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ABSTRACT OF THE THESIS 
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 Molecular Dynamic (MD) simulation is a powerful computational tool 

that can be applied to study biological systems at an atomic scale. Antibody 

2D1 was isolated from the 1918 influenza virus surface glycoprotein 

hemagglutinin (HA) and was also known to cross-neutralize the 2009 

pandemic influenza HA. Nevertheless, the detailed mechanism is unclear. We 

have conducted molecular dynamic (MD) simulations to study the interactions 
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between Ig-2D1 and the HAs from four different strains including its natural 

binder 1918HA, the 2009 HA, a seasonal 2006 strain and a 2009HA mutant. 

We found that in 09HA, a serine to asparagine mutation from the 18HA 

weakened one of the salt bridges, which leaded to the loss of hydrogen bonds 

and the formation of a water pocket between 09HA and Ig-2D1. Another 

system involves the cancer suppressor, full-length p53 protein, and its DNA 

counter-parts. In this system, we observed that the C-terminals contacted DNA 

and formed direct salt bridges. This observation supported previous research, 

which reported that the C-terminals interact with DNA nonspecifically to search 

for the binding sequence. Each of these observations was possible because 

MD simulations provide atomistic detail, which facilitates the study of protein-

protein and protein-DNA interactions. Additionally, MD simulations can furnish 

refined results, but the simulation and analysis processes can be daunting. To 

ease the complications, we utilized the Kepler platform and developed several 

automated workflows that integrated multiple commands into one central 

process.
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Chapter 1  
 

Progress towards automated Kepler scientific workflows for computer-
aided drug discovery and molecular simulations 

 

Abstract 
 
 We describe the development of automated workflows that support 

computed-aided drug discovery (CADD) and molecular dynamics (MD) 

simulations and are included as part of the National Biomedical Computational 

Resource (NBCR). The main workflow components include: file-management 

tasks, ligand force field parameterization, receptor-ligand molecular dynamics 

(MD) simulations, job submission and monitoring on relevant high-

performance computing (HPC) resources, receptor structural clustering, virtual 

screening (VS), and statistical analyses of the VS results. The workflows aim 

to standardize simulation and analysis and promote best practices within the 

molecular simulation and CADD communities. Each component is developed 

as a stand-alone workflow, which allows easy integration into larger 

frameworks built to suit user needs, while remaining intuitive and easy to 

extend. 
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1.1 Introduction 
 

Using computer simulation as an aid in drug discovery is not novel, yet 

the field is sometimes still considered in its infancy, an opinion that may be 

due to the relatively complicated processes involved and the lack of 

community-wide standard procedures. Furthermore, the continuous 

development of new computer architectures and software parallelization can 

result in large amounts of data, upwards of 1 terabyte for single computer-

aided drug discovery (CADD) projects. Perhaps as a result of this enabling 

technology, it is common for practitioners to spend more time analyzing the 

data than generating it. With this in mind, our aim is the development of 

robust, reusable workflows for simulation preparation, job execution, and 

analysis that simplify best practices and help the community make the most of 

their rich data sets.  

 To develop automated, standardized protocols, we employ Kepler(1), a 

scientific workflow framework. Kepler is a free, open-source software suite 

designed for analyzing and modeling scientific data. The Kepler software 

simplifies the creation of executable models (scientific workflows), even by 

researchers with little programming background (2). Additionally, it is a 

platform for users to share and reuse data, workflows, and components for a 

wide range of scientific and engineering applications. Kepler has powerful 

support to handle new cyber infrastructure demands (e.g., intelligently 
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handling/brokering access to Extreme Science and Engineering Discovery 

Environment (XSEDE) and other simulation-relevant platforms), and it is 

particularly well suited to handle workflows that cross scales. The flexibility of 

Kepler makes it an ideal environment for sharing methods among scientists, 

thus increasing reproducibility and accessibility. Kepler also provides a 

provenance (e.g., data lineage and the processing history of workflow runs) 

framework that collects information, which can then be viewed through a 

molecular modelers’ virtual notebook.  

 

1.2 The relaxed complex scheme – main components  
 
 Previously, we developed a CADD workflow called the relaxed complex 

scheme (RCS), (3, 4), an end-to-end CADD experiment that incorporates 

receptor flexibility into virtual screening (VS) by utilizing molecular dynamics 

(MD) simulations. As summarized schematically in Figure 1.1, the RCS 

workflow facilitates all steps of VS, including: 1) generating compound 

libraries, 2) generating and selecting receptor structures, 3) performing virtual 

screens, 4) reevaluating and characterizing docked poses, and 5) sharing 

virtual-screening results. While not illustrated in Figure 1.1, workflow results 

lend themselves to statistical validation, an extension discussed in section 

1.3.7  
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Figure 1.1 General workflow for ensemble-based VS experiment. Blue 
arrows indicate size of data sets (i.e. increasing or decreasing) at each step; * 
denotes emerging methods that have not yet been tested. (AMD: accelerated 
molecular dynamics, GB MD: generalized Born molecular dynamics, RMSD: 
root-mean-square- deviation, ZINC – ZINC Is Not Commercial, ACD: Available 
Chemical Database, NCI: National Cancer Institute, MM-PB(GB)SA: Molecular 
Mechanics – Poisson-Boltzmann (Generalized Born) Surface Area).  

 
Building on our earlier RCS efforts, we are developing individual, stand-

alone workflows that are reusable and modular. Collectively, they form a 

“toolkit” of powerful methods that can be assembled to address challenging VS 

problems. In particular, to incorporate protein flexibility into rational drug 

discovery and design, we are constructing a class of workflows to automate 

the setup, execution, and evaluation of molecular dynamics simulations. The 

workflows can be assembled in novel ways, creating environments where 

system-specific MD analysis can be meaningfully conducted, providing 

extended utility beyond CADD and the RCS. Each Kepler-based reusable 

workflow module is called an “actor” and is built on an open-source software 
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platform, or on software that is free to academic groups. The near universal 

accessibility of the workflows should translate to broad dissemination and use, 

allowing researchers to handle the challenges inherent in (big) data more 

effectively.  

To prevent each workflow from becoming a “black box”, where 

appropriate, we are focused on including metrics or analytics that allow the 

user to judge the quality of the output and make key scientific decisions. As an 

example, we will focus on providing applications that make conducting and 

reporting novel MD analysis standard, routine and reproducible (5). 

Additionally, we plan to build workflows that support data sharing and 

transportation through cloud and other distributed platforms, using 

technologies including GlobusOnline and UDT that also facilitate usage of 

high-speed networks. The combination of these functionalities will provide a 

simple but powerful way to create and share customizable reports among 

members of large scientific collaborations.  

 

1.3 CADD workflow – main actors  
 

1.3.1 File management for ligand parameterization  
 
 For organization purpose, we developed a Kepler composite actor, 

which takes a list of PDB files and creates subdirectories using the PDB 
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names. Subsequently, the PDB files are copied to the corresponding 

subdirectories. This way, data associated with each PDB is stored 

consistently, providing better information control. While this actor is small 

actor, it provides proper file management, a crucial component of CADD.  

1.3.2 Ligand Parameterization  
 
 A MD simulation of a protein-ligand complex requires development of 

ligand force field parameters. Parameterization can be cumbersome and is 

commonly a multi-step process handled by a series of user scripts. To 

streamline this process, we developed a ligand parameterization composite 

actor (Figure 1.2), that follows the “gold standard” Amber protocol, using 

Antechamber (6) and Gaussian (7). For each ligand, Antechamber assigns 

generalized Amber force field (GAFF) (8) atom types, while Gaussian 

performs a minimization before calculating the electrostatic potential (ESP), 

both at the HF/6-31G* level. Atomic partial charges are then assigned to 

reproduce the Gaussian ESP using the RESP protocol (9) in Antechamber. 

The only required inputs are the small molecule PDB files. This composite 

actor subsequently outputs the required FRCMOD and PREPC files containing 

the force field parameters, which are reusable and easily shared. 
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Figure 1.2 Kepler composite actor for the parameterization of 
small molecule ligands for MD  

This composite actor (see Figure 1.2) helps scientists automate the 

ligand parameterization process by 1) connecting sequential steps and 2) 

providing input parameters and commands for each parameterization step. 

Once a user provides a small molecule PDB file to start the workflow, outputs 

from previous steps will become the inputs for the following steps. This actor 

will read the PDB file from the assigned workflow parameter settings and 

allows users to easily modify the location of the PDB file as needed for their 

simulations.  

1.3.3 Receptor-ligand molecular dynamic simulations 
 
 The binding of a ligand to a receptor is a dynamic event. Small 

molecule compounds can assume many different binding poses, and receptor 

flexibility may change due to ligand binding. Therefore, it is important to 

consider the dynamic behavior of both ligands and receptors during CADD. 

The steps to prepare an MD simulation can be routine but lengthy, especially 

when considering many different ligands in the same target. To standardized 

and automate the process, we have developed a Kepler composite actor that 
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simplifies the preparation of MD simulations of ligand-protein complexes 

(Figure 1.3). This actor takes the outputs generated from the ligand 

parameterization actor as the inputs. Furthermore, it requires a receptor and a 

ligand file in order to start the workflow. Once started, the job will run through 

three major components, described below, that collectively prepare and run an 

MD simulation of the user’s system. 

 

Figure 1.3 Layout of the Receptor-ligand molecular dynamic 
simulations actor.  

 Component I – Vina: Given PDB files of a ligand and a receptor, this 

module prepares the prerequisite files and docks the ligand into the receptor 

using Autodock VINA. The result is a PDB file that describes the “docked 

pose” of the ligand, or the conformation of the ligand when bound to the 

receptor.  

 Component II – PDB Modification: By concatenating the docked-pose 

PDB file to the PDB file of the receptor, component II first creates a merged 

ligand-receptor complex. Next, the receptor-ligand complex is assigned Amber 

force field parameters, and the topology and coordinate files required for MD 

are generated. Prior to simulating system dynamics, a restrained minimization 

is typically carried out to remove steric conflicts, which can cause MD 
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programs to crash. In a final step, component II prepares the restraint files 

required during minimization. 

 

Figure 1.4 Breakdown of the remote login composite actor of the 
receptor-ligand dynamic simulation actor. 

 Component III – Remote Login: This module of the composite actor 

prepares configuration files for MD simulation with NAMD (10) and writes 

submission scripts for running minimization, equilibration and production jobs 

on the XSEDE resource Stampede, located at the Texas Advanced Computing 

Center (Error! Reference source not found.). Future developments will 

enable users to employ alternate HPC resources. In order to take advantage 

of parallel computing, the files required for MD simulation that were generated 

in earlier steps must be moved to the HPC platform. Component III performs 

this operation, moving the prerequisite files to a user specified directory on a 

remote HPC resource. Once the files are transferred, component III initiates 

minimization jobs on the HPC resource, generates the files necessary for a 

restrained MD equilibration, performs the restrained MD equilibration, and 

finally initiates a production MD simulation.  

1.3.4 Receptor structural clustering 
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1.3.4 Receptor structural clustering 

 A MD simulation yields a “trajectory,” or a set of coordinates that 

represent the conformational states of the protein with or without a bound 

ligand as it evolves through time. With modern HPC resources, these  

 

 

Figure 1.5 Gromos receptor structural clustering actor. 

trajectories can consist of thousands or even millions of conformations, which 

translates into giga- or terabytes of data, making structural analysis 

challenging. Fortunately, meaningful dataset reduction methods have been 

devised that extract representative conformations, or structures. These 

structures, which are generally different than the crystal structure, are often 

referred to as cryptic binding pockets (11-13), and can be exploited in 

subsequent VS. 

 Considering the size of contemporary MD datasets, an effective, 

integrated platform for studying protein dynamics will require workflow actors 

that leverage data reduction software in a single, cohesive, user-friendly 

framework. To that end, we developed a modular set of actors that process 

MD trajectories by GROMOS cluster analysis (14, 15), a method that 

categorizes protein conformations based on structural similarity (Figure 1.5). In 

the first processing step, the trajectory listing composite actor utilizes cpptraj, 
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implemented in AmberTools, to convert the input trajectory file(s) to the PDB 

format required by Gromacs (16). It also strips solvent molecules and corrects 

for periodic boundary conditions, and additionally, removes translational and 

rotational degrees of freedom by aligning each trajectory conformation to a 

common reference specified in an atom selection file, provided by the user. 

The output is then sent to the public NBCR opal server, which clusters the 

data using the Gromacs. In addition to the GROMOS clustering actor, we have 

created another web-services-based data reduction actor that performs QR-

factorization (11, 17) and can also be performed using the NBCR web services 

(see section 1.4).  

1.3.5 Receptor and ligand preparation for docking 
 
 Docking programs, such as the widely used AutoDock (18) and 

AutoDock Vina (Vina) (19),  provide scientists an estimate of the free energy 

change that occurs when a ligand binds to a receptor. Both AutoDock and 

Vina require PDBQT files that describe the coordinates, atomic partial 

charges, and AutoDock atom types of the ligand and the receptor. To 

streamline the conversion procedure, we have developed an actor that 

converts a receptor PDB file PDBQT file, which can be used by both AutoDock 

and Vina. The actor uses the publicly available NBCR opal server to perform 

the conversion, while Kepler monitors job scheduling and returns the output 

PDBQT file to the user’s local machine. In the future, this actor will be 

extended to convert PDB to PDBQT for the ligand files as well.  
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Figure 1.6 Receptor preparation for VS actor. 

 
1.3.6 Ensemble based virtual screening  

 As previously stated, proteins are dynamic, and static crystal structures 

offer a poor account of protein flexibility, particularly when it is pronounced. In 

a drug discovery context, this flexibility is manifest in the observance of so-

called cryptic binding pockets (11-13), or ligand binding sites that are absent in 

a crystal structure but are present during an MD simulation. To incorporate 

these potential binding sites during VS, it is important to include an ensemble 

of protein receptor structures that models the flexibility of a receptor in 

solution. Here, we describe an actor that screens large ligand sets against 

different receptor conformations using Vina (19) (Figure 1.7). Users supply a 

directory of receptor PDB files, a directory of ligand PDB files and grid 

information. Receptor PDB and ligand PDB files are converted to Vina specific 

PDBQT files. Every ligand is matched with each receptor once in the 

“Mix&Match” module, which organizes the large number of files generated in 

this protocol. The combinations are sent to Vina one by one for VS. 
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Figure 1.7 Virtual screening actor.  

 

1.3.7 Virtual screening performance statistics 
 

During VS, small molecules are assigned a score, and based on that 

score, they are classified as either binders or non-binders. For example, 

during small molecule docking, binding affinity is predicted, and those 

compounds predicted to bind more favorably receive a higher rank and are 

more likely to be experimentally assayed.  

Performing VS using an ensemble of protein conformations may benefit 

the discovery effort, but it is also computationally demanding and scales 

linearly with the number of conformations. To improve computational 

efficiency, statistical methods can be used to select the ensemble that does 

the best job of separating known the binders from the known non-binders in a 

small, experimentally characterized compound database. By carefully 

selecting the best performing ensemble, this protocol has the potential to 

reduce the computational expense of screening a much larger database of 

uncharacterized compounds. 
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  We have developed an actor (see Figure 1.8) that incorporates the 

experimental status of a compound, i.e. binder or non-binder, the docking 

score of the compound into each receptor ensemble member, and returns the 

ensemble best able to discriminate known binders from known non-binders. 

Although there are various VS performance metrics available in the literature 

(20-22), the area under the curve (AUC) of the Receiver Operating 

Characteristic (ROC) plot (23) is one of the most popular performance 

evaluation metrics and is used for our workflow. Part of the AUC’s appeal is 

how easily it is interpreted. It represents the probability that a randomly 

selected binder will have a higher rank than a randomly selected non-binder 

(24, 25). Consistent with this interpretation, an AUC value of 0.5 indicates the 

VS protocol performs randomly, while a value of 1 indicates the protocol ranks 

all of the binders ahead of all of the non-binders. 

In practice, ensemble selection is complicated by the need to evaluate 

all possible combinations of receptor conformations, a combinatorial process 

described by the binomial coefficient. The workflow utilizes a series of Matlab 

(26) scripts to monitor performance of all possible ensembles of 

conformations. The scripts require an input matrix “total”, which is supplied by 

the user in a comma-separated CSV file format. The first column of total gives 

ligand identification numbers, compound IDs in a database, for example. The 

second column is a compound classifier, a 0 or 1, which labels non-binders 

and binders, respectively. The remaining columns contain the docking scores 
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for each receptor conformation. After receiving the “total” matrix, the workflow 

returns the AUC value for all possible ensembles of receptor conformations, 

as well as the 95% confidence intervals, and p-values, which provide 

indications of the performance reliability and the statistical significance of the 

performance of each ensemble.  

 The calculations in Matlab are designed to utilize the Parallel 

Computing Toolbox in Matlab (parfor loops), although if the separate license 

required to use the toolbox is not available, the behavior will default to 

standard loop iteration. The parallel option is highly recommended particularly 

for a large number of receptor structures, as these calculations otherwise 

become very time consuming.  

 

Figure 1.8 VS statistical performance actor utilizing Matlab 

 

1.4 Integrated web-services 
 

The complexity of scientific applications needed in CADD often requires 

an access to HPC resources. To ensure tasks are completed expediently, 

scalable and transparent support of distributed computing resources available 

on both HPC platforms and in the cloud is required of each Kepler workflow 
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module. To meet this requirement, we use the Opal toolkit (27), which provides 

Scientific Software as a Service (SaaS) using standard and simple web 

interfaces. For example, scientific applications executed by the workflows are 

wrapped as SOAP-based web services that allow for programmatic and web-

based application access, which is useful for a wide variety of applications. 

The programmatic capability allows transparent access of different workflow 

components, while the web-based service access provides a large number of 

NBCR applications to our affiliates and collaborators.  

Using integrated web-services for scientific applications also aids our 

objective to develop a modular environment of interchangeable, customizable 

modules that can be used to create complex scientific workflows. As SaaS 

providers, we handle software installation configuration and upgrade 

transparently at the cyber-infrastructure level. With infrastructure complexities 

replaced by an easy-to-use interface, the full power of the modular workflow 

environment can be easily applied to pressing scientific problems.  

The scientific applications, wrapped as Opal web services (28), can 

readily be deployed across distributed computing environments to accelerate 

completion of the scalable computations within the CADD framework. It is 

easy to access the scientific applications through the Opal web server, which 

provides a stable, reliable infrastructure for CADD and molecular simulations 

that can accommodate large throughput in an extensible, reproducible and 

reusable manner. This approach will allow flexible community resource 



 

 

17 

 

sharing and, by providing the framework to incorporate ideas from a broad 

community of users, it will promote convergence toward a set of standardized 

best practices.  

 

1.5. Workflow dissemination 
 

CADD workflows, in addition to other NBCR workflow products, are 

being made available though the NBCR website and GitHub (29). We have 

enabled the NBCR workflows site to be searched and filtered easily though 

keywords describing the workflows’ application, actors, program dependency, 

and other relevant terms, enabling the user to select the appropriate workflow 

for their needs.  Upon selecting a desired workflow the user is taken to the 

workflow documentation and download options.  The workflows will be 

distributed through GitHub to provide transparent version control.  The user 

may either download the workflow itself, requiring a local installation of Kepler 

and dependent programs, or download the workflow as part of a Rock’s Rolls 

(30) containing dependent programs.  The Rock’s Rolls facilitate the utilization 

of workflows in HPC environments.  Additionally, we are developing domain 

specific interfaces for all NBCR workflows.  These interfaces will integrate key 

visualization software, workflow modification, workflow execution 

management, and electronic lab book functions further optimizing the CADD 

process. 
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1.6 Conclusions 
 
 We have developed a series of modular actors that can be integrated 

into a larger CADD framework, or be used as stand-alone tools. The modules 

described here are have successfully been deployed on a number of different 

projects and are being optimized based on user feedback. These modules 

demonstrate the usability of Kepler scientific workflows in CADD with the aim 

to standardize simulation and analysis, and to promote best practices within 

the molecular simulation and CADD communities. The workflows demonstrate 

usability in terms of file-management tasks, molecular simulation including 

ligand force field parameterization and management of job submission and 

monitoring on relevant HPC resources, as well as VS elements such as 

receptor structural clustering, docking and statistical analyses of the VS 

results. The models are available for download on the NBCR website and 

have been integrated with NBCR web-services. Our lab is currently developing 

novel Kepler workflows designed for automation and standardizing of common 

tasks in CADD and molecular simulation. We will solicit user feedback and use 

it to guide our efforts, to strengthening an ecosystem that encourages 

development and distribution of workflows with the simulation and CADD 

communities. 

 This chaper, in full, is a reprint of the material as it appears in 

“Progress towards automated Kepler scientific workflows for computer-aided 

drug discovery and molecular simulations” by Ieong, Pek U., Sorensen, 
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Jesper, Vemu, Prasantha L., Wong, Celia W., Demir Özlem, Williams, Nadya, 

P., Wang Jianwu, Crawl, Daniel, Swift, Rob V., Malmstrom, Robert. D., 

Altintas, Ilkay, Amaro, R. E., published 2014 in Procedia Computer Science.  

This chapter is included with the permission from Sorensen, Jesper, Vemu, 

Prasantha L., Wong, Celia W., Demir Özlem, Williams, Nadya, P., Wang 

Jianwu, Crawl, Daniel, Swift, Rob V., Malmstrom, Robert. D., Altintas, Ilkay, 

and Amaro, R. E.
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Chapter 2 
 

Molecular dynamics analysis of antibody recognition and escape by 
human H1N1 influenza hemagglutinin 

 

Abstract 

The antibody immunoglobulin (Ig) 2D1 is effective against the 1918 

hemagglutinin (HA) and also known to cross-neutralize the 2009 pandemic 

H1N1 influenza HA through a similar epitope. However, the detailed 

mechanism of neutralization remains unclear. We have conducted molecular 

dynamic (MD) simulations to study the interactions between Ig-2D1 and the 

HAs from the 1918 pandemic flu (A/South Carolina/1/1918, 18HA), the 2009 

pandemic flu (A/California/04/2009, 09HA), a 2009 pandemic flu mutant 

(A/California/04/2009, 09HA_mut), and the 2006 seasonal flu (A/Solomon 

Islands/3/2006, 06HA). MM-PBSA analyses suggest the approximate free 

energy of binding (ΔG) between Ig-2D1 and 18HA is -74.4 kcal/mol. In 

comparison with 18 HA, 09HA and 06HA bind Ig-2D1 about 6 kcal/mol (ΔΔG) 

weaker, and the 09HA_mut bind Ig-2D1 only half as strong. We also analyzed 

the contributions of individual epitope residues using the free energy 

decomposition method. Two important salt bridges are found between the HAs 

and Ig-2D1. In 09HA, a serine to asparagine mutation coincided with a salt 

bridge destabilization, hydrogen bond losses and a water pocket formation 
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between 09HA and Ig-2D1. In 09HA_mut, a lysine to glutamic acid mutation 

leads to the loss of both salt bridges and destabilizes interactions with Ig-2D1. 

Even though 06HA has a similar ΔG to 09HA, it is not recognized by Ig-2D1 in 

vivo. Since 06HA contains two potential glycosylation sites that could mask the 

epitope, our results suggest that Ig-2D1 may be active against 06HA only in 

the absence of glycosylation. Overall, our simulation results are in good 

agreement with observations from biological experiments and offer novel 

mechanistic insights into the immune escape of the influenza virus.  

2.1 Introduction 

 Influenza virus gains entry into the human body through interactions of 

the viral surface glycoproteins called hemagglutinin (HA) with the sialic acid 

(Sia) receptors on the human epithelial cell surface (31, 32). Sia is found at the 

terminals of glycans attached covalently to cell surface glycoproteins or 

glycolipids. They are also found on the viral surface proteins (33). During viral 

infection, viral HA binds to Sia receptors on human host cells, and the virus 

enters through endocytosis. The flu virus then usurps host cell machineries for 

viral replication (34). There are 18 known HA serotypes: H1 to H18. Within the 

18 serotypes, H1 and H5 are more extensively studied. H1 is found to bind 

preferentially to Sia with an α-2,6 glycosidic bond, whereas H5 prefers Sia with 

a-2,3 linkage (35).  

Humans fight influenza infection through innate and adaptive immune 
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responses (36) including vaccination or by using pharmaceutical drugs such 

as Tamiflu or Relenza (37). The adaptive immune response involves the 

recognition of HA epitopes by human immune cells, and the production of 

antibodies against HA. Inactivated, or live attenuated virus, or recombinant HA 

is often prepared as vaccines, which elicits antibody production seven days 

after inoculation (38). Antibodies bind HA epitopes, preventing sialic acid 

binding and endocytosis (39). Four main canonical epitopes on the globular 

HA head have been identified: Sa, Ca, Sb and Cb (Figure 2.1) (40, 41). More 

recently, cross-reacting antibodies against multiple HA subtypes have been 

discovered that target the globular epitopes as well as the conserved stem 

regions (42-44). Pre-existing antibodies from vaccination or earlier infections 

may prevent infection by viral strains with similar HA epitopes (38, 45).  

Influenza viruses escape from the human immune responses through 

both antigenic drift and antigenic shift. In antigenic drift, mutations in 

glycoprotein epitopes render existing antibodies ineffective, a process that is 

facilitated by the high mutation rate of the influenza RNA genome (46). Thus, 

the annual vaccines may offer partial protections or fail completely against 

unanticipated strains. In antigenic shift, abrupt changes in viral RNA genome 

result when several different viral strains recombine, creating a hybrid virus. 

The resulting virus is novel and distinctive, sometimes posing lethal threats to 

the human population. The recent 2009 swine flu, which emerged from a triple 
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assortment involving swine, human and avian reservoirs, is a good example 

(47). Since it first appeared in the human population in April 2009, the swine 

flu quickly spread globally and was declared pandemic by WHO in June 2009 

(48).  

Although the elderly are particularly susceptible to the seasonal flu, few 

from this age group have been infected by this pandemic strain (49). Some 

researchers have hypothesized that they may be immune because of 

childhood exposure to the 1918 influenza pandemic virus. The 09HA is found 

to be genetically and structurally very similar to the 18HA; therefore, it is 

possible that antibodies that recognize the 18HA may also recognize the 09HA 

(42, 50). Krause et al. showed that monoclonal immunoglobulin (Ig-2D1) 

against the 18HA appeared to cross- react with the 09HA from the pandemic 

flu (44).  

To identify specific mutations that might affect HA binding, Liu et al. 

used computational methods to predict hot spots residues on the epitopes of 

the 09HA, 18HA and 07HA from a 2007 seasonal strain (07HA) that interact 

with Ig-2D1 (51). They suggested that mutations in the 18HA and 09HA at 

residues P128, N129, K158, P163, K164 and K167 (using 18HA numbering) 

could disable Ig-2D1 neutralization. Because N160 was not predicted as a hot-

spot residue, Liu et al. proposed that a mutation from S160 in the 18HA to 

N160 in the 09HA would not affect binding. Their analysis of the binding 
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between Ig-2D1 and the various HAs was performed on crystal structures and 

protein flexibility was not explicitly considered.  

In this manuscript, we present new findings using the molecular 

dynamics (MD) simulation technique in four influenza H1N1 systems of Ig-2D1 

and HA’s: A/South Carolina/1/1918, A/California/04/2009, A/Solomon 

Island/3/2006 and A/California/04/2009 mutant. We aim to explore the 

underlying molecular interactions that govern Ig-2D1/HA binding in order to 

determine how Ig-2D1 is able to elicit a cross-reactive immune response to the 

2009 influenza virus. Our results are in good agreement with previous 

experimental and computational studies; additionally, we have discovered that 

mutations such as the S160N mutation in 09HA do affect the stability of the 

antibody-antigen interaction.  

 

2.2 Methods 

2.2.1 Simulation Setup 

 The structures of the 06HA, 09HA, and 18HA were obtained from the 

Protein Data Bank (PDB) (42, 52) with PDB ID 3SM5, 3LZG, and 3LZF, 

respectively. Only the 18HA was co- crystalized with Ig-2D1 (42). Seasonal 

strain HA and 09HA were superimposed on the 18HA structure to model Ig-

2D1 binding to these HA variants. The numbering scheme for Ig-2D1 was 
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adapted from the PDB structure. The trimetric units of HA were built after the 

superimposition according to the biological unit (53). The 09HA_mut and 09HA 

model differ by one single residue at position 167. It was prepared from the 

09HA system by mutating the residue from K to E (K167E) using Schrödinger 

(54).  

2.2.2 Molecular Dynamic Simulation 
 
 Four systems (18HA, 09HA, 06HA and 09HA_mut) were parameterized 

with the Amber ff99SB force field (55). The systems were neutralized by first 

adding sodium ions. Additional ions were then added to achieve 20 mM NaCl 

buffer salt concentration. Histidine charges were assigned using PROPKA 

from the pdb2pqr web server at pH 7.0 (56, 57). Each system was solvated in 

a water box of approximately 150×160×210 Å using the TIP3P (58) water 

model. A total of about 500,000 atoms were in each system (Table S1.1). 

Molecular dynamics simulations were performed afterward using NAMD 2.9 

(59).  

The systems were constrained and gradually minimized to reduce the 

total potential energy in a series of four energy minimizations. The first step of 

minimization kept all heavy atoms constrained and only hydrogen atoms were 

allowed to fluctuate. The second step released the constraints on water and 

ions. The third steps freed the side chains and in the forth step, all atoms were 

allowed to move without restriction. The non-bonded energy was calculated 
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every 2 time steps with a cutoff distance of 12 Å. A switching function is 

applied at 10 Å to abridge the van der Waals potential function. Following 

minimization, four steps of equilibration were performed, gradually loosening 

harmonic constraints in 500 ps increments, for a total equilibration time of 2 

ns. The first step heated the system up to 310 K while applying a force of 4 

kcal/mol to hold the backbone in place. The second steps to forth steps 

gradually lifted the backbone constraint force from 4 kcal/mol to 1kcal/mol. 

NPT ensemble was completed. Langevin Dynamic was applied to keep the 

temperature constant throughout the equilibration, with a damping frequency 

of 5 picoseconds/terahertz and Langevin Priston barostat helped to maintain 

the specified one atmospheric pressure. The constraints applied during 

equilibration were removed for the free simulation of the antigen-antibody 

complexes. All simulations were run for 69 ns using the XSEDE resources 

Ranger, Stampede (TACC) and Gordon (SDSC).  

2.2.3 Determining Bond Interactions 
 

Barlow and Thornton proposed that salt bridges should be between 

opposite charge residues ≤4.0 Å (60). Xu et al. reported that three salt bridges 

were found between the antigen- antibody interfaces in their Ig-2D1 and 18HA 

co-crystal structure (42). K158 interacts with Ig heavy chain (IgH) D52 and 

D54, forming two distinct salt bridges, with bond distances of 3.7 Å and 3.0 Å, 

respectively. Additionally, K167 interacts with D93 on the light chain (IgL) with 
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a bond distance of 2.8 Å. For the purpose of this investigation, we have 

defined a salt bridge to be between a pair of oppositely charged group that 

contain at least one hydrogen bond within 3.5Å of each other, as suggested by 

other researchers (61). This is because H-bond is important in the stability of 

salt bridges (61), and further demonstrated later in this manuscript.  

The Visual Molecular Dynamics (VMD) software package (62) was 

used to analyze simulation trajectories. Xu et al. proposed a list of 18HA 

residues that interacted with Ig-2D1 (42). All the reported interactions between 

with Ig-2D1 and the different HAs were carefully determined based on their 

atomic characteristics and a distance matrix. These included hydrogen bonds, 

salt bridges, dipole-dipole and van der Waals interactions (e.g, Figure S2.2). 

The distances between contacting atoms were recorded every 100 ps. The 

distance cutoffs are ≤3.5 Å for hydrogen bond, ≤3.5 Å for salt bridge, 2.6 - 4.6 

Å for dipole-dipole interactions and for van Del Waal interactions. To account 

for the system dynamics and capture the stability of the interactions, an 

interaction percentage was calculated using the distance matrix for each 

contact made between the epitope residues and Ig-2D1. Only interactions 

present in at least two of the three monomers for 75% or more of the 

simulation time were considered as important for the binding of HAs and Ig-

2D1. Similarly, surrounding residues near the reported Sa epitope were also 

analyzed to identify possible new contacts with Ig-2D1 found only through 
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simulation. 

2.2.4 Free Energy Binding and Decomposition 
 
 The free energy of binding (ΔG) was approximated using the Molecular 

Mechanics - Poisson-Boltzmann Surface Area (MM-PBSA) method using 

MMPBSA.py implemented in AmberTools 11 (63, 64). The Poisson-Boltzmann 

(PB) equation was utilized to estimate the polar contribution of the solvation 

energy. MMPBSA.py stripped the water molecules and ions and carried out 

the calculation in implicit solvent. The ionic strength for the free energy 

calculation was also set to 20 mM. Receptor mask was set to the trimetric HA 

plus two Ig-2D1 and ligand mask was always set to the remaining Ig-2D1. 

Thus, three free-energy calculations were performed to obtain the mean and 

standard error (SE) of ΔG for each system.  

Per residue free energy decomposition was carried out to determine the 

energy contribution of epitope residues to the binding with Ig-2D1, using the 

MMPBSA.py tool from AmberTools 13 (63, 64). The Generalized Born (GB) 

implicit solvent model was utilized for the decomposition calculation. Since GB 

was parameterized with the atomic radii mbondi2 (65), all the atom radii were 

changed from the default mbondi to mbondi2. Saltcon was also set to 20 mM. 

All other parameters were identical to those in AmberTools11. The 

decomposition analysis of individual residues was performed using igb2, not 

the default GB parameter (igb5). In a comparison of igb5 and igb2, we found 
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that the ΔG calculated from igb2 was closer to the PB energy (data not 

shown), this is consistent with our previous study that igb2 is well suited to the 

neuraminidase N1 and N9 systems (66).  

2.2.5 RMSD and Surface Pocket Volume Calculations  
  
 UCSF Chimera was utilized to calculate the RMSD between crystal 

structures. Clustal Omega was applied to alignment the HA sequences (53, 

67). The POVME 2.0 software (68) was used to calculate the surface pocket 

volumes at the interface of HA’s and Ig-2D1 near residue S/N160 in 18HA and 

09HA. A 12Å radius sphere was centered on the S/N160 center of mass fully 

covering S/N160 and the surrounding Ig-2D1 residues. The volume 

calculations were done separately for each monomer and an average was 

reported for each system. A cylinder (25 Å in radius and 4 Å tall) that fully 

encompassed the interface was used to calculate the volume between the 

antibody-antigen interface in the 09HA and 09HA_mut systems. The center of 

the cylinder was positioned at the center of mass of all epitope residues, and 

oriented towards (-1, 0, 4) for Ig1, (4, 1, 0) for Ig2 and (-1, 4, 0) for Ig3.  
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2.3 Results 
 

2.3.1 Structure and Sequence Alignments  
 

  

Figure 2.1 Sequence alignment and the epitopes of the four HA 
glycoprotein. A. Sequence alignment and structural view. The four HA 
sequences are aligned and numbered using the 18HA numbering convention. 
On the right, the Sa epitope is colored red and the surrounding residues that 
form contact with Ig-2D1 (42) are colored blue (top left) in 18HA monomer 1. 
B. Structural conservation of the HA epitope region and key mutations that 
affect antibody recognition. The four HA’s are shown: a) 18HA, b) 06HA, c) 
09HA, and d) 09HA_mut. The epitope residues on monomer 1 are colored by 
residue names. Several key residues are also labeled to their corresponding 
residue colors. S160 (18HA) is mutated in N160 in 09HA. K 167 (09HA) is 
mutated to E167 in 09HA_mut. N129 and N164 in 06HA are potential 
glycosylation sites.  

The 18HA, 09HA, and 06HA selected in this study are structurally 
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conserved (42), with RMSD values of 0.851Å (09HA) and 0.927 Å (06HA), in 

comparison to the 18HA (Figure 2.1). Of the twenty HA epitope residues 

known to interact with Ig-2D1 in the 18HA, two mutations were found in the 

09HA and ten mutations in the 06HA. As reported earlier, 06HA contained two 

new glycosylation sites N129 and N164, (NxS/T, where x is any amino acid 

other than proline), due to an E131T mutation and a K164N mutation (Figure 

2.1) (52).  

2.3.2 Bond Interactions 
 
 In Table 2.1, we compared the number of bond interactions between 

HA epitope residues and Ig-2D1. The heavy and light chains of Ig-2D1 are 

indicated using IgH and IgL respectively. Notably, from the single point 

mutation from the 09HA to the 09HA_mut, three H-bonds between S126, K167 

and S168 (09HA) and D93, N31, and S30 (IgL) were lost respectively, 

whereas a new H-bond interaction was formed between Y162 (09HA_mut) 

and S99 (IgH). This is a net loss of two H-bonds between the 09HA and 

09HA_mut system.  

In the 18HA, K158 and K167 form two distinct salt bridges with D54 

(IgH) and D93 (IgL) in the Ig-2D1. These two lysine residues are conserved in 

all naturally occurring HA’s (Figure 2.1).  
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Table 2.1 Interactions between HA and Ig-2D1 systems categorized by 
bond types. H-bond stands for hydrogen bond. Dipole-dipole is dipole-
dipole interactions. Salt bridge is formed between negatively and positively 
charged residues within 3.5Å of each other. The van der Waals force 
described here is the interaction between hydrophobic residues. More details 
are in Table S2.3-S2.6. Table S3 also indicates interactions found in crystal 
structure only for 18HA.  
 
 Salt Bridge 

  
H-bond Dipole-dipole van der 

Waals 
18HA 2 11 23 4 
06HA 1 6 11 4 
09HA 1 6 11 5 
09HA_mut 0 4 11 5 
 

 In contract, the 09HA system has only one salt bridge (K167-D93). An 

earlier study by Krause et al. suggested that mutations of K167 in the 09HA to 

either E or N (K167E/N) allow the 09HA to escape neutralization from 

monoclonal antibody Ig-2D1 (44). We have recreated the 09HA_mut carrying 

the K167E mutation in silico, and the resulting mutant lost both salt bridges. 

Overall, the Ig-2D1 lost about half of the H-bond and Dipole-Dipole interactions 

in the 09HA and 09HA_mut systems compared to the original 18HA system. 

Together, these observations suggest that the Ig-2D1 may not bind as strongly 

to the newer HA’s due to loss of these interactions.  

2.3.3 Free Energy of Binding Calculation 
 

The approximate average ΔG for each system was obtained using the 

MM-PBSA method (63). The 18HA had the lowest ΔG with respect to Ig-2D1 

(Table 2) at -74.4 ± 1.1 kcal/mol. The 09HA and the 06HA systems were about 
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6 kcal/mol lower (ΔΔG), with similar ΔG values of -68.0 ± 1.2 kcal/mol and -67.6 

± 1.6 kcal/mol, respectively (Table 2.2). The calculated ΔG values are 

consistent with the observed number of interaction shown in Table 2.1. Both 

09HA and 06HA had higher ΔDG’s, compared to the 18HA by +6.4 ± 1.6 

kcal/mol and +6.8 ± 1.9 kcal/mol, respectively. In contrast, the average ΔG of 

the 09HA_mut was significantly higher, +36.5 ± 1.9 kcal/mol than that of 18HA.  

Compared with that of 09HA, the ΔG of the 09HA_mut system increased by 

+30.1 ± 2.0 kcal/mol, even though the only difference is a K167E mutation in 

09HA_mut. The 09HA_mut DG result is in agreement with the K167E escape 

mutant selected by Krause et al (44). The MM-GBSA method also gave very 

similar results (Table 2.2). 

 
Table 2.2 Estimated DG free energy of binding for each system using 
MM-PB/GBSA. N is the number of frames used in the calculation. Each frame 
is ~0.28 ns of the simulations. Average DG energy and standard error (SE) are 
calculated from three sample runs in each system. All the values are in 
kcal/mol. Only ΔGsubtotal is reported. The individual components are reported 
in Table S7 and S8. 
 
 18HA 

(N=248) 

06HA 

(N=248) 

09HA 

(N=249) 

09HA_Mut 

(N=247) 

 Average SE Average SE Average SE Average SE 

PB ΔGsubtotal 

GB ΔGsubtotal 

-74.4 

-74.5 

1.1 

1.0 

-67.6 

-63.4 

1.6 

1.5 

-68.0 

-62.7 

1.2 

1.1 

-37.9 

-39.1 

1.6 

1.1 
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2.3.4 Free Energy Decomposition 
 
Table 2.3 Free energy decomposition of the epitope residues in the four 
systems. Only selected key residues 158, 159, 160, 161 and 167 are shown 
below. All epitope residue based decomposition results are in the supporting 
materials (Table S2.9). All units are in kcal/mol.  
 
 18HA 06HA 09HA 09HA_mut 
Res 
ID 

Residue ΔG±SE Residue ΔG±SE Residue ΔG±SE Residue ΔG±SE 

158 K -4.4 
±0.2 

- -2.2 
±0.2 

- -2.3 
±0.2 

- -1.9 
±0.2 

159 G -3.1 
±0.1 

N -2.9 
±0.1 

- -2.2 
±0.1 

- -1.8 
±0.1 

160 S -4.9 
±0.2 

G -0.0 
±0.0 

N -0.5 
±0.1 

N -0.9 
±0.1 

161 S -1.8 
±0.1 

L -4.0 
±0.1 

- -1.8 
±0.1 

- -2.0 
±0.1 

167 K -6.6 
±0.2 

- -6.6 
±0.2 

- -6.3 
±0.2 

E 2.9  
±0.1  

 
 

To further study the contribution of each epitope residues and probe the 

importance of K167, we performed free energy decomposition using MM-

GBSA (Table 2.3, S2.9). The average ΔG of binding energy contribution from 

K167 was predicted to be -6.6 +/- 0.2 kcal/mol in 18HA, the highest 

contribution of all the epitope residues. This is also true in 09HA and 06HA 

systems, with the ΔG of binding energy contributions of K167 determined to be 

-6.3 +/- 0.2 kcal/mol and -6.6 +/- 0.2 kcal/mol, respectively. Krause et al. 

identified an escape mutation K167E that prevents Ig-2D1 from neutralizing 

09HA (44). In the K167E 09HA_mut system, free energy decomposition 

results showed that this mutation was highly unfavorable, with a ΔG 

contribution of +2.9 +/- 0.1 kcal/mol (Table 2.3). The increased the residue 
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decomposition energy by +9.2 +/- 0.3 kcal/mol. The placement of a negatively 

charged glutamic acid residue in place a positively charged lysine residue 

would lead to electrostatic repulsion with structural consequences on the HA-

Ig2D1 complex. 

Mechanistic Insight from the 09HA Immune Escape Mutation 

During the minimization step of the 09HA_mut system, the 

complementarity determining region (CDR) L3 loop containing D93 (IgL), the 

salt bridge partner with K167 (09HA), shifted away from E167 (09HA_mut) 

(Figure 2.2). E167 (09HA_mut) then formed two new hydrogen bonds 

interacting with S30 and N31 (IgL) in the CDR L1 loop. Initially, the CDR L1 

loop maintained these hydrogen bonds (Figure 2.2A). Both L1 and L3 loops 

had shifted away from E167 and the antigen at the end of the simulation 

(Figure 2.2B). The number of atoms within 4.6 Å of E167 from the CDR L1 and 

L3 loops dropped from 13 atoms to around 4 atoms as early as 3 ns into the 

simulation (Figure 2.2C). The movement of the L1 and L3 loops did not affect 

the interface volumes between Ig-2D1 and 09HA and 09HA_mut significantly, 

5155.2 +/- 12.7 Å and 5382.0 +/- 15.7 Å, respectively.  This suggests that key 

structural changes occurred on the antibody Ig-2D1 L1 and L3 loops. 

Destabilization of K158 Salt Bridge in 09HA 

 The 09HA retained the K167-D93 salt bridge, but lost the K158-D54 salt 

bridge found between 18HA and Ig-2D1. The DG contribution of K158 was 
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estimated to be -4.4 +/- 0.2 kcal/mol in the 18HA (Table 2.3). The K158 salt 

bridge was unstable in the 09HA system and did not meet the 75% 

occupancy threshold. Of the epitope residues, only two mutations occurred  

A.                        B. 

      
C. 

  

Figure 2.2 Loop motions near Glu 167 in 09HA_mut. A) The position of Glu 
(E) 167 relative to the CDR L3 loop (colored in yellow), at the beginning of the 
simulation. B) After the end of the simulation, the loops moved away from the 
HA and the CDR L3 (orange) was further away from the Glu167. C) The 
number of Ig-2D1 atoms (y-axis) within 4.6 Å of K167 (09HA, red) and E167 
(09HA_mut, black) over time (x-axis).  
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between 18HA and 09HA, S160N and V170I, respectively. The ΔG of 09HA 

and Ig-2D1 interaction increased by +6.4 ± 1.6 kcal/mol as a result. The 

biggest free energy contribution difference between 18HA and 09HA occurred 

at K158 and N160, with no significant differences observed from residue 161 

onwards  (Figure 2.3). These include residues K167 and V170I mutation. 

Thus, the difference observed at S160N may be the major mutation that 

affects the K158-D54 salt bridge stability. 

 S160 contributed -4.9 ± 0.2 kcal/mol to 18HA interaction with Ig-2D1, 

whereas N160 contributed little to the 09HA interaction with the latter (Table 

2.3). Throughout the simulation, S160 (18HA) formed two H-bond and two 

dipole-dipole interactions with Ig-2D1 (Table S2.3), whereas no equivalent 

interactions were found for N160 (09HA) (Table S2.4). Here we note that only 

one dipole-dipole interaction for S160 (18HA) is identified through crystal 

structure examination only, whereas all the interactions at K167 (18HA) are 

observed in the simulation and the crystal structure (Table S2.3) 
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Figure 2.3 The free energy differences squared are shown for all epitope 
residues between 18HA and 09HA. Y-axis is the energy difference squared, 
ΔΔG^2=(ΔG18HA-ΔG09HA)^2 and x-axis are the residue name and residue ID from 
18HA. The two mutations are S160N and V170I from 18HA to 09HA. Detailed 
data may be found in Table 3 and S9. 

 
 
 
 
.   

Table 2.4 POVME volumes of 18HA and 09HA surrounding S/N160.  

 18HA 09HA 

Volume (Å3) 1317.2 1922.9 
SE (Å3) 13.6 17.7 
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Figure 2.4 The S160N mutation and water pocket formation. The number 
of water molecules within 5 Å of 18HA S160 (black) and 09HA N160 (red) as a 
function of simulation time.  

 
 
 We examined the volume between S160 (18HA) and N160 (09HA) and 

adjacent Ig-2D1 residues (Table 2.4). There was a close to 50% increase in 

the solvent accessible volume from 18HA to 09HA. The extra volume allowed 

more water molecules to enter the protein interface (Figure 2.4). Thus, it is 

likely that the S160N mutation led to increased solvent accessibility and 

formation of water cavity, with a destabilizing effect on the K158-D54 salt 

bridge (Table S2.4).  

 Of the 20 epitope residues, the other mutation between 18 HA and 

09HA is V170I. We did not find any significant interactions between HA and Ig-
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2D1 at position 170 during the course of simulation (Table S2.3, S2.4). 

Overall, the S160N could be a major contributing factor to the lower binding 

affinity 09HA by Ig-2D1, in conjunction with the loss of the K158-D54 salt 

bridge.  

 In comparison, 06HA also lost the K158-D54 salt bridge with Ig-2D1, 

compared to 18HA. The K158 (06HA) contributed similarly to the K158 

(09HA), but only half as much as the K158 (18HA) to the ΔG of Ig-2D1 

binding. However, ten additional mutations in the epitopes of 06HA resulted in 

a similar ΔG as 09HA overall (Table 2.3, S2.9). Of these, L161 (06HA) lowered 

ΔG from the VDW interaction with R97 (IgH) (Figure S2.2). It contributed -4.0 

kcal/mol +/- 0.1kca/mol, compared -1.8kcal +/- 0.1kcal/mol from S161 (18HA) 

(Table 2.3). This decrease of -2.2 kcal/mol +/- 0.1kcal/mol in ΔG suggests that 

the S161L mutation from a polar amino acid to a hydrophobic residue is 

favorable within the context of all the other compensatory mutations in 06HA.  

 

2.4 Discussions 
 

2.4.1 Role of salt bridges on stability of antigen-antibody complex 
 
 In an earlier study, Krause et al. reported that Ig-2D1 against 18HA may 

cross react with 09HA, and identified the K167E mutation from experimental 

screening for escape mutants to Ig-2D1. These escape mutants of 09HA are 

no longer neutralized by the Ig-2D1 antibody. We have obtained results 
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consistent with these experimental observations through MD simulation. The 

09HA_mut had the lowest binding affinity to Ig-2D1 (Table 2.2). In addition, 

residue-based free energy decomposition also attested that K167 is a key 

residue in the binding of Ig-2D1. Others have similarly predicted the 

importance of this residue using hot spot analysis (51). Xu et al. also 

determined from crystal structural and experimental mutation studies that the 

K167 plays a key role in forming a salt bridge between Ig-2D1 and 18HA (42, 

44). When K167 was mutated to E, Q or P, the dissociation constant Kd 

drastically increased. As these studies are based on crystal structures alone or 

single-residue mutagenesis, they offer limited mechanistic insights on how 

K167 affects the antigen-antibody interactions. 

 K167  (09HA) is a positive charged amino acid residue and forms a salt 

bridge with negatively charged D93 (IgL). When it is mutated to E167 

(09HA_mut), the two negative amino acid residues, E167 and D93, were 

thermodynamically unstable close together. In our MM-PB/GBSA results, the 

09HA_mut binds only half as strong as 18HA to Ig-2D1 with a ΔG of -37.9 +/- 

1.6 kcal/mol. Since 09HA_mut isn’t expected to bind or binds poorly to Ig-2D1, 

the negative DG could be due experimental setup of the simulation. The 

09HA_mut system bound to Ig-2D1 was artificially constructed by 

superimposing the 09HA_mut and 18HA/Ig-2D1 co-crystal structures (42). 

Consequently, 09HA_mut was placed in close proximity to Ig-2D1, a state that 

may not actually occur in nature due to entropic barriers.  
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 Over the length of the simulation, Ig-2D1 remained bound to 09HA_mut, 

with a number of favorable antigen/antibody interactions that the mutant model 

inherited from its 18HA/Ig-2D1 crystallographic template. However, the 

electrostatic repulsion between E167 and D93 eventually led to the loss of 

other favorable interactions between the antigen and the antibody (Table 1.1). 

In particular, two H-bond interactions were lost and not replaced between 

09HA and 09HA_mut systems.  

2.4.2 Relative binding affinities of Ig-2D1 to HA’s 
 
 Krause et al. reported that the Ig-2D1 concentration taken to neutralize 

09HA is 0.04 mg/ml compared to 0.025 mg/ml required for 18HA, suggesting 

that the binding affinity of Ig-2D1 to 09HA is lower (44). In contrast, Liu et al. 

(51) predicted, using a single frame reconstructed antigen-antibody system, 

that six mutations on the 09HA could help the antigen to bind stronger to Ig-

2D1. Our simulations determined that the 09HA had weaker binding affinity 

with Ig-2D1, compared to 18HA, in agreement with the results of Krause et al. 

 Liu et al (51) also did not identify a role for N160 in 09HA and Ig-2D1 

interaction. Our free energy decomposition analysis revealed that S160 in 

18HA contributed more to binding than N160 in 09HA. Relatively speaking, the 

S160N mutation weakened the interaction between Ig-2D1 and HA. The 

S160N mutation could destabilize the K158-D54 (IgH) salt bridge in the 

simulations by increasing solvent accessibility and formation of water pockets. 
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This may have been due to the loss of hydrogen bonds established by S160 

from 18HA in 09HA. Even though both S and N are polar amino acid residues, 

we did not observe any persistent H bonds or other interactions with N160 in 

09HA (Table S2.6). The increased water present in the antibody-antigen 

interface could further weaken the electrostatic interactions from the salt 

bridges formed. Thus, S160N mutation is likely to have a destabilizing effect 

on the K158-D54 salt bridge important in the antigen-antibody complex 

formation. This also suggests that the antibody is possibly recognizing a 

spatial conformation presented by S160, but not N160. In summary, Ig-2D1 

has a higher ΔG toward 09HA compared to its native 18HA antigen primarily 

due to a S160N mutation and its secondary effects. This demonstrates the 

advantages of MD simulation, which allows the antigen to change, based on 

antibody dynamics, and represent a more realistic physiological setting.  

 The 09HA had only two mutations compared to the 18HA in the 

epitopes, of which S160N allowed partial escape from the cross-reactive 18HA 

antibody Ig-2D1. The 06HA, with ten mutations in the epitope residues, was 

still recognized by Ig-2D1 at a similar affinity as the 09HA in silico. We will 

discuss next how the 06HA might be able to escape from Ig-2D1 immune 

recognition in vivo. 

2.4.3 Effect of glycosylation on 06HA recognition 
 



 

 

44 

 The ΔG’s of the 06HA and 09HA systems were -67.6 +/- 1.6 kcal/mol 

and -68.0 +/- 1.2 kcal/mol, respectively. However, 06HA is not neutralized by 

Ig-2D1 experimentally. Our sequence analysis revealed that this is likely due 

to mutations found in 06HA that introduces glycosylation in vivo, which 

provides the necessary immune escape (Figure 2.1B). K164 from the 18HA is 

mutated to N164 in 06HA. This K164N mutation introduced a new 

glycosylation site on the Sa epitope. Another E131T mutation added a new 

glycosylation site at position 129. Glycosylation has been suggested as a 

defense mechanism against antibody neutralization (35, 49, 69). The 

carbohydrates attached on epitopes will cause steric crash with antibodies. 

The 06HA system prepared our simulation was unglycosylated. During the 

system set up, all carbohydrates were removed. Thus, the Sa epitope was 

exposed to Ig-2D1 without any steric hindrance. The ΔG free energy 

calculation results suggest Ig-2D1 could neutralize the unglycosylated 06HA.  

 Thus, the in silico experimental construct allowed Ig-2D1 to 

“bind/neutralize” the 06HA, even though it may not be feasible under 

physiological conditions where glycosylation is present. We cannot exclude 

other mechanisms in play here, since there are more mutations on 06HA 

among the epitope residues. For example, spatial conformations may be more 

important in epitope by Ig2-2D1 in this case. Nonetheless, our observations 

suggest a mechanism for immune augmentation when glycosylation inhibitors 

may enhance the protection from preexisting antibodies or immune memory.   
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2.4.4 MM-PB/GBSA analysis for relative binding energy determination 
 
 The PB model for implicit solvent was considered more accurate than 

the GB method for free energy calculations (70). However, recent research 

has shown that the GB implicit solvent model may be better at predicting 

relative binding energy than PB (71). In the current work, both the GB and PB 

models performed similarly, as judged by the relative DG rankings of the four 

HA/Ig-2D1 systems studied (Table 2). MM-PBSA is relatively fast and could 

predict relative binding energy very well (72), and our results provided further 

support for the validity of MM-PBSA in the antibody-antigen systems studied. 

Other methodologies have been reported in the literature to calculate the free 

energy of binding, including free energy perturbation (FEP) and 

thermodynamic integration (TI) (73, 74). Even though both of these methods 

can produce ΔG values that closely match experiment values, they are 

computationally more expensive. 

 Xia et al. used FEP to determine the ΔΔG’s between different HAs and 

monoclonal antibodies. Their results showed that a single escape mutation 

would increase the ΔΔG by 7.28 to 15.47 kcal/mol (73). Interestingly, our 

decomposition energy also showed that the K167E mutation contributed 9.2 

+/- 0.3 kcal/mol to the total ΔG of the 09HA_mut system. Since ΔG calculation 

with MM-PB/GBSA for a salt bridge is often overestimated if the salt bridge is 

buried between two protein interfaces (75), the +9.2 +/- 0.3 kcal/mol difference 

in energy could be the upper bound limit. Other residues that Xia et al. 
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suggested would change binding affinity without being detrimental to antibody-

antigen interactions had reported ΔΔG values under 4.24 kcal/mol. Our results 

also predicted that for mutations that do not reverse binding, their ΔΔG’s in 

decomposition energies were also under 2.2 kcal/mol. 

2.4.5 Entropy consideration in relative binding energy determination 
 
 Conformational entropy has been implicated in the antibody maturation 

process when mutations in the Fab and Fc regions modulate the binding of 

antibodies to antigens (76). In our simulation, we did not consider entropic 

contributions in our specific systems for several reasons. First, the systems 

are similar in their binding states, as shown through RMSD analyses. HA 

receptor binding domains are very rigid, with only side chain movements 

observed. Second, no major conformational changes are observed in the 

antibody or the antigen. This is in contrast to our previous study, where glycan 

receptors adopt significant changes upon HA binding, and entropy 

consideration was necessary to obtain results consistent with experimental 

studies (77). Third, since we are considering the relative free energy of binding 

of complexes between highly conserved HA’s and the same antibody, it is 

likely that the entropic differences would cancel out. Hou et al. also discussed 

in details that the inclusion of entropy consideration is not predictive of 

accuracy in all systems when relative ΔG (ΔΔG) is calculated. In fact, many 

previous studies have been successful in ranking relative affinities of ligands 
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without entropy consideration (71). However, this does not mean entropy 

considerations may be ignored for relative binding affinities, as shown in (77). 

It is especially crucial when absolute binding energy is considered (71).  

Finally, entropy consideration is computationally costly using nmode, and the 

margin of error may fluctuate widely depending on the choice of frames used 

in the calculations. Convergence is oftentimes an issue using quasiharmonic 

analysis (77), especially given the sizes of our systems (data not shown). 

Therefore, the inclusion of entropic consideration may improve the correlation 

with experimental data, but beyond the scope of our current hypotheses. 

2.5 Conclusions 
 
 Our results of are consistent with experimental observations using the 

techniques of MM-GB/PBSA, considering the relative free energy of binding in 

the systems studied. The formation of two salt bridges plays a key role in the 

immune recognition of Ig-2D1 of 18HA and cross-reactivity with 09HA. The 

stability of K158 - D54 (IgH) salt bridges is dramatically weakened by the 

S160N mutation in the 09HA accompanied by hydrogen bond loss and water 

pocket formation at the antibody-antigen interface. The immune escape of 

09HA may be accomplished through a K167E mutation, which completely 

disrupts both salt bridges between 09HA and Ig-2D1. On the other hand, 

06HA likely achieves immune escape through mutations that introduce 

glycosylation sites and mask epitope residues. These results provide 

mechanistic insights to the immune recognition and escape of H1N1 virus, and 
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could help design better antibodies against this pandemic strain and protection 

from future threats.    
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2.6 Appendices 
 

 
Supporting Table 2.1 Description of each system. The four systems that 
were simulated in this experiment are shown above. Their system name, PDB 
ID, strain, simulation time and number of atoms are listed. 
 

Naming 
Scheme 

Crystal 
Structure 

Strain Simulation 
Time (ns) 

No. of atoms 

18HA 3LZF A/South 
Carolina/1/191

8 

69 475,554 

09HA 3LZG A/California/04
/2009 

69 539,569 

06HA 3SM5 A/Solomon 
Islands/3/2006 

69 467,368 

09HA_
mut 

3LZG* A/California/m
utant* 

69 565,969 
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Supporting Figure 2.2 VDW interaction between L161 and R97 (IgH). Ig-
2D1 residues are drawn in bonds style and L161 from 06HA is shown in CPK 
style using VMD. The rest of the Ig-2D1 and 06HA protein backbone are both 
displayed in ribbon. The 06HA is colored in navy blue and Ig-2D1 is in cyan.  
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Supporting Table 2.3 Bond interactions between Ig-2D1 and 18HA. All the 
epitope residues (column I) and the corresponding Ig-2D1 residues (column 
III) are indicated according to the type of interactions (column II). The 
interactions that were also found in the crystal structure (PDB ID 3LZF) are 
marked with + next to Ig residues. 

  

S (125) Hbond IgL-W91+ 

  IgL-D93+ 

 Dipole IgL-N95A+ 

  IgL-G95B+ 

S (126) Hbond IgL-D93+ 

 Dipole IgL-W91 
P (128) VDW IgL-W91+ 

K (158) Salt IgH-D54+ 

 Hbond IgH-R97 
 Dipole IgH-D54+ 

  IgH-T56+ 

  IgH-R97 
 VDW IgH-D54+ 

G (159) Dipole IgH-D53+ 

  IgH-R97 
S (160) Hbond IgH-D53 
  IgH-D53 
 Dipole IgH-R97 

  IgH-S99+ 

S (161) Dipole IgH-G33 
  IgH-R97+ 

  IgH-S99+ 

Y (162) Hbond IgH-G100+ 

 Dipole IgH-V98 
  IgH-S99+ 

P (163) Dipole IgH-D100A+ 

 VDW IgH-R97+ 

K (164) Hbond IgH-D100A 
 VDW IgH-Y100B+ 

K (167) Salt IgL-D93+ 

 Hbond IgL-N31+ 

 Dipole IgL-S30+ 

  IgL-N31+ 

S (168) Hbond IgL-S30+ 

 Dipole IgL-S30+ 

Q (197) Hbond IgH- S99 
N (198) Dipole IgH- S99+ 

  IgH- G100+ 

T (249) Dipole IgH- G100+ 

  IgH- G100  
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Supporting Table S2.4 Bond interactions between Ig-2D1 and 09HA. All 
the epitope residues (column I) and the corresponding Ig-2D1 residues 
(column III) are indicated according to the type of interactions (column II). 
  

S (125) Hbond IgL-W91 
S (126) Hbond IgL-D93 
 Dipole IgL-W91 
P (128) VDW IgL-W91 
 Dipole IgH-R97 
 VDW IgH-D54 
G (159) Dipole IgH-R97 
  IgH-D53 
S (161) Dipole IgH-R97 
Y (162) Hbond IgH-G100 
P (163) Dipole IgH-G100 
  IgH-D100A 
 VDW IgH-R97 
K (164) Hbond IgH-D100A 
 Dipole IgH-W100B or IgH-

D100A or IgH-G100 
 VDW IgH-D100A 
  IgH-W100B 
K (167) Salt IgL-D93 
 Hbond IgL-N31 
 Dipole IgL-S30 
S (168) Hbond IgL-S30 
 Dipole IgL-S30 
T (249) Dipole IgL-G100 
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Supporting Table S2.5 Bond interactions between Ig-2D1 and 06HA. All 
the epitope residues (column I) and the corresponding Ig-2D1 residues 
(column III) are indicated according to the type of interactions (column II). 
 
E (124) Hbond IgH-Y58 
S (125) Hbond IgL-W91 
 Dipole IgH-Y58 
S (126) Dipole IgL-W91 
P (128) VDW IgL-W91 
K (158) Dipole IgH-R97 
N (159) Hbond IgH-R97 
L (161) VDW IgH-R97 
Y (162) Dipole IgH-G100 
P (163) Dipole IgH-D100A 
 VDW IgH-V100C 
N (164) Hbond IgH-D100A 
 Dipole IgH-V100C 
  IgH-G100 or IgH-

D100A 
L (165) VDW IgH-Y100B 
S (166) Dipole IgL-T32 
K (167) Salt IgL-D93 
 Hbond IgL-N31 
 Dipole IgL-S30 
S (168) Hbond IgL-S30 
 Dipole IgL-G29 
  IgL-S30 
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Supporting Table S2.6 Bond interactions between Ig-2D1 and 09HA_mut. 
All the epitope residues (column I) and the corresponding Ig-2D1 residues 
(column III) are indicated according to the type of interactions (column II). 
 

  

S (125) Hbond IgL-W91 
 Dipole IgL-D93 
  IgL-N95A 
P (128) VDW IgL-W91 
K (158) VDW IgH-D54 
G (159) Dipole IgH-D53 
  IgL-S24 
S (161) Dipole IgL-G25 
  IgH-S99 
Y (162) Hbond IgH-S99 
  IgH-G100 
P (163) Dipole IgH-G100 
  IgH-D100A 
 VDW IgH-R97 
K (164) Hbond IgH-D100A 
 VDW IgH-D100A 
  IgH-Y100B 
S (168) Dipole IgL-S30 
N (198) Dipole IgH-S99 
  IgH-G100 
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Supporting Table S2.7 MM-PBSA energy breakdown of the four systems. 
All energies are reported in kcal/mol, averages from three independent 
calculations over a period of 69 ns. ΔEvdW is the van Der Waal term and ΔEelec 
is the electrostatic energy. ΔEPB is the solvation energy estimated using the 
Poisson Boltzmann equation. ΔEcavity is a repulsive nonpolar de-solvation 
energy term. ΔGgas is the energy of the protein complex in vacuum and ΔGsolv 
is the energy takes to add solvent to a system in vacuum. 
 
PB 18HA 09HA 06HA 09HA_mut 
Contribution Mean SE Mean SE Mean SE Mean SE 
ΔEvdW -117.7 1.1 -112.2 1.1 -106.4 1.1 -112.2 0.8 
ΔEelec -434.9 4.5 -521.6 4.9 -428.5 5.0 -305.3 5.7 
ΔEPB 490.4 4.6 577.2 5.0 479.6 5.0 451.0 5.4 
ΔEcavity -12.2 0.1 -11.4 0.1 -12.3 0.1 -11.5 0.1 
ΔGgas -552.7 4.8 -633.8 5.2 -534.9 5.2 -417.5 5.9 
ΔGsolv 478.2 4.5 565.8 4.9 497.3 4.9 379.6 5.3 

         
ΔGsubtotal -74.4 1.1 -68.0 1.2 -67.6 1.6 -37.9 1.6 
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Supporting Table S2.8 MM-GBSA energy breakdown of the four systems. 
All energies are reported in kcal/mol, averages from three independent 
calculations over a period of 69 ns. ΔEvdW is the van Der Waal term and ΔEelec 
is the electrostatic energy. ΔEGB is the solvation energy estimated using the 
Generalized Born equation. ΔEcavity is a repulsive nonpolar de-solvation energy 
term. ΔGgas is the energy of the protein complex in vacuum and ΔGsolv is the 
energy takes to add solvent to a system in vacuum.  

  

GB (igb2) 18HA 09HA 06HA 09HA_mut 
Contribution Mean SE Mean SE Mean SE Mean SE 
ΔEvdW -117.7 1.1 -112.2 1.1 -106.4 1.1 -112.2 0.8 
ΔEelec -434.9 4.5 -521.6 4.9 -428.5 5.0 -306.1 5.7 
ΔEGB 493.5 4.2 585.8 4.7 486.2 4.9 393.2 5.3 
ΔEcavity -15.3 0.1 -14.6 0.1 -14.6 0.1 -14.1 0.1 
ΔGgas -552.7 4.8 -633.8 5.2 -534.9 5.2 -418.3 6.0 
ΔGsolv 478.1 4.2 571.1 4.7 471.5 4.9 379.2 5.3 

         
ΔGsubtotal -74.5 1.0 -62.7 1.1 -63.4 1.5 -39.1 1.1 
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Supporting Table S2.9 Energy decomposition breakdown of the four 
systems. All energies are reported in kcal/mol +/- standard deviation of the 
mean. The values are obtained from averaging three monomers over 69 ns. 
All the canonical epitope residues and the surrounding residues are shown for 
the 18HA. For other systems, only the mutations are listed.  

  

 
Position 

 
18HA 

 
09HA 

 
06HA 

 
09_mut 

124 T -0.6±0.1  -1.1±0.1 E 0.4±0.1  -1.0±0.1 
125 S -3.4±0.1  -3.1±0.2  -2.6±0.1  -3.5±0.2 
126 S -3.1±0.1  -3.0±0.1  -3.5±0.2  -0.7±0.1 
128 P -2.7±0.1  -3.0±0.1  -2.6±0.1  -2.9±0.1 
129 N 0.4±0.1  -0.9±0.1  -0.2±0.1  -0.1±0.1 
157 K 0.3±0.0  0.5±0.0 G 0.2±0.0  0.6±0.0 
158 K -4.4±0.2  -2.3±0.2  -2.2±0.2  -1.9±0.2 
159 G -3.1±0.1  -2.2±0.1 N -2.9±0.1  -1.8±0.1 
160 S -4.9±0.2 N -0.5±0.1 G -0.0±0.0 N -0.9±0.1 
161 S -1.8±0.1  -1.8±0.1 L -4.0±0.1  -2.0±0.1 
162 Y -2.3±0.1  -2.3±0.1  -0.7±0.1  -2.6±0.1 
163 P -4.5±0.1  -4.7±0.1  -3.3±0.1  -4.7±0.1 
164 K -3.9±0.1  -3.8±0.1 N -2.7±0.1  -3.3±0.1 
165 L -0.6±0.1  -0.9±0.1  -1.4±0.1  -0.4±0.0 
166 S -0.6±0.1  -0.6±0.1  -1.0±0.1  -0.6±0.1 
167 K -6.6±0.2  -6.3±0.2  -6.6±0.2 E 2.9±0.1 
168 S -1.7±0.1  -1.1±0.1  -2.3±0.1  -0.4±0.1 
170 V -1.3±0.1 I -1.5±0.1 A -0.7±0.0 I -1.3±0.1 
197 Q -0.7±0.1  -0.5±0.1 H 0.1±0.0  -0.6±0.1 
198 N -0.5±0.0  -0.5±0.1 T -0.4±0.0  -0.4±0.1 
247 E 0.8±0.0  1.0±0.0  0.7±0.0  0.8±0.0 
249 T -0.5±0.0  -0.6±0.0 N -0.6±0.1  -0.6±0.0 



 

 

58 

This chapter, in full, is a reprint of the material as it appears in 

“Molecular Dynamic Analysis of Antibody Recognition and Escape by Human 

H1N1” by Ieong, Pek U; Li, Wilfred; Amaro, Rommie E., published 2015 in 

Biophysical Journal. This chapter is included with the permission from Li, 

Wilfred and Amaro, Rommie E.
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Chapter 3 
 

Full-length p53 Tetramer Bound to DNA and Its Quaternary Dynamics 
 

Abstract 

 p53 is a major tumor suppressor that is mutated and inactivated in 

about 50% of all human cancers. Thus, reactivation of mutant p53 using small-

molecules is an attractive anti-cancer therapeutic strategy. p53 is a 

challenging protein to structurally characterize because of its highly flexible 

regions. To explore p53 dynamics, we here use molecular modeling and 

available crystal structures to construct an all-atom model of the full-length p53 

(fl-p53) tetramer bound to DNA. Three different DNA sequences (a p21 

response element, a puma response element, and a non-specific DNA 

sequence) are integrated into this model. The simulations yield a final structure 

that agrees with prior cryo-EM maps(78) and, for the first time, show the direct 

interaction of the p53 C-terminal with DNA in atomic detail. Through a 

collective principal component analysis, we identify sequence-dependent 

differential quaternary binding modes of the p53 tetramer interfacing with DNA. 

Additionally, L1 loop dynamics of fl-p53 in the presence of DNA is revealed, 

and druggable pockets of p53 are identified via solvent mapping in order to aid 

future drug-discovery studies. 
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3.1 Introduction 
 

Thousands of mutations occur daily in the DNA of each human cell, 

even at times of perfect health. To prevent tumor formation, the human body 

has a complex but efficient mechanism for detecting and fixing DNA 

mutations. p53, also known as “the guardian of the genome”, lies at the heart 

of this complex tumor-suppression mechanism. Once activated, it signals for 

cell-cycle arrest, senescence, or apoptosis, either via transcription of various 

target genes(79, 80) or through non-transcriptional pathways(81-83). 

As tumor initiation and maintenance requires the inactivation of p53 

pathways, p53 is also the most frequently mutated gene in human cancers. 

p53 is mutated and non-functional in about 50% of all human cancers; about 

three-forths of p53 mutations are single point-mutations, and most mutations 

diminish DNA-binding ability(84). Due to its major role in tumor suppression, 

many researchers seek small molecules that can reactivate mutant p53 and 

thereby suppress tumors(85-90). Recent research in transgenic mice 

demonstrated that p53 reactivation can indeed achieve tumor regression, 

highlighting p53 reactivation as a very promising anti-cancer therapeutic 

strategy(91-93). 

Full-length p53 (fl-p53) is in part an intrinsically disordered protein 

(IDP), complicating its complete structural characterization. Due to high 

flexibility, IDPs such as fl-p53 rarely form crystals and often yield complex 

NMR spectra, eluding characterization by both X-ray crystallography and NMR 
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spectroscopy (94). Fl-p53 consists of 393 residues that form a flexible N-

terminal domain (NTD), a core DNA binding domain (DBD), a flexible linker 

region, a tetramerization (TET) domain, and a flexible C-terminal domain 

(CTD) (95) (Figure 3.1a). The core p53 DBD domain is the most studied 

because all inactivating p53 mutations occur there, and it possesses definite 

secondary and tertiary structural elements that are amenable to 

crystallography and NMR. Also, fl-p53 binds DNA as a tetramer (96) and 

causes DNA to bend (96-98). To shed some light onto the quaternary structure 

of fl-p53 tetramer/DNA complex, an integrative medium-resolution 3-

dimensional map was constructed by combining data from small-angle X-ray 

scattering (SAXS), electron microscopy (EM) and NMR spectroscopy (99). A 

subsequent EM study pointed to multiple DNA binding modes of fl-53 

tetramers (78). Recently, others crystalized the tetrameric p53 DBD and TET 

(with the linker domain truncated) bound to a short strand of DNA, setting the 

stage for the current study (100-102). Despite many years of work, there are 

still many questions about p53 structure and function. 

Upon activation, p53 needs to efficiently locate and bind to its response 

elements (REs) on the genome in order to stimulate transcription of target 

genes (e.g. p21, puma) and subsequently regulate the cell cycle by initiating 

DNA repair, cell-cycle arrest, or apoptosis (79, 80). However, the mechanism 

by which p53 searches and recognizes its REs is still under debate. REs 

consist of four head-to-head nucleotide pentamer repeats or two repeating 10-
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nucleotide motifs (RRRCWWGYYY) called the half sites, where R is A or G, W 

is A or T and Y is C or T (100) (Figure 3.1b). The two half sites are separated 

by 0 to 13 nucleotides (103, 104). The fl-p53 tetramer forms a dimer of dimers 

and each p53 dimer binds to a DNA half site (105). The fl-p53 tetramer tightly 

binds to the REs signaling for cell-cycle arrest (e.g. p21), DNA repair, negative 

regulation and anti-angiogenesis, while its affinity towards the pro-apoptotic 

REs (e.g. puma) can be either high or low (106). The role of the DBD has been 

studied extensively, but the detailed DNA binding mechanism of the fl-p53 

tetramer is not well characterized, nor is the effect that DNA sequence has on 

that binding well understood.  

Additionally, the role of the CTD in facilitating p53’s DNA search has 

been controversial (107). Earlier studies showed that the p53 CTD acts as a 

negative regulator by hindering DBD binding to the short strands of specific 

response elements (REs) (108). CTD phosphorylation and acetylation alleviate 

constraints and increase DBD binding to target sites (108). However, further 

research suggested the opposite: the p53 CTD is needed for the DBD to 

recognize target sites in long or circular DNA and acts as a positive regulator 

(109). Using single-molecule experiments, Tafvizi et al. explained these two 

seemingly contradictory observations by proposing that CTDs facilitate target-

site search by sliding through the non-specific DNA while the DBDs are 

immobilized, moving by frequent association and dissociation (110). From a 

thermodynamic point of view, the CTD hinders DBD binding to its target-site 
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because during the search process, DBDs are impeded in the non-specific 

region (110). But from a kinetic point of view, the CTD promotes the search 

process and helps the DBD find its specific target sequence (110). 

Consequently, understanding how the p53 CTD behaves at the molecular level 

is of great interest. 

Lastly, the p53 L1 loop is implicated to be an important conformational 

switch that regulates DNA binding (101, 102). In all p53 crystal structures 

published before 2011, the L1 loop was captured in an extended conformation. 

However, the crystal structure of a more recent tetrameric p53 bound to the 

p21 RE showed that the two inner L1 loops (monomers B and C) adopt an 

extended conformation, while the two outer L1 loops (monomers A and D) 

adopt a recessed conformation (Figure 3.5a,c) (100).  Lukman et al. performed 

molecular dynamics (MD) simulations of a single p53 DBD monomer in the 

absence of DNA (111). They observed that the L1 loop was the most flexible 

region, and that it can adopt both an extended and a recessed conformation, 

switching from one conformation to another on the nanosecond timescale 

(111). L1 loop dynamics under physiological conditions is also of great interest 

because it forms part of the L1/S3 pocket. We previously identified this 

druggable pocket and discovered a small-molecule ligand that reactivates p53 

mutants (85).  
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Figure 3.1 Full-length p53 and the different DNA set-up. a) The full-length 
p53 (fl-p53) sequence with each of the five domains labeled: N-terminal 
domain (NTD), DNA binding domain (DBD), linker, tetrameric domain (TET), 
and C-terminal domain (CTD). b) The three different DNA sequences used in 
the simulations: the two positive response elements (REs), p21 RE and puma 
RE, and a non-specific DNA sequence. The binding motif consists of two half 
sites or four pentamer repeats. Pentamers a, b, c, and d are highlighted in 
blue, red, yellow and green, respectively.  

 

Here, we construct an all-atom model of the fl-p53 tetramer bound to 

DNA, based on available crystal structures and modeling. We then use this 

model to explore the structure and dynamics of the fl-p53 tetramer when 

bound to different DNA sequences including two REs and a non-specific DNA 

(Figure 3.1b). In our simulations, we observe p53 CTD motion toward DNA, 
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leading to direct non-specific interactions. The final fl-p53 tetramer structures 

generated at the end of the simulations are comparable to published 3-

dimensional cryo-EM maps of the protein (Figure 3.2a). We capture multiple 

binding modes of the fl-p53 tetramer/DNA complex that differ depending on 

the DNA sequence. We also explore the L1 loop dynamics of the fl-p53 

tetramer and identify p53 druggable regions based on our DNA-bound 

tetramer model. 

 

3.2 Results   
 

3.2.1 Steady decrease of the radius of gyration 
 

We simulated three full-length p53 systems (fl-p53) with three different 

DNA sequences: p21 RE, puma RE, and non-specific DNA. (Figure 3.1b) In 

order to monitor the global changes in the p53 tetramer, we calculated the 

radius of gyration values during simulations. Radius of gyration reflects how 

far the protein stretches from its center of mass, and thus, a small radius of 

gyration indicates a more compact structure, while a large radius of gyration 

indicates a more elongated one. Our initial model had all flexible loops in 

extended conformation, and the radius of gyration decreased steadily during 

simulations in all systems. However, among the 3 systems with different DNA 

sequences, the non-specific DNA-bound system reached the lowest radius of 

gyration at the end of the simulations while the p21-RE-bound system reached 
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the largest value. (Supplementary Figure 3.1 and Figure 3.2b) Our results 

implicate that fl-p53 tetramer adopts the most compact form when bound to a 

non-specific DNA sequence, and the most elongated form when bound to the 

p21 RE. The fl-p53 tetramer interacting with the puma RE fell in the middle. 

The final structures yielded in the simulations agree with prior cryo-EM 

maps(78). 

 

Figure 3.2 Full-length p53 global conformational change. a) Cartoon 
drawing of the DBD, linker and CTD fitted into the classIII cryo-EM map of p53 
from Melero et al(78) using Chimera program.(53) DNA colored in magenta is 
drawn to show relative orientation. b) The time evolution of the average radius 
of gyration for the Cαs of DBD and TET of each system. c) The p53 C-
terminals, highlighted in red, interacting with the DNA, highlighted in gray. The 
rest of the fl-p53 is colored in cyan. 

 

3.2.2. C-terminal domain directly contacts the DNA 
 

Next, we inspected the flexible loops, which contributed to the steady 

decrease radius of gyration. Visualization of the MD trajectories revealed that 

the C-terminal domains of the fl-p53 tetramer approached and directly 

contacted the DNA in all of our simulations independent of the DNA sequence. 
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(Figure 3.2c) This is a remarkable observation in 110 ns simulations given that 

the C-terminal domains had very extended conformations and were quite 

distant from the DNA initially. Especially the C-terminal of monomer C ended 

up contacting the DNA in every single MD simulation. In our initial model 

system, the C-terminal of monomer C was unintentionally built slightly closer 

to the DNA. Yet, the C-terminals of other monomers including monomers A 

and B also ended up interacting directly with the DNA. 

We also performed a principal component analysis (PCA) including all 

fl-p53 Cαs in all simulations. The first principal component (PC1) was a motion 

of the CTDs becoming more compact and approaching the DNA, in line with 

the steady decrease of the radius of gyration. All three systems sampled the 

motion described by PC1.  

Lastly, we carried out an interaction footprint analysis and identified the 

salt bridges between the p53 CTDs and DNA. (Supplementary Table 3.1) The 

key p53 residues that participated in the salt bridge interactions were Lys370, 

Lys372, Lys373, Arg379, Lys381, Lys382 and Lys386. The p53 CTDs 

interacted with the DNA only non-specifically via the DNA backbone atoms, 

and the interactions were variable/dynamic with different parts of the DNA 

segments at different times. The motions we observed at the molecular level 

directly support the previously suggested idea that p53 CTDs do not 

participate in specific DNA recognition and binding, but rather participate in 

dynamic DNA search (110). 



   

 

68  

3.2.3 Quaternary binding modes of p53 DBD tetramer to different DNA 
sequences 
 

Besides the PCA analysis on all the Cα atoms of fl-p53, we performed 

another PCA including only the Cα atoms of the DBDs (resid 89-291) of the 

p53 tetramer. Interestingly, this time PC1 showed a clamping/unclamping 

motion of the tetrameric p53 DBDs around DNA. This quaternary motion can 

be described in more detail as going from a more asymmetric form of the p53 

DBD tetramer clamped around the DNA with 2 DBDs curved inward (low PC1 

values) to a more symmetric and flat form of the p53 DBDs in which all 4 

monomers are in plane (high PC1 values). (Figure 3.3a and Supplementary 

Movie 3.1) In our simulations, the p21 RE system only sampled low PC1 

values while the puma RE and the non-specific DNA systems extended 

beyond and sampled both low and high PC1 values. (Figure 3.3a and 

Supplementary Figure 3.3) In other words, the p21 RE system sampled only 

the more clamped conformation while the puma RE and non-specific DNA 

systems sampled both the clamped and the flat conformations.  The puma RE 

system spent more time sampling the more clamped conformation and less 

time in the flat conformation while it was vice versa in the non-specific DNA 

system. (Figure 3.3a and Supplementary Figure 3.3)  We should also note that 

all these model systems were constructed by mutating the DNA in the crystal 

structure of p21-bound p53 tetramer system and thus the initial conformation 

was the same for all of them. The fl-p53 tetramer is known to have much 
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higher binding affinity to the p21 RE compared to the puma RE, and a minimal 

binding is expected in the case of the non-specific DNA sequence. PC1 

indicated that fl-p53 tetramer adopts different DBD tetramer conformations to 

accommodate tighter DNA binding as in p21 RE, weak DNA binding as in 

puma RE, and minimal binding as in non-specific DNA.  

 

Figure 3.3 Quaternary DBD binding modes. Panels a and b show the DBD 
binding modes corresponding to the minimum and maximum values of PC1 
and PC2, respectively. DBDs and DNA are represented as spherical marbles 
and a cylinder, respectively. The arrows aim to highlight the conformation that 
each system samples, and the size of the arrow is proportional to the 
frequency of sampling. The blue, red and green arrows represent the p21 RE, 
the puma RE and the non-specific DNA systems, respectively. c) Histogram 
showing the distribution of the volume gap between the DBDs during 
simulations of each system. The black dashed line demonstrates the initial 
volume gap value prior to the simulations. 

 

On the other hand, PC2 described a cooperative binding motion of p53 

DBD tetramer upon specific DNA recognition. This quaternary motion can be 
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described in more detail as going from an asymmetric non-cooperative mode 

in which monomers A and D are pushed away from the DNA (low PC2 values) 

to a symmetric cooperative binding mode in which all four monomers are in 

close proximity of DNA (high PC2 values). (Figure 3.3b and Supplementary 

Movie 3.2) In our simulations, both the p21-RE-bound and puma-RE-bound 

p53 tetramer systems sampled only high PC2 values while the non-specific 

DNA-bound p53 tetramer system solely sampled low PC2 values. 

(Supplementary Figure 3.3)  We should again note that all of our MD 

simulations started from a cooperative binding mode observed in the p21-RE-

bound p53 tetramer crystal structure.  

To further inspect the effect of different quaternary binding modes of 

p53 tetramer on DNA binding interface, we measured the volume gap between 

four p53 DBD monomers where DNA would be accommodated. 

(Supplementary Figure 3.2) The results for our simulations revealed that the 

p21-RE-bound system provided the largest volume gap to accommodate DNA 

followed by puma-RE-bound and then non-specific DNA-bound systems. 

(Figure 3.3c) The binding mode seen in p21-RE-bound simulations 

(characterized by low PC1 and high PC2 values) provided the largest volume 

gap available for DNA accommodation, while the binding mode seen in non-

specific DNA-bound simulations (characterized by high PC1 and low PC2 

values) provided the smallest volume gap for DNA accommodation. 
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Furthermore, hydrogen-bond footprint analysis complemented our DBD 

PCA analysis. (Supplementary Table 3.2) There were 10 direct hydrogen 

bonds we identified between fl-p53 DBDs and DNA, but here we focused on 

the most significant ones. The two most persistent H-bonds we observed in 

MD were 1. between Ala276 backbone and DNA and 2. between Arg280 side 

chain and DNA. These two H-bonds were observed highly persistently only in 

the case of the positive REs, p21 and puma, but were very scarcely seen in 

the case of non-specific DNA system. Arg273 side chain also formed a more 

persistent H-bond to DNA in the p21 and puma systems compared to the non-

specific DNA system, but the difference was less pronounced. Ser241 was the 

only residue that binds to all three DNA sequences persistently, indicating that 

Ser241 is a sequence-independent H-bond donor/acceptor for DNA. This 

hydrogen bond interaction could be important for the fl-p53 during the DNA 

search process. We should also note that the most persistent H-bond between 

the Lys120 and DNA was seen only in the inner monomers (monomers B and 

C) in the p21 RE system followed by the puma RE system. The H-bond 

between Lys120 and DNA was not persistent in the non-specific DNA system. 

Overall, more persistent H-bonds between the fl-p53 tetramer and DNA were 

observed in the p21 RE and puma RE systems compared to the non-specific 

DNA-bound system, in line with the clamped binding modes observed for the 

positive RE systems.  
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This is the first time to our knowledge that p53 DBD tetramers are 

explicitly shown to adopt different conformations upon binding to various DNA 

sequences. We observed that the p53 DBD tetramer adopts a cooperative, 

clamping, tight-binding mode to bind positive REs (e.g. p21 and puma) while it 

adopts a non-cooperative, flat, loose-binding mode to bind non-specific DNA 

sequences. (Figure 3.2a,b) These two binding modes can be related to the 

two-state mechanism of DNA search and recognition suggested for p53 by 

Tafvizi et al based on their single-molecule experiments (110). The non-

cooperative, loose-binding mode we observed in the non-specific DNA case 

can represent the DNA search mode, while the cooperative, tight-binding 

mode in the p21 RE case can represent the DNA recognition mode. 

3.2.4 DNA Distortion 
 
 

Next, we examined the effects of fl-p53 tetramer binding on the 

structure of the DNA. It has been shown previously that DNA gets bent by 27° 

upon binding to fl-p53 (98). Among our three systems, we observed that only 

the p21-RE-bound p53 tetramer system achieved significant DNA bending and 

intercepted with the experimental value (Figure 3.4, Supplemental Figure 3.4).  
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Figure 3.4 DNA bending angle. Time evolution of the DNA bending angle for 
the three MD copies of the p21 RE system are shown in light grey. A 
regression line is drawn in blue to show the global trend and, a pink dashed 
line shows the experimental bending angle(98).  

 

Beyond DNA bending, we further examined average DNA properties in 

simulations and revealed several that were significantly sequence-dependent. 

(Table 3.1) Minor groove width was 7.28Å ± 1.12Å, 7.78Å ± 1.13Å and 4.79Å ± 

1.20Å for the p21 RE, puma RE, and non-specific DNA systems, respectively. 

The minor groove width for DNA is typically 4.2 Å, which is within the standard 

deviation of the non-specific DNA minor groove width, but significantly lower 
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than the values observed in the positive REs. The much wider DNA minor 

grooves observed in p21-RE- and puma-RE-bound p53 tetramer systems 

suggest that the minor groove widens up when the fl-p53 tetramer binds these 

positive REs in a tight DNA recognition mode. 

 

Table 3.1 Comparison of average DNA properties in MD simulations of 
the three systems. Average and standard deviation of the values in 3 copies 
of MD simulations are reported. 

 

 

Another DNA property we found to be sequence-dependent was the h-

twist, which corresponded to the rotation between base pairs (112). The h-

twist in our simulations were 29.2° ± 5.7°, 30.4° ± 7.4°, and 34.0° ± 4.1° for 

p21 RE, puma RE and non-specific DNA systems, respectively. (Table 3.1) 

The two smaller values observed in the two positive REs, p21 and puma, 

suggested that in the DNA recognition mode, p53 binding caused a slight DNA 

untwisting. 

3.2.5 L1 loop dynamics  
 

 p21 puma non-specific 

DNA 

Minor groove 

width  

7.28 ± 1.12 Å 7.78  ± 1.13 Å 4.79 ± 1.20 Å 

h-twist 29.2 ± 5.7° 30.4 ± 7.4° 34.0 ± 4.1° 
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To monitor the L1 loop dynamics of each p53 monomer in our 

simulations, we measured the time-dependent RMSD of the L1 loop Cα atoms 

with respect to both the extended and the recessed conformations of the L1 

loop in the crystal structure. We did not observe a complete transition of the L1 

loop from recessed conformation to extended conformation or vice versa in 

any of the simulations. The L1 loops of the inner p53 monomers conserved the 

extended L1 loop conformation throughout the simulations independent of the 

DNA sequence. (Supplementary Figure 3.5-3.7, Figure 3.5b) However, the 

recessed L1 loops of the outer p53 monomers were more flexible and sampled 

intermediate conformations in addition to the recessed conformation. 

(Supplementary Figure 3.5-3.7, Figure 3.5b) These intermediate L1 

conformations were sampled by at least one monomer in the p21 RE and non-

specific DNA systems, while it was not observed in the puma RE system. 

(Supplementary Figure 3.5-3.7) Based on our simulations, the L1 loop 

conformation of a p53 monomer in DNA-bound fl-p53 tetramer system is 

dictated by the position of the monomer with respect to the DNA. (Figure 3.5b)  
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Figure 3.5 L1 loop conformations in the p53 tetramer. a) Cartoon figure 
that represents the two different L1 conformations and the regions in DNA that 
each monomer interacts with. The extended L1 loops are seen in monomer B 
and C while the recessed L1 loops are seen in monomer A and D. b) The 
conformational space the L1 loop can sample in each monomer. The L1 loops 
in different conformations are colored in red, orange, yellow, green and blue. 
The DBD monomer surfaces are colored in cyan and the DNA is colored in 
black. c) Close-up view of the extended L1 conformation interacting with the 
DNA. The recessed L1 loop conformation from another monomer is also 
shown for comparison. d) Boxplot that shows the median, 1st and 3rd quantiles, 
and the outliers of the time percentage of the L1/S3 pocket being open at 
various L1 conformations 
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We were interested in the L1 dynamics also because it directly effects 

the druggable L1/S3 pocket we previously identified (85) near the L1 loop and 

found strong evidence to be the binding site for PRIMA-1 in clinical trials (87). 

In the same study, we also discovered stictic acid to be a novel p53 

reactivation compound by using the MD-generated L1/S3 pocket-open 

conformation in virtual screening (85). Using several geometric criteria as a 

filter for the pocket-open state, we found the L1/S3 pocket was open only 

about 6% of the time in MD simulations of the DBDs of wild-type p53 and 

various p53 mutants (85). In order to investigate the L1/S3 pocket dynamics in 

fl-p53 tetramer systems, we calculated the percent time the L1/S3 pockets 

were open in MD simulations using the same geometric criteria established in 

Ref. (85). In the L1 loops with an initial extended conformation (monomers B 

and C), we found that the L1/S3 pocket was open only 7% to 15% of the time 

with only one exception. (Figure 3.5d, Table 3.2) On the other hand, we found 

that in most of the L1 loops with an initial recessed conformation (monomers A 

and D), the L1/S3 pocket was open 80% to 99% of the simulation time. (Figure 

3.5d, Table 3.2) Much lower L1/S3 pocket-open percentages were computed 

only for the monomers A and D whose L1 loops spent a significant amount of 

time sampling the intermediate conformations. (Figure 3.5d, Table 3.2) 

Overall, we found that a recessed L1 loop conformation correlated with a 

mostly open L1/S3 pocket while an extended L1 loop conformation correlated 

with a rarely open L1/S3 pocket. (Figure 3.5d, Table 3.2)  
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Table 3.2 Percentage of L1/S3 pocket open conformations for each 
monomer during MD simulations of the three systems. 

 

 
 

p21 
 monA monB monC monD 

Copy1 94.77 7.35 10.06 94.67 
Copy2 94.97 23.14 9.05 95.61 
Copy3 33.87 6.68 6.04 98.63 

     
     
     
 puma 
 monA monB monC monD 

Copy1 81.66 10.08 4.77 99.64 
Copy2 96.78 8.08 73.45 96.6 
Copy3 99.64 16.07 11.03 97.19 

     
     
     
 nonspecific DNA 
 monA monB monC monD 

Copy1 95.9 6.33 11.65 18.62 
Copy2 93.19 21.83 7.08 6.35 
Copy3 5.54 13.94 24.57 91.78 

 

3.2.6 FTMAP provides insight into druggable pockets found in fl-p53 
 

Besides the L1/S3 pocket, we were also interested in locating novel 

cryptic druggable sites in fl-p53. The solvent-mapping results from FTMAP 

identified multiple druggable sites in the DBD as well as in the transactivation 

(TAD) domain and the tetramerization (TET) domain. The TAD and TET 

pockets were not consistent because of the high flexibility of these two 

regions. On the contrary, the druggable pockets on the DBD surface were 

consistent among all systems and all monomers. The DBD druggable pockets 
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we identified on the p53 DBD are the L1/S3 pocket, the L1 back pocket, the 

Tyr220 pocket, the Met160 pocket and the Gln192 pocket. (Figure 3.6) The 

L1/S3 pocket was previously identified as druggable by us, and can be 

possibly used by tunneling into the L1 back pocket for drug discovery 

purposes. The Tyr220 pocket consisted of two pockets with a loop in between 

them, and was recently shown to bind a ligand that can exploit one of the 

Tyr220 pockets as well as the transient tunnel between the two pockets(90). 

The Tyr220 pockets in monomers B and C (the inner monomers) were at the 

interface of two monomers and may not be easily accessible. (Figure 3.5b) 

The Gln192 pocket predicted by FTMAP falls between the DBD and the NTD 

of p53. Thus, this druggable pocket can only be observed in p53 DBDs with a 

non-truncated N-terminal region as in our fl-p53 systems. Further studies are 

required to validate these predicted druggable pockets experimentally. 
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Figure 3.6 Computationally predicted druggable pockets. a) the L1/S3 
pocket, b) the L1 loop back pocket, c) the Tyr220 pocket, d) the Met160 
pocket, and e) the Gln192 pocket are all drawn in blue surfaces. Small organic 
probe molecules are shown in each pocket to highlight the cavity.  
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3.3 Discussion 
 

We report here an all-atom model of the full-length p53 tetramer bound 

to DNA and its dynamics via simulations that add up to almost 1 μs in total. At 

the end of the simulations, the resulting fl-p53 structures agree and fit well into 

the previously determined cryo-EM maps(78). (Figure 3.2a) The closest all-

atom model to a full-length p53 tetramer generated in a very recent study 

included only the residues between 91 and 359 lacking the NTD and CTD 

regions and was only simulated for approximately 100 ns in total (113). In our 

simulations, the TET domains moved about 40 Å toward the DBD center of 

mass, and the extended CTDs became more compact and approached the 

DNA, while the NTDs remained mostly extended and very dynamic throughout 

simulations. In every single simulation we performed, the CTDs of the p53 

monomers ended up approaching and directly interacting with the DNA 

phosphates non-specifically via the positively charged residues including 

Lys372, Lys373, Lys381 and Lys382, which were also implicated to have a 

role in DNA binding in previous experimental studies (114, 115). Arlt et al 

showed the p53 CTDs to be very flexible by chemical cross-linking followed by 

mass spectroscopy(114). 

They also found CTD Lys381 is capable of cross-linking with TET 

domain Lys357, suggesting that CTD is in close proximity to the TET domain 

(114). Their experimental data is in line with our observations. Furthermore, 
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Friedler et al. showed that acetylation at each of these CTD residues would 

weaken DNA binding(115). Acetylation neutralizes the positively charged CTD 

residues and hinders the interaction with the negatively charged DNA 

backbone. Our simulations explicitly demonstrate at the molecular level that 

CTDs directly interact with the DNA via non-specific electrostatic interactions. 

Thus, CTD-DNA interactions are very dynamic likely helping the fl-p53 

tetramer slide on the DNA in the absence of tight binding of DBDs to DNA. 

Through virtual mutations of the initial DNA structure, we also integrated 

three different DNA sequences, namely p21 RE, puma RE and non-specific 

DNA, into the fl-p53 tetramer model in order to search for different quaternary 

DNA binding modes. p53 tetramer is known to bind tightly to the p21 RE, and 

only weakly to the puma RE (106). Modeling the case with the non-specific 

DNA sequence, we wanted to explore whether the non-specific quaternary 

binding mode of the p53 is similar to the case of BamHI, where the non-

specific DNA is not fully enclosed by the protein (116). DNA binding affinity of 

a single p53 DBD monomer is in the micromolar range (106). Under 

physiological conditions, KD values of fl-p53 for known REs are in the range of 

1.1 to 4.2 nM while KD values of non-specific DNAs are in the range of 29.8 to 

88.6 nM (96). The small affinity differences between specific and non-specific 

DNAs suggest that binding affinity is not solely sufficient for p53 to recognize 

its REs in the genome. Other factors such as conformational selection could 

play a part in DNA recognition.  
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Using single-molecule imaging tools, the diffusive motion of individual 

p53 proteins were recently monitored and quantitatively characterized(110). 

Comparing the diffusive motions of different p53 constructs (namely fl-p53, 

NTD+DBD+TET and TET+CTD), they revealed that p53 TET+CTD construct 

can translocate on DNA much faster than fl-p53, while NTD+DBD+TET 

construct remains immobile due to the absence of CTD (110). Based on these 

single molecule experiments, a two-state search mechanism was proposed for 

p53 search on DNA: a search state with mostly nonspecific binding and fast 

sliding, and an immobile recognition state with sequence-specific binding (110, 

117). In the search state, the CTDs accelerate the p53 sliding motion on DNA. 

And in the recognition state, the p53 DBD binds tightly and sliding is minimal 

(110). Through principal component analysis (PCA) of p53 DBD tetramer 

dynamics from MD simulations of all three systems, we identified differential 

binding modes depending on the DNA sequence. The clamped, symmetrical, 

cooperative mode uniquely sampled by the DBDs binding to p21 RE can 

represent the recognition state while the flat, asymmetrical, non-cooperative 

mode sampled mostly by the DBD binding to non-specific DNA sequence can 

represent the search state. Including both the positive REs and non-specific 

DNA sequence in our various simulations and performing a collective PCA, we 

were able to capture a conformational change motion that is indicative of 

multiple DNA binding modes of fl-p53, even though the timescale of our MD 
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simulations are probably not long enough to observe the entire event in a 

single system.  

We also analyzed the conformation and dynamics of the p53 L1 loop 

that directly interacts with DNA and forms part of the druggable L1/S3 pocket. 

The first crystal structure of a p53 tetramer bound to a natural RE (pdbID: 

3TS8) showed that L1 loops have adopted an extended conformation in the 

two inner monomers (monomers B and C) and a recessed conformation in the 

two outer monomers (monomers A and D) (100). Prior to 2011, all p53 L1 

loops in the crystal structures were found in extended conformation. Lukman 

et al (111) performed multi-copy 100 ns simulations of a single p53 monomer 

DBD (without any DNA bound) and observed that the L1 loop samples both 

the extended and recessed conformations regardless of the starting 

conformation of the L1 loop. In our 110 ns simulations of the DNA-bound full-

length p53 tetramer, we did not observe any full transitions of a recessed L1 

loop into an extended L1 loop or vice versa. Especially, the extended L1 loop 

conformations were persistent in inner monomers B and C of all the 

simulations. Nevertheless, we have observed flexibility in both conformations 

with a significantly greater mobility in the recessed L1 loop conformation as 

shown in Figure 3.5b. When one of the inner p53 monomers with an extended 

L1 loop conformation is superimposed onto an outer p53 monomer with a 

recessed L1 loop conformation in the crystal structure, there is a clear steric 

clash between the DNA and the extended L1 loop. (Supplementary Figure 3.8) 
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Thus, the outer p53 monomer can’t adopt an extended L1 loop conformation 

when fl-p53 tetramer binds tightly to DNA. Our data and previous data from 

Lukman et al (111) together indicate a conformational selection for the p53 

tetramer L1 loops upon DNA binding, dictated by the position of the monomer 

with respect to DNA. In the inner monomers, L1 loop adopts an extended 

conformation due to favorable DNA interactions, while in the outer monomers; 

L1 loop cannot sample extended conformation due to steric clash, but samples 

the recessed conformation as well as some intermediate ones. 

The correlation between the L1 loop dynamics and the behavior of the 

druggable L1/S3 pocket in the DNA-bound fl-p53 tetramer system is also 

interesting. Table 2 shows that the L1/S3 pocket is open at least 80% of the 

time on the two outer monomers, in which L1 loops adopt the recessed 

conformation. Whereas, the L1/S3 pocket is found open less than 15% of the 

time on the inner monomers, in which L1 loops strictly stick to the extended 

conformation. Based on our data, the L1 loop conformations are constrained 

by DNA binding, and profoundly alter the L1/S3 pocket open percentage.  We 

should also note that the L1/S3 pocket open percentage is much higher 

compared to the previous values found in single p53 DBD monomer 

simulations of Wassman et al (85) despite using the exact same set of criteria 

to define an open pocket. In these previous simulations, the L1/S3 pocket was 

found to remain open less than 10% of the simulation time (85). The difference 
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between the two results could be explained by the effect of DNA binding as 

well as the inclusion of fl-p53 tetramer instead of a single p53 DBD monomer. 

 

3.4 Methods 
 

3.4.1 Model construction 
 

Fl-p53 consists of 393 residues. As the main scaffold, we used the 

tetrameric p53 crystal structure pdbID:3TS8 (100), which is bound to a p21 

RE. This structure includes both the catalytic DBD (residues 94-291) and the 

TET domain (residues 321-356), but lacks a flexible-linker region (residues 

291-321) (100). We modeled the missing linker region using MOE (118) and 

VMD (62), based on chain A, residues 176-199, of pdbID:1MT6 (119), which 

the Schrodinger suite identified as having the highest sequence similarity to 

the linker region in a BLAST search (54). We also modeled residues 91-94 

using the crystal structure pdbID:2XWR (120). These residues have recently 

been identified as components of the core domain.  

For each monomer, the N-terminal domain was modeled by 

superimposing residue 35 of crystal structures pdbID:2K8F (121) (chain B, 

residues 1-35) and pdbID:2B3G (122) (chain B, residues 35-56), and then 

connecting the two complexes. Within residues 59-91, residues 66-86 are 

known to adopt a poly-proline-II (PPII) structure, so we modeled that region 

appropriately while using an extended conformation for the remainder of the 
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flexible linker. After modeling the four flexible N-terminal domains and 

integrating these into the tetrameric p53 model, relative conformations of the 

N-terminal domains were adjusted by optimizing dihedral angles to prevent 

steric clashes, using MOE. 

For each monomer, the C-terminal domain was modeled by connecting 

the non-alpha-helical parts of pdbID:1DT7 (123) (residues 367-378) and 

pdbID:1H26 (124) (residues 378-386). The missing residues 356-367 and 386-

393 are modeled in an extended conformation using MOE and integrated with 

VMD (62). After modeling the four flexible CTDs, relative conformations of 

these were again adjusted by optimizing the dihedral angles using MOE.  

The double-stranded DNA (dsDNA) sequence (p21) was extended on 

both sides to obtain a 65-nucleotide dsDNA (Figure 3.1b). To explore the 

effect of binding to different DNA sequences, we modified the DNA sequence 

manually to a puma RE sequence, as seen in Figure 3.1b. Furthermore, in an 

attempt to capture the loose p53-DNA binding mode, we used a DNA 

sequence comprised of the most unlikely nucleotide at each RE position. We 

obtained this non-specific DNA sequence based on a sequence logo that 

depicts the frequency of each nucleotide to be at each of the 20 positions of 

the response element as a result of analyzing 100 known p53 REs (125). 

(Figure 3.1b). 

Once the systems were built, Na+ ions were added to neutralize each 

system. In addition to conserving all crystallographic water molecules, a 12 Å 
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TIP3P (126) water buffer was used to solvate the system explicitly, using the 

Amber12 suite (127). Zinc and its coordinating residues were modeled using 

the cationic dummy atom model (128). Each system consisted of 1,592,100 

atoms and was built using the Amber FF14SB force field (129). 

3.4.2. Molecular Dynamic Simulations 
 
 All molecular dynamics (MD) simulations were performed using 

NAMD2.10 (130). Energy minimization was first performed on the p21 RE, 

puma RE, and non-specific DNA systems. Each system was restrained, and 

atom positions were gradually relaxed to allow atomic fluctuations. System 

relaxation was performed gradually in five steps. In the first 2,000 steps, we 

constrained all non-hydrogen atoms. In the second 2,000 steps, we 

constrained the zinc ions, protein, DNA, and non-hydrogen atoms while letting 

the hydrogen atoms, water molecules, and ions move freely. In the third 2,000 

steps, we constrained the zinc ions, protein, and DNA heavy atoms, but set 

the hydrogen atoms, water molecules, ions, and the zinc-coordinating residues 

free. During the fourth 10,000 steps, only the protein and DNA backbone were 

constrained. During the final 20,000 steps, all atoms were set free. The non-

bonded energy was calculated at every step. Long-range interactions were 

calculated using the Particle Mesh Ewald method with a cut-off distance of 10 

Å (131). At 8 Å, a switching function was applied to improve energy 

conservation. 
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After minimizations, equilibrations were performed on the three 

systems. Throughout the equilibration, we held the water bonds rigid while 

slowly decreasing the harmonic constraints on the heavy atoms in 0.25-

nanosecond (ns) increments that ultimately totaled 1 ns. Following the 

equilibrations, an NPT ensemble was performed with no positional constraints. 

Langevin dynamics kept the temperature constant at 310 K with a gamma 

value of 5 picoseconds/terahertz. A Langevin piston barostat held the pressure 

constant at 1 atm with an oscillation period of 100 femtosecond (fs) and a 

damping time scale of 50 fs. Three independent MD copies were run for each 

of the three systems, generating a total of nine separate simulations of ~110ns 

each. In total, we simulated almost 1 μs of DNA-bound fl-p53. 

3.4.3 Radius of Gyration 
 

The radius of gyration was calculated using cpptraj, a component of the 

Amber suite (127). The average radii of gyration with respect to time were 

calculated for two regions: the fl-p53 Cα atoms and the Cα atoms of the DBD 

and TET. The results were then plotted using the ggplot2 package (132) in R, 

shown in Figure 3.2a and Supplementary Figure 3.1. 

3.4.4 Principle Component Analysis 
 
 Our PCA analysis followed these steps. 1) We concatenated and 

aligned all the trajectories using the α-carbons of residues 89 to 291 for the 

DBD PCA analysis, and all α-carbons for the alpha-carbon PCA analysis. 2) 
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We created a covariance matrix using the α-carbons of the residues of 

interest. 3) We diagonalized the co-variant matrix to obtain the eigenvectors 

and the corresponding eigenvalues. 4) We projected the trajectories onto the 

first and second eigenvectors. 5) We generated pseudo trajectories from the 

first and second eigenvector to study the motion decomposed by each 

principal component. The above steps were performed using cpptraj(127). The 

resulting projections were plotted using gnuplot (133). 

3.4.5 Salt Bridge Formation 
 

The positive residues of the fl-p53 and the negative DNA phosphate 

backbone often formed salt bridges. To inspect these salt bridges, we first 

generated a list of fl-p53 Lys and Arg residues that were positioned within 5 Å 

of DNA, using a tool command language (tcl) script executed in VMD. We then 

loaded the trajectories into VMD and visually identified salt bridges between 

the DNA and the selected Arg/Lys residues. To quantify the analysis of the salt 

bridges, we manually extract the distance between the positive nitrogen atom 

and the negative oxygen atom and used a python script to calculated the 

percent bond occupancy using a distance cutoff of 3.5 Å (134).  

3.4.6 Volume Calculation 
 

The volume between the four DBD monomers was calculated using 

POVME 2.0.(68) An inclusion sphere centered at Cartesian coordinates [128, 

135, 115.5] with a radius of 17 Å fully engulfed the gap between the four 
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monomers, as shown in Supplementary Figure 3.2. A seed was planted in the 

center of the sphere and extended for 4 Å. POVME 2.0 calculated the volume 

starting from the seed and continued until it reached the boundary of the 

inclusion region. Volumes were calculated for every fifth simulation frame. The 

resulting volume distribution was plotted in the R program (132) as a 

histogram. 

3.4.7 Hydrogen-Bond Analysis 
 

Using the VMD Hbond plugin, we generated a list of direct hydrogen 

bonds between the fl-p53 and various DNA sequences, using 3.5Å and 20° 

distance and angle cut-offs, respectively(62).  We further condensed the list by 

considering only those hydrogen bonds with at least 10% occupancy. A single 

list was compiled by combining the data from the three copies of each system 

using a Kepler workflow (135). Finally, we assigned a score to each p53 

residue in the list by summing its occupancy with one or multiple DNA 

residues. 

3.4.8 DNA Bending Angle and Properties Analysis 
 
 The DNA bending angle was calculated using cpptraj (127). We 

manually selected phosphate atoms from nucleotides 1653, 1676, and 1697 

for angle calculation. The results were plotted with the ggplot2 package in R 

(112, 132). Additional DNA properties were analyzed using the Canal software 

for MD trajectories, part of the Curves+ package (112). As we were particularly 
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interested in how the DNA conformation changed upon fl-p53 binding, we set 

the search sequence to the four pentamer repeats (highlighted in blue, red, 

yellow, and green in Figure 3.1b) and calculated only the DNA properties of 

this region.  

3.4.9 L1 Loop Analysis 
 
 The L1 loop (residues 113 to 126) was analyzed using a tcl script in 

VMD(62). First, two monomers were extracted from the crystal structure 

(PDBID:3TS8 (100)), containing distinct examples of the extended and 

recessed L1 loop, respectively. They were used as a reference for simulation 

trajectory alignment and subsequent L1-loop root-mean-square-deviation 

(RMSD) calculations. The L1 RMSD was calculated twice, with respect to the 

extended and recessed conformations in the crystal structure, respectively. 

The atom selections for the alignment and the RMSD calculations were 

different. The trajectory alignment was performed using the DBD Cα atoms, 

and the RMSD calculations were performed using the L1 loop Cα atoms. The 

results were plotted using gnuplot (133). Over the course of the simulations, 

the L1 loop was said to have adopted the recessed or the extended 

conformation if the extended and recessed RMSD values did not show 

overlap. (Supplementary Figure 3.5)  If the two RMSD values overlapped for 

more than 20 ns, the L1 loop was said to have adopted an intermediate 

structure. Furthermore, we were interested in visualizing the conformational 

space that the L1 loop sampled. To this end, we used cpptraj to perform 
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RMSD clustering using a hierarchical agglomerative (bottom-up) approach 

(127). We generated five clusters and extracted the centroid frame using VMD 

(62).  

3.4.10 C124 Pocket Analysis and Pocket Prediction 
 

Using the distance and angle criteria of Wassman et al. (85), we 

calculated the open C124 pocket percentage with respect to time. There are 

two main steps in this process: input generation and the actual calculation. We 

first used cpptraj (127) to generate the four distances and one dihedral angle 

that serve as inputs for the calculation. We then wrote a python script to 

pinpoint the frames that satisfy these distance and angle criteria, from which 

the L1/S3 pocket opening percentage was calculated. The results were plotted 

using basic plotting in R (136). To identify druggable pockets in the p53 

protein, we submitted the fl-p53 monomers from the final frames of the 

simulations to the FTMap web server (137). FTMAP server floods protein 

surfaces with various small solvent molecules to find druggable hot spots 

(137). We then loaded the collective results into VMD and aligned them to the 

whole fl-p53 system in order to locate each predicted druggable pocket. 

3.4.11 Fitting the Density Map Generated from MD Trajectories into the 
p53 EM Maps 
 

Density maps of the fl-p53 bound to three different DNA sequences 

were generated using MDFF from the second half (55 ns to 110 ns) of the 

trajectories (138). The mdff sim function was utilized and the resolution and 
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spacing were set to 30.0 Å and 2.2 Å, respectively, according to experimental 

data (78). Chimera program is used to fit the ensemble-averaged density 

maps from p21-RE-bound, puma-RE-bound and nonspecific-DNA-bound p53 

tetramers into each of the four EM maps in Melero et al(53, 78). The best 

correlation is consistently obtained while fitting into the class III EM map. 

3.4.12 Ensemble averaged electrostatic map calculation 
 

The fl-p53 ensemble averaged electrostatic maps of the three systems 

were calculated with DelPhi Ensemble Electrostatics. Each ensemble was 

comprised of 30 trajectories from 80 ns to 110ns (139). The calculations were 

performed under zero salt concentration, and using 2.0 and 80 as the solute 

and solvent dielectrics.  
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3.5 Appendices 
 

 
 

Supporting Figure 3.1 Time evolution of the radius of gyration 
for the full-length p53.  
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Supporting Figure 3.2 Principle component analysis of the p53 DBD 
tetramer for p21, puma and nonspecific systems. Panel on the top left 
corner shows the PCA of the p21 system DBD. Panel on the top right corner 
shows the PCA of the puma system DBD. Panel on the bottom left shows the 
PCA of the nonspecific system DBD. Panel on the bottom right shows the 
combination of the other three panels. PC1 and PC2 are labeled in the x-axis 
and y-axis, respectively.  
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Supporting Figure 3.3 Time evolution of the DNA bending angle in the 
three systems. The DNA bending angles of the three copies are shown as 
lines in dark grey. Linear regression lines are drawn in blue to show the 
bending trend for each system. 
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Supporting Figure 3.4 L1 loop RMSD with respect to extended and 
recessed loop conformations in the p21 system. Time evolution of the 
rmsd of the L1 loop (of each p53 monomer in each MD copy) calculated with 
respect to both the extended and the recessed L1 loop conformations. The 
rmsd values calculated with respect to the extended and recessed L1 
conformations are colored in blue and red, respectively.  
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Supporting Figure 3.5 L1 loop RMSD with respect to extended and 
recessed loop conformations in the puma system. Time evolution of the 
rmsd of the L1 loop (of each p53 monomer in each MD copy) calculated with 
respect to both the extended and the recessed L1 loop conformations. The 
rmsd values calculated with respect to the extended and recessed L1 
conformations are colored in blue and red, respectively.  
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Supporting Figure 3.6 L1 loop RMSD with respect to extended and 
recessed loop conformations in the nonspecific DNA system. Time 
evolution of the rmsd of the L1 loop (of each p53 monomer in each MD copy) 
calculated with respect to both the extended and the recessed L1 loop 
conformations. The rmsd values calculated with respect to the extended and 
recessed L1 conformations are colored in blue and red, respectively. 
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Supporting Figure 3.7 Ensemble averaged electrostatic map of the fl-p53 
protein. Negative electrostatic (-4 kT/e) isosurface is colored in red and 
positive electrostatic (+4 kT/e) isosurface is shown in blue. DNA is drawn in 
black as a reference.   
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Supporting Figure 3.8 Extended L1 Loop steric clash with the DNA in the 
outer monomer.  The extended L1 loop conformation is superimposed onto 
an outer DBD monomer, which usually adopted a recessed L1 loop 
conformation. Only one monomer surface is shown in cyan. The native 
recessed L1 conformation is colored yellow while the superimposed extended 
L1 conformation is colored blue. The DNA is drawn in gray surface and the 
backbone is shown in ribbon representation. The blue extended L1 
conformation overlaps with the DNA as shown in the above figure, indicating 
an unfavorable steric clash that will force the L1 loop to a recessed 
conformation.  
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Supporting Table 3.1 Salt bridge footprint analysis. This table lists the 
percentage of salt bridge interactions between the C-terminal residues and the 
DNA in each MD copy for the three systems. The residues highlighted in blue, 
green and orange are from monomers A, B and C, respectively. The DNA 
nucleotides that each p53 residue interacted with are shown in the DNA 
counterpart column.  
 

copy1
% 
interaction

DNA 
counterpart copy2

% 
interaction

DNA 
counterpart copy3

% 
interaction

DNA 
counterpart

370 19.3%
DT1686,
DT1687

373 10.5%
DT1687,
DT1686

379 29.8% DA1689
381 25.0% DA1689
382 17.1% DT1687

370 7.1%
DA1591,
DC1592 363 6.9% DA1623 370 27.7%

DC1685,
DT1686

372 21.5% DT1686 373 10.5%
DC1685,
DG1684

373 11.3% DT1687 379 4.5% DC1685

379
30.5%,
18.6%

DA1590,
DC1589 381 19.2%

DC1685,
DT1686

381 23.8% DA1697
382 21.8% DA1591

379 42.6% DT1600 382 12.3% DT1665

381 50.8%
DT1600,
DG1599 386 19.3%

DA1622,
DT1666

382 33.9% DG1599 370 18.3%
DA1622,
DA1621

386
16.6%,
22.7%

DG1679,
DG1678 372 6.1% DT1666

373 6.2% DG1656
363 8.4% DA1630
381 25.3% DT1688
382 44.2% DT1600

386 17.2%
DT1688,
DG1598

puma

nonspecific

p21
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Supporting Table 3.2 Hydrogen bond footprint analysis between the 
DNA and the fl-p53 tetramer. The average scores of the key protein residues 
in the four p53 monomers in each system are shown.  
  

monomer ResID p21 puma nonspecific 
A Ala276 43.0 18.7 0.0 
B Ala276 47.8 0.0 7.4 
C Ala276 60.1 49.1 22.0 
D Ala276 28.7 35.4 8.4 
     
A Arg280 44.3 37.1 9.1 
B Arg280 56.7 40.1 0.0 
C Arg280 69.9 44.9 16.9 
D Arg280 35.0 48.0 11.5 
     
A Ser241 61.3 67.9 60.9 
B Ser241 37.4 55.5 33.9 
C Ser241 62.7 69.8 40.8 
D Ser241 49.9 51.5 39.7 
     
A Arg273 43.8 60.1 26.5 
B Arg273 43.5 32.2 36.0 
C Arg273 52.9 47.5 36.5 
D Arg273 53.1 41.1 21.6 
     
A Asn239 39.2 23.6 4.7 
B Asn239 42.0 19.2 15.0 
C Asn239 46.6 36.5 25.8 
D Asn239 29.7 15.8 6.4 
     
A Ser121 26.6 32.4 17.4 
B Ser121 60.1 90.5 29.0 
C Ser121 42.9 28.3 91.7 
D Ser121 19.3 16.2 15.5 
     
A Lys120 19.3 9.7 0.0 
B Lys120 62.6 5.5 21.1 
C Lys120 61.9 48.1 5.1 
D Lys120 0.0 16.0 0.0 
     
A Arg248 23.8 28.9 9.7 
B Arg248 13.5 7.2 9.8 
C Arg248 17.6 40.9 4.8 
D Arg248 16.0 14.5 38.3 
     
A Thr123 8.0 35.8 0.0 
B Thr123 0.0 0.0 0.0 
C Thr123 0.0 0.0 0.0 
D Thr123 0.0 22.1 29.2 
     
A Asn288 13.8 20.4 10.8 
B Asn288 3.5 22.7 15.9 
C Asn288 5.3 12.1 3.4 
D Asn288 0.0 22.6 7.8 
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Supporting Movie 3.1 PC1 motion going from min to max. Only p53 DBDs 
and DNA is depicted. 
 
Supporting Movie 3.2 PC2 motion going from min to max. Only p53 DBDs 
and DNA is depicted. 
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This chaper, in full, has been submitted for publication of the material 

as it may appear in “Full-length p53 Tetramer Bound to DNA and Its 

Quaternary Dynamics” by Demir, Özlem; Ieong, Pek U; Amaro, Rommie E., 

submitted to PNAS in 2016. This chapter is included with the permission from 

Demir, Özlem and Amaro, Rommie E. 
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