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Abstract

The use of a realistic component library with multiple implementations of operators,
results in cost efficient designs; slow components can then be used on non-critical paths
and the more expensive components on only the critical paths. This report presents a
cost-optimized algorithm for selecting components andpipelining a dataflowgraph, given
a multiple-implementation library, and throughput and latency constraints. Results on
several DSP examples inilicate the importance of component selection as a parameter in
design space exploration.
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1 Introduction

In exploring the design space of high-performance pipelines, three design features play a

significant role; architecture, pipelining, and component selection. A large number ofdesign

alternatives can be first evaluated by varying the component selection and the number of

pipe stages of a given architecture. The exploration can be further increased by repeating

the component selection and pipelining for a variety of different architectures.

Generally speaking, the architecture of a design refers to the type and number of its

components and their interconnectivity, where the number of components in a design gives

an indication of its "parallelism". A "parallel" architecture is one that exploits the inherent

parallelism in a specification by computing several operations at the same time. While

parallelism improves design performance, it also results in relatively expensive designs.

The parallelism of an architecture is illustrated with the help of a 4th-order (P=-4) FIR

filter shown in Figure 1. Consider the two designs in Figure 1(b). Design 1 has a higher

degree of parallelism than Design 2, since it can compute four multiplications in parallel,

while Design 2 can perform only one multiplication at a lime. While Design 1 computes

an output in just one iteration (or one pass through the datapath), Design 2 requires four

iterations or passes. Thus, for this example, higher design parallelism results in higher costs

and lower e.xecution times.

The second design feature, pipelining, is another meansof increasing design performance

for a relatively small overhead in terms of pipelining register costs. This feature is all the

more significant for DSP computations since they are regular and repetitive in nature, and

yield well to pipelining techniques.

Pipelining is illustrated for the FIR filter example in Figure 1(c). We obtain a second

level of exploration by pipelining each of the architectures in Figure 1(b) in different ways

and into a different number of stages. For instance. Design 1 can be pipelined into 2 or 3

stages resulting in Designs 3 and -1, respectively.

The third design feature, component selection, adds yet another level of exploration. It

involves selecting components from a realistic library with more than one im])lenientation

per operator, such that slow components are used on non-critical paths, while the faster

and more expensive components are used only when necessary, on critical paths.

Component selection is illustrated for the FIR filter in Figure 1(d) where Designs 5 and

6 are obtained from Design 3 by using a different selection of adders and multipliers from a

given library. Assume that the library consists of 2 multipliers, Ml and M2, (area of 200

and 400 gates and delay of 80 and 60 n$. respectively) and 2 adders, A1 and .42. (area of 50
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Figure 1: Illustrating the exploration of a 4th-ordcr (P=4) FIR filter obtained l)y varying
the architecture, pipelining, and component selection.



and 80 gates and delay of 40 and 20 ns, respectively). Using this library the cheapest design
for a pipe stage (PS) delay constraint of 80 ns is obtained with the component selection
shown in Design 5, and for a PS delay constraint of 60 ns by the component selection in

Design 6. Note that a design may contain different implementations of the same operator.

As an example, Design 6 has two instances of Al and one of A2, instead of three instances

of only A2, which would have resulted in a more costly design.

We have just illustrated that a designer can explore the design space in one, or a com

bination of three ways: (1) varying the architecture of the design, (2) selecting different

components, and (3) pipelining the design in different ways and into a different number of

stages. Our design strategy for varying these three parameters works asfollows: the designer
first specifies the architecture by using a mix of behavior and structure in his specification.

He then invokes an automated algorithm to take over the tasks of component selection and

pipelining. This report presents an input format for specifying an architecture, and an

algorithm for component selection and pipelining.

The report is organized as follows. The next section outlines related research in the

area of pipelined synthesis and explains how we compare with it. Section 3 describes our

architecture specification with the help of an example. Section 4 gives a formal definition

of the component selection and pipelining problems while Section 5 describes our proposed

algorithm for solving these problems. Section 6 presents results demonstrating the qual

ity of our algorithm and its application in exploring the design space of two industrial

strength examples. Finally, Section 7 concludes the report with a summary of our major

contributions.

2 Previous Work

Previous research in the area of pipelined synthesis has resulted in the development of

tools such as Sehwa [10], the tools from the GECorporate R&D Laboratories [6], and PLS. a

pipelined scheduler [5]. These systems pipeline a given DFG soasto optimize a cost function

while satisfying constraints on performance or area. For instance, the GE tools attempt to

minimize the number of pipe stages and the component area while satisfying clock period

and throughput constraints. Sehwa contains several resource and performance constrained

scheduling algorithms, providing the user different options of arriving at a pipelined design.

For example, the user could specify a throughput and latency constraint, as well as allocate

resources, and Sehwa would produce a schedule, if feasible. Or the user could specify a

clock cycle limit and ask for the shortest or most expensive schedule.



The aim of our algorithm is to minimize the component area, given throughput and

latency constraints; thus, the point of similarity in our work and the above mentioned

tools is in the constraints and the cost function. The difference arises in the nature of the

component library that is used for synthesis. The above mentioned tools use a library that

contains a single implementation for all operators of a given type, that is, they start with

a pre-selected set of components with only one implementation per operator. This forces

them to use the same component on non-critical and critical paths, resulting in designs

that are inefficient and more costly. This is unlike our algorithm which uses a library

containing more than one implementation for each operator. Hence we are able to arrive

at more efficient designs by using fast implementations for critical operations and slower

implementations for the non-critical ones.

The authors of SLIMOS [7] and MOSP [8] define module selection as the process of

selecting a single implementation for all operators of a given type, from a library that

may contain several implementations corresponding to that operator type. The selected

implementation is then used to perform o//the operations of that type in the design. For

instance, out of five different adder implementations the SLIMOS and MOSP algorithms

may determine the carry-look-ahead adder to be best suited for the design, and then proceed

to use this adder implementation for all the add operations in the design. Thus although, the

algorithms start with a multiple-implementation library, their selected module set contains

jusi one implementation per operator. This differs from our algorithm which, for instance,

may select the carry-look-ahead implementation for those add operations that are on a

critical path and need to be completed soon, and perhaps a ripple-carry-adder for other

non-critical add operations.

The TBS [11] algorithm as well as the module selection algorithm presented in [12],

use unrestricted libraries that allow multiple physical implementations for the same oper

ator. However, these algorithms combine scheduling and component selection, whereas we

combine pipelining and component selection. The difference in the two algorithms arises

because stages in a pipelined datapath execute concurrently each on their own set of com

ponents, whereas "states" in a scheduled data flow graph execute sequentially on the same

set of components. Thus, while selecting components for a state i, the TBS algorithm, for

instance, attempts to use the components that it had already selected for previously sched

uled states, l"-(i —1). Our algorithm does not have this constraint since components

across a pipe stage are not shared.

The MASS Synthesis approach [9] generates a minimum cost pipelined design, given



a CDFG, a module library, and throughput constraints. The module library may contain

more than one implementation per operator, hence, for instance, their final design could

consist of three difTerent adder implementations, two different multiplier implementations

and so on. However, the authors have not demonstrated the ability to pipeline and select

components for the same design. Their e.xperimental results show (1) component selection

for non-pipelined designs, and (2) pipelined synthesis with single implementation operators.

Hence, they fall in the same category as TBS.

In summary, our algorithm [1] pipelines a data flow graph and, for each pipe stage, de

termines the best selection of components, from a realistic library containing many different

implementations per operator. For a given throughput and latency constraint, our algo

rithm thus produces cheaper designs over those produced by previous pipelining algorithms

that use limited libraries with only one implementation per operator.

3 Specifying Architectures

Datign 1

1(0) rtO) 1(1) y(t) 1(2) |r(2) 1(3) |r(3)

Dasign 2

1(0) HO) 1(1) y(i) 1(2) y(2) 1(3) y(3)
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ti > x(i)*y(i);
12 > 1(2) • y(2):
t3 1(3) • y(3);
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z 13 + 6;

Daacriptk>n 3

n >0;
for i in 0 to 3 step 1

to > i(i) • y(i);
z:-IO + t1:

t1 z;
end for;

Figure 2: Illustrating the mix of behavior and structure in the input description of three
4th-order FIR filter designs.

Designers of DSP systems typically know the basic design topology or architecture they

wish to use; however, they require assistance in time-consuming tasks such as pipclijilng and

component selection. A pure structural description is inappropriate since it would require



them to know the complete structure of the design. On the other hand, a pure behavioral

description is also inappropriate since it would prevent them from specifying the design

topolog.v they have in mind. Thus, we propose an input format that allows a mixture of
both structure and behavior in the specification. Figure 2 illustrates this feature by giving

descriptions of three different -Jth-order FIR filter arciiitectures.

Designs 1 and 2 differ in their summation topology - one uses an adder '"tree" and

the other an adder "chain". This difference is brought out in the description by using

appropriate assignment statements. Design 3 differs from Designs 1 and 2 in the number of

multiply and add operators it contains. Designs 1 and 2, containing four multiply and three

adder nodes each, require just one iteration per output, that is the four multiplications

and three additions are computed in just one pass through the design. Design 3. however,

contains just one multiply operator and hence it requires 4 iterations per output. In the

description, this "behavior" (that is, the iterations) is specified by enclosing tlie design

"structure" within a for - loop statement. A designer can thus specify an architecture by

mixing behavioral and structural constructs in this manner.

As stated previously, after a designer specifies an architecture manually, we utilize an

algorithm for performing pipelining and component selection. This algorithm is discussed

in the next few sections.

4 Problem Statement and Definitions

Given a data flow graph VJ^QiWE) where V represents a set of vertices, and E C

F X F a set of directed edges, a component library CC consisting of a set of three tuples

(ComponeniType, Area and Delay), and constraints on PS delay and latency, find an

Assignment ofvertices to components and a Partition of [latency/PS delay] stagesofdelay

PS delay, so as to minimize cost (given by the sum of the area of datapath components).

The terms latency, PS delay, Assignmeiit and Partition are defined a.s follows;

Definition 1: PSdclayis the sample inter-arrival delay, that is the delay between the arrival

of two consecutive input samples. This is also the clock cycle of the design. Throughput.

which is often the prime constraint on DSP systems, is the inverse of the PS delay.

Definition 2: Latency \s the total execution time (nxPS delay, for an n-stage pipeline),

that is, the time between the arrival of an input sample and the availability of the corre

sponding output.

Definition 3: If we associate a type (such as x, + etc.) called Vert€xType{v), with

every vertex, v, then an Assignment is defined as a function from V — CC, such that



if Assignmcni{v) = c, then Vert€xTyp€{v) = Componer}tType{c). This just slates that

vertices can only be mapped to components of the same type.

Definition 4: A Partition is a collection of subsets of vertices, such that the union of all

subsets is the complete vertex set, \\ and the intersection of any two subsets is the empty

set. Stated mathematically, a partition is a collection of subsets, Vi, such that I', C V*.

IJK = V't and V; n Vj - 0, Vt, j whore i / j.
Vi

The example in Figure 3 illustrates the problem. Given are a V!FQ^ aC£, and constraints

on PS delay (10 ns) and latency (25 ns). The is partitioned into two stages of delay

10 ns each and mapped to components so that the total cost is minimized. The output

consists of a mapped and pipelined T>TQ and a set of design metrics as shown.

Input:

1.DF0

2. Carnpenant Lferary

Cemp. Cemp. Area Datey
Typa Name Guts ns

• 100 30

• Mpy2 200 20

• 1^3 2S0 10

a Addl SO 20

♦ Add2 70 •

+ Add3 100 2

Pipa Stag* (PS) May • 10 w
Laianqr • 2S na

Ou^t:

1. kUpp*d and PIpalinad DFQ

2. Oaaign MaVloa

Co«{Fut| •(2>2S0)*70«1M
• 670GMBt

Ne Rtfitlara • 3
Thn«U -100 MHz

PS Mar • 10 na
Laianey • 20 n*

Figure 3: -An example illustrating the inputs and outputs of the component selection and
pipelining algorithms.

5 Component Selection and Pipelining

Having staled the problem, we now present the algorithms for component selection and

pipelining. We first give an overview of the complete algorithm and then individually explain

the tasks of finding an Assignment and a Fariition. Finally, we explain the pseudo-code

of the complete algorithm with the help of a walk-through example.



5.1 An overview of the algorithm

The algorithm takes as input anon-pipelined a component library, and a constraint

on the PS delay and latency. It outputs a mapped VTQ partitioned into [latency/PS delayj

stages, such that the delay of each pipe stage is less than or equal to the PS delay and the

total area of the VTQ is minimized.

The algorithm (Figure 4) starts by mapping each vertex of the to the fastest

available component. It then slows down vertices by mapping them to progressively slower

components. At each slow down the VJ^Q is pipelined and if constraints are violated, the

slow down is not accepted. This process is repeated until no vertex can be slowed down

without a violation of constraints.

Intuitively speaking, the aim of the algorithm is to slow down as many vertices by as

much as possible, and this is achieved by balancing the use of slow and fast components so

that the delay of each pipe stage is as close to PS delay as possible, and the total cost is

minimized.

5.2 Component selection

The key to the algorithm lies in judiciously selecting vertices to be slowed down in each

iteration, since slowing down one vertex may prevent slowing down others due to graph

dependencies. Thus, the desirability of slowing down a vertex has to be evaluated with

respect to all the vertices that would be affected by its slow down. With every vertex we

thus associate a value, called the vertex weight, which is a measure of its "desirability"

or priority in the selection process. In each iteration of the algorithm, vertex weights are

evaluated and the vertex with the highest weight is selected to be slowed down.

The vertex weight

We first give an intuitive explanation of the vertex weight by using an example, and

then formally define the terms in the vertex weight formula.

An example

Consider the VfQ and CC in Figures 5(a) and (b). Let the vertices of the VJ^Q be

initially mapped to the "fastest components" (that is all the ★ vertices to Mpy\ and all the

+ vertices to Add!). This results in a total delay of40 ns and a cost of400 ([3x 100]+[2x50l)

gates. Let the constraint on the PS delay be 50 ns.

For the purposes of this explanation, let us assume that we slow down a vertex by

replacing it with the next slower component in the library. We now have to pick the first

vertex to slow down. Intuitively speaking, this should be the one that gives the highest cost



1. Map vertices to fastest components, pipeline VTQ, and evaluate performance.
2. If (/fls/cs/ design does not satisfy constraints)
3. exit the program.
4. Else

5. Loop
6. Select the ''best" vertex to slow down.
7. Pipeline the V^Q, and evaluate its performance.
8. {this slow down meets performance constraints), accept it
9. else, reject it.
10. Until (no verier can be slowed down without violating constraints).
11. End if

Figure 4: An overview of the component selection and pipelining algorithm.

benefit or, in other words, the greatest area reduction. In the example, vertices d and e give

an area reduction of 20 gates, as opposed to 10 gates for the ★ vertices, a, b. and r. Let us

slow down any one vertex, say e. Since e exists on all I-O paths^, slowing down any other

vertex would violate the constraint of 50 iis. Thus by slowing down e, we have prevented

slowing down any of the other vertices, a to d, and the final design has a cost of .3S0 gates

and a delay of 50 ns.

Comp. Delay Area
(ns) (gates)

Comp. Delay Area
(ns) (gates)

Addl 10
AdcC 19
Ad<t3 20

Mpy1 20
Mpy2 30
MoyZ 40

If we had first slowed down node a instead of node e we could still have slowed down

nodes 6 and c in the next two iterations. Instead of replacing node e with Add'2, we could

thus have replaced each of the nodes a, 6 and c with Mpy'2, resulting in a cheaper design of

370gates. Even though individually the vertices o, 6 and c give an area reduction of just 10

^An 1-0 path is defined as a set of operator nodes connecting an input node to an output node. Thus,
the example in Figure 5 has the following 1-0 paths: a —d —e,b —d~e, and c —c.



gates each, together their reduction is greater than that of vertex e. Thus the comparison

we should be making is:

Area Reduction(e) vs. Area Rcduction(a)+Area Reduction(b)+Area Reduction(c)

Assuming, for the time being, that o, 6. and c give the same area reduction, the only

reason why we would choose to slow down e over a, b, and c is if:
Area Reduction(e) ^ . n j *• / \5^ > Area Reduction(a)

Thus it is clear that the area reduction by itself is not a good measure of the vertex

weight. Rather, it is the area reduction weighted by a factor, roughly equal to the number

of unique I/O paths containing that vertex. We call this factor the vertex commonality

factor. The weight of a vertex, v, is then given by

W{v) =
Area Reduclion(t')

Commonality Factor{v'

We refine this formula after formally defining the two terms, area reduction, also called

the area-delay gain (ADG), and commonality factor (CF).

The area-delay gain

The components considered in the library in Figure 5 are very "evenly'' spread out, that

is each component differs from the previous one by a delay of 10 ns. If this is not the case, as

is most likely in a realistic component library, then both the area and delay changes caused

by replacing the current assignment of a vertex with a slower component, should be taken

into account in the selection process. We should really be comparing the area reduction per

unit change in delay, rather than just the area reduction. For instance, for the example in

Figure 5, if Add2 had a delay of 12 n$ instead of 20 ns, the cost benefit of vertices d and

e should really be [Area{Al)-Area(A2)]/[Delay(A2)-Delay(Al)] = (50-30)/{12-10) = 20/2.

and of vertices a, 6, and c it should be [Aroa(Ml)-Area(M2)]/[De]ay(M2)-Delay(Ml)] =

(100-90)/(30-20) = 10/10. The weight of d and e would then be higher than that of a. 6,

and c, resulting in their slow down {rather than the slow down of a. b or c). and hence in

the less costly design.

The area delay gain (ADG) of a vertex is defined as follows:

Definition 5: Let the current assignment of a vertex, v, be the component c'. If the new

assignment ofthe vertex is c", then the area-delay gain of v with respect to c'\ ADG{ v,c")

is defined as:

ADG{v,c") =
Area{c') —Arca{c")

Delayic") —Delayed)



In the previous example, we slowed down a vertex by replacing it with the next slower

component. This may not always be the best choice to make. Consider the component table

in Figure 5(c). If we only consider Mpy2 and Add2 as possible replacements for Mpy\ and

Addl respectively, we would end up replacing nodes a, b and c with Mpy2. However, we get

a cheaper design by replacing either of d or e with AddZ (area 351 vs. 370 gates). We could

have obtained the cheaper design had we conducted a more global search of the component

table and for all vertices, determined the component with the greatest area-delay gain.

This component is also called the BestAssignment for a vertex v. It is formally defined as

follows:

Definition 6: The Best Assignment for a vertex v, is the unique component c" that satisfies

the following properties:

Compo7i€ntType{c") = VertexTyp€{v) (3)

ADG{v,c") > >lDG(u,c), Vc € satisfying (3) (4)

In other words, c" is the component that gives the maximum ADG.

Refining the vertex weight definition

We now refine the vertex weight definition given in (1), to include all the factors men

tioned above, namely, the area-delay gain, the BestAssignment component and the vertex

commonality factor.

Definition 7: The weight of a vertex v is given by:

W{v) =
ADG{v,c")

CF{v)

where c" is its BestAssignment (i.e. the unique component satisfying the properties (3)

and (4) listed above).

Next, we give a method of obtaining the commonality factor of all vertices in the VFG-

The commonality factor

The commonality factor is determined by making two traversals of the VFQ. In the

first traversal (from input to output), we assign a forward weight (FW) to every node. The

forward weight of an output node indicates the number of unique paths from input nodes

to that output node. In the second traversal (from output to input nodes) we propagate

the forward weight of nodes to their predecessors and assign a backward weight (BW) to

every node. The backward weight of a node is also its commonality factor.

This method is illustrated with the help of an example (Figure 6). As an initialization

step ail input nodes. ?T to i5, are assigned a FW ofO, and all operator nodes with on/y input
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Figure 6: Determining the commonality factor by assigning a forward and backward weight
to vertices.

node predecessors (node a in the example) are assigned a FW of 1. The forward weight of a

node is then split equally amongst its successors. This split value is rounded up to 1, if it is

less than 1. The FVV of a vertex is then the sum of the split values from all its predecessors.

As a first step in the example, the FW of a is propagated to 6, since b is the only successor

of a. The FW of 6 is then split equally amongst vertices c and d. resulting in a value less

than 1. After rounding off, vertices c and d each get a FW of 1. Finally vertex e is assigned

a FW of 2, one each from c and d.

In the backward traversal, w^e distribute the backward weight of a node to its predecessors

in the ratio of their forward weights. The backward weight of a node is then the sum of

these partial BWs from all its successors. As an initialization step, we equate the backward

weight of all output nodes to their forward weights. Thus BW(ol)=FW(oI)=2. We then

assign e a BW of 2 since e is the only predecessor of ol. The BW of e is then distributed

amongst c and d in the ratio of 1:1 (that is, FW(c}:FW(d)), resulting in a BW assignment

of 1 each. The BW of c, split amongst i4 and 6 in the ratio 0:2, results in assigning i4 a

BW of 0, and 6, a partial BW of 1. Similarly, when the BW of d is split amongst 6 and ib

in the ratio 2:0, it results in assigning 6 a value of 1, bringing its total BW to 2. The BW

of b is finally propagated to i3 and a in the ratio 0:1.

Thus far we have explained how to associate a weight with every vertex, which is used

as a priority function in selecting the most favorable vertex to slow down in each iteration

of the loop (step 6 in Figure 4). We now explain the next step (step 7) of the combined

component selection and pipelining algorithm, namely the algorithm for partitioning or

pipelining the V^Q into equal delay stages.



5.3 Pipelining

Given a V:FQ. an Assignment for the and a Pipe Stage (PS) delay constraint, the

pipelining algorithm partitions the ViFQ into a minimal number ofstages that meet the PS
delay constraint. It traverses the graph in two directions, downward (from the input to the

output nodes), and upward (from output to input nodes). As it traverses the graph it keeps

accumulating the delay from the boundary of the last pipe stage. A new boundary is set

when the performance constraint can no longer be satisfied. The traversal is repeated for

both directions, and the pipeline with the fewer number of "cuts" is selected. A "cut" refers

to the intersection of an edge of the VTQ with the pipe stage partition, and it corresponds

to a pipeline register. Hence, the fewer the number ofcuts, the fewer the pipeline registers.

Stage 1

Stage 2

# Pipe registers » 5

Stage 1

Stage 2

# Pipe registers = 3

(a) \"l

Figure 7: Downward and upward traversal for pipelining a VTQ.

Thealgorithm isillustrated on themapped in Figure 7. Let the PS delay constraint

be 3 ns (the number in a vertex indicates its delay). We start the upward traversal from

vertex / and place the pipe stage partition after vertices d, e and c as shown, since the

accumulated delay exceeds 3 ns after these vertices. Traversal continues from vertex a and

6, but since the delay does not exceed 3 ns a new partition is not placed.

In the downward traversal, we start from the input nodes and place a partition between

verticesa and d (and 6and d) since including d would givea delay of 4 ns, which violates the

constraint. Similarly, the partition is placed between vertices e and / since the cumulative

delay of 6 and e is 3 ns.

It is to be noted that an upward traversal yields a pipeline with 5 registers, and a

downward traversal yields a pipeline with 3 registers. Hence, the latter is selected.



Algox'ithm ComponentJ5e.loction_Aiid_Pipelining
Determine commonality factor of all vertices.
Map each vertex, u, to the fastest (or least delay component) of type V€rtf:xTn\K{v
Determine the Best Assignment and the weight of ail vertices.
Make a list of vert ices in order of decreasing weights.
Loop until (empty list)

Assign the first vertex in the list to current^veriex.
Pipeline the VTQ, and evaluate performance.
Are performance constraints met?
If (no)

Do not "accept" this change.
Else If (yes)

"Accept" this change.
End If

Update_Vertex_List(ct/rren/_ncr/ef).
End Loop

End Algorithm

Procedure Update_Vertex_List(curi en<_i)er/ejr)
Find the next BestAssignment for current.vertex.
If (no/ found OR. not acceptable)

Remove current.vertex from list.

Else if {found AND acceptable)
Update current.vertcx weight and return to list,
maintaining the sorted order.

End if

End Procedure

Figure 8: Pseudo code of the combined component selection and pipelining algorithm.

5.4 Pseudo-code of the combined algorithm

Having defined the vertex weight and the algorithm for pipelining (steps 6 and 7), we

now present the pseudo-code of the complete algorithm (Figure 8) and walk through it by

using a simple example.

We wish to select a design with a PS delay of 30 ns and a latency of 60 ns (or 2 pipe

stages) for the VJ^Q and a CC in Figure 9. We first determine the commonality factor of all

vertices and map each vertex to the fastest component, i.e. all multiplier vertices to Mpyl

and all adder vertices to Addl. Next, we determine the BestAssignmeni and the weight

of all vertices (shown in the table in Figure 9(b)). As an example, consider vertex d: its

commonality factor is 2 since it appears on two distinct I-O paths, a —d —e and b - d —e,

and its BestAssignmeni is Add3 since that gives the highest area-delay gain of 70/20. as

opposed to 20/10 for Add'2, and 75/30 for Add4. The weight of vertex d evaluated according



to equation (5) is then 70/(20x2) = 1.75.

After evaluating all vertex weights, the vertices are arranged in the order of decreasing

weights, and the first vertex, that is, the one with the highest weight is selected to be slowed

down. This is node d in the example (shown as the boxed entry in Figure 9(b)). However,

with this slow down and with a PS delay constraint of 30 ns, the DFG can only be pipelined

in 3 stages of delay 10, 30 and 10 ns each. Since this is not acceptable, the slow down is

rejected and we look for the next BestAssignmeni for vertex d with a delay less than 30

ns. Add2 satisfies these properties. We update w€ight{d) to 1.0 (20/(10x2)) and return it

to the list.

DFG: Component Ubrery:

jT N. / Comp. Delay A/ea
Vrja (T)u !2!L

Addl 10 100
\ / / AdtC 20 60

/ Add3 30 30
a / Addd 40 25

\ / Mpyl ID 200
VV Mpy2 30 175

e Mpy3 40 160

t PS Delay Con«irainl • 30 ns
Latency • 60 ns

Vertei Cemmonalily Factor and Weights:

I Venex (v) ICF(v) I W(w) I

Component Selection Proceee:

kilial Assignment:

1.W T?30
1.16 1.16

Intermediate Assignment 6 Partition: FinalAssignment 6 Partition:

Figure 9: A walk-through example to illustrate the component selection and pipelining
algorithm.

In the next iteration, either of nodes o, 6, and c can be selected since they all have the

same weight of 1.25. First node a is selected to be replaced by Mpy2. Since the graph is

successfully pipelined into 2 stages, one of delay 30 7is and the other 20 ns, the move is



accepted. The next Best Assignment for a, Mpy^, has a delay (40 «s) greater than the

PS delay (30 ns), hence node a is dropped from the list (indicated by a in the table).

Vertices b and c undergo the same process. In the fifth iteration, vertex c is selected to

be replaced with AddZ - this too is not accepted since it violates constraints. Next, node

d is replaced with Add2 and removed from the list, and in the final iteration, node e is

also removed from the list. The algorithm then terminates, since there are no nodes left to

consider. The final Assignment and Partition is shown in Figure 9(c).

6 Experimental Results

We have implemented the component selection and pipelining algorithms using C on

a SUN SPARC station. The component selection algorithm has a complexity of O(A'^r)

where N is the number of vertices in the VPQ, and C is the maximum number of implemen

tations of any operator type in the given component library. The pipelining algorithm has

a complexity of 0(iV) and the combined algorithm for component selection and pipelining

also has a complexity of 0{N^C).

In all our experiments we have used a modified version of the DTAS library [3] shown

in Table 1 for multiplier and adder/subtractor components. Component cost is in terms

of the number of equivalent ND2 (2-input NAND) gates from the LSI Logic Library, while

delay is in ns.

We have conducted three types of experiments:

Experiment #1 demonstrates the quality of results produced by the component selection

algorithm by comparing it with optimal results produced by an exhaustive search.

These results have been limited to fairly small sized examples (the HAL benchmark

and an 8th-order FIR filter) because the exhaustive search takes exponential time

(OIC'^)), which becomes prohibitive for largerexamples (even after pruning the search

space).

Experiment #2 demonstrates the importance of the commonality factor during the ver

tex weight assignment for component selection. This experiment has been conducted

on the .5lh-order elliptical-wave filter benchmark.

Experiment #3 demonstrates the results of applying our exploration strateg>- and al

gorithms for varying the architecture, pipelining and component selection of two

industrial-strength DSP systems, a Beamformerand an Inverse Discrete Cosine Trans

form {IDCT). This experiment indicates that a large design space can be explored



within a mailer of seconds and a designer can quickly narrow down to tiie most

desirable design by studying tradeofTs between througiiput. latency and cost.

TABLE 1

MODIFIED DTAS COMPONENT LIBRARY
Component Component Delay. Cost

Type Name (ns) (eqv. ND2 gates)

Mpyl 57.97 2368

•* Mp.v2 44.21 2400

* Mpy3 36.21 2600

* Mpy4 32.98 2710

•* Mpy5 i 28.57 2978

♦ Mpy6 25.00 3500

* Mpy7 22.50 4000

★ MpyS 20.50 4500

+/- Addl/Subl 25.80 62

+/- Add2/Snb2 20.00 ' 125

+/- Add3/Sub3 13.50 187

+/- Add4/Sub4 10.00 250

+ /- Add5/Sub5 5.50 375

+ /- Add6/Siib6 3.00 500

6.1 Experiment #1: Quality of results

In order to measure the quality of results produced by the component selection algorithm,

we coded an exhaustive algorithm that gives the optimal solution since it tries all possible

combinations of vertices and components, and selects the one with minimum cost within

performance constraints.

We executed the two algorithms for the HAL benchmark and the FIR filter. While our

algorithm took a few seconds on a SUN SP.ARC, the exhaustive algorithm took several days

on someof the examples. The results of both algorithms are presented in Table 2. The "PS

Delay Constraint" column gives the constraint we specified to the two algorithms, while

the "PS Delay" columns give the PS Delay of the designs produced by the two algorithms.

Each example wasevaluated for 8 different PS Delay constraints. For the H.AL benchmark,

our algorithm produced designs with an area that was, at worst, 0.l9? higher than those

produced by the exhaustive algorithm. For the FIR filter the two algorithms gave identical

results except in two cases, one in which the design produced by our algorithm was O.OU/

more costly and the other in which it was 0.7% more costly.

We have been unable to compare our results with those produced by other algorithms

since most algorithms assume a single implementation of components. Though TBS [11]

is an exception, it combines component selection with scheduling rather than with pipelin

ing. We attempted to compare our results for the elliptical filter benchmark; whereas our

algorithm produces designs with a PS delay of as low as 200 us. the fastest design that



TBS produces has a delay of 1700 7is. This is an unfair comparison - il simply serves to

corroborate the efficiency of pipelined designs over non-pipelined designs.

Similarly, an attempt to compare our results with MASS [9] fails since they have only

provided results of pipelined designs using reduced libraries, that is libraries with single

implementation components.

TABLE 2

OUR ALGORITHM VS. AN EXHAUSTIVE ALGORITHM

Example

FIR Filter

PS Delay

Constraint

(ns)

109.3 109.5

129.9 129.9

149.4 149.4

169.9 169.9

199.5 199.4

237.6 237.6

37.6

47.7

68.7 68.7

87.7 89.0

97.0 97.0

109.3 109.3

121.6 129.6

135.4 135.4

Cost (VD2ga/e5)J % error in Cost

Our Exh. X 100

Alg. Alg.
28062 28062 0.0

20452 20438 0.06

17525 17525 0.0

16222 16207 0.1

15567 15567 0.0

15054 15054 0.0

14709 14709 0.0

14488 14488 0.0

13912 13912 0.0

0.0

10724 0.0

10287 10286 0.01

10098 10098 0.0

9973 9973 0.0

9848 9783 0.7

9720 9720 0.0

6.2 Experiment #2: Effectiveness of commonality factor

In Section 5 we gave an intuitive explanation of the importance of the commonality factor

in assigning vertex weights during component selection. To get a quantitative measure of

this importance we conducted an experiment to compare the following two cases for the

oth-order elliptical wave filter benchmark:

Case 1: uses the commonality factor, as described in Section 5.

Case 2: assigns all vertices a commonality factor of 1. thereby removing its effect from the

vertex weight formula given by equation (5).

Table 3 and Figure 10 present results obtained for several different PS Delay and pipe

stage constraints. For most constraints. Case 1 produces results that are far superior than

those produced by Case 2 and in some cases the ratio of Case liCase 2 is even as high as

2.5. However, in cases where the PS Delay constraint is high, the results produced by both

cases are about the same. This is because, for large PS Delay values, most of the nodes in

the VJ^Q are mapped to the slowest components in the library, and the order in which the

nodes are mapped (as determined by the commonality factor) is then unimportant.



TABLE 3

DEMONSTRATING THE EFFECT OF COMMONALITY FACTOR (CF)

PS Delay Pipe Stage Case /: With CF

Example Constraint Constraint Cost

(tts) HBH (N D2gat€s)
35 2 34.0 6809

50 2 49.3 3806

75 2 74.8 1680

100 2 98.1 1428

125 2 116.7 1178

5th-order 150 2 129.0 1302

Elliptical 175 1 2 154.8 1364

Wave Filter 35 i 3 34.3 5932

50 ; 3 39.3 2056

75 3 65.1 1553

100 3 77.4 1178

125 3 103.2 1302

150 3 129.0 1364

Caff 2: W iihoiit CF

Cost

D2g<iles)

6.3 Experiment #3: Design exploration

We now apply the general exploration strategy discussed in Section 1, and the component

selection and pipelining algorithm presented in Section 6, on two fairly large DSP systems,

a 2-Dimensional 8x8 IDCT [4], and a 4-element, 4-beam Beamformer [2]. For both

1000 20O0 3000 4OO0 SOOO OOOO 7DQ0 OOOO

ArM («qv. N02 gales)

Figure 10: Demonstrating the effectiveness of the commonality factor (CF) on the 5th-order
Elliptical Wave filter by considering two cases: Case 1, with CF. and Case 2, without CF
(or CF=1).

examples, we wrote three descriptions representing different architectures. Each of the

descriptions was then pipelined into a different number of stages and components selected

such that throughput constraints were satisfied and the cost/area was minimized.



The results of the exploration have been presented as a trade off between throughput

and area for (1) different architectures, with a fixed latency, and for (2) a fixed architecture,

with varying latency. Thus, for instance if a designer has a "hard" or fixed constraint on the

throughput of the system that he must satisfy, he can get a good idea of the architecture

he should be considering, by looking at the first graph. .After narrowing down to one. or

possibly two architectures, he can then study the effect of latency, and pick a design point

that best optimizes his cost, which could be a function of area, or latency or both.

In all the graphs below, the j/-axis represents PS Delay, or effectively, the inverse of

throughput, while the x-axis represents area in ND2 gates.

IDCT

The 2-D IDCT, used to reconstruct compressed images, is represented by the following

equation:

N-i A'-i

bd{x,y) = ^ ^ Z?D(u,i')/*(u,x)F(u,y)

Except for N, the order of the IDCT. all other terms in the equation are irrelevant to

the understanding of our results. is 8 in our examples, implying that approximately 6-1

additions and 64 x 2 multiplications need to be computed for every output b(l{x.y). where

x,y 6 0...7.

The algorithm we chose for evaluating equation (7), consists essentially of Z N xN matrix

multiplications. We considered 3 architectures, that compute 8x8 matrix multiplications

with different '^extents of parallelism". Design 1 consists of 1 basic block (BB), Design 2

of 8 BBs, and Design 3 of 32 BBs, where a BB is a block used to evaluate one term of

the product matrix. Note that Design 3, consisting of about 500 nodes (15 nodes per BB).

is the largest design we have considered, and our algorithm for pipelining and component

selection took less than a second for this example.

Figure 11 (log-log scale) depicts all three topologies on the same graph (log-log scale)

The y-axis represents the delay per sample (or the inverse of throughput ), where a sample

consists of the 64 terms of the BD input matrix. The latency of all three architectures is

fixed, and equal to the PS Delay.

As can be seen, a large design space has been explored by varying the architecture and

component selection alone, where the delay of the designs ranges from about 17.000 ns to

less than 100 ns (or approximately 60 KHz. to 10 MHz.), while the cost varies from about

20,000 to 1,000,000 gates (though designs are not evenly spread in this range).

^Note that the design points are joined by a curve for purposes of graph readability; this does not imply
a continuous design space.



• - -• Owgn 11I b**<titedo
• - -• OMnn 2 IB b««it biodxl

DM«n 3 ()? DMi< tlocU)

Lawney • • (in'hmpui)

« OMiflnZ

\ « 0*s<gn3
4

100000 0 1000000 0

Aim (eqv ND2gales)

Figure 11: PS Delay vs. Area of 3 different architectures with fixed latency for an 8 x 8
IDCT.
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Figure 12: PS Delay vs. Area of Design 1 for 8 x 8 IDCT, with latencies of 1, 2 and 3 (x
PS Delay).



Lets consider a typical design scenario, where the designer places a throughput constraint

of, say, 0.2 MSamples/sec. This translates to about 5000 ds per sample. By looking at the

graph in Figure 11, the designer can immediately narrow down to Design 1. since no other

design has delays within this range. After selecting the design, he can then turn to the graph

in Figure 12 that presents the effect of varying the latency of Design 1. Assuming that the

designer can tolerate a large latency, he/she can then pick a •3-stage pipelined design so as

to minimize the total area.

VVe would like to point out that the substantial exploration, from 100 ns to 17.000 7?^.

would not have been possible without the capability of using multiple implementations of

operators in the design. Had our library consisted of just one implementation per operator.

Figure 11 would have consisted of just 3 points, one for each architecture.

Beamformer

The beamforming problem is formally described by the following equations:

P-i

«'('•) = V6e l.,.JV (8)
e=l

We will not elaborate further on these equations. Suffice it to say, that equation (7)

represents a FIR filter operation, while equation (8) involves a phase rotation, that is

the multiplication of each of the FIR filter outputs with a constant (vjJ). and then the

summation of these products. Equation (7) is repeated for all "elements" (e € 1 V) and

"beams"(6 € \ while equation (8) is repeated for all "beams". The "size" of the

Beamformer is thus characterized by the number of elements. A', the number of beams. M.

and the order of the FIR filter, P. In our analysis, we have considered a 4-element {N=4).

4-beam Beamformer (M=:4) with an 8th-order (P=8) FIR filter.

Once again we considered 3 different architectures that differed in the number of FIR

filters, the number of PR blocks and the number of adders in the subsequent summation

operation. Design 1 consisted of just one FIR filter and PR block (all FIR filter blocks were

implemented with 8 multipliers and 7 adders). Design 2 consisted of 2 FIR and PR blocks

and Design 3 consisted of 4 such blocks. Each of these designs was also pipelined into 2

and 4 stages.

The results of varying the design topologx- for a fixed latency are given in Figure 13.

and the effect of varying the latency of Design 2 is shown in Figure 14. Once again, a

large design space ranging from a throughput of 4000 ns to 100 ns. and a cost of 25.000 to
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4-beam Beamformer system.



175,000 gates has been explored. This would not have been possible without the ability to

vary all three parameters - architecture, component selection and pipelining.

7 Summary and Conclusion

To summarize, we have presented a method of exploring the design space ofhigh-performance

pipelines by varying three important design parameters: architecture^ pi})€lining, and com

ponent selection. This is achieved by manually writ ing different descriptions, and then using

our algorithms for pipelining and selecting components. We demonstrated the effectiveness

of our exploration strategy by applying it on two industrial-strength DSP systems, the

Beamformer and 2-D IDCT. For both the examples, we obtained a large spread of designs,

ranging from a throughput of 100 ns to -4000 ns for the Beamformer and from 100 ns to

17,000 ns for the IDCT, within a matter of seconds.

From our experiments, we also deduced that component selection adds an important

dimension to the design exploration of high-performance pipelines; had we used a limited

or single implementation library, we would have obtained less than one-tenth the number

of designs we obtained with a realistic library that had several different implementations

per operator. The use of a realistic library also leads to more efficient designs (in terms of

throughput per unit cost), since slow components can be then be utilized on non-critical

paths, while faster (and more expensive) components can be used on critical paths only

when necessary.

To test our component selection algorithm, we compared its results with optimal results

produced by exhaustively enumerating all possible designs. For the examples considered

(the HAL benchmark, and an 8th-order FIR filter) our algorithm gave results that were

no more than 0.7% off from the optimal result. Whereas the exhaustive algorithm has an

exponential time-complexity of 0{C^) and took several days to execute on some of these

examples, our algorithm has a polynomial time-complexity of 0{N^C) and executed in less

than a second for these examples.
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