil desiccation through the season. The rate at which soil dries out in the PCE is

nonlinear, which is illustrated by the correlations between May CEU soil moisture and the change

in CEU soil moisture between May and each successive month (∆SM) shown in Figure 5.10.

Correlations in the PCE are shown in blue and the PCEfull in teal. Because soil moisture is not

available for all CTL ensemble members, CTL correlations (black) are presented in terms of
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the mean (dots) and standard deviation (shading) of a bootstrap distribution of 100,000 CTL

correlation coefficients, computed from ensembles of 44 randomly selected CTL simulation

years.

Beneath the Year 200 heat wave, PCE and PCEfull members with drier initial soil

moisture condition dried out more than their wetter counterparts, resulting in positive correlations

between May CEU soil moisture and ∆SM from June through September. The magnitude of the

correlations increased with time for both the PCE, from 0.32 in June to 0.91 in September, and

the PCEfull, from 0.51 in June to 0.95 by September. Internal variability in the lower troposphere

causes PCE correlations to be lower than PCEfull correlations. This evolution is suggestive of the

land surface feedback’s influence on soil moisture. When soils start out drier, the land surface

feedback kicks in to elevate SAT, which in turn causes more soil desiccation. In contrast, when

soils start out wetter and a heat wave occurs, there is a delay in the activation of the land surface

feedback, buffering heat wave SAT and causing less total drying. This delayed activation is

shown in the climatologically wetter northeastern CEU in Figure 5.3 ai.

In the CTL, there is not a clear relationship between initial soil moisture conditions and

total soil desiccation, with the ensemble mean correlation remaining at or below 0.3 through the

summer. This indicates that the land surface feedback is only active over the whole of central

Europe during a heat wave, and that the potential to anticipate summer SAT from preseason soil

moisture depend on atmospheric circulation patterns. The relationship between May CEU soil

moisture and June-September CEU SAT, shown in Figure 5.11, demonstrates how the dependence

of the land surface feedback on atmospheric circulation affects the predictive power of preseason

soil moisture. As in Figure 5.10, PCE correlations are shown in blue, PCEfull in teal and the

distribution of CTL correlations obtained through bootstrapping are shown in black.

For the PCEfull, drier (wetter) May soils result in hotter (cooler) CEU SAT; correlations

increase from -0.68 in June to -0.92 in August. In the PCE, where both the land surface feedback

and partially constrained internal atmospheric variability both contribute to heat wave SAT,
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Figure 5.10: Correlation between May CEU soil moisture and change (∆) in CEU soil moisture
(i.e. June - May, July - May, etc.) for the PCE (blue) and the PCEfull (teal). A bootstrap
scheme provides an estimate of preseason soil moisture-SAT correlations possible in the CTL
simulation.
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Figure 5.11: As in Figure 5.10, but for correlations between May CEU soil moisture and
June-September CEU SAT
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correlations increase from -0.65 in June to -0.71 in July, but decrease to -0.29 by September. In

the CTL, with full internal atmospheric variability and no guarantee of a land surface feedback,

correlations between May CEU soil moisture and summer CEU SAT remain around -0.2.

We quantify to what extent preseason soil moisture affects heat wave SAT in the CEU in

Figure 5.12. Regression coefficients obtained by regressing SAT on normalizedMay soil moisture

(σSM) at each grid point is shown for the PCE (i-iii) and the PCEfull (iv-vi). Both ensembles have

similar spatial patterns and magnitudes consistent with their respective atmospheric constraints.

In both PCE and PCEfull, SAT can be up to 0.5◦C hotter in June if May soils are one standard

deviation drier than the PCE average. The influence of preseason soil moisture persists in the

PCE in regions of maximum SAT anomaly, with SAT being more than 0.4◦C hotter per σSM

reduction in the eastern CEU in July and western CEU in August. Due to SAT being more

constrained by full column prescribed atmospheric circulation, PCEfull SAT increases about

0.25◦C per σSM reduction.

A scatter plot of normalized May CEU soil moisture and CEU SAT for June, July, and

August (Figure 5.12 bi-iii) summarizes the local regression analysis. CTL CEU SAT is shown

in black to demonstrate the lack of clear linear relationship between preseason soil moisture

and summer SAT that was determined through correlation in Figure 5.11. The PCEfull and PCE

provide an idea of the upper and lower bounds on how much preseason soil moisture conditions

exacerbated the Year 200 European heat wave: June SAT was 0.19-0.30◦C hotter, July SAT was

0.16-0.24◦C hotter, and August SAT was 0.11-0.17◦C hotter for one σSM drier soils in May.

5.4 Summary

In this chapter, we demonstrate that drier spring soils result in hotter European heat

waves at a rate of up to 0.5◦ per σSM. We use a global climate model framework to quantify

the influence of preseason soil moisture, creating ensembles from a CESM control simulation
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Figure 5.12: (a) Regression coefficient (◦C /σSM) at each grid point, quantifying the relationship
between normalized May soil moisture (σSM) and summer SAT (◦C). Panels i-iii show PCE
SAT and panels iv-vi show PCEfull SAT, both regressed on May σSM. (b) Scatter plots showing
the relationship between normalized May CEU Soil Moisture (σSM) and CEU SAT in June (i),
July (ii), and August (iii). PCE CEU SAT is shown in blue, PCEfull CEU SAT is shown in teal,
and CTL CEU SAT is shown in black.
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where each member has a unique initial land surface state and subsequently experiences the

same atmospheric circulation pattern. The two prescribed circulation ensembles considered

differ in terms of internal atmospheric variability, prescribing atmospheric circulation in the

upper troposphere results in approximately twice as much SAT ensemble spread as prescribing

atmospheric circulation over the whole model atmosphere. Vertical longitude sections show that

prescribing circulation in the upper troposphere is sufficient to constrain atmospheric circulation

below, ensuring that each member of the PCE has a spatially similar heat wave.

The state of the land surface is shown to contribute to the magnitude of PCE SAT. Soil

moisture is shown to be closely related to the sensible heat flux fraction over most of central

Europe during the heat wave. A PCE member with soils one standard deviation below the PCE

average had about 2% increase in sensible heat relative to the total outgoing surface flux. Other

factors that could introduce SAT spread in the PCE, such as the shortwave cloud radiative effect

and vertical velocity at 700 hPa, were also assessed. SAT spread in the PCE is shown to be more

closely related to indicators of the land surface feedback, while SAT spread in the original control

run was shown to be more closely related to cloud cover and dynamics.

In terms of the land surface feedback, soil moisture both influenced and was influenced

by PCE SAT. Drier initial soil moisture leads to a hotter heat wave, which in turn lead to more

soil drying overall. This feedback relationship is not evident in the control run in general, which

supports the conclusion that the influence of the land surface feedback in central Europe depends

on attendant circulation patterns. Should a heat wave occur, drier soils in May exacerbate heat

wave risk by triggering the land surface feedback in regions that it ordinarily would not operate.

Chapter 5, in part is currently being prepared for submission for publication of the

material. Anna L. Merrifield, Isla Fischer, and Clara Deser. The dissertation/thesis author was

the primary investigator and author of this material.
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Chapter 6

Conclusion

Biases in simulating summer SAT variability over the continental US in climate models

forced with observed sea surface temperatures are documented and investigated in Chapter

2. Regions of high SAT variability in the central U.S. are found to be related to regions of

high sensible heat flux (QH) variability. This accordance between surface flux and temperature

variability is not clear in observations. It is shown that models with QH-dominated SAT variability

have higher values of mean evapotranspiration in the central US than models with circulation-

associated SAT variability. These higher values aid in setting realistic SAT climatology in the

central United States but contribute to additional SAT variability. Models with circulation-

dominated SAT variability tend to have a climatological warm bias in the central United States,

with mean summer SAT up to 8◦C warmer than observed. This warm bias is tied to lower mean

evapotranspiration in the region than observed, which results in the land surface having a more

realistic influence on SAT variability. All models evaluated appear to have some manner of land

surface-associated SAT bias in the central US.

It is demonstrated that the method of dynamical adjustment can be used to further our

understanding of land-surface driven SAT variability in the central US in Chapters 3 and 4.

Removing the effects of circulation on SAT in the CESM Large Ensemble reveals the central US
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as the primary region where SAT variability remains after dynamical adjustment. This residual

SAT variability is shown to have temporal characteristics consistent with soil moisture memory.

A more comprehensive thermodynamic narrative is developed for residual SAT based on lead-lag

relationships with soil moisture and colocated covariability between SAT and SLP in the hotspot.

Residual SAT in the central US is shown to be more correlated with preseason soil moisture than

total hotspot SAT, which supports the hypothesis that dynamical adjustment reveals the land

surface influence by removing the confounding effects of atmospheric variability. The magnitude

of method uncertainty for dynamical adjustment is determined by comparing residual SAT is

fixed and interactive soil moisture simulations. The possibility of thermodynamic contamination

of the dynamic component is documented and optimal methodological choices for defining an

SAT-based land-atmosphere hot spot metric are discussed.

The influence of the land surface on a persistent European heat wave is assessed in Chapter

5. Initial condition ensembles are created in a general circulation model framework to evaluate

land surface influence, each ensemble member has different initial land surface conditions but

experiences the same heat wave-inducing atmospheric circulation pattern. With this experimental

framework, both the influence of a heat wave on soil moisture and the influence of soil moisture

on a heat wave are investigated. The land-atmosphere coupling is shown to depend on initial

soil conditions, as regions in central and western Europe must dry out before the land surface

feedback begins to operate. A comparison to an ensemble of CTL members demonstrates that

while European SAT is more closely related to cloud cover and dynamics in general, the land

surface feedback can amplify or damp SAT by a few degrees during a heat wave. A heat wave

following a dry spring can be up to 3◦C hotter than a heat wave that follows a wet spring.
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