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Abstract

Zachary Dethloff - EVALUATING BINARY CLASSIFI-

CATION NEURAL NETWORKS TO DETERMINE SEN-

SITIVITY TO SLEPTON PRODUCTION AT THE LHC

Four different Binary Classification Neural Networks are used to assess the sen-

sitivity of experiments at the CERN Large Hadron Collider related to Super-

symmetry. Several methods are used to study the effectiveness of each neural

network’s ability to separate signal from background by evaluating their per-

formance during and after the training phase. Sensitivities over the slepton’s

parameter space are graphed using each of the four neural networks. The four

neural networks are then evaluated individually and comparatively in order to

analyze each of the neural network’s respective performance and general trends

in sensitivity to the slepton’s parameter space.
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1 Introduction

Classification Neural Networks

Machine Learning (ML) is a swiftly developing tool in many areas of research.

The increased use of computational analysis in nearly every field of industry, the

advancement of computer processing components like Graphics Processing Units

(GPUs), as well as the collection of extremely large data-sets has opened up new

possibilities in understanding the correlation and causation of phenomena [6].

Throughout recent years, nuanced methods of applying neural networks and

deep learning algorithms to abstract problems normally performed by humans

have become more common as Python libraries like Tensorflow [23] have sim-

plified the process immensely. Libraries like Keras [3] and Sci-kit Learn [9] take

the task of designing and implementing statistical algorithms, that make up the

backbone of machine learning in Python and condense them into simple com-

mands. This minor revolution in the capabilities of computational intelligence

has opened a range of new opportunities in the scientific world as a way to re-

approach old or current questions to find answers thought previously impossible

to obtain or model.

Binary classification in machine learning is a specific type of neural net-

work that uses a logistic regression algorithm to learn features of signal and

background data [2]. Once the algorithm’s parameters have been trained to

recognize features of the signal and background data, the neural network can

be used to separate a given event. Logistic regression aims to produce a predic-

tion of how signal-like incoming data is using the logistic function [2,3,8]. The

logistic function, or sigmoid, will return a value between 0 (background) and 1
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(signal) based on the binary probability equation given in Eq. (1) [8].

p(y = 1|x) = 1

1 + exp(−wTx− b)
(1)

Given a data-set, each row can be referred to as x in Eq. (1), which is an n-

dimensional vector whose length n is determined by the different column values

or features in the data-set [8]. The variable y is then the binary output variable

which defines the signal label for a signal event [2,8]. The value calculated in

Eq. (1) is the probability that the given event x is a signal event similar to y,

giving it a score close to 1 [8]. Eq. (1) is the equation of a sigmoid function that

has been augmented by b, the bias, and w, the weight vector, both of which

are parameters learned by neural networks in their training and testing phases

[2,8]. Using conditional maximum likelihood estimation, values for parameters

w and b are chosen that maximize the log probability for the true value of y in

the validation set for a given event [26]. Using the equation for cross-entropy

loss [26] (Eq. 4), a binary classification function that describes how far off a

given prediction of an event is from its true y-value, these same weights and

biases can be used to return large values when the neural network is confused,

and small when the neural network is close to correct. These weights and biases

can be further optimized by minimizing the cross-entropy loss over a sum of all

respective events, weights, and biases, which can be solved by gradient descent.

A neural network results in an array of sigmoid functions are created with their

own weights and biases that are all used to complete a specialized task, and

this array of functions is called a Multi-Layer Perceptron (MLP) [2,6]. This can

also be referred to as a feed-forward network due to the sequential nature of

data processing [2]. The neural network is designed through the use of layers,

which represent collections of neurons that each receive input data and apply

the respective weight and bias terms to that data. This process continues until
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the neural network reaches a final layer, which only contains one neuron for

binary classification tasks, which will classify or give a final score to the input

data [2]. Each of the layer’s weights and biases are developed over the training

and testing phase [2,6]. This general approach is then distilled into a specific

task which dictates much of the architecture for the MLP [2]. The focus of this

project will be on the task of classification, and while designating a task does

narrow the scope of a ML project, tasks themselves are still very general and

must be specialized further.

An MLP can seemingly be used for anything. From object recognition in

images [2,9], language processing, and signal vs. background filtering, as long

as the MLP is properly trained these tasks can be completed effectively and

efficiently. Even the complicated task of scoring data-sets over 100,000 entries

long can be accomplished with a relatively shallow neural network [2,8]. But how

do we know if an MLP is working reliably? Each model can be evaluated based

on its loss, precision, and recall, metrics developed throughout the training and

testing phase that will be discussed in detail later in this paper [3,9]. Based

on these values, neural networks may have their architecture changed to better

reflect a desired precision through a process known as hyper-parameter tuning

[2,6].

The State of SUSY

The world of particle physics is well described by the Standard Model (SM)

which breaks up elementary particles into groupings of quarks, leptons, and

bosons (force carriers) [1]. While this elegant framework has proven itself by

predicting and describing everything we see at particle accelerators like the LHC,

it falls short of describing some of the mysteries that we think lie in higher

energy physics that are hinted at in the details of symmetry breaking [1,10].
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Phenomena like dark matter, neutrino masses, hierarchy of fermion masses,

and matter-antimatter asymmetry are so far unexplained by the SM [10]. The

discovery of the Higgs Boson proved the accuracy of the SM when symmetry

requirements and Gauge theories predicted the W and Z bosons to have zero

mass [7,10]. Yet since it falls short of describing the previously mentioned array

of phenomena, there must be some extension made to the SM [7,10].

Using the SM to predict new physics indirectly is not a simple process, as

the Higgs mass correction is extremely sensitive to new mass scales, as it is both

quadratic and divergent, according to Eq. (2), where M is the new physics scale

above which the SM is no longer effective [7].

δm2
H = −(2m2

W +m2
Z +m2

H − 4m2
t )

3M2

16π2v2
(2)

Determining this value M is a tricky task; as of run 2 of the LHC at an energy

of 13 Tera-electron Volts (TeV) no sign of new physics has been observed, which

already necessitates M be a large value [7,10]. One of the proposed solutions

to this problem is super-symmetry (SUSY), an extension to the SM in which

every particle currently on the SM has an assigned superpartner [7,10]. This

would allow for new terms of the same order of the term M which cancel with

the divergent value and keep the Higgs mass from being a divergent value. This

also provides a cancellation for the re-normalization scale of new physics making

SUSY a UV complete framework [7].

This symmetry between fermions and bosons is the core of SUSY, which

states that not only are fermions and bosons related, but each fermion has a

bosonic superpartner and vice versa [7]. The challenge in finding these super-

partners is that they come from standard interactions of quarks with extremely

small cross-sections at current energy levels reached by the LHC. For the slep-

ton, the pair production cross-section given by [19] for a 13 TeV collider with
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a left and right-handed slepton with masses of about 110 GeV is estimated to

be 0.55 pico-barns. The fundamental SUSY partons, squarks and gluinos, are

very unstable and instantly decay, but according to [10] have an 100% branch-

ing ratio to long lived, weakly interacting Lightest Supersymmetric Partners,

or LSPs [10]. According to [7], the cross-section for SUSY products increases

as the energy of the collisions increase, encouraging colliders to push to higher

energies in order to be in a regime where creation of SUSY particles is more

abundant. Even then, the mass parameters of the parent SUSY particle and

LSP are not fixed making the observations even more challenging [10]. What

is known is that the superpartner would need to be a product of the major-

ity of this energy to be created due to its cross-section scaling with increasing

energy, which is unlikely at best since the background process will be leading

order [7]. Since detectors only detect the initial interaction and its final state

products, scientists must use other variables to infer the existence of the parent

superpartners interwoven in SM processes [7]. Not only this, but if LSPs are

the most accessible of the superpartners given our current energy restrictions,

then their weakly interacting nature would make even this final state’s detection

extremely difficult. Due to this, it is paramount that experimentalists use what

information is detected to the fullest, and analyze the kinematics of all observed

final states.

One of the methods used to help detect the presence of a SUSY process is

by the use of Missing Transverse Energy (MET), or the imbalance of momenta

between the colliding protons and detected particles [7]. Since the LSP weakly

interacts with the detector, there will be missing energy in a decay channel

including sleptons, or any superpartner. If the MET of a given collision matches

the expected MET from a undetected neutralino then its likely a slepton was

created during the decay. Analysing observables like MET aids in the efforts to
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comb through particle data to probe the existence of superpartners in accelerator

processes.

By hypothesizing the kinematics of SUSY particles through simulated col-

lider events, and analyzing the kinematics of any detected final state informa-

tion, physicists can hone in on specific detector conditions that heavily suggest

or are only possible if a SUSY particle existed somewhere in the hundreds of

processes [7,10]. Not knowing the exact parameter space of SUSY makes this

challenging, but different classes of SUSY models can be generated to help with

this using programs like MadGraph [18], especially when we are interested in a

specific subset of SUSY models. Observables that relate to particle kinematics

or combinations of particle kinematics can be used to develop understandings

of SUSY by translating the parameter space to collider observables [7].

The Project Focus

The goal of this project is to develop neural networks that can discriminate

between SUSY and large SM backgrounds using simulated ATLAS experiment

data. This Thesis will be divided up into three main sections.

The first section will cover the data being investigated, what programs are

used to create it, as well as why a neural network is so well suited to handle

such data. Large amounts of well-curated data are required to build a reliable

MLP that can classify signal events.

The second chapter will focus on the architecture of the neural network, the

hyper-parameters that were chosen, and how the data was used from training

and testing all the way through to the final outputs.

The third section will cover the results given by the MLP, the performance

of the MLP, and what the results mean for our ability to test SUSY parameter

space using LHC data. Performance values which are stored with each training
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and test run, can be used in combinations or viewed separately to discern a

number of statistics about the validity of the final results. These metrics are

essential in sequential runs focused on optimizing an MLP for a given task.

The main takeaway from this paper will be the performance diagnostics and

sensitivity contours that result from each MLP. Determining the most efficient

slepton data to train a neural network on that generates reliable predictions

of theoretical parameter spaces and defining methods to evaluate these neural

networks will make the hunt for SUSY in colliders more efficient.

2 The Data

Signal and Background Generation

Neural networks need large numbers of events to create a reliable logistic func-

tion [2]. A combination of programs: MadGraph5-aMC@NLO [17] and Pythia

[12] are used to simulate collisions using SUSY models. MadGraph5 is a high

energy particle physics process generation toolkit that only requires the user to

specify initial and final state particles, and the model to be used to calculate

the rate at which the scattering process occurs [24,18]. The specifics of how

MadGraph5 works is described in detail in the paper cited as [24]. According

to [12] Pythia must also calculate and store values concerning the entire process

for the virtual particle showering which cannot just be found by analysing the

final state particles. These two programs mainly generate the important fea-

tures like energy and momentum that act as key discriminators in developing a

binary classifier [12].

The signal data generated in this project is generated using the channels

shown in Fig. 1 (left), and is categorized by three key quantities for a given

sample: slepton mass, neutralino mass, and the mass splitting, the difference
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Figure 1: These figures show the decay channels of a pp collision pair producing
sleptons (left), and W-bosons (right). Both of these have the same final state
signature.

between slepton and neutralino masses. Slepton masses range from 100 to 300

GeV, neutralino masses range from 25 to 290 GeV, and mass splittings range

from 10 GeV to 75 GeV [19]. Mass splittings are important in addressing the

different possible LSP mass configurations. Depending on the mass splittings

that define the data passed into a neural network during training and testing

stages, the resulting MLP will be sensitive to that region. This is due to kine-

matics of the processes changing in response to different masses of the LSPs in

the final states. Background data is generated using the channel shown in Fig.

1b (right), and is a leptonically decaying diboson. This can either be a WW-

boson or WZ-boson pair, and these events are confined to the same kinematic

regions as the sleptons are.

Training sets can be comprised of one SUSY model with many events making

the resulting MLP sensitive to the kinematics of sleptons with similar mass and

mass splittings. Training sets can also be comprised of many slepton models

with fewer events, all with varying mass splitting and slepton masses making

the MLP less sensitive but having a wider range. Finally some combination

of these two methods could be employed. Utilizing methods such as mixing

events from two large sample files is usually done to make the MLP sensitive to
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Figure 2: These two images display the confidence intervals in the mass spec-
trum of an MLP trained on a single sample file (left) vs. random events taken
from multiple sample files (right). Sample files dictate the slepton mass and
mass splitting of a given set of simulated slepton events. Slepton masses and
mass splittings are measured in GeV, and the colors on the color bar indicate
the confidence level.

a range of SUSY models and should only be employed to attain better statistics

at different regions of the SUSY parameter space compared to the narrow focus

of a single large sample file of similar quantities.

Fig. 2 shows an example of the sensitivity contours of a completed run of

a MLP trained on one large sample file versus a MLP trained on many smaller

sample files. While training on one sample file yields a higher maximum confi-

dence level, the average confidence interval shown by the standard deviations is

smaller than that of the multi-model. Using different combinations of slepton

mass, mass splitting, and neutralino mass gives insight into any trends that
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binary-classification MLPs have. Looking for similarities in these contours not

only implies MLP trends, but also regions of consistent high confidence intervals

as a means to better constrain the SUSY parameter space.

Pre-Processing

After the signal and background files are successfully created, the next step is

to apply a pre-selection to the data outlined by the study in [19]. Pre-selection

allows us to pick out specific kinematic variables that the neural network will

learn to distinguish between background and signal. These variables are chosen

not only to constrain our data to SUSY sensitive regions, but to act as possible

discriminators of background events.

Table 0: Shows all of the kinematic variables that are used for pre-selection
and passed into the neural network. This table does not include the 6 different
weights associated with each event.

There are 26 kinematic variables chosen to represent each slepton event when

passed into the neural network. Some of these variables are also used for pre-

selection cuts to ensure the proper slepton model’s kinematics are respected.

Lepton counts, charge, flavor, and number of b-tagged jets are used solely by
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the pre-selection cuts to ensure that the events given to the neural network are

consistent with the decay channels shown in Fig 1. While these variables all

have the same restrictions for all events passing the pre-selection requirements,

they can still be kept as training variables as the neural network quickly learns

that they are not discriminators between signal and background. Individual

final state lepton information includes missing transverse mass (MT), momenta

(PT), azimuthal angle (ϕ) (angles around the beam axis in the x,y plane, where

x-axis points towards the center of the LHC ring, and the y-axis points directly

upwards [25]), and pseudo-rapidity (η) are important in both the pre-selection

and discrimination power as shown in Table 0. Overall process features can also

be used to teach the neural network how to classify as well as constrain the

events like individual jet momenta, lepton separation (Rll), dilepton invariant

mass (mll) and total MET, since they are direct results of the slepton mass

and mass splitting. Other observables have been created as combinations of

these kinematics but have proven to be significantly less useful in developing an

effective MLP, but do provide some use in pre-selection, which can be seen in

Table 0.

Each event also has an associated weight used to compute a realistic version

of the Slepton’s yield in a process at a collider. These weights concern corrections

for particle pile up and tagging efficiency as well as statistical weights from the

generator. The proper weight can be found using Eq. (3), where L is the

luminosity for a 13 TeV process which is L = 139 fb−1.

Pw = Wevent ∗Wgen ∗Wpu ∗Wl ∗WbT ∗Wjvt ∗ L (3)

The working data with the pre-selection applied there exist close to 200,000

events between background and signal to be used by the neural network for

training and testing, and up to 300,000 for certain signal files with larger event
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counts.

All of the selected data must be reformed into specified training, testing,

and validation dataframes [3,9]. This can be done simply using the Scikit-Learn

[9] library which randomizes what events go in either set while keeping track of

signal and background for validation. For this project the split was 80 percent

to training and 20 percent to testing. The final step that must be applied to the

data before the MLP can begin construction is the standardization of the data.

Using the Scikit-Learn [9] Python library the data to be passed into training is

centered and scaled from -1 to 1, and the same scaling is applied to the testing

data. This makes it easier for the MLP to be built on top of this data as it

means the neural network is essentially learning a standard distribution. This

scaling is determined first by the larger training data and the same fit is then

applied to the testing data [9].

3 Building a Multi-Layer Perceptron

While it is possible to develop a neural network from scratch in vanilla Python,

the use of libraries like Keras [3] and Scikit-Learn [9] not only make the work

easier but also promote vastly larger coding efficiency. Libraries like Numpy

[20], Pandas [22], and Matplotlib [21] are a staple of any data science project in

Python, but machine learning libraries allow for much more readable and effi-

cient code. The prior libraries will be used extensively throughout this project,

but they aim to define and control the neural network while the latter play the

role of manipulating data for analysis.
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Evolving Algorithms

The Keras library [3] has three different ways to implement models to design a

neural network’s structure. The sequential model is what has been used for this

project, which is a shallow, feed forward model that takes a number of inputs

and gives one output [3], also shown in Fig. 3.

In a sequential model the motion of information through the neural network

is acyclic, not allowing for any back-propagation or cross talk between neurons of

the same layer [2]. Despite this, it is still more than enough for the task at hand.

MLPs also need an optimizer with an associated learning rate. The optimizer

class in this project is known as Adam [4], a stochastic gradient decent procedure

which is essential for updating network weights. The stochastic gradient decent

procedure deals with the minimization of a stochastic scalar function, the binary

cross-entropy, through the use of gradient descent applied to the function [4].

The loss function, shown in Eq. (4), must be minimized and the Bernoulli

Distribution, Eq. (5), must be maximized in order to determine the proper

weights for each neuron shown as Eq. (1), and Adam handles that [4].

LCE = −[y log ŷ + (1− y) log(1− ŷ)] (4)

p(y|x) = ŷy(1− ŷ)1−y (5)

The loss function used in Eq. (4) is known as Binary Cross Entropy, and

determines how far the predicted value, something between 0 and 1, is from the

real value, either 0 or 1. The Bernoulli Distribution is simplified to either ŷ for

y = 1, or 1− ŷ for y = 0, which allows for minimizing the Binary Cross Entropy

to determine the best possible weights and bias. Eq. (5) is specific to binary

classification tasks, and predicts the likelihood that the input vector represents

13



Figure 3: This figure shows the general outline of the sequential neural net-
work architecture used in this project. Each of the nodes in the input layer is
connected to each of the nodes in the hidden layer. Gaps in the hidden layer
represent dropped out neurons.
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a signal event [26]. Adam does this through applying gradient descent to Eq. (4)

at each of the subfunctions as opposed to the entire function, evaluating their

first derivatives on their own step sizes. This prioritizes efficiency and speed

while still retaining a high degree of accuracy in optimizing the weights and

biases. The balance of maximizing this likelihood and minimizing the loss by

changing the weights and bias terms present in Eq. (1) is what defines machine

learning.

With a model chosen, the next step is to define the layers and neurons

within them. In the input layer the neuron count is the same as the number of

features being passed into the neural network. For this project, the input layer

is 26 neurons wide. Only one hidden layer was needed to perform a meaningful

analysis, and anything over one leads to poorer predictive performance. Any

neural network that has architecture too large for the task at hand will run into

decreases in performance. Due to the relatively simple nature of the task, a

shallow network is best [8]. The following hidden layer has the same amount

of neurons as the input layer. The difference between the input and hidden

layers is that the hidden layer will make use of the dropout function, a way to

simultaneously turn off a given number of the neurons in the layer corresponding

to the dropout rate. The dropout rate for this project is set to 50%. Dropout

significantly helps the neural network’s ability to generalize predictions allowing

for even the most specialized MLP a better ability to predict events in different

regions of the SUSY parameter space [8]. The layer after this is the output layer

with one node and outputs the signal probability for a given event.

Each neuron needs a method to introduce non-linearity into the model which

comes in the form of activation functions [2,6]. Each neuron in the input and

hidden layers use the rectified linear-unit (ReLU) activation function, which

maps negative values to 0 and keeps positive values linear [2]. This is essential
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in developing the MLP’s ability to distinguish between signal and background,

as well as scoring events labelled as signal. The final output layer then maps all

inputs from the neurons into a sigmoid activation function which is necessary

for the classification ability of the MLP [2]. The sigmoid function will output a

score indicating how signal-like an event is, given its features [8], which can be

compared to the validation set in the training to improve the MLP, and allows

for the calculation of significance scores in the final analysis [2]. Without these

activation functions, there would be no true machine learning taking place so

they are essential in defining how the MLP will function.

Back-Testing

In order to understand the results and their accuracy it is important to employ

multiple tests after the MLP has been developed. An MLP can be evaluated on

a number of different statistics that Keras keeps track of over the training and

testing in order to asses how accurate a certain MLP is.

The first source of un-reliability in an MLP comes from the data passed

into it initially, before any training and testing is ever done. An unbalanced

proportion of signal and background data will lead to the MLP over-training on

whichever data has the majority of the events. Over-training a MLP on large

amounts of signal data compared to background data will lead to an excess in

confidence of its performance. Over-training is the lack of generalization in an

MLP [8]. To check if an MLP is over-trained, an analysis of the loss values,

the error in a neural network’s training and testing predictions [11], can be

used. There are multiple types of loss, but for most binary classification MLPs,

including this project, binary-cross entropy will be used [11]. If the difference

between validation loss and training loss is greater than 0, then there is at least

some over-training taking place [8]. Finding the gap in these two losses to be
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0 is a perfect case scenario, and in real applications is more of a target value

than mandate. The best way to check if a MLP is over-training is by analyzing

loss curves describing training and testing epochs [11], an epoch being a neural

networks full pass through the training data, as well as two other methods that

will be discussed later.

This leads to the standard convention of including the same count of signal

data as background, thus balancing the training/testing data before the MLP

is built. Balancing signal and background input data is followed in the project,

but it is interesting to note that even with large imbalances, upwards of a

60,000 event count difference between signal and background, the MLP still

returns performance diagnostics similar to a balanced data set. Repeat trials

of both excess signal and excess background proved this stability, and each

time the MLP was able to differentiate the two in the same manner. It can

be concluded that this property is due to the simplicity and integrity of the

binary classification neural network. Yet, bias can still compound in the use of

an imbalanced MLP leading to useless, unbalanced contours or low significance

scores when used to predict a score for signal events. Limiting in this way helps

improve the generality of this MLP’s performance as well, since once all of the

signal data is consolidated it can be randomized and cut away as to make each

MLP slightly different than the last despite the target samples being the same.

Comparing the loss vs. epochs curves of both train and test phases of the

MLP is one way to understand how well the MLP generalizes [8]. These values

are calculated after each epoch, or training cycle, and stored as objects in the

model history [3]. The lower the loss values are, the better the neural network’s

prediction becomes, and seeing the loss decrease over time means the neural

network is learning [11]. Loss being too high and not decreasing despite the

amount of epochs means that the model is under-fitting, or defining a function

17



that poorly represents the data [11]. The opposite problem is over-training,

where the the fit represents the training and testing data set almost perfectly,

but introducing new data from different slepton models for testing leads to the

MLP having poor predicting power [8].

The second test is the inverse of comparing precision curves, and provides

essentially the same check of training/testing properties. This quantity, the

precision, determines the ability of the MLP to pick out the signal from back-

ground, and is represented by Eq. (4), where TP is the number of true positives,

and FP is the number of false positives [2].

P =
TP

TP + FP
(6)

This output can be tracked over training and testing phases, and should increase

with increasing epochs. If the precision curve is high to begin with and hardly

improves over epochs, then the model is assumed to be over-training [8]. Under-

training occurs for the opposite, when the precision curve is around 50 percent

over the whole training and testing phase and occurs when not enough data is

present for the training of a robust MLP. The precision curve fluctuating by a

few points over epochs about a certain score for the test scores is also normal,

and seeing this trend get tighter over epochs is an even better indication of

learning taking place [2]. When both of the precision and loss plots agree, then

it is assumed that the MLP architecture is sufficient for a proper model to be

generated.

The next test is to check the MLP’s Receiver Operating Characteristic

(ROC) curve. ROC curves compare the True-Positive Rate (TPR) to False-

Positive Rate (FPR) and plot the points on a graph showing TPR vs. FPR.

TPR and FPR are calculated using Eqs. (5) and (6) where FN is the number of

false negatives, and TN the number of true negatives, and TP and FP behave
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as previously defined [2].

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

The area under this curve is indicative of the MLP’s classification abilities. This

area can range from 0 to 1, a score of 0 meaning the MLP missclassified every

event, 1 where the MLP correctly classifies every event [2]. If the area under

the ROC curve (AUC) is 0 or 1, then the MLP is assumed to be untrustworthy

and the MLP design must be changed. If the curve is a straight line through the

middle of the plot, then the MLP is essentially guessing and has not understood

the data set. For this project, a threshold of an area greater than .80 is necessary

to move forward with the MLP, as a MLP returning an AUC score less than this

is not optimized. There is also a maximum threshold area above which the model

becomes untrustworthy, which is .95 for this project. This number corresponds

to the AUC score in which loss curves and precision curves start showing aspects

of over-training, and the neural network can be better optimized.

The final test is plotting each event by its respective score given by the

neural network. Once the MLP has been created, the events that were assigned

to train and test groups are sent back to the MLP, which gives each of them

a score. If the MLP was perfect, all of the diboson background events would

be given a score of 0, while all of the slepton signal events would be given a

score of 1. Plotting a weighted histogram of the diboson count per score and

the slepton count per score shows how effective the MLP is at classifying events,

and if there are any scores in which the neural network is over-training on. The

weights are determined event by event through the proper weight in Eg. (3).

Shown in Fig. 4, this is possibly the most effective measurement of the MLP

performance, as it describes the skill of the MLP as well as exposing areas of
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Figure 4: This figure displays an example of a weighted signal score histogram
for each of the events used to train and test the MLP that created this histogram.

over/under-training in the model design. This plot is also useful in finding a

region to calculate significance scores, where weighted signal events overcome

background events, and will be returned to when discussing the results.

Through designing and back testing the MLP, an effective and trustworthy

MLP can be created. The use of each of these statistics, plots, and hyper-

parameters resulted in a robust predictor that could then be used in the face of

new events outside of the training and testing data.

4 Outputs

When an MLP has been built and tested, the next step is to use it to make

predictions on similar sets of data. Along with the outputs that evaluate MLP

performance, there must be a set of outputs that target significance thresholds,

significance scores, and sensitivity. Each of these play a role in excluding mass

regions from the current mass parameter space of the slepton.

It is important to understand what these outputs will be used for, and how
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Figure 5: This figure displays the current exclusion plot of slepton events over
a wide range on the parameter space. This data was formed through ATLAS
searches listed in the legend on the figure.

they are applied to something physical, which in doing so grants researchers

insight.

Fig. 5 shows the currently allowed parameter space of slepton mass vs.

mass splitting from LHC run 2 data. By changing the MLP to focus on different

regions of the slepton’s parameter space, more and more regions can be excluded.

If over repeated tests using different slepton models the statistics of each region

stay the same then the parameter space can get tighter and tighter. The smaller

this parameter space is, the better the slepton’s kinematics can be defined which

will boost the understanding of SUSY as a whole.
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Thresholds and Significance

Using the MLP to predict how signal-like each of the events within a certain slep-

ton mass/mass splitting grouping are will return the same scoring histograms

used to check the performance of the MLP after training and testing. These

histograms, shown in Fig. 4, is essential to understanding the significance of

a given grouping, or how tuned the MLP is to this grouping of events. An

MLP trained on similar slepton mass/mass splitting values as a set of events

passed into the MLP will do better in distinguishing signal from background

since the kinematic values (features passed in) will also be similar. Once the

MLP predicts the signal score of each event, an iterative process can be started

to determine an optimal signal score threshold, shown in Fig. 4 as the green

line, that gives the best possible significance score. This process starts after the

MLP has scored each event in a signal file representing a new point in the slep-

ton parameter space and is paired with the diboson background. The threshold

begins at a score of 0.99, and sums up the amount of both signal and background

events respectively with scores in this region. Those values are then used in a

significance calculation given by ATLAS [10], and shown in Eq. (9).

Z =

√
2(n ln

n(b+ σ2)

b2 + nσ2
− (

b

σ
)2 ln (1 +

σ2(n− b)

b(b+ σ2)
) (9)

The uncertainty used corresponds to the detector uncertainty in ATLAS of

σ = 0.3 ∗ b, where b is the number of background events, n is the number of

total events

(n = s+ b)

, and Z is the significance score. This process continues for each value on

the x-axis of the signal score histogram by decreasing the starting score by
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0.01, and re-summing all events within that new range. Since the region of

interest is near the signal score of 1 this process is halted at a score of 0.9.

This process happens for each new point in the slepton parameter space for a

total of 60 different optimal thresholds corresponding to the 60 given slepton

models per MLP. The distribution of optimal thresholds will be different when

comparing one MLP to another as they are trained on different regions of the

parameter space, so it is impossible to compare one MLP to another using

the sensitivity plots generated through the optimal thresholds. A standard

threshold is then devised by averaging all of the optimal thresholds after an

MLP is used to probe the slepton parameter space, establishing an average

optimal threshold for a given MLP, and then averaging that number between

all four MLPs. By averaging all 60 of the optimal thresholds for each MLP, and

then averaging those numbers, a common score is found as a way to compare

MLP sensitivities on the same threshold. This threshold score was found to

be 0.94. In order to create a reliable significance score, a threshold must also

contain at least 3 of both background and signal events each. Both the optimal

threshold significance and the standard threshold significance are saved per data

set for use in determining a model’s sensitivity.

Sensitivity

The final output of this project is a contour that acts as a performance diagnostic

and provides insight into real world phenomena that could be leveraged for the

use of SUSY discovery. By creating a contour that defines significance regions

on the slepton mass vs. mass-splitting plane, its easy to see both where the

MLP does the best and where we have the largest confidence in exclusion. How

well a neural network performs on a given data set of slepton mass and mass

splitting defines that MLP’s sensitivity. High sensitivity neural networks are
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MLPs trained on a specific mass splitting region, and can be efficient in areas

very near to them on the mass spectrum, but their sensitivity drops off quickly

as either slepton mass or mass splitting deviate from what the MLP is trained

on. Low sensitivity MLPs are trained on a wide array of signal events from all

different regions of the SUSY parameter space, and build an MLP that is more

versatile, but much less detailed. A low sensitivity MLP will thus have a lower

maximum significance score, but will fall off in sensitivity more gradually than

a high sensitivity MLP. The use of both of these styles of MLP is instructive

for mapping the SUSY parameter space confidently, as well as determining if

certain neural network structures are superior for this task.

Mixed parameter space MLPs can also be utilized, as they attempt to bridge

the gap and fill the shortcomings of the types of sensitivities mentioned before.

These MLP’s add versatility but still stay robust to the main region they are

trained on. This type of neural network usually contains events from two or

three different parameter spaces, and anymore than three causes the model to

essentially become low sensitivity.

The image produced from these significance contours can be overlaid on the

slepton’s parameter space to show where the significance is highest, and where it

starts to drop off for a given MLP. Multiple models can be combined to increase

confidence around specific areas that are lacking from previous models.

5 Results

The results of this project can be divided up into two main outputs over 4

different MLPs. The 2 main outputs are the training/testing diagnostics and

the MLP predictions with their resulting sensitivities. Each of the 4 MLPs

is trained on signal events from different regions of the SUSY models, and the

same set of diboson background events. The slepton and neutralino masses used
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for these 4 neural networks are given in Table 1, 2, 3, and 4.

Table 1: Table describing an MLP built off of data with a slepton mass of 200
GeV and neutralino mass of 170 GeV.

Table 2: Table describing an MLP built off of data with a slepton mass of 200
GeV and neutralino mass of 140 GeV.

Table 3: Table describing an MLP built off of data with a slepton mass of 200
GeV and neutralino masses of 170 GeV and 140 GeV.

Table 4: Table describing an MLP built off of data with slepton masses ranging
from 100-300 GeV and neutralino masses ranging from 25-290 GeV. This MLP
also excludes events in the SUSY parameter space used by Tables 1 and 2.

The number of events used for either signal or background is limited to the

smaller of the two event counts. The number of signal events are greater than

background event counts for all MLPs except Table 4, which leaves Table 4’s

MLP with less data to use and develop with than the rest of the neural networks.

Performance Diagnostics

The first diagnostic we considered for the training and testing evaluation of

the MLPs is the loss curve, which can be paired with the MLP’s precision to

demonstrate their agreement concerning performance.

Fig. 6 shows the loss and precision curves for the MLP resulting from train-

ing and testing on the slepton events described in Table 1. The loss curve shows

a promising downwards trend for machine learning, with testing having less loss

than training over the epochs due to dropout. While the precision scores do
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Figure 6: These are the loss and precision curves of a MLP trained on slepton
events described by Table 1.

seem to shift abruptly from epoch to epoch, as mentioned earlier, the trend in

the later half of the curve showing a tightening of the precision score range is a

sign that the model is learning.

Figure 7: These curves display the loss and precision for an MLP built from
events with a slepton mass of 200 GeV and mass splitting of 60 GeV.

Fig. 7 displays the loss and precision curves for the Table 2 MLP, which has

similar trends to the Table 2 MLP’s loss and precision curves. Not only does the

Table 2 MLP indicate that there is true machine learning being done, but it also

has the highest maximum precision value of all the MLPs. This comparison will

be more apparent in the final contour results, but it alludes to machine learning

neural networks training better on files with larger mass splittings.

The third MLP is a combination of data described in Tables 1 and 2, which

is shown in Table 3. Fig. 8 displays precision and loss curves, returning the
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Figure 8: These precision and loss curves reference an MLP with data from
Table 3.

highest loss so far by a couple percentage points. The precision is also well

within expected ranges, and both curves show machine learning taking place.

This precision curve is the least consistent as well, suggesting that the MLP

is finding certain kinematic features that it can easily identify as signal events,

while not having a great grasp of other features. This trend settles down as the

epochs continue, again displaying machine learning at work.

Figure 9: These precision and loss curves reference an MLP with data randomly
selected from 58 sample signal files. These sample files have a minimum slepton
mass of 100 GeV to a maximum of 300 GeV and a minimum mass splitting of
10 GeV to a maximum of 75 GeV

The final MLP is the Table 4 MLP, trained on signal events from the other

58 sample signal files that are not from the Table 1 and Table 2 files. This

signal sample is smaller than the other MLPs with only 235163 events, and

is the only data set to be passed into training that requires the background
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events to be cut in order to reach a balanced data set as opposed to the signal

events being cut. This may lead to the higher loss values seen in Fig. 9 as the

neural network has no consistency in key kinematic features like slepton mass

and mass splitting. The precision curve demonstrates one of the most noticeable

convergence of scores out of all of the available MLPs. A convergence, shown

as the precision curve’s trend to stabilize around a certain number, suggests

that the MLP starts to make connections between slepton events later on in

the training than the other MLPs and could possibly benefit from more epochs

than other MLPs. The training and testing phases stop for each of these MLPs

when the training loss doesn’t decrease for 30 epochs in a row, which is about

80 epochs of overall training. The ranges within which loss and precision stay

is expected, and while the loss is higher than the other MLPs, it isn’t so high

as to require some unique architecture for the Table 4 MLP.

The second diagnostic is the ROC curve, which will describe how well our

neural network worked and acts as more of a performance diagnostic than any

other test.

Table 5: This table shows the area under the curves for each of the ROC curves
returned after scoring the MLPs on their respective ability to discern between
signal and background.

As shown in both Fig 10 and Table 5, the MLP derived from Table 1 has
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Figure 10: ROC curves of all four trained MLPs. The AUC score is found by
calculating the areas under each of the curves, while luck defines the line that
would have a score of 0.5 by not learning the data over epochs creating a MLP
that can’t be trusted as a predictor of signal events.

the best ROC score of 87%. The rest decrease from there but all stay at 80%

or above.

The final diagnostic to be examined is the signal score histogram of the

training and testing data set on its own model. Using the knowledge of how

a perfect model would score these events, giving all signal events 1 and all

background events 0, the signal score histogram can be used as a performance

diagnostic as well as a method of defining sensitivities.

Fig 11 shows the signal score histograms for each MLP, with all of the

histograms sharing the common feature of their respective SUSY model’s signal

overcoming background around the 1.0 threshold as it should. These signal

score histograms are also weighted, which is impressive that signal overcomes

background at all due to how the signal weights heavily suppress their affect on

the count per bin. The significance scores, shown in Table 6, are derived from

Eq. (6) and the threshold strategy mentioned prior.
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Figure 11: These four histograms define the signal score distributions of each
of the MLPs. The same set of data that was used to train and test the MLP
is given the the fully constructed MLP to score each event which gives the user
and idea of how well the MLP will perform. The Standard threshold stays at a
score of 0.94, while the optimized score changes between 0.9 and 1.0 according
to the highest achievable significance score.

Table 6: This table displays each of the significance scores found by summing
the event counts from each MLP’s respective histogram at the optimal score
threshold and using Eq. (6). The significance scores are unit-less.

30



Comparing each of these significance scores illustrates how quickly signif-

icance increases when signal overcomes background in Fig 11. The score his-

togram for Table 2 returns a significance at the optimal score threshold of about

double the next highest significance score reached by Table 4’s optimal score

threshold. The score histogram itself for Table 2 not only displays signal over-

coming background counts per bin near a score of 1.0, but also spiking of signal

scores demonstrating this MLP’s ability to very effectively classify signal and

background events. Despite not having the highest AUC score, this MLP does

the best in practice which is implied by its high precision.

Significance Contours

Here it is useful to focus on each MLP separately and analyze each of the sen-

sitivity contours with the training data in mind. Each color division in the

contours will represent a change in the confidence interval (significance) σ, de-

noting the regions of the slepton parameter space in which the MLP’s confidence

drops. Comparing the standard threshold sensitivity contours of different MLPs

to each other will also give insight into how a binary classification MLP handles

a data set of this orientation in terms of trends and general preferences.

In ascending order of significance scores, the lowest scoring MLP, Table 1,

is represented in Fig 12. Table 1’s MLP reaches its highest σ in the mass split-

ting (Y -axis) region between 20 and 70 GeV, and slepton mass (X-axis) region

between 100 and 175 GeV. The confidence of the model at 3σ extending out to

about 200 GeV slepton mass aligns with the training of the model on the Table

1 data, while the noticeably extended region of higher sensitivity around the 30

GeV mass splitting point corroborates this statement. The standard threshold

contains a much smaller 4σ confidence interval, highlighting the efficiency of the

threshold optimization process. These two contours also demonstrate the dif-
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Figure 12: Significance contours of the Table 1 MLP for the optimized thresholds
(left) and standard threshold of 0.94 (right). The confidence levels start at a
minimum of 0σ and reach a maximum of 4σ.

ference that can sometimes exist between the standard score threshold and the

optimal score threshold. The standard score threshold in Fig. 12 struggles to

generalize in regions further away from the slepton parameter space described

by Table 1, leading to worse confidence intervals overall.

The combined MLP from Table 3 correlating to the 3rd highest significance

score has its sensitivity contour shown in Fig. 13. This contour was able to

break into the 5σ confidence interval mainly due to the Table 2 data in the

training set. Fig. 13 again displays the power of the optimized score threshold

in boosting confidence intervals and confidence levels of these contours. While

the standard score threshold does have wider confidence intervals than those in

Fig. 12, it doesn’t find the best possible scores from the MLP’s classification
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Figure 13: Significance contours resulting from the use of the combined MLP
from sample slepton parameter space described in Table 3. The confidence levels
vary from 0σ to 5σ.

abilities.

While the MLP built from Table 4 reached an optimal threshold scoring

it the 2nd highest significance of the four models, its confidence intervals are

weaker than the MLP built from Table 3.

Shown in Fig. 14, the Table 4 MLP shows wide yet shallow confidence inter-

vals, reaching a maximum sensitivity at 4σ. This neural network had the best

flexibility of all the MLPs, even slightly better than Table 3’s MLP, performing

better in regions of low slepton mass and low mass splitting. Despite other

MLPs struggling here, the versatility of the Table 4 MLP after being trained

on events from ranges of slepton masses and mass splittings, allow it to retain

confidence in regions with less data. The optimized contour (left) also shows
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Figure 14: Significance contours of the Multi-model MLP being used on the
sample slepton file array. This MLP displays lots of generality with a lower
end maximum confidence level of 4σ but wider confidence intervals than MLPs
trained on one point in the slepton parameter space.

a small sliver of the 5σ confidence level, but not enough to conclude that his

model can consistently reach a 5σ maximum.

Table 2’s MLP generated both the highest significance score of all models.

Fig. 15 displays the MLP’s sensitivity contour which reaches all the way to 6σ

in the high mass splitting, low slepton mass region. The sensitivity is very high,

as it is expected to be, but it also falls off as the MLP tries to make predictions

in regions far outside of its training data. The area of mass splitting less than

30 GeV is in the confidence interval less than 3σ and can be safely ruled out

according to this MLP. The 6σ region is most likely a product of the larger mass

splitting, alluding to a lighter neutralino mass compared to the parent slepton

as especially sensitive. This MLP proves to be the best MLP for not only high
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Figure 15: The MLP formed from Table 2 data contours display the highest
confidence level which go slightly above 5σ across both the optimized threshold
cuts (left) and standard threshold cuts (right).

confidence levels, but also wide confidence intervals with adaptability to regions

outside of the training set.

6 Discussion

There are two main sets of results present here which need interpretation in

the context of machine learning. The feedback diagnostics from the neural net-

works are of utmost importance in determining if machine learning methods are

accurate enough platforms to be used in the classification task of high energy

particle physics. Sensitivity contours are only useful if the feedback diagnostics

confirm good performance and true machine learning taking place. The sensi-
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tivity contours must also have high enough confidence levels in order to validate

their usage over other methods of SUSY event detection.

An easy method for discerning the validity of loss, performance, and the

ROC curve is to analyse each of their respective ranges in which the curves

occupy. Each MLP had loss and precision curves in trustworthy regions, no

loss curve drops below 0.4, and no precision curve goes above 0.8. Testing

loss does its best around 0.44 in Table 1’s MLP, and does the worst with the

Multi-model at 0.52. This difference in minimum and maximum loss values is

not only small but expected when considering the models for each case. Table

1’s and Table 2’s MLPs each have over 100,00 signal events all with the same

kinematics, leading to increase sensitivity for SUSY events from these models,

which is why Table 1’s and Table 2’s MLPs have the lower loss values between

all 4 MLPs. For precision, the same is true, with MLPs from Table 1 and Table

2 having the best of the 4 MLP’s scores. Table 2’s MLP clearly has the best

precision of all of the models with a high of 0.78, while the Table 4 and Table

3 MLPs have the lowest maximum precision at a value of about 0.72. The

testing precision curves of each of these MLP’s noticeably fluctuate, displaying

the usage of a rigorous MLP and true machine learning through the decreasing

of said fluctuations as the epochs progress. These values are congruent with the

AUC for the ROC while also showing interesting interactions between the three

performance diagnostics. All of the AUC scores being in the 80-90 percent

range is a good sign, and reassuring that the MLPs are sufficient to be used

in application. It may seem surprising, based off their definitions, that the

MLP with the highest AUC score does not coincide with the MLP that has

the highest precision values. The two diagnostics both display a given MLP’s

ability to distinguish between signal and background, but the AUC judges the

MLP’s probability of ranking events correctly while the precision judges the
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MLP’s ability to correctly find signal events. This gives AUC score a boost as

it is increased by correctly identifying both signal and background.

The score histograms of each of the MLP’s are very similar as shown in

Fig 11. All of the histograms show small, signal dominant regions near the 1.0

score and reaching to about 0.9 before background surpasses it. Table 3’s MLP

has its optimized and standard thresholds placed on the same score of 0.94,

highlighting the effectiveness of the standard threshold put in place. Table 4’s

MLP has an optimized threshold cut closer to 0.9 than the standard threshold,

but still within scores of 0.3. One interesting observation that can be made

from these histograms is how well Table 2’s MLP does at picking out signal,

demonstrated by not only a dominance in signal near 1.0, but a strong spike

in signal. This pattern was recovered every time over 10 different builds of the

Table 2 MLP, and is the reason that the confidence level in this MLP is so high.

This same curve can be seen in the Table 3 MLP, but is severely blunted by

statistics from Table 1. While Table 4’s MLP also demonstrates the ability to

separate signal from background above 0.9, the signal distribution is much more

spread out over all scores, and isn’t concentrated at the end like in Table 2’s

and Table 3’s MLPs. Hence, the Table 4 MLP lacks the spike of events at the

end.

Analysing the sensitivity contours clearly shows that the Table 2 MLP’s

distinguishing power over the entire range of slepton masses in the high mass

splitting region (>60 GeV) makes this model the most useful for this area of

study. The adequate range of the > 4σ region is also promising, and highlights

a consistent starting point for more intensive searches for SUSY. Over multiple

runs of this MLP, Table 2 was able to extend the 2-3σ region out all the way to

300 GeV slepton mass at as low as 50 GeV mass splitting while still retaining

a > 5σ high confidence level and the features seen in Fig. 15. The contour
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generated from the optimized thresholds has a similar set of confidence intervals

as the standard threshold contour, showing that Table 2’s MLP found a large

amount of optimal thresholds on the 0.94 score. The standard threshold was

also able to retain the > 5σ confidence level. Table 3’s MLP has the next highest

confidence level, and displays the most depth of any of the MLPs. Table 3’s

MLP acts as a midway model between the specificity of the single file MLPs

(Table 1,Table 2) in its adaptability to mass-splitting and slepton mass ranges

outside its training data, but also retains the higher sensitivity to reach a > 4σ

confidence level. The tapering of these confidence intervals over the slepton mass

demonstrates the MLP’s understanding of both the high and low mass-splitting

regions, but also showing a bias towards the higher mass-splitting region. The

2-3σ range extends out to 250 GeV slepton mass for the higher mass splitting

region demonstrating extrapolation capabilities in slepton mass for well trained

MLPs, as no events in this training set had slepton masses higher than 200

GeV. The standard threshold again displays more weaker sensitivity than the

optimized threshold. This MLP also gives insight into why the mass splitting

is so effective in training MLPs on slepton data. The higher the mass splitting

between the slepton-neutralino pair, the more momentum the lepton has in the

final state. When this lepton has more energy it is more likely to be picked up

by a detector as a final state parton of the slepton decay channel, which adds

sensitivity. Its easy to see in Table 3’s sensitivity contour that while the Table

1 data extends the 4-5σ range further down the mass-splitting axis, the contour

never goes above 5σ like Table 2’s MLP using some of the same data. The Table

4 MLP functions similarly to the Table 3’s MLP, as both are trained on data

sets whose events come from different signal files. The 2-3σ confidence interval

extending out to 250 GeV slepton mass in high mass splitting areas rivals the

ability of Table 3’s, with this confidence interval only regressing slightly as the
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mass splitting decreases. Even though this neural network may lack in high

sensitivity regions, its distinguishing power in parameter spaces with limited

training data lead to the assumption that a similar neural network could perform

exceptionally given more background and signal data. The standard threshold

contour has similar confidence intervals to the optimized threshold once again,

meaning the threshold significance scores are near to each other. The contours

have an identical 2-3σ region so the difference in the thresholds does not have

much effect for this MLP. Over repeated trials using this data set to form an

MLP, the MLP would rarely reach a sensitivity that generated a small > 4σ

confidence level, but since this was a rare occurrence the > 4σ region can be

mostly ignored. This> 4σ region is shown in Fig. 13 left as the small white spike

at the top left of the optimized threshold sensitivity contour. While currently

Table 4’s MLP seems to act as a less effective version of Table 3’s MLP, more

signal data could bring out the > 4σ region further and improve the statistics

of this MLP.

Table 1’s MLP is the most sensitive to the region of the mass spectrum in

which it was trained on, giving it the smallest 2-3σ and above region. Over

multiple runs of Table 1’s MLP being used to predict the significances of 60

slepton files, the MLP’s sensitivity varied noticeably. Certain sensitivity con-

tours would fail to reach 4σ confidence intervals, and despite these being the

outliers, it was very common to see the 3-4σ region as much smaller than shown

in Fig. 11. This MLP is very sensitive to the region it was trained on without

much extrapolation abilities towards mass spectrum regions of higher slepton

mass. The success of Table 1’s MLP demonstrates that neural networks of this

structure do best with high mass splitting events, while it suffers when faced

with lower mass splitting data sets whose final state momenta is more evenly

split between the lepton and neutralino.
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Takeaway and Future Projects

After examining the exclusion contours created by each of the MLPs, it is clear

that the neural networks are sensitive to the the region of the parameter space

within 40-75 GeV mass splitting with a slepton mass range of 100-200 GeV.

Table 2’s MLP proved through multiple tests that it is the best at classifying

signal and background events. The use of high mass splitting slepton events is

the common factor in high sensitivity with good generalization over the param-

eter space. Mixing in events that occupy different regions of the mass spectrum

improve a MLPs flexibility to better predict events in untrained regions but

including too many events with smaller mass splittings will decrease the max-

imum sensitivity below 5σ or even 3σ. Finding a better balance between the

high performance of the high mass splitting events while mixing in fewer low

mass splitting events that add to generality could make a more sensitive MLP

than Table 2.

Training and using MLPs in particle physics is a viable option to increase

research efficiency and accuracy while still providing diagnostics for trustwor-

thy usage. These methods are new allowing for a plethora of new paths to

explore in the machine learning space. Creating MLPs based on larger sets of

background and signal data could improve performance statistics and give more

robust contours. This same build architecture can also be used for different

SUSY tests provided the correct QFT process data for both SUSY and back-

ground particles. Finally, a classification neural network could be used to not

only categorize signal and background, but also mass ranges, particle class, and

other kinematic identification which could further improve contours. Changing

the neural network from binary classification to classification does change the

neural network set up, but the input data can stay the same. Classification net-
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works open the possibility for integration of other particle physics operations as

well. These multi-faceted machine learning code modules could turn complex

data manipulation and analysis into simple plug-and-play Python scripts which

facilitate research and experimentation.
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