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Abstract

Phenomenology of creation of antihydrogen and measurement of antihydrogen properties

by

Len Takahashi Evans

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Jonathan S. Wurtele, Chair

This dissertation focuses on three ideas useful to the nonneutral plasma experiment at
UC Berkeley and the ALPHA experiment at CERN. While these may seem like disparate
ideas, in all cases, a careful mathematical treatment of the problems yield useful insights.

First, we present improvements to the analysis for diagnostics of temperature and den-
sity of plasmas in Penning-Malmberg trap experiments. Our new methods are faster and
more accurate than previously used methods of analysis. This allows us to conduct these
diagnostics in real-time without any input from a human.

We then theoretically consider the problem of enhanced cooling of an electron plasma
from a coupling of the plasma to cavity modes. We make more rigorous the previous analysis
that was done on the topic, and then extend these results to a longitudinally dynamic plasma.
We compare our theoretical results with experimental observations from the Berkeley plasma
trap and with simulations and find good agreement.

Finally, we consider analyses of ALPHA data to measure antihydrogen properties. We
place a statistically rigorous bound on the antihydrogen charge from ALPHA data. This
improves the previous bound on antihydrogen charge by a factor of 20, and assuming super-
position, improves the bound on the positron charge anomaly by a factor of 25. Finally, we
consider analyses for a future measurement of the gravitational mass of antihydrogen. We
find that with reasonable constraints, a measurement of the gravitational mass of antihydro-
gen with a precision of 1% should be feasible.
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Chapter 1

Introduction

Believe nothing from this book.
Except what you know to be true.
Test the knowledge.
Find your truth.

Liber Primus

The standard model of particle physics, based on quantum field theory, has been extremely
successful in describing interactions of particles. With the recent discovery of the Higgs
boson, all of the fundamental1 theoretical predictions of the standard model have been
discovered [8, 9]. Further, almost all measurement of the properties of these particles show
excellent agreement with the standard model2,3.

However, the standard model is not without issues. It suffers from a fine-tuning problem
(the hierarchy problem) in that if there are energy scales relevant to particle physics larger
than the weak scale (such as the gravitational scale), then it is unnatural for the Higgs to
have the observed value of mass. Further, the theory has many free parameters that must be
empirically determined, and some quantities, such as the CP violating phase, are extremely
small without a known mechanism to make the values small [13]. Various cosmological
observations are well-explained by dark energy and dark matter, yet the standard model
does not include dark matter and has a scalar vacuum expectation value much too small to
account for dark energy [14]. In addition, the observed abundance of matter over antimatter
is not predicted by the standard model and accepted ideas of cosmology. Despite numerous
efforts, quantum field theory has also been difficult to incorporate with general relativity [13].

1We say fundamental as there are composite mesons and baryons predicted that have not been discovered.
2Two measurements that show discrepancy at > 3σ level are the muon magnetic moment measure-

ments [10] and the branching ratio of the B̄ → D(∗)τ ν̄τ decay [11].
3Neutrino masses generated through a Higgs mechanism are a straightforward addition to the standard

model, so here they are considered part of the standard model. However, because of their small values, there
are proposals that the masses are generated through other mechanisms such as the seesaw mechanism, which
would be physics beyond the standard model [12].
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Although there are many theories that attempt to solve these issues, their veracity can
only be verified by careful experimental measurements. Collider experiments explore the
high-energy regime. These experiments test the standard model through measurement of
the properties of known particles and search for new particles. In the low-energy regime,
properties of antimatter systems are carefully measured and compared to the theoretical
expectations. These measurements constrain extensions of the standard model and any
observed deviations would necessarily have to be incorporated into the more general theory.

Antihydrogen is an ideal test of quantum field theories as it is the simplest purely anti-
matter system, making it amenable to highly accurate theoretical predictions [15]. Further,
hydrogen properties have been measured to great precision, and thus any deviation mea-
sured in antihydrogen will be readily apparent [7]. Antihydrogen is expected to have the
same charge as hydrogen, which has charge < 10−21e. However, unlike other uncharged an-
timatter such as antineutrons, antihydrogen has a significant magnetic moment due to its
positron. This means that it can be trapped with magnetic field gradients achievable with
current technology. The expected lack of charge makes antihydrogen apt for gravity studies,
as stray electric and magnetic force will overpower the gravitational force for any charged
particle [16]. An advantage of studies with antimatter in general are that they create a
readily measured signal when they interact with normal matter (annihilate). As a result,
while it may be hard to determine whether a antihydrogen atom is trapped, an experiment
can determine with great certainty whether an antihydrogen atom was trapped. The only
limitation to this method is the background from cosmic rays, which must be distinguished
from an antihydrogen signal.

Thus, experimental tests of antihydrogen properties test fundamentals of quantum field
theory and general relativity. Observed differences may offer key insights to guide more
complete theories of particle interactions and ultimately quantum gravity [17,18].

1.1 The CPT Theorem

The CPT theorem states that under the combined operation of charge conjugation (C), parity
transformation (P ), and time inversion (T ), the standard model lagrangian is invariant. This
feature is actually more general and any Lorentz invariant, local quantum field theory with
a hermitian hamiltonian is CPT invariant [19].

Under CPT, four-vectors are reversed and particles are replaced with antiparticles of
the same spin orientation [20]. Thus, we can interpret the CPT operation as replacing the
particle equations of motion with the antiparticle equations of motion. Hence, if CPT is a
good symmetry, the properties of hydrogen and antihydrogen (and in general matter systems
and their corresponding anti-matter systems) should be equivalent [21].

To see this more concretely, consider the lagrangian of a charged particle interacting with
an electromagnetic field [15]. This could be, for example, an electron interacting with the
electromagnetic field produced by a proton in a hydrogen atom.
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LQED = ψ̄γµ(i∂µ − eAµ − eBµ)ψ − 1

4
FµνF

µν (1.1)

Here, ψ denotes a fermion field and ψ̄ its Dirac adjoint [15]. Aµ is the electromagnetic
potential of the electron itself, whereas Bµ is the external electromagnetic potential. Fµν =
∂µAν − ∂νAµ is the electromagnetic field tensor. The Dirac matrices γµ, are a set of 4 × 4
matrices that are a representation of a Clifford algebra with three space dimensions and one
time dimension. The fermion bilinear ψ̄γµψ is the probability current of the fermion. Just
as a regular current, this is odd under CPT, as it is a four-vector. The partial derivative and
electromagnetic potentials are also odd under PT, and unchanged by C, so the first term
of the lagrangian is invariant under CPT. Both of the tensors in the second term are CPT
even, so that term is invariant under CPT. Hence, we expect properties of antihydrogen
determined by electromagnetic forces (such as its spectrum) to be identical because of the
CPT theorem.

The idea behind the connection between Lorentz invariance and CPT is given by the
following argument [22]. If a hamiltonian of a theory is Lorentz invariant, then all tensors
should have their indices contracted with other indices. As a result, even if four-vectors
(or odd-rank tensors) change sign under CPT, the net effect is that any Lorentz invari-
ant term will not change. This is the PT theorem in classical field theories [23]. While
charge conjugation may appear fundamentally different from the space-time symmetries, the
Feynman-Stückelberg interpretation, equating anti-particles as negative energy modes of the
antiparticle with time reversed, offers the connection [15]. A quantum field theory necessarily
has particles that under PT are transformed into their antiparticles under this interpretation.
Thus, charge conjugation is necessary to fully leave the expressions invariant. The natural
extension of the classical PT theorem to a quantum theory is the CPT theorem [24].

Experimental verification of the CPT theorem tests foundational axioms of quantum field
theories and physics in general. Any violation found challenges quantum field theory at a
fundamental level and is useful in motivating more general theories that solve some of the
issues mentioned in the previous section.

1.2 Antihydrogen

CERN’s antiproton decelerator (AD) facility houses numerous experiments to measure prop-
erties of antimatter and test the CPT theorem and other predictions of quantum field the-
ory [25]. ALPHA4 is one of these experiments that studies antihydrogen. ALPHA has made
measurements of antihydrogen’s spectrum [26], mass [18], and charge [27,28].

Antihydrogen is dominantly produced in ALPHA through the recombination process
e+ + e+ + p̄→ e+ + H̄∗ (where H̄∗ denotes antihydrogen in an excited state). Antihydrogen
could also be produced in the process e+ + p̄ → H̄∗ + γ [29] . While initially it may seem

4ALPHA formerly stood for antihydrogen laser physics apparatus, but has since abandoned this acronym.
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like this would be the dominant process since it is a two body collision, the time to radiate
a photon is slow compared to a collision time and hence the process happens quite slowly.

The mixing is achieved by trapping positrons and antiprotons in neighboring traps po-
tential wells. The antiprotons are then provided with energy so that they spill over into
the positron well. The antiprotons cool as they interact, via two-body collisions, with the
positrons, and eventually recombine into antihydrogen. This is a non-equilibrium process in
which simulations are necessary to model and optimize the procedure. For positron temper-
atures that ALPHA achieves, the reaction rate of the three body process is fast enough that
all the antiprotons will be converted to antihydrogen during the mixing process.

The magnetic moment of ground state antihydrogen is mostly determined by the positron
spin [16]. With trapping fields of order 1 T, only antihydrogen with temperatures . 1 K
can be trapped. The antihydrogen energy will come mostly from the antiproton energy. As
the two body collision rate of antiprotons and positrons is faster than the three body anti-
hydrogen recombination, the antiprotons will thermalize with the positrons before forming
antihydrogen [30]. Thus, cold positron plasmas will lead to cold antihydrogen, which ulti-
mately leads to more antihydrogen atoms trapped. Currently, the trapping rate is limited to
∼ 20 per experimental cycle (∼100s) because cold plasma temperatures are not achievable.

We present results in this thesis on the measurement of antihydrogen charge from 24 anti-
atoms. While these bounds are competitive with measurements made on other systems [7],
going forward, more particles will be necessary for more precise measurements. In this thesis,
we discuss methods to achieve colder lepton plasma temperatures toward this goal.

1.3 Description of Chapters

Chap. 2 provides an overview of Penning-Malmberg traps, and in particular will highlight
features of ALPHA and the plasma trap at UC Berkeley. The ALPHA trap is used to create
antihydrogen and measure antihydrogen properties, while the Berkeley plasma trap is used
to study the cooling process of lepton plasmas.

Chap. 3 discusses fitting of curves to a nonlinear functional form and the Levenberg-
Marquardt algorithm for achieving this. We discuss our fast implementation of the Levenberg-
Marquardt algorithm on graphical processing units (GPUs). This algorithm is an integral
part of the analysis of data for the plasma diagnostics of Chap. 4 and 5.

Chap. 4 uses the methods of Chap. 3 to analyze field line integrated images of plasmas
extracted from a Penning-Malmberg trap. The images can be used to estimate the density
and length of a plasma. Our GPU code to analyze the images runs in a few seconds,
compared to the minutes that a previous, non-GPU implementation took. Our new method
yields increased accuracy and precision in the fits.

Chap. 5 describes the parallel temperature diagnostic of plasmas. We prove how low a
temperature can feasibly be measured using the diagnostic. We then discuss our implemen-
tation of two different approaches to the problem. These approaches are designed to run in
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a few seconds and be fully automated such that plasma temperatures are available with no
human input.

In Chap. 6 we theoretically consider the cooling process of plasmas in the Berkeley
plasma trap. While some of the initial results from the experiment were puzzling [5], we find
that a careful analysis analysis is able to elucidate many of the results. These new cooling
techniques will eventually be incorporated into ALPHA to improve the overall trapping rate
of antihydrogen.

Chap. 7 of this thesis describes an experiment to bound the charge of antihydrogen using
only 24 atoms to be < 7 × 10−9e [28]. Assuming superposition, this constrains the charge
difference of the positron and electron than any other measurement [7].

While the current best bound on the antihydrogen mass is large, we find in Chap. 8
evidence that a 1% measurement should be feasible in the future with a new trap designed
for gravity studies with antihydrogen.
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Chapter 2

The Berkeley Plasma Trap and
ALPHA

Penning-Malmberg traps are used at CERN and Berkeley to capture and manipulate charged
particles [31]. We start by describing the Penning-Malmberg trap and present results that
will be referred to in the rest of the thesis. We then describe the Berkeley plasma trap and
ALPHA. In particular, we highlight how these apparatuses deviate from a standard Penning-
Malmberg trap. Typical parameter ranges for lepton plasmas in the ALPHA experiment and
the Berkeley plasma trap are shown in Table 2.1.

Figure 2.1: A schematic of a Penning Trap. The plasma is confined radially by a strong
magnetic field. Electrodes are biased to trap the plasma axially. Image by A.P. Povilus [1].
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Parameter Typical Values (SI) Typical Values (Energy units)
Number 104 − 107 104 − 107

Density (n0) 106 − 108 cm−3 8× 10−9 − 8× 10−7 eV3

Temperature (T ) 10− 104 K 10−3 − 1 eV
Length (lp) 1− 10 cm 103 − 105 eV−1

Radius (Rp) 1− 5 mm 5× 103 − 2.5× 105 eV−1

Cyclotron frequency (ωc) 10− 103 GHz 10−5 − 10−3 eV
Bounce frequency (ωz) 30− 300 MHz 2× 10−8 − 10−7 eV

Table 2.1: Typical parameter ranges for lepton plasmas in ALPHA and the Berkeley plasma
trap.

2.1 Penning-Malmberg Traps

The Penning-Malmberg trap is used to confine and manipulate plasmas. The basic configu-
ration of the trap is a series of cylindrical electrodes that is surrounded by a solenoid magnet,
as shown in Fig. 2.1.

The solenoid provides a strong magnetic field, and because charged particles will be
tied to field lines (see Appendix A), the magnetic field provides confinement of the charged
particles in the radial direction. To see this, consider the canonical angular momentum,
which is conserved assuming azimuthal symmetry in the trap. Consider a plasma with N
particles, and index each particle by a label i. Particle i has angular velocity vθ,i and radial
position ri. In a strong B-field,

Pθ =
N∑
i=1

(
mrivθ,i +

qBr2
i

2

)
≈ qB

2

N∑
i=1

r2
i . (2.1)

Thus, the plasma radius is constant. Without collisions, a plasma particle undergoes a
cyclotron motion at frequency ωc = |q|B/m in a tight radius around its field line indefinitely.
Plasma collisions will cause charged particles to jump between field lines, but this will not
affect the overall plasma radius [32].

A Penning-Malmberg trap must be evacuated in order to have good radial confinement.
Neutral particles in the trap are not affected by the electromagnetic fields in the trap. Thus,
the neutral particles will not be azimuthally symmetric about the magnetic field axis. This
means that collisions of plasma particles with neutral particles can lead to a net torque on
the system, which will lead to the canonical momentum no longer being conserved. The
argument given above is then invalid, and the plasma can expand. Other effects such as
misalignment between the magnetic field and the electric potential will similarly lead to
azimuthal symmetry breaking and hence lead to expansion of the plasma. These factors are
controlled such that confinement of plasmas is possible for minutes in ALPHA and in the
Berkeley plasma trap. This is long enough for the experiments conducted on the plasmas.
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Figure 2.2: The potential everywhere inside the electrode configuration shown here is de-
scribed by Eq. 2.2. For this expression, we assume there are additional grounded electrodes
extending beyond the ones shown.

The electrodes in the trap can be biased to provide an electric potential well that traps
the particles axially (that is, along the magnetic field lines). This will cause the particles
to bounce between the turning points of the potential. The frequency of the bounce will be
referred to as ωz in this thesis. There is also a slow azimuthal E ×B drift (see Appendix A
for details) of each plasma particle from the confining field and the plasma self field. This
will cause the plasma to rotate on axis, while keeping its shape radially. For parameters of
interest to CERN and Berkeley, ωc � ωz � ωE×B (see Table 2.1).

Another advantage of the electrodes is that altering the electric potentials allows for
control of the plasma. In particular, the diagnostics discussed later are destructive techniques
where the plasma confining potential is lowered to let particles escape in a controlled manner.

Mathematical Description

Consider one electrode of the Penning-Malmberg trap with radius Rw and length L. As in
Fig. 2.2, we bias the electrode to a potential V and ground all neighboring electrodes. We
assume the neighboring electrodes extend indefinitely. The potential everywhere inside the
trap is [3, 30]

V (r, z) =
2V

π

∫ ∞
0

dk
I0(2kr/L)

I0(2kRw/L)

sin(k)

k
cos

(
2kz

L

)
. (2.2)

Now consider an electrode that is unbiased compared to its neighboring grounded elec-
trodes in order to trap particles, as in Fig. 2.1. Near the center of this electrode, the potential
is approximately harmonic, with
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V (r, z) ≈ V

(
S−1

(
Rw

L

)
+

(
r2

L2
− 2

z2

L2

)
S1

(
Rw

L

))
, (2.3)

where

Sn(x) =
2

π

∫ ∞
0

dk kn
sin(k)

I0(2kx)
. (2.4)

Thus, the potential is a trapping potential in either z or r, but not both. The magnetic field
already offers radial confinement, and this confinement is not diminished by the radial part
of the applied potential. This can be seen as electric potential not appearing in Eq. 2.1.
Thus, the electric fields are used to trap the plasma in z.

2.2 Description of the Experiments

In ALPHA and the Berkeley plasma trap, the electrodes of the Penning-Malmberg trap are
cooled to cryogenic temperatures so that the confined plasmas are expected to equilibrate to
low temperatures. A large, superconducting magnet is used to generate the solenoidal field.

Berkeley Plasma Trap

The Berkeley plasma trap was designed to study electron plasmas. In particular, it has been
used to study the cooling of plasmas in a cavity, and these results are discussed in Chap. 6.
Though not discussed here, the trap has been used to study the rotating wall technique [33]
and phase space islands [34].

The electrons in the Berkeley plasma trap are produced by a heated filament. This
produces hot electrons with a temperature of ∼1 eV. To catch the electrons, an electrode
near the center of the trap is raised to a potential such that electrons bounce off. Then,
another electrode downstream (closer to the filament) is raised to a potential such that
electrons are trapped. Once these electrons are trapped, the filament can be turned off and
these captured plasmas can be manipulated by altering the electrode potentials.

The Berkeley plasma trap deviates from a standard Penning-Malmberg trap in that not
all of the electrodes are perfectly cylindrical (that is, shaped like Fig. 2.1). Some electrodes
have a radius significantly smaller than the neighboring electrodes. The radius of these
electrodes also varies axially as shown in Fig. 2.2. This is called a bulge and the shape was
designed to isolate specific modes of the cavity from the exterior. This is accomplished by
designing the cavity to act as microwave cutoffs for the mode [2, 35]. This prevents leakage
of microwave modes in the cavity and shields the cavity modes from external radiation at
the cyclotron frequency, leading to reduced heating. Any leakage of the mode results in an
undesired decrease in the Q of the cavity. In a manner similar to the Purcell effect [36], we
expect that this cavity will allow for enhanced cyclotron emission by plasma particles in the
bulge cavity. This is described in detail in Chap. 6.
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Figure 2.3: Some electrodes in the Berkeley plasma trap are designed to bulge to isolate the
cavity modes from external radiation. Image by N. Evetts [2].

In theory, isolating part of the Penning-Malmberg trap is possible with physical doors
that stop any microwave radiation. However, doors will also stop plasma from entering
the trap and thus must open and close. Getting doors to operate in a magnetic, cryogenic
environment is non-trivial and thus the bulge cavity is advantageous [1]. Experiments with
doors and the bulge cavity is a planned future experiment for the Berkeley plasma trap.

ALPHA

The goal of the ALPHA experiment is to produce antihydrogen and measure antihydrogen
properties. Antiprotons are produced for ALPHA by CERN’s antiproton decelerator [25].
These antiprotons are captured in a Penning-Malmberg trap. Positrons are produced by a
Na-22 source on the other side of the experiment. Once the antiprotons and positrons are
appropriately cooled, they are brought together using an autoresonant process [37]. The
antiprotons and positrons then combine to make antihydrogen, as described in the previous
chapter.

Unfortunately, the Penning-Malmberg trap is unable to trap neutral particles. Thus,
ALPHA superimposes an Ioffe trap (discussed below) on the Penning-Malmberg trap in
order to trap the charged particles.

Ioffe Trap

In ALPHA, antihydrogen is trapped in an Ioffe trap [38], which is a 2n-pole magnet for
radial confinement with two mirror magnets for axial confinement. These coils are placed
in the same region as the Penning-Malmberg trap such that charged and neutral particle
trapping can be accomplished in the same space. Since the antihydrogen has a magnetic
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Figure 2.4: Neutral particles with a magnetic moment can be trapped with octupole and
mirror magnets. The arrows in the figure show the direction of current. The electrodes of
the Penning-Malmberg trap sit inside the capture solenoid. Image by C. So [3].

moment |~µ| = 0.56 K/T [16], the energy of the antihydrogen due to these fields is

U = −~µ · ~B. (2.5)

Thus, antihydrogen can be trapped if there is a well in the magnetic field profile. However, if
antihydrogen has kinetic energy that is much greater than the trap energy, the antihydrogen
will not be trapped. Since it is difficult to construct trap depths larger than 1 T, this means
antihydrogen needs to be colder than 0.56 K in order to be trapped. Thus, creating cold
antihydrogen is necessary.

A radial magnetic gradient can be created with a multipole magnet. An ideal 2n-pole
magnet consists of 2n infinite, parallel wires evenly-spaced around a cylinder. Each wire
carries the same current, but the direction of the current reverses between neighboring wires.
This arrangement is only possible for even numbers, hence the name 2n-pole. The field is
proportional to rn−1, with the minimum occurring at the center [39].

A physical multipole magnet is not infinite in length and consists of wires with finite
thickness. Thus, the ideal rn−1 scaling is only approximately the field produced. However,
as long as the particles are near both the radial and longitudinal center of the magnet, the
approximation is good to within a few percent. It is also important to make sure the addition
of the mirror coil and multipole fields do not cause the local minima of the magnetic field to
shift off axis, as this could allow a mechanism for particles to escape [3].

The octupole and mirror fields obviously perturb the nearly uniform solenoidal field of
the Penning trap. Thus, there is worry that these perturbations would cause losses in the
plasma. Higher order multipoles are better to prevent this loss as they have a flatter profile
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radially and thus better approximate the ideal Penning-Malmberg trap [40,41]. ALPHA uses
an octupole as designing a higher order multipole magnet becomes an engineering challenge.
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Chapter 3

Nonlinear Curve Fitting

In this chapter we provide the theoretical basis for fitting nonlinear curves to data using
the Levenberg-Marquardt algorithm [42, 43]. We then discuss our implementation of the
algorithm on graphical processing units (GPUs). The Levenberg-Marquardt algorithm is an
integral part of the analysis of data for the plasma diagnostics described in Chap. 4 and 5.

3.1 Problem Formulation

Consider a function fβ : Rd → R that is characterized by n fit parameters β ∈ Rn. Define
D = {(~xi, yi)|i ∈ {1, ..., N}}, a collection of N inputs ~xi ∈ Rd with N corresponding outputs
yi ∈ R. We wish to find β such that fβ represents D “the best.” Here, bold denotes a
vector in Rn whereas the vector symbol denotes a vector in Rd. We will assume that the
residuals between the optimal fit and the data are Gaussian distributed with mean 0 and
an unknown variance σ2 [44]. Because of the law of large numbers, this is a justifiable and
often used assumption. Further, we assume that each of the N inputs and outputs in D are
independent of one another. We can then write the likelihood function of the data given the
fit parameters as

p(D|β) =
N∏
i=1

1√
2πσ

e−
(fβ(~xi)−yi)

2

2σ2 . (3.1)

Thus, the likelihood function is maximized when

χ2(β) =
N∑
i=1

(fβ(~xi)− yi)2 (3.2)

is minimized with respect to its argument β. Note that we call this quantity χ2 as by
assumption the residual is a Gaussian random variable and thus this quantity is a sum of
the squares of Gaussian random variables. For convenience, we define χ(β) as the vector of
residuals,
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χi(β) = fβ(~xi)− yi, (3.3)

which is consistent with the previous definition of χ2(β). When the function fβ is linear in
the parameters β, standard linear regression (least-squares) techniques can be used [45,46].
However, when fβ is nonlinear in the parameters the minimization must be handled more
carefully.

3.2 Levenberg-Marquardt Algorithm

Define J as the N × n matrix corresponding to the gradient of fβ (or equivalently, χ(β))
with respect to β

Jij(β) =
∂fβ(~xi)

∂βj

∣∣∣∣
β

. (3.4)

Consider a perturbation δ away from β. Assuming fβ is differentiable in β and the
perturbation small, we see the change in the value of fβ is

χ(β + δ) ≈ χ(β) + J(β)δ. (3.5)

We wish to extremize χ2(β), and thus we would like to find an update δ such that it sets
the gradient of χ2(β) to zero. The gradient is

0 =
∂χ2(β + δ)

∂βj
= 2JT (β + δ)χ(β + δ) ≈ 2JT (β + δ)(χ(β) + J(β)δ). (3.6)

If J is invertible, this is satisfied when δ is

δk = −J−1(β)χ. (3.7)

However, it is unlikely that J will be invertible, as typically N > n, or the number of data
points is usually larger than the number of fit parameters. Thus, we replace the inverse by
the pseudo-inverse and get

δ = −J+χ = (JTJ)−1JTχ. (3.8)

JTJ is a small matrix since often the number of fit parameters, n, is small. Because of
this, the inverse is easy to compute. In our implementation, we quickly compute the inverse
through a Cholesky decomposition, as the term multiplying δ is positive-definite [46]. Using
this solution as an update is the Gauss-Newton method for nonlinear fits. We will prove
in the next section that the method is not guaranteed to converge locally or globally. The
Levenberg-Marquardt algorithm introduces an unspecified regularization parameter λ, such
that global convergence can be guaranteed for a sufficiently large choice of λ, when local
convergence can be achieved [47].
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Gauss-Newton algorithm

Assuming J has full column rank, JTJ is invertible, and a Gauss-Newton update to the
current guess β(k) is

β(k+1) = β(k) + (JT (β(k))J(β(k)))−1JT (β(k))χ. (3.9)

We will investigate the convergence properties of this method. Consider the error at step
k + 1, e(k+1). Calling the optimum value β∗ and the residual at the optimum value χ∗, this
is [47]

e(k+1) = β(k+1) − β∗

= β(k) + (JT (β(k))J(β(k)))−1JT (β(k))χ− β∗

= (JT (β(k))J(β(k)))−1JT (β(k))(J(β(k))e(k) − χ)

= (JT (β(k))J(β(k)))−1JT (β(k))(−χ∗ + J(β(k))e(k) − χ+ χ∗)

(3.10)

By the multidimensional mean value theorem [48], we have

J(β(k))e(k) + χ∗ − χ = J(β(k))e(k) −
∫ 1

0

dt J(β∗ + te(k))e(k)

=

∫ 1

0

dt
[
J(β(k))− J(β∗ + te(k))

]
e(k).

(3.11)

Assume that J(β) is Lipschitz in the vicinity of β∗, with Lipschitz constant γ. Since the fits
in this thesis are fits to analytic functions, this assumption should be valid for the use cases.
Then, we have

∥∥∥∥∫ 1

0

dt
[
J(β(k))− J(β∗ + te(k))

]
e(k)

∥∥∥∥ ≤ ∫ 1

0

dt

∥∥∥∥J(β(k))− J(β∗ + te(k))

∥∥∥∥‖e(k)‖

≤ γ‖e(k)‖2

(3.12)

As we are optimizing ‖χ‖2 we expect that at the optimal point, the gradient of ‖χ‖2 , which
is proportional to JT (β∗)χ∗, is zero. Plugging these results into Eq. 3.10 gives

‖e(k+1)‖ ≤ ‖(JT (β(k))J(β(k)))−1‖
(
‖JT (β(k))χ∗‖+ ‖JT (β(k))‖‖J(β(k))e(k) − χ+ χ∗‖

)
≤ ‖(JT (β(k))J(β(k)))−1‖

(
‖JT (β(k))− JT (β∗)‖‖χ∗‖+ γ‖JT (β(k))‖‖e(k)‖2

)
≤ γ‖(JT (β(k))J(β(k)))−1‖

(
‖χ∗‖‖e(k)‖+ ‖JT (β(k))‖‖e(k)‖2

)
(3.13)
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There are two noteworthy aspects of the above equation. Global convergence is not guaran-
teed as the ‖e(k)‖2 is large when the guess is far away from the optimum value. Furthermore,
local convergence is not guaranteed. When γ‖χ∗‖ is smaller than the smallest eigenvalue
of JTJ in the vicinity of β∗, then the term in front of ‖e(k)‖ is less than 1 and the method
converges. When this is not the case, local convergence is not guaranteed. In general, con-
vergence is linear, but if ‖χ∗‖ is small (which could be reasonable for a fit with very little
noise) then the convergence can be quadratic.

Regularizing the Gauss-Newton Algorithm

Similar to Tikhonov regularization, the Levenberg-Marquardt algorithm makes a simple
modification of the update to be [49]

β(k+1) = β(k) + (JT (β(k))J(β(k)) + λI)−1JT (β(k))χ, (3.14)

where I is the n × n identity matrix and λ ∈ (0,∞) is a parameter that is adjusted such
that the residual decreases at each step of the algorithm. Note that now the restriction that
J have full column rank is no longer strictly necessary, but we will show that in this case
local convergence cannot be guaranteed. For the analyses in this thesis, the problems are
well-formed and J has full column rank.

Note that for small λ, the Levenberg-Marquardt algorithm reduces to the Gauss-Newton
algorithm. For large λ, the inversion becomes trivial and the descent is along J(β), or the
gradient descent direction. Thus, the Levenberg-Marquardt algorithm interpolates smoothly
between Gauss-Newton and gradient descent.

The analysis of the change in error at each step can proceed exactly as before, and this
gives

‖e(k+1)‖ ≤
∥∥(JT (β(k))J(β(k)) + λI)−1

∥∥ ((γ‖χ∗‖+ λ)‖e(k)‖+ γ‖e(k)‖2
∥∥JT (β(k))

∥∥) . (3.15)

λ has the effect of increasing the eigenvalues of JTJ. Thus, the eigenvalues of (JTJ + λI)−1

are small as λ gets large. This means that there is a choice of λ that will make ‖(JTJ +
λI)−1‖ smaller than γ‖JT (β(k)‖, and hence global convergence is now guaranteed with this
modification, provided the method is locally convergent. Note that this does not mean the
method will converge to the global minimum, it simply means that the method will converge
to a minimum given any initial condition.

The local convergence properties are shared with the Gauss-Newton method. In partic-
ular, the constraint that γ‖χ∗‖ is less than the smallest eigenvalue of JTJ in the vicinity of
β∗ is still necessary [50]. This is why full column rank in J is necessary.

For large λ, JTJ+λI has large eigenvalues and the update of the guess is small. Multiple
steps with large λ thus lead to slow convergence. The algorithm starts with a small value
of λ to try to take the largest step it can towards the optimum value of β. In our code we
start with λ = 1. The algorithm increases λ (by multiplying it by 2) until it finds a δ that
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reduces χ2(β + δ), meaning it tries to take the largest step it can toward reducing the total
residual. Once found, δ is added to β, and λ is set to a smaller value to try to take a big
step in the next iteration. In our implementation, we divide λ by 3 when a successful update
step is found. This process is repeated until the change, δ, is below a certain threshold
chosen by the user, or a maximum number of steps is reached. Our termination condition is
‖δ‖2 < t‖β‖2, where t is a user-defined tolerance.

Good initial guesses for β are still necessary. A bad guess can converge to an unex-
pected minimum. In addition, convergence is faster if the initial guess is decent, and, as the
Levenberg-Marquardt algorithm is the bottleneck in the analyses for plasma diagnostics dis-
cussed in this thesis, it is important to speed it up. We discuss choices of initial parameters
when discussing the particular applications of the Levenberg-Marquardt algorithm.

Implementation on a GPU

We implemented the Levenberg-Marquardt algorithm on a GPU using the CUDA lan-
guage [51]. The code is available in Sec. D.1. We chose to use a GPU as it is a relatively
inexpensive way to speed up code and because there are well-developed libraries for linear
algebra on GPUs.

We use the -O3 and -use_fast_math compiler flags to make use of compiler optimiza-
tions. All the numbers are represented as floats and the float version of mathematical
functions (such as expf) is used, as this is slightly faster than using double precision. We
have not written the code with double precision so we do not know how much of a speed
advantage there is from using floats.

Most of the parallelizations described here are from Ref. [52]. The Levenberg-Marquardt
algorithm itself is not very parallelizable, as we have to find steps to sequentially improve
the current best guess for all of the fit parameters. However, many of the intermediate steps
can be split up into tiny problems that can be run in parallel. This attribute makes this
problem ideal to being sped up by GPUs.

We wrote the code as a sequence of vector/matrix operations as much as possible. This
was so that vector/matrix operations could be done using cuBLAS, as this is far more
optimized than anything we would be able to write [53]. An interesting aspect of this
problem is that we have many problems that are the size of the number of fit parameters,
n, which is typically small. An example of this is the matrix inversion in Eq. 3.14. Using a
GPU in this instance is overkill and may end up being slower due to the slow communication
between the CPU and GPU. In contrast, there are also computations that depend on the
number of data points, N, which is quite large (∼ 106) in our applications. An example of
this is the computation of JTJ in Eq. 3.14. These benefit greatly from the parallelism that
GPUs offer. With this in mind, in executing vector operations for small vectors we used the
CPU whereas for other tasks we use the GPU. As communication between the GPU and
CPU is slow, there may be a slight speedup from doing all the computations (even the small
ones) on the GPU, but we have not tested this.
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Another positive aspect of this problem is that the gradient of fβ at each value of ~xi
can each be computed independently. Since these are each small computations, they are
perfect to be executed on separate GPU nodes at the same time. Since we would like to fit
to a particular, known, function, we analytically compute the derivative of fβ with respect
to each of its parameters. These components of the gradient can all be found using only a
few numerical operations. General purpose Levenberg-Marquardt fitters such as the one in
LabView compute the gradient numerically with finite differences, and thus requires more
computations and are less accurate [54]. Thus, by specializing to the specific cases we care
about, we gain some speed and accuracy in our method.

Multiple GPUs and multiple CPU cores can also be exploited for a speedup [52]. In the
Levenberg-Marquardt algorithm, often many steps (values of λ) are tried before an optimal
one is found. While it depends on the problem, we found for our typical fits that this is true
for about 30% of steps. Interestingly, this is much lower than for the applications considered
in Ref. [52]. The optimal step is found more quickly by checking multiple potential steps
(different values of λ) at the same time on different cores. Even if an optimal step would
have been found with just one value of λ, it could be that the next trial value of λ would
further reduce the residual and, hence, this could speed up the process. As we do not have
a machine with multiple GPUs we were not able to implement this parallelization.

We find that the main bottlenecks in our code are matrix-matrix multiplications and
matrix-vector multiplications. The next largest time sinks are when norms and updates are
computed on large vectors. This makes sense since the vectors and matrices are large, the
size of the the number of pixels. However, these operations are probably close to optimal
because they are implemented in cuBLAS. As discussed previously, the best way to improve
this is to get more GPU cores. While we have not made any definitive measurements, we
noticed no change in runtime when memcpy1 of a small vector was taken out (when it was
deemed to be unnecessary). Thus, the bottleneck really seems to be computational rather
than communicational.

1memcpy is a transfer of data from the CPU to the GPU.
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Chapter 4

Radial Profile Diagnostic

In this chapter, we will discuss analysis of data from a plasma radial profile. The electric
potentials confining a plasma in the Penning-Malmberg trap can be lowered to let the plasma
escape. The plasma signal can be converted into a light signal to give a field line integrated
image of the plasma. These images can be used to determine the shape and extent of the
plasma [55]. Together with the knowledge of the initial confining potentials, the images yield
the density of the plasma [3].

The analysis of plasma images was previously implemented with a multi-core code written
in LabView with a runtime on the order of minutes. In order to get faster results, images
were often downsampled at the cost of the accuracy. In addition, the optimization problem
did not include the center coordinates of the plasma as fit parameters. Using the GPU
Levenberg-Marquardt implementation discussed in Chap. 3, the runtime is improved to a
few seconds and is able to fit the center location at the same time as the other fit parameters,
yielding increased accuracy and precision.

This method only analyzes images with isolated plasma distributions with radial symme-
try. We develop an algorithm to fit overlapping plasma distributions and plasma distributions
that do not have radial symmetry.

4.1 Description

As discussed in Chapter 2, the plasmas at CERN and Berkeley are confined in a series of
electrodes with adjustable voltages. The electrodes are biased to a high voltage (that is,
eV � Tplasma) in order to trap the plasma particles. To gain knowledge of the plasma
properties, the electrode voltages are lowered such that the charged particles can escape
toward a micro-channel plate (MCP)/phosphor screen array [56]. This is shown in Fig. 4.1.
The MCP amplifies the charge incident on it and this amplified charge is then converted
to a light signal by a phosphor screen. This light can be collected on a CCD camera for a
view of the field line integrated radial profile of the plasma. Examples of images are shown
if Fig. 4.2. The light can also collected using a photodiode circuit that can read out a signal
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Figure 4.1: Extracted electron signal is converted to a light signal by the MCP, which can
then be detected by a camera or photodiode detector. Image by A.P. Povilus [1]. The camera
image is used in the diagnostic described in this chapter while the photodiode signal is used
in the diagnostic described in Chap. 5.

Figure 4.2: Plasma images from the light collected on the camera in Fig. 4.1. This is an
accurate representation of the field line integrated radial profile of the plasma. The circular
envelope in the image is the boundary of the Penning-Malmberg trap, and the white streaks
near the edge of the circle are regions where the phosphor has become inactive. The first
plot shows a typical plasma, whereas the latter two show plasmas in which instabilities have
significantly affected the shape during extraction.
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proportional to the number of charged particles escaping the trap as a function of time. This
data is useful for measuring the temperatures of plasmas, described in Chap. 5.

In these experiments, a solenoid provides a strong magnetic field. As discussed in Sec. A.2,
the charged particles stick to field lines as they approach the MCP. The plasma expands by
a factor

√
Btrap/BMCP without its shape being distorted much by the extraction process.

The ~E × ~B drifts also have a negligible contribution as its effect is azimuthally symmetric.
Thus, this diagnostic provides an accurate field line integrated radial profile of the plasma
that can be analyzed to infer the plasma’s properties. Note that these measurements can
only be obtained by destroying the plasma.

4.2 Applications of the Diagnostic

The image diagnostic can be useful for determining qualitative aspects of the trapped plasma.
In particular, instabilities such as the diocotron are apparent as shearing on the images [57].
The image yields insights into the shape of the plasma, and can verify if the plasma will
be able to fit through apertures. Based on where the plasma is centered on the image can
reveal field misalignment. As discussed in Chap. 2, this is interesting as misalignments can
lead to heating of the plasma.

The diagnostic yields quantitative information about the plasma, namely the density
and length [3]. Up to normalization, the image gives N (r), the radial profile of the plasma.
The assumption of thermal equilibrium in the axial direction yields the Poisson-Boltzmann
equation

∆φ(r, z) = −qn(r, z)

n(r, z) = N (r) exp

(
−qφ(r, z)

T

)
.

(4.1)

Initially, an ellipsoid consistent with N (r) is chosen for n(r, z). Iteratively, one solves for
the self field using Poisson’s equation (which is a time-consuming step) and then uses this
self-field with the vacuum field to determine a new guess for the n(r, z). In simple geometries
(in particular an ideal Penning-Malmberg trap) analytic expressions for the potentials are
available and Poisson’s equation need not be solved. The new guess is used as an update
for the old guess. This is then repeated until convergence. As described in Sec. B.2, the
length scale of electric field fluctuations in a plasma is determined by the Debye length
λD =

√
T/ne2, where n is the density of the plasma. Thus, if Poisson’s equation is solved

numerically, it must be done on a grid with spacing of order λD. For cold (. 300 K) plasmas,
λD is small enough that the calculation becomes computationally prohibitive.

In the cold plasma regime, or when λD � Rp, the plasma radius, we expect the potential
at a given radius to be constant (see Sec. B.2). Thus, at a given radius, we expect that
the axial profile will be a step function. The ends of this step function are unknown, and
must be solved for. This method then proceeds as above, but now only the boundary needs
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Figure 4.3: The modified Gaussian, Eq. 4.2, as a function of the shape parameter n. We
have set A = 1, B = 0 and R = 1 for ease of plotting.

to be solved for, which is computationally advantageous [3]. The potential is calculated
for the current guess, and is used to determine the force on a test particle at the plasma
boundary. These forces are used to push the particles to obtain a new guess for the density
function. Ultimately, there will be little force on test particles on the boundary. Thus, this
waterbag method yields the full plasma profile n(~x), up to normalization, though in the zero
temperature limit.

Though, in theory, these solvers works with direct MCP images, in practice, the images
contain noise that could lead the algorithms astray. Thus, it is beneficial to be able to define
the radial plasma distribution by a smooth function, and hence we develop a method to
perform fits to the images. These smooth fits can also be advantageous to easily compare
experimental plasmas with theory and simulation predictions.

4.3 Implementation of Image Fitter

We interpret the image as pixel intensities (y) as a function of pixel positions in two dimen-
sions (~x). We use a mask to remove from the fit any pixels that are outside of the cavity or
correspond to regions of inactive phosphor. We chose the function of the form

f(~x) = Ae
−
(
|~x−~x0|
R

)n
+B (4.2)

to fit the radial profile of the plasma. This model has d = 6 fitting parameters: the center
location of the plasma (~x0) , the radius (R), the peak density (A), the offset (B), and a
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Figure 4.4: a) An image of a sunflower b) The RGB color intensity matrix for a) is passed into
our modified Gaussian fitting algorithm and the result of the image fitter with the colors
combined is shown c) A typical camera image of a plasma d) The result of the modified
Gaussian fitting algorithm applied to the image in c). We see the fitter is able to find and
fit the areas of high radial symmetry and is not influenced by the presence of noise in either
of these cases. In the plasma image, the fitter is able to fit the brighter spot without trying
to fit the fainter spot to the upper right of the bright spot in c).

shape parameter (n). The form in Eq. 4.2 is not theoretically justified, but is empirically
justified by the following. As described in Sec. B.2, a zero temperature plasma has a flat
radial distribution that cuts off sharply at the edges. Thus, if a plasma is infinite and well-
approximated as a cylinder, the radial profile will have a sharp cutoff, corresponding to large
n in Eq. 4.3. In contrast, for high temperature plasmas the distribution looks like a Gaussian,
which obviously corresponds to n = 2 in Eq. 4.3. This modified Gaussian distribution gives
a smooth way to go from one extreme to the other, as shown in Fig. 4.3. This form also has
the property that it is analytically integrable over all of ~x, which will be used later.

We use the Levenberg-Marquardt algorithm described in Chap. 3 to perform the fit. In
the algorithm, we force the constraints n,R > 0 by increasing λ if there is ever a step δ that
yields n < 0 or R < 0, even if this results in a decrease of the residual. Distributions with
1 ≥ n > 0 have a kink at the origin and do not provide a good fit to our plasma images.
But, the nonlinear fitter will sometimes need to search values of n in this regime to converge
to its optimal value. Thus, while we allow for n to take values between 0 and 1, it is rare for
the fitter to find these values optimal. No constraints are applied to the other parameters.
However, while testing, we find the other parameters seem to avoid extreme values, provided
that we start with decent initial values.

We introduce a hard cut-off of 500 steps of the Levenberg-Marquardt algorithm, but this
condition is never reached during regular operation. Typically, convergence is achieved in
about 50 steps and the fit can be performed in a few seconds with the GPU implementation
of Levenberg-Marquardt. LabView’s Levenberg-Marquardt routine takes over a minute to
fit Eq. 4.2 with the center ~x0 fixed (that is, fitting fewer parameters), so the advantage of
the GPU is clear. Fig. 4.4 shows examples of successful fits obtained from the algorithm.

In Fig. 4.5, we consider the strong scaling by looking at the runtime as a function of the
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Figure 4.5: Runtime as a function of number of CUDA cores for analyzing a 1024x1024 pixel
plasma image. The line shown is the linear fit. As expected, more processing power yields
faster runtimes. The original LabView code required over a minute to analyze the image
and fit fewer parameters.

number of CUDA cores available on the GPUs for a plasma image (1024x1024 pixels) [58].
The three nVidia GPUs used were a C2050 Tesla (with 3GB of memory and 448 cores),
a C1060 Tesla (with 4GB of memory and 240 cores) and a GeForce GT 630M (with 2GB
of memory and 96 cores). While this may not be a fair comparison as clock speeds may
differ between the GPUs, we see a general trend that more cores gives us a shorter runtime.
While the memory of the three GPUs were all different, we do not see a trend based on
this. This indicates that the code is processor bound and not memory bound. We would
expect this runtime to continue decreasing with more cores, but the trend probably would
not continue past 1000 cores. With this many cores, the runtime could start to level off as
the center-finding algorithm (which is serial) becomes increasingly important and there may
be issues with load balancing on the GPUs when there are so many nodes.

Depending on the complexity of an image, the algorithm can take different times even
if the size of the image is kept constant. Because of this, it is not easy to study the weak
scaling, where the problem difficulty is scaled in tandem with the number of cores [58].

Initial Guesses

As mentioned in Chap. 3, in order to ensure fast convergence and to avoid convergence
to false minima, we are careful in the selection of initial parameters for the algorithm. The
following describes the selection process for initial values of each of the parameters in Eq. 4.2.
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Estimation of the background intensity (B)

The initial estimate of the offset is taken to be the intensity of the pixel with the lowest
intensity.

Estimation of the peak density (A)

The initial estimate of the peak density is taken to be the intensity of the pixel with the
largest intensity, with the estimated offset, B, subtracted off.

Estimation of the shape parameter (n)

The shape parameter is difficult to estimate. This is the only parameter for which we do not
alter the initial estimate of based on the available image. We set n = 3, as through testing
on plasma images we found this was a reasonably fast and robust choice.

Estimation of the radius (R)

The integral, I, of the distribution turns out to be useful in estimating the radius, R. Taking
units where the size of a pixel is 1, I is the sum of the intensities of all the pixels in the
image (with the estimated offset B subtracted off). If the plasma radius is reasonably small,
this sum will be equal to the integral of the fit function function over R2. Even if the radius
is larger (or the whole plasma is not contained in the image), the sum will only differ from
the R2 integral of the fit function by an O(1) factor. For an initial estimate of R for the
Levenberg-Marquardt algorithm, this estimate is empirically found to be close enough to
provide fast and reliable convergence.

To relate I to R, we note that∫
R2

d2~x e
−
(
|~x−~x0|
R

)n
= πR2Γ

(
2 + n

n

)
. (4.3)

Conveniently, for n ∈ [1,∞], which is the range of interest for most of our plasmas, the value
of the gamma function is within a factor of 2 of 1. So, for the same reasons as above, for an
initial estimate of R, it is sufficient to assume Γ((2+n)/n) ≈ 1. This gives an initial estimate

R ≈
√
I
Aπ

. (4.4)

Later, we will discuss using the singular value decomposition (SVD) of the coordinates
of pixels that make up the Gaussian to estimate R. For circular distributions of plasmas,
this is slower than the simple estimate given above and hence is not used here. However, for
elliptical distributions of plasmas, the above integral is not as useful and hence an SVD is
necessary.
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Estimation of the center of the plasma (~x0)

The algorithm used to estimate the center is an extension of that discussed in Ref. [59].
The main idea behind the algorithm is that, if a distribution is Gaussian (or more generally,
radially symmetric about a center), the gradient at each point should point away from the
center of the distribution. Thus, if we draw lines along the intensity gradient at every point,
the point that minimizes the weighted distance to all of these lines should correspond to the
center.

Following [59], we take the components of the gradient in the Robert’s cross configuration,
meaning the axes are tilted 45 degrees from the standard axes [60]. Call these new axes û
and v̂. Consider ~xk, the midpoint of the pixels at {(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)}.
The first-order approximation of the gradient there is

~∇yk = (yi+1,j+1 − yi,j)û+ (yi,j+1 − yi+1,j)v̂. (4.5)

We wish to set the two components of this gradient equal to the “velocity” for ~xk to obtain
the desired line as a function of a parameter t. Rewriting û and v̂ in terms of the standard
directions and rearranging gives that the slope of the line is

mk =
(yi+1,j+1 − yi,j) + (yi,j+1 − yi+1,j)

(yi+1,j+1 − yi,j)− (yi,j+1 − yi+1,j)
. (4.6)

Then, the equation of the line is ~x(2) = mk(~x
(1) − ~x(1)

k ) + ~x
(2)
k , where superscripts denote the

components of ~x. The minimum distance between a point ~xc and this line is

d2
k =

(
(~x

(2)
k − ~x

(2)
c )−mk(~x

(1)
k − ~x

(1)
c )
)2

m2
k + 1

. (4.7)

Allowing for weights wk, by minimizing
∑
k

wkd
2
k, we find the optimal ~xc that is our best

guess for the plasma center. The result of this is

~x(1)
c =

〈m(~x(2) −m~x(1))〉 − 〈m〉〈~x(2) −m~x(1)〉
〈m〉2 − 〈m〉

~x(2)
c =

〈m(~x(2) −m~x(1))〉〈m〉 − 〈m2〉〈~x(2) −m~x(1)〉
〈m〉2 − 〈m〉

,

(4.8)

where for any function g,

〈g〉 =

∑
k

gkwk
m2
k + 1∑

k

wk
m2
k + 1

. (4.9)
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Figure 4.6: A series of images with varying degrees of overlap between the positron plasma
and antiproton plasma. Image is modified from [4].

Initially, a guess for the center is established with weights wk equal to the magnitude of
the gradient vector squared at the the kth position. This is done as higher gradient vector
norms tend to be more reliable in that they carry less error, and are likely to be close to
the center of the distribution. However, this still suffers from the problem that if there are
multiple valid centers, the algorithm will choose some point in between the multiple possible
centers. Thus, we extended the algorithm in [59] by iterating the process with a weight of the
magnitude of the gradient vector squared over the distance to the current best center guess
squared. This process ignores large intensity values that are far away the current center
guess, and hence allow the method to converge to a true center of a distribution rather
than an average of all possible centers. We tested various powers of the distance between
1 and 5 and found that squaring produced the results that matched best with the center
determined visually. We found that higher powers of distance tended to converge to a center
more quickly, but the center it converged to was not good. These results may change if a
higher order estimate of the gradient is used, but this was not tested.

When there is little noise and only one center, this method is slower than simpler methods
such as the moment method [61], but produces similar results. However, when there are
multiple possible centers this algorithm produces far better results. Further, the moment
method will not find a center that is outside of the image, which is a somewhat common
occurrence in the experimental plasma images.

We found the iteration usually takes 20 steps or fewer, independent of what type of
picture is being analyzed. We place a hard cutoff for the iteration at 100 steps, but there
were no test cases when this limit was reached. Though this code could be run quickly on
a GPU, the center-finding algorithm runs on a CPU in about the time of one step of the
Levenberg-Marquardt algorithm on a GPU, so we find that it is not the main bottleneck.
Thus, there would be little performance gain in the overall algorithm from implementing the
center-finding method on the GPU.

4.4 Fitting Multiple Plasma Profiles

As shown in Fig. 4.6, in ALPHA, it is sometimes desirable to image both the positron
and antiproton plasma in the same image. This can be useful for studying mixing and
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compression [4, 62]. The antiproton clouds are elliptical in shape, and thus instead of the
functional form given by Eq. 4.2, we take the form

f(~x) = Ae−((~x−~x0)TR−2(~x−~x0))
n/2

+B, (4.10)

where R−2 is a positive definite matrix with three free parameters, and the other variables
are the same as Eq. 4.2. We call this a matrix squared to suggest that the elements of
R have dimensions of length and as a reminder that R2 is positive definite. One way to
characterize these free parameters would be the length of the semi-major axis, the length of
the semi-minor axis, and the tilt of the ellipse. Thus, this model has d = 8 fit parameters.

If the antiproton and positrons clouds are not overlapping (or the overlap is small), the
fitting is straightforward. We apply the center finding algorithm described in the previous
section to find the center of one distribution. Then we fit the modified Gaussian to it, and
subtract that fitted distribution from the image and proceed to fit the other distribution.
However, in practice, the antiproton and positron clouds are often overlapping, and thus this
naive idea is not sufficient.

Our solution is to determine systematically which pixels are representative of the positron
cloud and which are representative of the antiproton cloud. We first use the center finding
algorithm of the previous section to find the center of the positron distribution. We then fit
the whole image to the form of Eq. 4.2. Call the obtained fit f0(~x). The positron distribution
is preferable to the antiproton distribution as it is usually bigger and it is a fit with fewer
parameters. This means that the positron fit is better constrained and should, in general,
yield more reliable results.

In the region where there is a significant contribution to the image due to the antiproton
cloud, the image pixel values will be consistently larger than the expected value from just
the positron cloud. We take our null hypothesis to be that f0(~x) describes the positron cloud
and for each pixel position ~x we define a p-value of observing a larger pixel intensity than
that in the actual image.

℘(~x) =

∫ ∞
y(~x)

dy
1√
2πσ

e−
(f0(~x)−y)

2

2σ2 =
1

2

(
1 + erf

(
f0(~x)− y(~x)√

2σ

))
(4.11)

σ is taken to be the standard deviation of the fit residuals. This is actually an overestimate
considering all of the pixels that do not satisfy our hypothesis. However, it still sets a useful
scaling for ℘(~x). We compute ℘(~x) for each pixel. We mark all pixels with ℘(~x) < 1/

√
|D|

that are adjacent to another pixel with ℘(~x) < 1/
√
|D| to be ignored, where |D| is the total

number of pixels used in the fit for f0(~x). We choose this threshold so that the expectation
of the number of pixels ignored that actually are consistent with the hypothesis is only two
pixels, since p-values are approximately uniformly distributed between 0 and 1 when the null
hypothesis is true [63]. The coincidence with neighboring pixels comes from the fact that we
expect the antiproton cloud that we wish to exclude to be contiguous. Given this choice of
threshold, we would expect

√
|D| pixels that satisfy the hypothesis to have ℘(~x) < 1/

√
|D|

so without the coincidence the method would be too restrictive.
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Then, Eq. 4.2 is fit to the distribution again, but this time excluding from the fit the
points that were marked to be ignored. The initial parameters for the fit should be the
parameters from f0(~x) in order to ensure fast convergence. This process is repeated until
the fit parameters do not change appreciably when the procedure is applied.

Once a good positron distribution has been determined through this method, we subtract
off the fit positron distribution from the image. We then fit the remaining distribution to
the form in Eq. 4.10.

The only issue left is how to initialize the fit parameters given the new form. Many of
the fit parameters can be estimated the same as before, but the three free parameters in R2

requires attention.
We recall that singular value decompositions (SVD) will find the best fitting ellipse to a set

of points [64]. When the value of the argument of the exponential in Eq. 4.10 is -1, the vector
~x−~x0 sits on the boundary of the ellipse defined by R. Thus, we consider the coordinates of
all points with pixel intensity greater than e−1 times the maximum pixel intensity. We then
find the center of these points and subtract the center off of each point. These re-centered
coordinates are concatenated into a matrix A. Note that the center should be quite close to
the center found by the center finding algorithm. We use the SVD to decompose A = UΣV †.
Then, the product V †ΣV will be our initial guess for R2.

If the antiproton image is cut off, the best fitting ellipse found from the SVD may not
be representative of the actual ellipse boundary. As before, we expect this to only affect the
elements of R2 by an O(1) factor, but there are three free parameters being estimated by
this method so the result is less robust than in previous cases. However, for an initialization
of the Levenberg-Marquardt algorithm we believe this should be sufficient.

4.5 Future Work

We are still implementing the method for multiple plasma profiles. Of particular interest
will be a careful study of how much the plasmas can be overlapping and still yield useful
information of each underlying profile.
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Chapter 5

Temperature Diagnostic

As described in Chap. 1, cold positron plasmas are essential for production of trappable
antihydrogen. To understand how to produce these cold positron plasmas, a method to
measure plasma temperatures is necessary.

In a Penning-Malmberg trap, the electrode potentials can be lowered to let plasma parti-
cles escape in a controlled manner. ALPHA and the Berkeley plasma trap are able to obtain
the charge escaping from the Penning-Malmberg trap as a function of time. We will show
that a nonlinear fit of this data yields the plasma temperature. This method was originally
formulated by Ref. [65]. Theoretical corrections to the diagnostic, such as the effect of space
charge, were studied in Refs. [66, 67]. These effects complicate the fitting of data, and only
the earliest arriving plasma particles can be used in the nonlinear fits. Selecting the region
corresponding to the earliest arriving particles was previously done by hand. Not only was
this process slow, but it was error-prone as different people could analyze the same dataset
and get different temperatures. We fully automate the fitting to remove this bias. Further,
our GPU implementation of the analysis runs in ∼ 10 s. This speed is desirable when map-
ping the cooling rate of plasmas as a function of various parameters, such as the experiment
described in Chap. 6.

5.1 Experiment

To determine the temperature of the plasmas, the potential confining the plasma is slowly
lowered such that the hottest electrons escape (see Fig. 5.1). As described in Sec. 4.1, the
electron signal is converted to a light signal which corresponds to the charge arriving at the
MCP as a function of time. An example of the signal is shown in Fig. 5.2.

The rate at which the potential is lowered must be slow enough such that the time scale
of the bounce motion of the plasma is irrelevant compared to the typical time that the
potential changes. This is so the bounce motion does not “hide” the effect of the lowering
potential. As we will assume in our analysis that the plasma is well-described by a Maxwellian
distribution, we might expect that the collision frequency would be a relevant timescale for
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Figure 5.1: Particles are extracted from the trap by slowly (over milliseconds) lowering the
potential under the trapped particles, allowing them to escape over the lower barrier of the
well. Image is modified from an original created by A.P. Povilus [1].

how fast the potential can be ramped. In particular, collisions can repopulate the tail of a
distribution and thus a previously trapped particle can gain enough energy to escape the
well through collisions [66]. Experimentally, this is found not to be a limitation [68]. The
true limitation comes from instabilities that develop as the plasma is extracted, for example
the diocotron [69]. The ramp rate must be fast enough that the diagnostic terminates before
these instabilities affect the distribution. This imposes a hierarchy

ω−1
z � tramp � tinstab.. (5.1)

5.2 Theoretical Basis

Consider a plasma with temperature T with a net rotation ω. Let H denote its energy and
pθ its angular momentum. As described in Sec. B.2, the distribution function of the plasma
provided equilibrium is reached is [1, 65,67]

f(~x,~v) ∝ exp

(
−H − ωpθ

T

)
∝ exp

(
− m

2T

(
v2
r + v2

z + (vθ − rω)2 − 2
e

m
(Vb(~x)− φ(~x))− r2ω2 + ωr2ωc

)) (5.2)

Here, Vb(~x) is the external potential from biased electrodes while φ(~x) is the plasma self-
potential.
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Figure 5.2: A typical signal from the extraction of an electron plasma at UC Berkeley.
Temperatures are obtained by fitting the early signal to an exponential. Before 0.28 ms, the
signal is dominated by background noise and fluctuations due to the discrete nature of the
signal. As a pure exponential should appear linear on a log plot, we see that by 0.35 ms, the
curve sub-exponential. The detector saturates near 0.38 ms.

Figure 5.3: Plots of S0(Rw/L) (left) and S2(Rw/L) (right), which govern the amplitude and
radial variation of the applied potential, see Eq. 5.3.
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Suppose the plasma is trapped by two biased electrodes, as in Fig. 2.1. An electron
escapes if its parallel kinetic energy is larger than than the potential barrier, −e(Vb(r, t) −
φ(~x)) evaluated at the z position of the center of one of the biased electrodes, where the
potential is largest. This obviously ignores tunneling effects, but this should be a negligible
contribution for plasmas considered here. From Sec. 2.1 we know that near the center of an
electrode, Vb has form (assuming the other blocking electrode is far away)

Vb(r, t) ≈ V0(t)

(
S0

(
Rw

L

)
+
r2

L2
S2

(
Rw

L

))
, (5.3)

if a voltage V0 is applied to the electrode. The S functions are defined in Chap. 2, and
plotted in Fig. 5.3. The self field does, in principle, depend on time as well, but we will
assume that the diagnostic terminates before the self field changes appreciably. We will
consider these effects in Sec. 5.3. The number that have escaped is thus all electrons with
parallel kinetic energy greater than this potential barrier, or the integral of Eq. 5.2 over
all space and velocities, with the constraint vz >

√
−2e(Vb(r, t)− φ(~x))/m. Assume that

the potential barrier starts high enough that effectively all particles are trapped. Note that
the vr and vθ integrals are independent of the vz integral, so these integrals are simply
a proportionality constant. Ignoring issues of statistical fluctuations and the distribution
changing due to the changing potential (discussed later), the number of particles to escape
for a given V0(t) is

N(V0) =

√
2m

πT

∫
d3~x n(~x)

∫ ∞√
−2e(Vb(r,t)−φ(~x))

m

dvz exp

(
−mv

2
z

2T

)

=

∫
d3~x n(~x)

(
1− erf

(√
−e(Vb(r, t)− φ(~x))

T

))
,

(5.4)

where n(~x) =
∫
d3~v f(~x,~v). Assuming we extract the temperature from the particles that

arrive earliest to the detector, the space charge will not appreciably change and the depen-
dence of φ(~x) on V0(t) will be weak. Further, assume that the plasma dimensions are smaller
than the electrode dimensions so that only the S0 term of Eq. 5.3 contributes to the integral
above. Thus

dN

dV0

= S0

(
Rw

L

)
e

T

∫
d3~x n(~x)

√
T

−πe(Vb(r, t)− φ(~x))
exp

( e
T

(Vb(r, t)− φ(~x))
)

≈ S0

(
Rw

L

)
eN

T
,

(5.5)

where the second line is true when −e(Vb(r, t) − φ(~x))/T � 1, or equivalently when the
first order expansion of the error function in Eq. 5.4 describes the function well [70]. Thus,
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we expect the signal to increase as an exponential, with the growth rate proportional to
temperature. With knowledge of the voltages applied to electrodes, V0(t) is specified, which
can then be used with the number of charged particles that reach the MCP as a function of
time to extract the temperature [65, 66].

5.3 Limitations of the diagnostic

Minimum Measurable Temperature

We will write the plasma self potential as φ(~x) = φ0(~x) + δφ(~x), where φ0(~x) is the plasma
self potential before any charge has been extracted, or when −eVb � T. We expect δφ(~x)
to be a perturbative correction when particles initially start to escape in the diagnostic [71].
Near the center of the plasma, Gauss’s law gives [72]

φ0(~x) = φ0(0) +

(
r

2λD

)2
T

e
+ ... (5.6)

Assuming n(r) is constant for r ∼ λD, the contributions from higher order terms should be
negligible for r ∼ λD. This should be satisfied when λD � Rp, the plasma radius. While
this may not be true for a hot plasma, we will show that the derivation in Sec. 5.2 only
breaks down for low temperatures and hence ignore this issue. We use the above in Eq. 5.4
to find the number of particles escaped for a given applied blocking potential. Assuming a
long plasma, only the radial integral is non-trivial. Assuming that λD � L, the length of
the electrode (see Eq. 5.3),

N(Vb) = 2πlpn(0)

∫
dr r

(
1− erf

(√
V +

eδφ(~x)

T
+

r2

4λ2
D

))
, (5.7)

where lp is the length of the plasma, and for convenience we define V = −e(Vb − φ0(0))/T.
As we are evaluating the expression for a fixed Vb, the radial variation in the error function is
determined by the parameter r2/λ2

D, as we have assumed that the contribution from δφ(~x) is
small. Recalling that for large arguments the error function is exponentially close to 1, this
means that nearly all the escaped charges are coming from a few λD of the center [66]. This
justifies the need for the earlier constraint that n(r) is constant for r ∼ λD. Note that Eq. 5.7
scales as the number of particles in a Debye cylinder. Notably, this number is independent
of plasma density as λ2

D scales as n(0)−1. Since λ2
D ∝ T, low temperature plasmas have

a limited number of particles obeying the form of Eq. 5.5. We expect a limitation to the
validity of the diagnostic for low temperature plasmas.

Initially, we expect δφ to have a negligible contribution to the extracted number of
particles. This assumption allows us to use Gauss’s law on the extracted charge density
(the integrand of Eq. 5.7) to find the electric field due to the extracted charge. In the limit
V � 1,
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Figure 5.4: Signal from MCP/phosphor array during diagnostic extraction (shown in blue)
of an electron plasma at UC Berkeley as a function of blocking voltage. The green line is an
exponential fit to the curve, while the orange dotted line is a fit of the form of Eq. 5.10. We
see that Eq. 5.10 extends the range of validity of the theory past the exponential region.

E(r) ≈ 2en(0)λ2
D

r

exp(−V)√
πV

(
1− e

− r2

4λ2
D

)
. (5.8)

We then integrate this from the wall (where the potential should vanish) to a point within
r of the center. This yields

δφ(r) =
T exp(−V)

e
√
πV

[(
γ + Γ

(
0,
R2
w

4λ2
D

)
+ ln

(
R2
w

4λ2
D

))
+

(
r

2λD

)2
]

+ ..., (5.9)

where γ is the Euler-Mascheroni constant. Note that for large arguments, the incomplete
gamma function is zero. We plug this form in as δφ(~x) in Eq. 5.7. Performing the integral,
we find

N(Vb) ≈ 4πlpλ
2
Dn(0)

exp
(
−V − exp(−V)√

πV

(
γ + ln

(
R2
w

4λ2D

)))
√
π
(

1 + exp(−V)√
πV

)√
V + exp(−V)√

πV

(
γ + ln

(
R2
w

4λ2D

)) . (5.10)

While this expression is only valid for V � 1 (in practice, it breaks down around V ≈ 2),
it is the most accurate closed form solution to the problem. We show the deviation from
the extraction signal in Fig. 5.4. More complete solutions require complicated numerical
integrals, and hence this form is desirable for generating Monte Carlo samples across a
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broad range of plasma parameters. Fitting to this form instead of the form of Eq. 5.5 may
seem desirable, but we do not recommend it. This form may seem to reveal information
about the density, but this dependence is weak, and so no more information about plasma
parameters is available from this form. While this form may allow for more data for more
accurate fits, other effects such as a poor choice of extraction time can make the signal
deviate from exponential before the deviation in the form of Eq. 5.10 takes over. By fitting
to a simpler function, we allow for the flexibility of still obtaining temperatures when effects
such as these are pertinent. We will show, however, that fitting to a more complicated form
becomes necessary for cold plasmas.

Suppose we would like to measure temperatures to a precision of α. In an ideal analysis
(that is, analyzing a perfect signal with no noise), two factors affect the precision: the
statistical uncertainty from the limited number of observations and the breaking down of
our assumed exponential functional form in Eq. 5.5. By the law of large numbers, we would
expect the error in T from an analysis to scale as N(Vb)

−1/2. Thus, the number of particles
necessary for a precision of α is α−2.

We design the temperature fitting algorithm to distinguish an exponential region from a
non-exponential one. This algorithm will have some deviation from exponential that it will
tolerate before it declares the curve no longer exponential. We estimate this deviation by
determining when dN/dVb = 0, using the form of Eq. 5.10. For typical plasma parameters,
we find that γ + ln(R2

w/4λ
2
D) takes values between 10 and 20. For these values, dN/dVb ≈

zero when V ≈ 2, which corresponds to 2% of the available 4πlpλ
2
Dn(0) being extracted. We

let ε = 0.02 represent this fraction. Hence, from Eq. 5.10, we find the limit

Tmin =
e2

4πlpεα2
= 8 K

(
1 cm

lp

)(
0.1

α

)2

. (5.11)

Of course, in a real measurement, background noise and non ideal detector sensitivity
will make measurement of such a temperature difficult. An experimental measurement can
approach this theoretical limit by carefully reducing these effects. A circuit with a silicon
photomultiplier has been designed for this purpose [73].

For a cold plasma, where this argument is relevant, we expect the potential in the plasma
to be approximately constant (see Sec. B.2). Thus, in Eq. 5.4, we expect n(~x) should be
largely independent of z, and the form of Eq. 5.7 is justified. Even though we assumed an
infinite plasma in the derivation, we expect the results to hold for finite plasmas [66].

For plasmas colder than the limit in Eq. 5.11, a fit will have to be performed for a larger
part of the extraction curve (that is, including the non-exponential region) to have sufficient
statistics to constrain the temperature. Fig. 5.4 shows that Eq. 5.10 only extends the range
of validity slightly, so a more accurate representation of the extraction curve is necessary. To
solve for the plasma extraction curve generally, Eq. 5.7 must be solved self-consistently for
every Vb. This can be done by iteratively including higher order perturbations in Eq. 5.7, or
by using Poisson’s equation as in Ref. [66]. These solutions are computationally intensive,
but must be calculated for every extraction to fit a low temperature plasma extraction.
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Figure 5.5: Signal from MCP/phosphor array during diagnostic extraction as a function of
blocking voltage for a plasma with a phase space island. We see that part of the plasma is
completely ejected before the bulk of the plasma follows. This is an effect not accounted for
in the derivation of the equations pertaining to the temperature diagnostic. Figure taken
from Ref. [1].

Effects not Included in the Analysis

There are additional effects that complicate the temperatures from the diagnostic. Recall
that the potential is ramped slowly compared to a typical bounce time so that bounce effects
are not apparent in a dump. Thus, the potential is adiabatically changed and will lead to
some cooling in the parallel direction. The second adiabatic invariant (see Sec. A.1) will
remain constant through this process. This invariant scales as J ∝

√
T‖lp, where lp is the

length of the plasma. Thus, in this case T‖,f = T‖,0l
2
p,0/l

2
p,f . Waterbag simulations show that

this could be a 50-300% effect on temperature. Cooling may be happening in more than one
dimension, so simulations would be necessary to fully characterize this effect.

Finally, we assume that the equilibrium is simple enough to be described by the form
in Eq. 5.2. When there are driving sources (which could be due to noise), phase space
islands can form [34]. As shown if Fig. 5.3, part of the plasma is extracted in a clearly non-
exponential manner, making temperatures extracted from it meaningless. If the number of
trapped particles is small, the thermodynamic assumptions that justify Eq. 5.2 may not be
valid. Finally, the hole left in the center by the plasma extraction can drive a diocotron
instability that further complicates the analysis of extracted particles at late times [69].
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5.4 Continuous Fitter

One method employed to extract the temperature is to fit Eq. 5.5 to the raw signal off of
a charge collector (assuming it is continuous). A naive way to perform this fit would be
to take the logarithm of the signal and perform a linear fit. However, because of electronic
noise, the signal could become negative and its logarithm become ill-defined. Further, a
linear fit to the logarithm fits an objective function that is the L2 norm of the residual of the
log of the data minus the log of the fit, which is a perverse choice for an objective function.
Instead, as in Chap. 3, we assume that the residuals between the data and fit are independent
and Gaussian distributed with mean 0 and unknown variance. We then proceed to use the
Levenberg-Marquardt algorithm from Chap. 3 to determine the fit parameters.

Suppose Vb(t) is linear in t. From Eq. 5.5, we then expect the signal to be exponential
in time. Allowing for background noise that could contribute to a constant offset, we fit a 3
parameter function

N(t) = A+ e
t−t0
T . (5.12)

Here, A is the aforementioned offset, T, is proportional to the temperature, and t0 is a
parameter relating to when the exponential starts to rise. Note that a prefactor in front of
the exponential is equivalent to a redefinition of t0 and thus would be redundant.

As argued Sec. 5.3, there are various mechanisms that will cause the expression in Eq. 5.5
to be invalid. The exponential form will only hold at early times. However, what constitutes
an early time is not obvious and differs from plasma to plasma. Thus, a proper window
of the data to fit Eq. 5.12 on must be chosen to obtain valid results. In prior analyses of
this data, the selection was done by hand, which may lead to inconsistencies among people
performing the fits. In addition, the Berkeley plasma trap sometimes operates in a state
where it does a plasma dump every few seconds, and it is not feasible to process all this data
manually.

Our algorithm to find the window is motivated by the assumption that sources of noise in
the system should be equivalent before and during the plasma extraction period. Thus, we
calculate the noise level before any plasma is extracted and compare this value to the noise
level in fits of multiple possible choices of fit window. If the noise in the fit is smaller than
the noise in the baseline, the fit is performing better than expected, and hence is overfitting.
If the noise in the fit is larger than the noise in the baseline, the exponential assumption is
invalid.

Following [1] and as shown in Fig. 5.4, we define three times to assist in finding the
optimal window: t−, a time sufficiently before any charge has reached the MCP, t0, a guess
at the time when enough charges have arrived at the MCP to obtain a good fit, and t+, a
time when the signal is clearly in the nonlinear regime.

To establish these times, we first fit the initial 0.1 ms of the data to a constant to establish
an estimate of the baseline (A) and the noise level (σ). We then define t− to be the point
where the signal value is ξσ larger than the baseline value, where ξ is an adjustable parameter.
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Figure 5.6: The blue line is the charge at the MCP as a function of time during a plasma
temperature measurement. Our automated fitter calculated a temperature value of T =
79 ± 2 K, and this fit is shown as the yellow band. The orange shaded region is fit to
establish the baseline and noise level. The black vertical lines are, in order from left to right,
t0, t− and t+. The black shaded region shows the region from which N intervals are evenly
selected.

If known, ξ would be chosen such that ξσ is greater than the amplitude of low frequency
noise that could mimic the signal. In our final implementations, we used ξ = 10. This further
ensures that there is a sufficiently long fit region to allow a well-specified temperature to be
obtained from the fit. We then choose t0 to be 0.4 ms before t−. We do not choose t0 to be
the first datapoint, as there can be low frequency noise that will make the variance appear
larger in the region from the first datapoint to t−. The time t+ is chosen to be a fraction
(usually 0.85) of the t→∞ asymptote of the curve, or the detector saturation.

We then define N times, where the (zero-indexed) ith time is

ti = t− +
i

N − 1
(t+ − t−). (5.13)

We then fit Eq. 5.12 for each of theN intervals [t0, ti]. DefineNi as the number of observations
in [t0, ti]. To compare these fits, we consider the log-likelihood (this is just the log of Eq. 3.1),
of each of the fits,

li = −Ni ln(
√

2πσ)− 1

2σ2

Ni∑
j=1

(fβ(~xj)− yj)2. (5.14)
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Figure 5.7: The temperature (blue line) and normalized log-likelihood (purple line) as a
function of the N = 100 intervals considered in choosing the optimal fit, for the same
plasma dump as Fig. 5.4. The temperature and error evaluated from these values gives
79 ± 2 K. Note that below index 20, the variance in best fit temperatures is large due to
the relatively small number of points used to obtained the fits. Above index 70, the curve is
poorly modeled by an exponential and the normalized log-likelihood becomes small.

However, this suffers from the fact that it scales linearly with Ni, the number of points in
the fit, and this is increasing for each of the N intervals (note that the second term is a χ2

distribution and thus it also scales as Ni). Thus, to keep comparisons fair, we consider the
normalized log-likelihood, which, dropping the now constant first term becomes

l̃i = − 1

2Niσ2

Ni∑
j=1

(fβ(~xj)− yj)2. (5.15)

The value of σ is the standard deviation on the constant fit to the first 0.1 ms of data. To
obtain the best value of temperature with an uncertainty, we perform weighted averages of
T and T 2, where the weights are given by e|l̃−

1
2
| of the fit. The 1

2
is, as discussed earlier, to

ensure that the fit is not overfitting. As shown in Fig. 5.4, we find that this penalization
has the desired behavior of fits getting worse as ti → t−, and these overfit temperatures are
weighted less.
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We find that for all N & 50, the temperature and error values are similar. In our
implementation, we set the default value to 100, but this is an adjustable parameter. We
compared the results of this implementation with manual window selection and other ideas
for automation and found that the results were comparable within error.

For this implementation, we set a hard cut-off of 1000 steps for the Levenberg-Marquardt
algorithm. Typically optimal values are found in about 20 steps.

Using our GPU implementation of Levenberg-Marquardt, the ALPHA temperature fits
are completed in a few seconds with a nVidia GeForce 780 GTX GPU with 2304 cores. We
also have a version of our code that can run on any computer using LabView’s standard
implementation of Levenberg-Marquardt. This takes a few minutes to run, so the advantage
of the GPU is clear. With the GPU, temperature values are available in real-time with no
human input. This code has also been adopted by the UC Berkeley plasma experiment.

As the GPU version runs quickly, we have not tried to optimize the selection of initial
parameters. In particular, a good estimate for T may help convergence of the algorithm.

5.5 Discrete (Poisson) Fitter

The methods in the previous section ignore statistical fluctuations due to the discrete na-
ture of electron arrivals. We have also assumed that the noise is a random variable with
constant variance, which may be a restrictive assumption. Further, while the previous sta-
tistical methods have been shown to be robust, they are rather ad hoc in that they are not
derived from basic statistical principles. For these reasons, it was necessary to formulate a
temperature fitter that incorporates these effects.

Ref. [73] has developed a circuit with a silicon photomultiplier (SiPM) for increased timing
resolution on electron arrivals. In particular, the circuit can distinguish the ∼100 earliest
arriving electrons. Using this data, one could imagine fitting temperatures to the arrival
times of electrons to the MCP. However, because of the variability in the response of the
entire system of MCP, phosphor screen, and the photodetector to a single electron, it becomes
difficult to construct an appropriate discrimination function to distinguish electrons from
noise. In addition, as the timing resolution is not perfect, pileup complicates distinguishing
late arriving electrons.

We bin the data as this has two desirable effects: the variability the response of a single
electron is averaged over by binning and thus a simpler discrimination function can be used
and high-frequency noise is smoothed over. The method can thus make use of single particle
arrival times when it is available, without being plagued by pileup when particle response
signals begin to overlap. Effectively, this is a rigorous way to interpolate between fitting
electron arrival times and the continuous fitter of Sec. 5.4 depending on the available data.

Much like the analysis in Sec. 4.4, the way we will determine temperatures from the data
is to make a “bad” fit, and use the parameters from that fit as a null hypothesis to throw
out the data that is not consistent with the exponential assumption.
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With the form of Eq. 5.5, we know that the expected number of counts per bin will be
(assuming for now no noise or background)

Λi = A

(
exp

(
−Vi+1

T

)
− exp

(
−Vi
T

))
, (5.16)

where Vi and Vi+1 are the lower and upper ends of the voltage bin. Each of the B bins is
an independent Poisson process with rate Λi. For convenience, define the vector T = (T,A).
Thus, the likelihood function is [74]

p(D|T ) =
B∏
i=1

Λni
i

ni!
exp(−Λi). (5.17)

Using Bayes’ rule, and choosing scale invariant priors π(A) = 1/A and π(T ) = 1/T, we have

ln(p(T |D)) =(N − 1) ln(A)− ln(T )− A
(

exp

(
−VB+1

T

)
− exp

(
−V1

T

))
+

B∑
i=1

ni ln

(
exp

(
−Vi+1

T

)
− exp

(
−Vi
T

))
+ const.

(5.18)

We can find the maximum a posteriori (MAP) estimate for T and A using the Levenberg-
Marquardt algorithm on this expression. Call the MAP estimate T ∗. We expand Eq. 5.18
about the MAP estimate to write

ln(p(T |D)) ≈ ln(p(T ∗|D)) +
1

2
(T − T ∗)µ(T − T ∗)ν∂µ∂ν ln(p(T ∗|D)), (5.19)

where the derivatives are with respect to T . Hence, we see the the likelihood function is
approximately Gaussian about its MAP estimate and a Laplace approximation is valid pro-
vided the entries of the matrix ∂µ∂ν ln(p(T ∗|D)) are much less than the corresponding entries
in T ∗.

Now we consider the choice of the optimal fit interval. We use the fact that if the form in
Eq. 5.16 is invalid, this is quantifiable. For reasons described in Sec. 5.3, we expect the signal
to predictably become sub-exponential when the assumptions are invalid. Thus, we consider
the one-sided p-value of counts for the ith bin, or the events smaller than the number, ni
observed in that bin

℘i =

ni∑
j=0

Λj
i

j!
exp(−Λi) =

Γ(ni + 1,Λi)

ni!
. (5.20)

As the Λi depend on T and A, we average this over the posterior for these quantities to
calculate
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Figure 5.8: (Top) The discrete fitter applied to antiproton extraction data from ALPHA.
The blue curve is the detected number as a function of blocking voltage. The green curve is
the best fit curve using all bins past the purple line, with T = 400± 10 K. The 1σ variation
in fit parameters is shown as the partially transparent region around the solid green curve.
The optimal fit region shown here is when the fit region is the same as the region consistent
with the fit.

〈℘i〉 =

∫ ∞
0

dA

∫ ∞
0

dT p(T |D)℘i. (5.21)

This integral could be computed numerically, but we find it simpler to compute it using the
standard expansion of Gaussian integrals [15] using the form of Eq. 5.19 for p(T |D). This
gives

〈℘i〉 ≈ p(T ∗|D)
2πΓ(ni + 1,Λi(T ∗))

ni!
√

det(−∂µ∂νp(T ∗|D))
∼ Γ(ni + 1,Λi(T ∗))

ni!
. (5.22)

We have extracted the Gamma function and factorial as this is the only part that depends
on the bin index, i.
〈℘i〉 should have values ranging between 0 and 1 when the fit model describes the data in

the bin well (i.e. Eq. 5.5 still describes the number of counts in the bin), but will be extremely
small when the assumption breaks down. To choose the optimal interval, an initial fit is done
with part of the data, comprising of B′ bins. We then take our new fit region to be all data
before (but not including) two neighboring bins with 〈℘i〉 ≤ 1/B′ with the T ∗ from the fit
of B′ bins. This new fit region is then used to obtain a new fit. This is repeated until the fit
interval chosen by the method no longer changes, or a cycle is reached in the algorithm. As
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p-values are approximately uniformly distributed when the null hypothesis is true, we expect
the false positive rate by requiring two neighboring bins to satisfy the rejection condition
to be 1/B′2, which is small for a reasonable number of bins [63]. A fit with this method is
shown in Fig. 5.8. An implementation of the fitter is available in Sec. D.2.

There is a worry that when the chosen fit region becomes too large, the method will
converge to a poor fit value. A poor fit will have a large estimated variance for the residuals
and hence will allow many more poor points into the fit that are consistent with the null
hypothesis. This scenario is avoided by placing a cutoff on the log-likelihood per points in
fit, as with the continuous fitter. If the log-likelihood per points in fit is twice the original
value, the new fit curve should not be kept and the size of the fit region should be halved.

We need initial guesses for A and T to initialize the Levenberg-Marquardt algorithm. We
do this by considering the N →∞ limit of Eq. 5.18. For simplicity, assume that the voltage
bins are spaced evenly by an amount δV. In this limit, Eq. 5.18 becomes

ln(p(T,A|D)) ≈N ln(A)− A exp

(
−VB+1

T

)
−N V̄

T
+N ln

(
1− exp

(
δV

T

))
+ const.

(5.23)

where

V̄ =
1

N

B∑
i=1

niVi+1. (5.24)

We take partial derivatives of the expression above and set it equal to zero to analytically
get estimates of the optimal T and A in this limit. From this, we get that

T ∗ =
δV

ln
(
V̄−VB+1+δV

V−VB+1

) δV→0
≈ V̄ − VB+1

A∗ =N exp

(
VB+1

T ∗

) (5.25)

The uncertainty in these quantities can be estimated by the second derivative of the log-
likelihood evaluated at these maximal points. For A, this gives σA = A∗/

√
N , confirming

the expected 1/
√
N scaling for a Poisson rate. T appears in an exponential and hence has

a more complicated expression. In the δV → 0 limit, σT = T ∗/
√
N (1 + V 2

B+1/T
∗2). This

confirms the 1/
√
N scaling given earlier for the uncertainty in temperature.

If accuracy is not a primary concern, and N is sufficiently big (larger than 100), these
expressions are sufficient to quickly estimate temperature and uncertainty. This skips the
bulk of the time as a nonlinear optimization is not necessary.
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Background rate

We modify Eq. 5.16 with a new term b accounting for the background rate

Λi = A

(
exp

(
−Vi+1

T

)
− exp

(
−Vi
T

))
+ b. (5.26)

The prior, π(b), is taken to contain any known information regarding the distribution of
background signal. If the prior knowledge is complicated, such as in the case of Gaussian
noise passing through a discriminator, π(b) should be estimated by Monte Carlo methods.

We might expect low frequency noise to cause b to change as a function of time (or
equivalently voltage). If this is the case, the b in the above expression can be replaced with a
bin-specific bi. Fitting a background rate for each bin will result in too many free parameters,
so some model relating each of the bins is ultimately necessary.

5.6 Future Work

We are still developing a robust, fully-automated implementation of the discrete fitter. Once
completed, it will be interesting to compare how it performs relative to the continuous fitter.
We would expect that when single particle resolution is not available, the two would perform
similarly, but the discrete fitter should be able to utilize the single particle information better
when it is available. In addition, the size of bins to use is an open question. With these
issues sorted out, the method can be used at ALPHA and UC Berkeley.

When methods such as evaporative cooling are employed, it is possible for plasmas to
have temperatures below the limit of Eq. 5.11. In these cases, the extraction signal must be
fit to a form that includes plasma self-field effects. A fully automated scheme to perform
these fits will be a useful future development.

The analysis given here is derived under the assumption that a sudden approximation
for particles leaving the confinement well is valid. In doing so, we assume that the plasma
distribution does not rethermalize during extraction, and hence we expect the collision fre-
quency to be a relevant parameter. However, experiments show that the collision frequency
is an irrelevant timescale for the problem. Formalizing the analysis in such a way that the
collision frequency does not appear to be a relevant parameter would be a useful theoretical
development.

An open question is to rigorously quantify the effect of adiabatic cooling and to char-
acterize finite length effects. An analytic analysis of the method, as shown in Sec. 5.2, is
difficult and thus this question can only be studied with simulations. The plasmas studied
here are in a regime ill-suited for particle-in-cell (PIC) methods, as the plasma temperatures
are cold enough that the corresponding Debye lengths will make the simulations computa-
tionally prohibitive [75–77]. As the Green’s function of Poisson’s equation can be written
analytically in an ideal Penning-Malmberg trap [78], an idealized system could be studied
using an N-body simulation with a Barnes-Hut [79] or fast multipole method [80]. However,
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we are not aware of attempts to implement or to even derive theoretical results for a Barnes-
Hut or fast multipole method in the a cylindrical geometry. Deviations from the cylindrical
symmetry, and accounting for differing electrode sizes (as is the case in ALPHA) would also
be difficult to incorporate.

Experimentally, it is of interest whether the diagnostic can be used as a non-destructive
technique. One could lower the potential up to a point where ∼ 100 particles are extracted,
and then raise the potential. From these extracted particles, we could potentially estimate
the plasma temperature with the plasma still in the trap. This would also be a study of
whether the tail of a thermodynamic distribution thermalizes at the same rate as other parts
of the distribution, as well as allow for more control in studies of cooling of plasmas.
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Chapter 6

Cavity Enhanced Cooling

Cold lepton plasmas are imperative to produce trappable antihydrogen. In addition to
trapping, the magnetic field of the Penning-Malmberg causes leptons to execute circular,
cyclotron orbits, thereby radiating away transverse energy [72]. The methods of Chap. 5
allow us to measure the temperature of plasmas as they cool under this mechanism.

If the plasma is in a cavity with resonances near the cyclotron frequency of the plasma
particles, we expect enhanced cooling akin to the Purcell mechanism [36]. The Berkeley
plasma trap measured this effect experimentally [5]. In this chapter, we present a theoretical
description of cavity enhanced cooling and compare with experimental and simulation results.

We first fill in the holes of the derivations of Ref. [81] and confirm its main results. We
then provide a reinterpretation of the results that is useful to understand a longitudinally
dynamic plasma.

We show that as the number of plasma particles, N , in the cavity is increased, the plasma
cooling rate transitions between two regimes. For small N , the cooling rate is a Lorentzian
function of magnetic field about the ωc = ω resonance. For large N , the optimal cooling
is not at ωc = ω, but when ωc = ω ± ωz. The critical N is determined by the variation in
cyclotron frequency across the cavity. We also predict the cooling rate as a function of axial
position in the cavity.

6.1 The Experiment

In the measurement, we first trap a reservoir of ∼ 108 electrons outside of the bulge cavity,
and then periodically transfer 103 − 106 electrons downstream into the bulge cavity. The
electron transfer procedure reproducibly initializes the test electrons at a high temperature
of ∼ 1 eV. The electrons then cool via cyclotron radiation, potentially with cavity enhance-
ments. The confining potentials are then lowered to measure the temperature of the plasma
through the methods of Chap. 5. For a given plasma, this procedure takes a few seconds,
limited by the cooling time of the plasmas. Thus, it is relatively quick to scan the cooling of
plasmas as a function of magnetic field strength, number of plasma particles, the length of
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Figure 6.1: Cooling enhancements: (left) TE123 with 2 × 104 electrons, (right) TE134 with
3×105 electrons. For each mode, the left waterfall plot shows the ratio T0/T as a function of
the magnetic field and plasma position (T0 is the typical off-resonant temperature for each
dataset), the right color contour plot shows the mode structure. Figure from Ref. [5].

the plasma, and the center position of the plasma. Fig. 6.1 shows the result of such a scan
for two cavity modes.

As will be shown later, in the single-particle picture, we expect that cooling should occur
when the particles are in areas where the cavity mode electric field magnitude is large. It
was initially surprising that this behavior did not continue when the number of particles in
the plasma was increased, as shown in Fig. 6.1. This phenomenon will be explained in this
chapter.

6.2 Problem Formulation

We follow Ref. [81] and [82] to derive equations relating the coupling of the plasma particles
to the cavity mode. We use cylindrical coordinates (r, θ, z) to describe the geometry, with
z pointing along the axis of the solenoidal magnetic field in the Penning-Malmberg trap.
Denote the volume of the cavity V. We expand the vector potential in cavity modes ~ψj(~x),
with boundary conditions for a non-conducting cavity. Each cavity mode has energy ωj|aj|2.

~Arad(~x,~v, t) =
∑
j

1√
2V ωj

(aj ~ψj(~x) + a†j
~ψ∗j (~x)) (6.1)

The normalization condition for ~ψi(~x) is given by
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∫
d3~x ~ψi(~x) · ~ψ∗j (~x) = δijV, (6.2)

making ~ψi(~x) a dimensionless quantity. For a cylindrical cavity with TE modes, the modes
are characterized by the azimuthal index l, the radial index n, and the axial index k. These
modes are typically labeled TElnk [72]. The functional form is, for a cavity of radius Rw and
length L,

~ψ(~x) =

√
2

x′ln
2(J2

l (x′ln)− J2
l+1(x′ln))

(
ilRw

r
Jl

(
x′lnr

Rw

)
r̂ + x′lnJ

′
l

(
x′lnr

Rw

)
θ̂

)
eilθ sin

(
πkz

L

)
,

(6.3)
where x′ln is the nth zero of J ′l . The radial extent of the plasmas in the Berkeley plasma trap
are quite small with respect to the variation of the cavity modes in the radial direction. As
a result, only the l = 1 mode will have a strong coupling to the plasma, as J ′l (0) = 0 for

l 6= 1. For a non-cylindrical cavity such as the bulge cavity used in the measurement, ~ψ(~x)
will have a different form. These effects are discussed in Sec. 6.5.

Assume the cooling dynamics are dominated by the plasma particles coupling to just one
cavity mode. We will thus drop the label j (we will subsequently use j as a particle index).

Expand the total vector potential as ~A0 + ~Arad where ~A0 describes the static, solenoidal ~B
field and ~Arad has the radiation effects. Let ~x(j) and ~p(j) denote the position and momentum
of the jth particle with mass m and charge −e. Assume there are N such particles. The
hamiltonian for the particles and radiation field in the trap is

H =
1

2
ω(a†a+ aa†) +

N∑
j=1

(~p(j) + e ~A0(~x(j)) + e ~Arad(~x
(j)))2

2m
− eΦ(~x(j)), (6.4)

where Φ(~x) satisfies Poisson’s equation with appropriate boundary conditions. Treating the
particles classically, Hamilton’s equations give

~v(j) ≡ ~̇x(j) =
~p(j) + e ~A0(~x(j)) + e ~Arad(~x

(j))

m

~̇p(j) = −e~v(j) · ~∇( ~A0(~x(j)) + ~Arad(~x
(j))) + e~∇Φ(~x(j))− e~v(j) × ~∇× ( ~A0(~x(j)) + ~Arad(~x

(j)))

(6.5)

Write ~A0(~x) = rBθ̂/2 and eliminate ~̇p for ~̇v. This gives

~̇v(j) = −ωc~v(j) × ẑ +
e

m
~∇Φ(~x(j)) +

e

m

∂

∂t
~Arad(~x

(j))− e

m
~v(j) × ~∇× ~Arad(~x

(j)) (6.6)

As would be expected from Newton’s law. The equation for the z motion of the particle is
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dv
(j)
z

dt
=

e

m

∂Φ(~x(j))

∂z
− e

m
(~v(j) × ~∇× ~Arad(~x

(j))) · ẑ. (6.7)

If we assume that Φ(~x) is fully specified by its mean field expression and ignore the effect of
the final, magnetic term, the motion in z is fully specified. This assumes that the collision
rate is slow enough that for timescales relevant to energy loss of the plasma, the trajectories
of the particles are not significantly altered.

In the perpendicular direction, we again ignore the magnetic effects due to the radiation
field. In addition, we ignore the electric potential as, on average, over a gyroperiod, this
term will average to zero. This gives

m
d~v

(j)
⊥
dt

= − iωe√
2V ω

a~ψ(~x(j))−mωc~v(j)
⊥ × ẑ (6.8)

Define u = (r̂ − iθ̂) · ~v⊥ and ψ = (r̂ − iθ̂) · ~ψ. The equation for u is

m
du(j)

dt
= − iωe√

2V ω
aψ(~x(j))− imωcu(j) (6.9)

We can integrate to write this as

u(j)(t) = exp (−iωct)
[
u(j)(0)− iωe

m
√

2V ω

∫ t

0

dt′ exp (iωct
′) a(t′)ψ(~x(j)(t′))

]
. (6.10)

Now consider the radiation field. The Heisenberg equation for a is

da

dt
= i[H, a]. (6.11)

This is analogous to Hamilton’s equation, and thus will give identical results as the classical
computation [81]. a commutes with the electrostatic potential, but not the other terms in
the hamiltonian. Thus

da

dt
=− iωa− ie√

2V ω

N∑
j=1

~ψ∗(~x(j)) · ~v(j)

=− iωa− ie

2
√

2V ω

N∑
j=1

(
ψ∗(~x(j))u(j) + ψ(~x(j))u(j)∗

) (6.12)

Having a conductive cavity is equivalent to taking ω → ω − ω
2Q
− i ω

2Q
, with Q the quality

factor of the cavity [72]. We redefine ω → ω(1−1/2Q), as the original ω is not a measurable
quantity for the experiment. With this change, to order 1/Q, the complex cavity frequency
is ω − i ω

2Q
. We ignore the u∗ term in Eq. 6.12 as it counter-propagates with a. Thus,
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da

dt
= −

(
iω − ω

2Q

)
a− ie

2
√

2V ω

N∑
j=1

ψ∗(~x(j))u(j) (6.13)

Together with Eq. 6.9, this defines a set of N + 1 oscillator equations. These equations can
be simulated using a standard numerical integrator [2,83]. We take a different approach and
consider analytic approaches to the problem. Plugging in Eq. 6.10 to Eq. 6.13 gives

da

dt
=− ie

2
√

2V ω

N∑
j=1

ψ∗(~x(j))u(j)(0)e−iωct −
(
iω +

ω

2Q

)
a

− e2

4mV

N∑
j=1

ψ∗(~x(j))

∫ t

0

dt′ e−iωc(t−t
′)a(t′)ψ(~x(j)(t′)).

(6.14)

The cavity modes will vary on a length scale comparable to the dimensions of the cavity.
Thus, the variation of a particle about its guiding center coordinate should have a negligible
contribution to the variation of ψ. Hence, we assume that the time variation in ψ is dominated
by the z motion of the particles. As argued previously, for times less than a collision time, we
expect the z motion to be fully specified by choosing a form for Φ(~x). This reduces the N +1
oscillator equations into just 1 equation, albeit a complicated integro-differential equation.
We will consider various cases of Eq. 6.14.

6.3 A longitudinally static plasma

In this section we reconsider the analysis of Ref. [81], in which particles are assumed static
in z. This will provide insights into the more general case of bouncing plasmas.

We allow all of the particles to have differing cyclotron frequencies. As long as the
maximal variation in the cyclotron frequency across the plasma (∆ωc) is much smaller than
the average cyclotron frequency, this can be done without significantly altering the derivation
given in Sec. 6.2. We also assume that ∆ωc is not so large that it introduces coupling to
multiple cavity modes, which would also make the derivation of Sec. 6.2 invalid. Eq. 6.14
becomes

da

dt
= −

√
m

ω

N∑
j=1

β̂ju
(j)(0)e−iω

(j)
c t −

(
iω +

ω

2Q

)
a−

N∑
j=1

|β̂j|2
∫ t

0

dt′ e−iω
(j)
c (t−t′)a(t′). (6.15)

Where for clarity we have defined

β̂(j) =
e

2
√

2mV
ψ∗(ρ(j)

gc , θ
(j)
gc , z

(j)) (6.16)
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The hat above β will be used to distinguish this β from a related but different expression in
the dynamic case. As the integral is a convolution, the equation can be solved by Laplace
transform. Doing this yields

ã(s) =

a(0)−
√

m
ω

N∑
j=1

β̂ju
(j)(0)

s+ iω
(j)
c

s+ iω + ω
2Q
−
N∑
j=1

|β̂j|2

s+ iω
(j)
c

(6.17)

By the Laplace inversion formula, solving Eq. 6.15 reduces to finding the poles of the above
expression [84]. Through basic manipulations, this is equivalent to finding the roots of(

s+ iω +
ω

2Q

) N∏
j=1

(s+ iω(j)
c )−

N∑
j=1

|β̂j|2
∏
k 6=j

(s+ iω(k)
c ) = 0. (6.18)

The imaginary parts of the solutions to Eq. 6.18, s∗, correspond to the frequency of the phase
evolution of each term that contributes to a(t). The real parts of s∗ correspond to the decay
time constant of each term that contributes to a(t). Note that Eq. 6.18 shows that initial
conditions have no effect on the decay rates of a(t), though they can affect which terms are
important in the Laplace inversion.

The weakly coupled plasma

When N〈|β|2〉 � ω2/4Q2 (where 〈〉 denotes a particle average), the first term in Eq. 6.18

dominates, and the N + 1 roots are approximately the N roots s∗j ≈ −iω
(j)
c for each particle

and s∗ ≈ −iω − ω/2Q. Perturbatively including the effect of the second term in Eq. 6.18
shows that the purely imaginary roots, s∗j , pick up a correction

s∗j = −iω(j)
c +

i|β̂j|2

(ω − ω(j)
c )− i ω

2Q

(6.19)

The real part of these are small under the assumption N〈|β|2〉 � ω2/2Q, and thus, these
solutions can lead to cooling of the plasma for long times. The other solution picks up a
correction

s∗ = −iω − ω

2Q
−
N∑
j=1

i|β̂j|2

(ω − ω(j)
c )− i ω

2Q

(6.20)

The real part of this expression is not significantly altered by the correction. Since 2Q/ω is
a short time, this solution does not contribute to cooling for long times, and here we will
consider it an ignorable transient. Applying the Laplace inversion formula to Eq. 6.17 shows
that the leading order contribution to the cavity mode is thus (assuming a(0) = 0),
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a(t) =
N∑
j=1

√
m
ω
β̂ju

(j)(0)e−iω
(j)
c t(

i(ω − ω(j)
c ) + ω

2Q

) . (6.21)

We find

|a(t)|2 =
m

ω

∣∣∣∣∣∣
N∑
j=1

β̂ju
(j)(0)e−iω

(j)
c t(

i(ω − ω(j)
c ) + ω

2Q

)
∣∣∣∣∣∣
2

≈ m

ω

N∑
j=1

|β̂j|2|u(j)(t)|2

(ω − ω(j)
c )2 + ω2

4Q2

. (6.22)

We assume that over timescales relevant to cooling, the difference in cyclotron frequencies
will make off-diagonal terms in the sum zero for the second approximate equality. This
can also be interpreted as looking at the DC component of the cavity mode energy for the
purposes of the following argument. In addition, we may expect that the off-diagonal terms
will average to zero without a spread in cyclotron frequencies, as the random phases in u(j)(0)
should make the average of the off-diagonal terms zero. We have also used that to this level

of approximation, u(j)(0)e−iω
(j)
c t = u(j)(t). Replace the sum by a particle average. We assume

the β̂j (depending on particle positions) are independent of the velocities u(j)(t). We also
define T⊥ ≡ m〈|u(t)|2〉/2 to get

Ucav ≡ ω|a(t)|2 = 2T⊥

〈
N|β̂|2

(ω − ωc)2 + ω2

4Q2

〉
(6.23)

For a nonzero DC component of the energy to exist, there must be an energy balance between
the energy lost to the walls and the energy provided to the radiation field. Energy is absorbed
by the walls at a rate ωUcav/Q, so it must be that ωUcav/Q of energy is being supplied from
elsewhere. The only source for this is the plasma, so the plasma must be losing energy at
this rate. Putting this together gives a cooling rate

Γ⊥ ≡ −
1

NT⊥
dNT⊥
dt

=
ωUcav
NQT⊥

=
2ω

Q

〈
|β̂|2

(ω − ωc)2 + ω2

4Q2

〉
. (6.24)

In this limit, optimal cooling is achieved on resonance, ω = 〈ωc〉, and when the maximal
spread in cyclotron frequencies, ∆ωc � ω/2Q. This cooling is similar to the single particle
cooling seen in Ref. [85], and thus we refer to this as the single particle cooling regime. Note
that this answer could have also been obtained by looking at the real part of Eq. 6.19, as
this is the timescale that cavity radiation exists in the cavity, and cooling cannot happen
when there is no radiation field inside the cavity.

In Fig. 6.2 we show this cooling rate as a function of magnetic field and plasma position
(holding the length fixed) inside a cylindrical cavity. Comparing to Fig. 6.1, the features in
the TE123 plot are similar, but the TE134 plot does not show splitting and peaks at different
axial locations than the experimental observations.
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Figure 6.2: Cooling enhancements for (left) TE123 and (right) TE134 calculated from Eq. 6.24.
We use the cavity dimensions of the Berkeley plasma trap with the cavity mode of form
Eq. 6.3 to calculate the cooling rate. We assume that electrons are thermally distributed
with T = 10000 K in z, under a potential eΦ(z) = mω2

zz
2/2, and ωz = 40π × 106 s−1. We

set the cavity Q = 1000. We assume the spread in cyclotron frequencies ∆ωc � ω/2Q, and
that the plasma has negligible radius to calculate the cooling rate. Γmax = 49 s−1 for the
left plot and Γmax = 69 s−1 for the right.

The strongly coupled plasma

As N〈|β|2〉 grows large, the contribution from the second term in Eq. 6.18 becomes sizable
and can no longer be treated perturbatively. Consider the solutions to this second term,

N∑
j=1

|β̂j|2
∏
k 6=j

(s+ iω(k)
c ) = 0. (6.25)

We will look at perturbations about the solutions to this polynomial. Note that the poly-
nomial in Eq. 6.25 is an order N − 1 polynomial, and hence has N − 1 roots. Assume that
all roots of Eq. 6.25 are purely imaginary. We then see that i factors out and the resulting
polynomial has only positive coefficients. We notice that this form is the Lagrange inter-
polating polynomial for points {(−ω(j)

c , |β̂j|2
∏

k 6=j(ω
(j)
c − ω(k)

c ))|j ∈ {1, ...,N − 1}} [86]. In

this collection of points, if the ω
(j)
c are ordered from smallest to largest, the ordinate will
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flip signs after each increment of j. By the intermediate value theorem, this means that the
polynomial must have N−1 real roots [48]. Thus, our initial assumption of purely imaginary
roots was valid. This also indicates that the magnitude of each of the N −1 roots is between
successive ω

(j)
c .

Let −iω(k)
∗ denote the N − 1 roots of Eq. 6.25. Take a perturbation of −iω(k)

∗ and insert
into Eq. 6.18 to find

s∗k = −iω(k)
∗ +

(
i(ω − ω(k)

∗ ) + ω
2Q

) N∏
j=1

i(ω(j)
c − ω(k)

∗ )

N∑
j=1

|β̂j|2
∑
l 6=j

∏
i 6=j,l

i(ω(i)
c − ω(k)

∗ )

. (6.26)

In particular, through the manipulation of the above equation, and defining ∆ωc as the
maximal difference in cyclotron frequencies across the plasma, we can bound

−Re(s∗k) ≤
ω∆ω2

c

2QN (N − 1)〈|β̂|2〉
, (6.27)

and thus in this limit, these solutions predict cooling for long times (that is, seconds),

provided ∆ωc is smaller than

√
N〈|β̂|2〉. This bounds the plasma cooling rate as when there

is no radiation field in the cavity, the plasma can no longer cool.
There are two roots remaining in Eq. 6.18, and for these we consider the other term in

Eq. 6.18. Dividing through by our factorization of Eq. 6.25 yields

(
s+ iω +

ω

2Q

) N∏
j=1

(s+ iω(j)
c )

N−1∏
l=1

(s+ iω(l)
∗ )

−N〈|β|2〉 ≈
(
s+ iω +

ω

2Q

)
(s+ iω̄c)−N〈|β̂|2〉 = 0. (6.28)

Here, s+ iω̄c is the result of the polynomial long division of the ratio of two polynomials in
the first term.

This can be solved to give

s± =
1

2

−i(ω + ω̄c)−
ω

2Q
±

√(
i(ω − ω̄c) +

ω

2Q

)2

+ 4N〈|β̂|2〉

 . (6.29)

In the limit N〈|β̂|2〉 � ω2/4Q2, we see that both of these solutions decay rapidly, and we
will consider them as ignorable transients.

Using the poles of Eq. 6.25 and applying the Laplace inversion formula to Eq. 6.17 shows
that the leading order contribution to the cavity mode is thus (assuming a(0) = 0),
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a(t) =

√
m

ω

N−1∑
l=1

N∑
j=1

β̂ju
(j)(0)

∏
k 6=j

(ω(k)
c − ω(l)

∗ )e−iω
(l)
∗ t

((
i ω

2Q
− (ω − ω(l)

∗ )
)

(ω̄c − ω(l)
∗ )−N〈|β̂|2〉

)∏
k 6=l

(ω(k)
∗ − ω(l)

∗ )
. (6.30)

The dominant contribution to the inner sum (indexed by j) is when the product in the

numerator does not include terms such that ω
(k)
c ≈ ω

(l)
∗ . Hence, the term is maximal when

j ≈ l. We confirm this intuition by choosing polynomial and exponential variations of ωc for
N ∼ 100 particles and find that this is indeed the case. Using this to simplify gives

a(t) =

√
m

ω

N−1∑
l=1

β̂ju
(j)(0)

∏
k 6=l

(ω(k)
c − ω(l)

∗ )e−iω
(l)
∗ t

((
i ω

2Q
− (ω − ω(l)

∗ )
)

(ω̄c − ω(l)
∗ )−N〈|β̂|2〉

)∏
k 6=l

(ω(k)
∗ − ω(l)

∗ )
(6.31)

Again, for N ∼ 100 particles and polynomial and exponential profiles of magnetic field
across the cavity, we find this implies ω|a(t)|2 ∝ ∆ω2

c , where ∆ωc is the spread in cyclotron
frequency across the plasma (see also Eq. 6.27). In the Berkeley plasma trap, we expect ∆ω2

c

to be small, and hence suppressed cooling rates are observed as N is increased.

Connecting the Limits

We can estimate the transition region by asymptotically matching the strongly coupled
cooling rate (we use the bound of Eq. 6.27) with the weakly coupled cooling rate, Eq. 6.24 [87].
By doing this, we (approximately) find the criticalN such that we transition from one regime
to the other. Assuming resonance such that 〈ωc〉 = ω, we find

Ncritical ∼
ω∆ωc

2Q〈|β|2〉
. (6.32)

We compare cooling rates for a varying number of particles for the TE111 mode in the
Berkeley plasma trap in Fig. 6.3. The experiment finds, in this case, Ncritical ≈ 5 × 105

particles. Using our expression above, this implies ∆ωc/ωc ≈ 3 × 10−5. The value of ∆ωc
cannot be measured, but this value is plausible.

Now consider the decay rate of total energy of the cavity, orNT⊥Γ⊥. Notice from Eq. 6.27
that in the large N limit this decay rate decreases with increasing N . Further Eq. 6.24 shows
that in the smallN limit, this decay rate increases with increasingN .Hence, maximal cooling
is achieved when N ≈ Ncritical. At this value, we find

Γmax =
8Q〈|β̂|2〉

ω
. (6.33)
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Figure 6.3: quilibrium temperature of plasmas with 104 − 106 electrons. In the dark red
dataset the field is detuned 19.5 mT (546 MHz) from the TE111 resonance. Figure from
Ref. [5].

This matches the scaling of Ref. [81] when ω/Q ∼
√
N〈|β̂|2〉. By Eq. 6.32, we also find this

implies

√
N〈|β̂|2〉 ∼ ∆ωc, again confirming the scaling of Ref. [81].

Superradiance

While the longitudinally static plasma problem was simple enough to be solved by Laplace
transform, we will find that for the dynamic case a similar approach becomes intractable.
We will provide a reinterpretation of the previous results with useful ideas to extend to the
more general case.

We can multiply Eq. 6.13 by a∗ to obtain the time rate of change of energy in the radiation
field

dUcav
dt

= −ωUcav
Q
− ie
√
ω√

2V

N∑
j=1

(
ψ∗(~x(j))a∗u(j) − ψ(~x(j))au(j)∗

)
. (6.34)

The plasma can exchange energy with the cavity mode only when the last term is nonzero.
We will refer to this term as the change in energy of the superradiant mode, or dUSR/dt.

In particular, if a(t) ∝ exp(iωt) and u(j)(t) = u(j)(0) exp(iω
(j)
c t), we find that

dUSR
dt
∝ 〈Im (u(0)ψ(~x) exp(i(ωc − ω)t)〉. (6.35)

In this static plasma approximation, ~x is unchanging. Thus once zero, the only way dUSR/dt
can become nonzero in a longitudinally static plasma is to have a spread in ωc across the
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plasma particles. This shows that a spread in cyclotron frequencies is necessary for cooling
(but does not constrain its magnitude).

We will replace the sums in Eq. 6.17 by averaged quantities. We will refer to the cooling
rates obtained from this as bulk cooling rates. This obviously assumes that there are enough
particles that a thermodynamic average can be calculated. We further assume ∆ωc � ω/2Q
to simplify the expressions. The polynomial to solve for bulk cooling rates, the analog of
Eq. 6.18, is (

s+ iω +
ω

2Q

)
(s+ i〈ωc〉)−N〈|β̂|2〉 = 0. (6.36)

The solution to this quadratic equation is

s∗± = −i
(
ω + 〈ωc〉

2

)
− ω

4Q
±

√(
i

(
ω − 〈ωc〉

2

)
+

ω

4Q

)2

+N〈|β̂|2〉 (6.37)

When N〈|β̂|2〉 � ω2/4Q2, we have

Re(s∗+) ≈ ω

2Q

N〈|β̂|2〉
(ω − ωc)2 + ω2

4Q2

(6.38)

Which is N /4 times the single particle cooling rate, Eq. 6.24. This suggests, but by no
means proves, that in this limit, cooling is constrained by the ability of the superradiant
mode to release energy.

As N gets larger, the overall cooling rate is no longer limited by the bulk rates in
Eq. 6.38, but by how much energy can be put into the superradiant mode. Eq. 6.35 shows
that this is only achieved by a spread in cyclotron frequencies. The rate of energy entering
the superradiant mode is equal to the energy out if ∆ωc ≈ 2QN〈|β̂|2〉/ω. This places a limit
on the number of particles that can be cooled at

Nmax ∼
ω∆ωc

2Q〈|β̂|2〉
. (6.39)

This is precisely the critical number we found in Eq. 6.32, giving credence to the preceding
argument. For N > Nmax, energy is taken out of the superradiant mode faster than it can
be supplied, and explains why in this limit, the cooling rate becomes proportional to ∆ωc,
as in Eq. 6.31.

6.4 A longitudinally dynamic plasma

Now assume that the z(j)(t) motion is harmonic. This would occur if the potential in Eq. 6.7
is harmonic. We write
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z(j)(t) = L
(
α + ζ

(j)
0 sin(ωzt+ φ(j))

)
(6.40)

and plug this form into ψ(~x(j)). Here, α denotes the normalized center coordinate of the

plasma, ζ
(j)
0 denotes the amplitude of the oscillation, related to the particle’s parallel energy,

ωz is the bounce frequency, and φ(j) is the initial bounce phase of the particle. Eq. 6.14
becomes

da

dt
=− i

√
m

ω

N∑
j=1

β(j) sin
(
πk
(
α + ζ

(j)
0 sin(ωzt+ φ(j))

))
u(j)(0)e−iωct −

(
iω +

ω

2Q

)
a

−
N∑
j=1

|β(j)|2
∫ t

0

dt′ e−iωc(t−t
′)a(t′) sin

(
πk
(
α + ζ

(j)
0 sin(ωzt+ φ(j))

))
× sin

(
πk
(
α + ζ

(j)
0 sin(ωzt

′ + φ(j))
))

,

(6.41)

where β(j) is defined as

β(j) =
e

2
√

2mV
ψ∗(ρ(j)

gc , θ
(j)
gc , :), (6.42)

where the colon in the argument on ψ denotes that the z dependent part of ψ (that is,
sin(πkz/L)) is divided out.

We will determine the bulk decay rates of the plasma by averaging over the initial bounce
phase, assuming that they are initially uniform. As before, we expect this to be proportional
to the plasma cooling rate when N〈|β|〉2 is not large. Doing this gives [88]

da

dt
=− iN

√
m

ω
sin(πkα)〈βJ0(πkζ0)u(j)(0)〉e−iωct −

(
iω +

ω

2Q

)
a

− N
2

∫ t

0

dt′
〈
|β|2J0

(
2πkζ0 sin

(
ωz(t− t′)

2

))〉
e−iωc(t−t

′)a(t′)

+
N
2

cos(2πkα)

∫ t

0

dt′
〈
|β|2J0

(
2πkζ0 cos

(
ωz(t− t′)

2

))〉
e−iωc(t−t

′)a(t′).

(6.43)

We then perform the average over the bounce amplitudes ζ
(j)
0 . Assuming a Maxwellian dis-

tribution, the probability distribution for ζ0 is

p(ζ0) =
ζ0

ζ2
th

exp

(
− ζ2

0

2ζ2
th

)
, (6.44)

where ζ2
th = T/mω2

zL
2. Note that for T < 1 eV, ζth � 1. Using this in the average yields [70]



CHAPTER 6. CAVITY ENHANCED COOLING 60

da

dt
=− iN

√
m

ω
sin(πkα)〈βJ0(πkζ0)u(0)〉e−iωct −

(
iω +

ω

2Q

)
a

− N〈|β|
2〉

2

∫ t

0

dt′ exp

(
−2π2k2ζ2

th sin2

(
ωz(t− t′)

2

)
− iωc(t− t′)

)
a(t′)

+
N〈|β|2〉

2
cos(2πkα)

∫ t

0

dt′ exp

(
−2π2k2ζ2

th cos2

(
ωz(t− t′)

2

)
− iωc(t− t′)

)
a(t′).

(6.45)

This is still a convolution, and thus Laplace transforms can be used to determine the solu-
tion. However, the Laplace transform of the exponential of a trigonometric function squared
function has no analytic solution. We use the fact that πkζth � 1 and expand the exponen-
tials.

sã(s)− a(0) =
−iN

√
m
ω

sin(πkα)〈βJ0(πkζ0)u(0)〉
s+ iωc

−
(
iω +

ω

2Q

)
ã(s)

− iN〈|β|
2〉

2

ã(s)

s+ iωc
2F2

(
1

2
, 1; 1− is+ iωc

ωz
, 1 + i

s+ iωc
ωz

;−2π2k2ζ2
th

)

+ i
N〈|β|2〉

2
cos(2πkα)ã(s)e

πs
ωz

∞∑
ι=0

B−1(−n+ i s+iωc
ωz

, 1 + 2n)
(
πkζth√

2

)2ι

ωzn!

(6.46)

Here, 2F2 is a hypergeometric function and B−1 denotes the incomplete beta function [70].
We again look for the poles of ã(s), the real part of which gives us the cooling rate of
the superradiant mode by the Laplace inversion formula. Expanding to O(π2k2ζ2

th), this is
equivalent to the solutions of

0 =− N〈|β|
2〉

2
cos(2πkα)

(
ω2
z

(
1− π2k2ζ2

th

)
+
(
1− 2π2k2ζ2

th

)
(s+ iωc)

2
)

+
N〈|β|2〉

2

(
ω2
z

(
1− π2k2ζ2

th

)
+ (s+ iωc)

2
)

+

(
ω

2Q
+ s+ iω

)(
ω2
z(s+ iωc) + (s+ iωc)

3
)
.

(6.47)

We solve for the four roots numerically [70]. The dominant contribution peaks when ωc =
ω, but the O(π2k2ζ2

th) contribution introduces poles with real components that peak at a
detuning of ±ωz from the ω = ωc resonance. In general, the O(π2nk2nζ2n

th ) terms introduce
poles with real part detuned ±nωz from the ωc = ω resonance. This explains the splitting
of the resonances in Fig. 6.1, and can be interpreted as the plasma seeing a Doppler shifted
cavity frequency as it bounces in the trap. This has been observed previously in Ref. [85].
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Figure 6.4: Cooling enhancements: (left) TE123 with 2 × 104 electrons, (right) TE134 with
3× 105 electrons as calculated from Eq. 6.47. We use the cavity dimensions of the Berkeley
plasma trap with the cavity mode of form Eq. 6.3 to calculate the cooling rate. We assume
∆ωc � ω/2Q, and that the plasma has negligible radius to calculate the cooling rate. These
plots set T = 10000 K, Q = 1000, and ωz = 40π × 106 s−1. Γmax = 50 s−1 for the left plot
and Γmax = 16 s−1 for the right. For the right plot, we assume that the O(π0k0ζ0

th) term in
the expansion of Eq. 6.46 does not contribute to the cooling rate. We find good qualitative
agreement between the cooling rates here and the cooling rates in Fig. 6.1.

By the arguments of Sec. 6.3, whenN〈|β|2〉 becomes large enough such that the dominant
contribution (that is O(π0k0ζ0

th)) is suppressed, the cooling by the higher order contributions
will be the only mechanism for cooling. This explains why for low N , we observe cooling
without a split resonance, but for high N , we observe we observe two resonances split by
2ωz in Fig. 6.1. For even higher N , we would expect to observe two resonances split by 4ωz,
coming from the O(π4k4ζ4

th) term in Eq. 6.46. The higher order cooling rates are proportional
to ζ2

th ∝ T, and hence as the plasma cools, the cooling will slow. For a sufficiently cold plasma,
this means there is little benefit from the cavity and the cooling will be dominated by the
free space form.

We show in Fig. 6.4 the theoretical predictions. We see that the puzzling fact cooling
appeared at antinodes in Fig. 6.1 is naturally a part of this theory. To obtain the high
N limit of the expression (such that the dominant term is suppressed), we take only the
O(π2k2ζ2

th) term in the expansion of Eq. 6.46, and do not include the O(π0k0ζ0
th) term.
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6.5 Miscellaneous effects

In this section we discuss the addition of effects not accounted for in the analysis of Sec. 6.4.
Many of the effects can be included exactly, but complicate the derivations of Sec. 6.3 and
6.4.

Field Gradient

Assume that there is a linear field gradient ωc(ζ) = ωc,0(1 + κζ) across the plasma. We
consider the effect of a linear field gradient by modifying Eq. 6.9 to

du(j)

dt
= − iωe√

2V ωm
aψ(~x(j))− iωc,0(1 + κζ

(j)
0 sin(ωzt+ φ(j)))u(j). (6.48)

The solution to this is

u(j)(t) =e
−i
(
ωc,0t+

ζ
(j)
0 κωc,0
ωz

(cos(φ(j))−cos(ωzt+φ(j)))
)

×

u(j)(0)− iωe

m
√

2V ω

∫ t

0

dt′ e
i

(
ωc,0t′+

ζ
(j)
0 κωc,0
ωz

(cos(φ(j))−cos(ωzt′+φ(j)))
)
a(t′)ψ(~x(j)(t′))


(6.49)

We proceed as before with the calculation of the bulk decay rates. We find that, for
κωc,0 � ω/2Q, there is little change in the bulk decay rates due to the field gradient. When
this assumption is not true, the magnetic field gradients can lead to complicated plasma
trajectories, and hence are difficult to model here [89]. From the arguments of Sec. 6.3,
we expect that cooling rates become proportional to ∆ωc, as N grows large, and hence by
introducing a field gradient there may be enhanced cooling. This is confirmed by some of
the simulation results in Sec. 6.6.

Non-cylindrical cavities

The bulge cavity used in the Berkeley plasma trap alters the shape of the cavity modes. To
model this effect, we use the numerical solutions provided by Ref. [2] and fit the z dependence
at r = 0 as a Fourier series. While this complicates the analysis, the cooling rates can be
calculated in exactly the same manner as Sec. 6.4.

Anharmonic Wells

The analysis of Sec. 6.4 can be interpreted as considering the dominant Fourier component
of the bounce motion of the plasma particles. In this interpretation, if we wish to consider a
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triangle wave instead of harmonic motion (velocity is constant but changes direction at the
walls), we simply take ζ0 → 8ζ0/π

2 to account for the Fourier expansion of the triangle wave.
In general, this is valid for any Fourier decomposition provided the Fourier component at ωz
dominates.

Finite temperature walls and heating sources

Finite temperature walls can be included by introducing a vacuum expectation value for the
radiation field. In Eq. 6.14, we could take a(t) → a(t) − a0 with ω|a0|2 = Twall to include
this effect. A heating source is modeled by adding a constant term to Eq. 6.9. We are not
aware of any new effects from adding these corrections, but the two will ultimately affect
the final temperature.

Free space emission

We assume that the plasma does not interact with the free space radiation of plasma particles.
In this case, free space emission is included by taking, in Eq. 6.9, ωc → ωc − iγ, where γ is
the free space cooling rate. This is the Larmor cooling rate given by [72]

γ =
2e2ω2

c

9πm
. (6.50)

In general, this leads to cooling at a rate γ when all other cooling methods are slower, which
is most readily seen by making the replacement in Eq. 6.21 and 6.31.

If the plasma does interact with the free space radiation of plasma particles, the effect
must be included as a series of cavity modes.

6.6 Comparison with Simulations

In Fig. 6.5 we compare our analytic model, that is the bulk cooling rates calculated from
Eq. 6.47, with simulations of the N + 1 oscillator equations given in Eq. 6.9 and 6.13 [83].
The simulations allow to more easily include some of the effects of Sec. 6.5. These simulations
included an anharmonicity and a gradient in the magnetic field, and also use the true cavity
mode profile of the true cavity rather than the cavity mode profile of a cylindrical cavity.
As expected, the analytic model describes the early time behavior of the cavity mode well,
but disagrees from the simulation as the magnetic gradient effects become important. As
the magnetic field gradient is increased, the agreement becomes poorer, as expected from
the analysis in Sec. 6.3.

In Fig. 6.6, we compare the simulation for different N . We see that as N is increased,
the effect of ∆ωc becomes more prominent in the DC value of the cavity mode energy. This
is in agreement with the predictions from Sec. 6.3.
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Figure 6.5: Energy in the TE121 cavity mode as a function of time for a cavity with N = 4096
particles with initial temperature T = 10000 K from our analytic model (dashed, purple)
and from simulation of Eq. 6.9 and 6.13 (solid lines). Both plots show the same data, with
different timescales. We assumed that 〈ωc〉 = ω, and that the plasma was at the center of
the cavity. For the simulation, the blue curve sets ∆ωc/ωc = 0, the light orange curve sets
∆ωc/ωc = 4 × 10−7, the green curve sets ∆ωc/ωc = 1.2 × 10−6, and the dark orange curve
sets ∆ωc/ωc = 2× 10−6. The gradient is assumed to vary linearly across the cavity.
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Figure 6.6: Energy in the TE121 cavity mode as a function of time for a cavity with particles
with initial temperature T = 10000 K from our analytic model (dashed, purple) and from
simulation of Eq. 6.9 and 6.13 (solid lines). The top plot sets N = 256, while the bottom
plot sets N = 1024. We assumed that 〈ωc〉 = ω, and that the plasma was at the center of
the cavity. For the simulation, the blue curve sets ∆ωc/ωc = 0, the light orange curve sets
∆ωc/ωc = 4 × 10−7, the green curve sets ∆ωc/ωc = 1.2 × 10−6, and the dark orange curve
sets ∆ωc/ωc = 2× 10−6. The gradient is assumed to vary linearly across the cavity.
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6.7 Future Work

While we have shown good agreement between our theoretical results and the experiment,
an open question is the effect of field gradients. A future upgrade to the Berkeley plasma
trap will include a small solenoid for high control of magnetic gradients. We expect that
the cooling ∝ ∆ωc of Eq. 6.31 should hold generally. However, the field gradients could
complicate the trajectory of plasma particles and lead to particle losses, which we have not
considered here [90]. When the magnetic gradient becomes large, the plasma may be able
to couple to multiple cavity modes, which has not been considered here.

Our analysis shows that a particular linear combination of electron oscillators (here called
the superradiant) is the relevant mode through which the plasma ultimately cools. Formaliz-
ing and understanding the energy transfer between the electrons and the superradiant mode
will be crucial to fully understand the cooling problem.

We have assumed throughout that collisions will thermalize the parallel and perpendic-
ular temperatures of the plasmas (note that the only quantity that is measurable is the
parallel temperature). We assume that there are no observable effects from this thermal-
ization, but we have not proved this fact, and a careful analysis should be conducted. In
particular, as the plasma cools, the collision rate becomes increasingly relevant. Collisions
may introduce correlations between plasma particles as well as another mixing mechanism
into the superradiant mode, and these effects may be relevant to the cooling of plasmas.

We have also not studied the effect of noise in the system. Because of the fluctuation
dissipation theorem, if there is dissipation through the walls, we expect there to be fluctua-
tions in the radiation field [91]. While we expect to be in the hemi-classical limit, there may
be observable effects from the discrete nature of photons [92].

At colder temperatures, other effects become important. As ζ2
th ∝ T becomes small,

there is no efficient mechanism for a plasma where N〈|β|2〉 � ω2/4Q2 to cool. In this
limit, there is little benefit from the cavity and we expect most of the plasma cooling to
happen from free space cooling. Further, at these temperatures, our harmonicity assumption,
Eq. 6.40, becomes poor, and thus the results may not be generalizable to this regime. Careful
experimental measurements can show that this is indeed the case and explore any additional
effects. At extremely cold temperatures (∼ 1 K) quantum effects become relevant and a
fully quantum mechanical treatment of the problem would be necessary.
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Chapter 7

Bounding the antihydrogen charge

In this chapter we describe a stochastic acceleration measurement made by ALPHA to bound
the charge, Qe, of antihydrogen, where e is the charge of the proton [28]. I present details
of my contribution to this work, primarily performing simulations and the Bayesian analysis
conducted to place the bound.

ALPHA placed, at 68.3% confidence, a bound of |Q| < 7.1 × 10−10 [28], which is over
20 times better than the previous bound obtained by the ALPHA experiment [27]. As
the antiproton charge is within 7 × 10−10 (at 90% confidence) of −e, if we assume that
superposition holds, this is also the best bound on the charge anomaly of the positron by a
factor of 25 [7, 93,94].

7.1 Measurement

Recall from Sec. 2.2 that in ALPHA, antihydrogen atoms are trapped in an Ioffe trap occu-
pying the same physical space as a Penning-Malmberg trap. The electrodes of the Penning-
Malmberg trap can be biased to create electric fields in the region where antihydrogen is
trapped. If antihydrogen is charged, it would accelerate due to these fields and, if given
enough energy, would no longer be trapped by the mirror and octupole fields of the Ioffe
trap.

The charge measurement procedure is the following. Antihydrogen atoms are created
in the trap and are allowed to relax with no controlled electromagnetic variations for 0.4 s.
After this, we apply potentials on the Penning-Malmberg trap electrodes that vary between
∼ ±100 V. The potentials are applied in repetitions consisting of 1698 transitions over
1.698 s. The transitions are spaced at pseudo-random intervals drawn from a a uniform
distribution with average 1 ms and standard deviation of 0.2 ms such that the time of
kicks are approximately independent [95, 96]. 50 identical repetitions are applied to the
anti-atoms, with each repetition spaced by 2.298 s, resulting in N = 84, 900 total potential
transitions. Due to differences in amplifiers and filters driving the electrodes, the potential
on the electrode as a function of time is not identical between electrodes. These differences
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have been characterized and are taken into account exactly in the simulations.
If antihydrogen is charged, each of the potential transitions non-adiabatically perturbs the

kinetic energy of the anti-atom. Let ∆Φ be the potential change at each transition, ≈ 100 V.
Note that ∆Φ varies over the volume of the trap and hence has significant uncertainties. The
potential transitions can either increase or decrease the energy of the anti-atom by Qe|∆Φ|,
and thus the process corresponds, approximately, to a random walk in energy if the times
of kicks are independent. A simple random walk model predicts that an anti-atom with
putative charge Qe would gain energy ∼ |Q|e∆Φ

√
N. Note that simulations suggest that

the energy gain should scale as a slightly higher power of N [96]. Under these assumptions,
an anti-atom would gain enough energy to escape the trap of depth EWell if

|Q| & EWell

e∆Φ
√
N
≈ 1.6× 10−9. (7.1)

Note that such a relation relies on the assumption that the potential transitions applied
to the antihydrogen atoms are independent. In particular, if the kicks become phase-locked
with the antihydrogen bounce motion, it can damp the motion of the anti-atom making it
harder for the anti-atom to escape. This is clearly not ideal given the low trapping rates at
ALPHA. Independence of the potential transitions is a temporally local requirement, and
hence there is no advantage to using a random set of repetitions over a pseudo-random
one [96].

We define stochastic trials as those described above in which varying potentials are ap-
plied to electrodes. We define null trials as those in which the anti-atoms are held for the
same amount of time, but no potentials are applied to the electrodes. We compare the
number of anti-atoms that remain after the null and stochastic treatments. If a smaller
number remain after the stochastic treatment, this is strong evidence that the anti-atoms
are responding to the electric fields produced by the electrodes. In both stochastic and
null trials, we observed 12 total events over 10 trials of each type. Since we observed no
statistically obvious difference between the two protocols, this suggests that the charge, if
any, of antihydrogen is below that required to escape the trap, namely |Q| . 1.6 × 10−9

from our analytic estimate, Eq. 7.1. The measurement relies only on whether anti-atoms
survive or not, which is minimally affected by systematic issues such as the robustness of
the annihilation detectors. Sufficient samples to reveal an assymetry in deflection are not
necessary as in Ref. [27]. This is advantageous as only 0-3 anti-atoms are trapped per trial,
and thus high statistics would require a large number of trials and time.

7.2 Simulations of Antihydrogen Orbits

The anti-atom equation of motion in the trap is

M~̈x(t) = ~∇[~µ · ~B(~x)] +Qe[ ~E(~x, t) + ~̇x(t)× ~B(~x)]. (7.2)
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Figure 7.1: Simulated maximum likelihood estimate of the survival probability s as a function
of the normalized antihydrogen charge |Q| for the stochastic trials. The points are the number
of anti-atoms surviving at the given |Q| value divided by the number of anti-atoms surviving
at Q = 0 (the null simulation). The orange band of varying thickness is the 68.3% confidence
region from a Bayesian fit to this data.

Here, ~x(t) is the center-of-mass position of an anti-atom at time t, ~E(~x, t) and ~B(~x)
are the applied electric and magnetic fields, M is the antihydrogen mass, and ~µ is the
experimentally verified magnetic moment of antihydrogen [26]. A trapped anti-atom must
be low-magnetic-field-seeking, so the direction of ~µ is assumed to adiabatically track the
direction anti-parallel to ~∇| ~B|.

We wish to estimate s(|Q|), the survival probability of anti-atoms with a charge ±Q when
subjected to the fields described in the previous section. Let τ be the time corresponding to
the end of a full experimental cycle, and let I(~x) be an function that is 1 if ~x is in the trap
and 0 if ~x is outside the trap. Formally, the survival probability can be written

s(|Q|) = E(I(~x)), (7.3)

where the expectation is taken over p(~x,~v, τ), the probability of finding an anti-atom with
charge Qe at position ~x and velocity ~v at time τ. The difficulty is that the distribution
p(~x,~v, τ) is unknown. As shown in Sec. B.2, the time propagation of p(~x,~v, t) is equivalent
to the ensemble average of the time propagation of test particles. Thus, we can estimate
the integral above by simulating the trajectories of particles and determining whether the
particles escape the trap. If the initial distribution of simulated test particles matches the
expected initial distribution, by the law of large numbers, the survival fraction will converge
to the expectation as more test particles are simulated.
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The simulations are similar to those in [18, 27, 96–99], in which numerous tests of ro-
bustness of the dynamical model and numerical approximations have been performed. A
symplectic leap-frog propagator is used for numerical integration of Eq. 7.2. The electric po-
tentials in the simulation are determined from a precise model of the trap geometry, using the
COMSOL finite element code to solve the Laplace equation, and the measured time-history
of the potentials on each electrode [100]. The magnetic field is calculated from high-accuracy
analytic expansions derived from numerical Biot-Savart modeling [99].

The simulations follow the experimental procedures closely. Simulated anti-atoms are
launched in a volume corresponding to the volume of the positrons in the experiment with
an energy distribution obeying a truncated 3D Maxwellian distribution. The truncation
energy, 0.75 K, is well above the trapping depth EWell = 0.54 K. The anti-atoms are then
allowed to randomize in the electric-field-free trap for 1.25 s. Almost all the anti-atoms with
energy above EWell will be lost during this time, however, a few will remain on quasi-bound
orbits [98,101]. We model the null trials by propagating the anti-atoms in the electric-field-
free trap for a further 114.9 s. We model the stochastic trials by assigning the anti-atoms
a putative Q, and propagating the anti-atoms with the stochastic electric fields present for
this same 114.9 s. For each case studied, we propagate at least 100 anti-atoms.

For each |Q|, we determine the maximum likelihood estimate of the survival probability s
by calculating the ratio of the number of anti-atoms that survive the stochastic simulations
to the number that survive the null simulations; the results are shown in Fig. 7.1. Because
the stochastic drive is unbiased on average, reversing direction every half-cycle, s depends
only on the magnitude |Q|, not the sign of Q.

7.3 A statistical bound on the antihydrogen charge

The observations showed no difference between null and stochastic trials, and thus the sim-
ulation results in Fig. 7.1 would suggest that the bound on the antihydrogen charge is
|Q| . 10−9. We describe here the construction of a statistically rigorous limit, with a confi-
dence level, that was used by ALPHA to find a bound.

We use an objective Bayesian approach to place a probabilistic limit on |Q| from the
counts of trapped antihydrogen atoms with and without stochastic driving [102–107]. A
Bayesian method provides various advantages over a frequentist approach. It allows us
to easily integrate out r, the capture-and-detection rate, as a nuisance parameter, without
having to determine a value for it. It allows us to easily accommodate for systematic effects as
well as random sampling errors from both experimental counts and Monte Carlo simulations.
Furthermore, frequentist methods can raise questions about coverage probabilities when the
method of analysis is not adopted prior to making measurements, as was the case with this
measurement [6, 7].

To be fully consistent with the Bayesian approach, we emphasize that all probabilities are
conditioned, if only implicitly, on background information I. This includes knowledge of the
trap geometry and operation, experimental protocols, previous simulation studies, basic facts
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of classical and quantum physics, etc. To find a (1 − α) posterior credible interval for |Q|,
given our observed data D, and Monte Carlo samplesM, ultimately we solve (numerically)
for an upper limit Q∗ such that∫ Q∗

0

d|Q| p(|Q| |M,D, I) = 1− α. (7.4)

Our measurement described in Sec. 7.1 does not measure |Q| directly. The measurement
can be directly used to determine the posterior distribution for the probability (1 − s) of
additional loss of initially-trapped anti-atoms, due to heating from the stochastic drive fields
during the hold period. s is then related to |Q| via the Monte Carlo simulations that relates
the survival rate to |Q|. As the empirical measurements are independent of the Monte
Carlo simulations and vice versa, the posterior probability density p(|Q| |M,D, I) can be
decomposed into two terms

p(|Q| |M,D, I) =

∫ 1

0

ds p(s|D, I)p(|Q| |s,M, I). (7.5)

The next two subsections will provide details on how to compute each of the probability
densities in Eq. 7.5. Ultimately, uncertainties at both stages are convolved together and
contribute to the bound on |Q|.

Estimating s from the data (p(s|D, I))

The capture-and-detection rate, r, is the average number of anti-atoms surviving until, and
detected at, the end of a single null trial. The (unknown) value of r is independent of Q, but
is assumed fixed across all trials, and combines into one overall mean the initial average rate
of anti-atom production as well as trapping and retention probabilities and overall detection
efficiencies.

As r has, by assumption, no information of Q, r is a nuisance parameter. Thus, to obtain
the posterior of s given the posterior from s and r, we simply integrate over all possible values
of r [7]. The first term in Eq. 7.5 can be expressed as

p(s|D, I) =

∫ ∞
0

dr p(s, r|D, I). (7.6)

Because we integrate over r, the actual value of r need never be explicitly estimated from
the data, nor do we ever need to worry about factorizing r into its separate contributions
from synthesis, trapping, or detection of anti-atoms.

From Bayes’ theorem we infer that the joint posterior density of s and r can in turn be
written as

p(s, r|D, I) = π(s, r|I)
P (D|s, r, I)

P (D|I)
, (7.7)
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in terms of the prior distribution π(s, r|I) for the parameters s and r, the likelihood P (D|s, r, I)
of the data given s and r, and,

P (D|I) =

∫ 1

0

ds′
∫ ∞

0

dr′ π(s′, r′|I)P (D|s′, r′, I), (7.8)

which ensures the normalization of the posterior probability density.
The data D consist of the observed number of antihydrogen detections events n1, . . . , nK

in each of K = 10 null trials, together with the observed number of detection events
n′1, . . . , n

′
K in each of the K ′ = K = 10 stochastic trials. It will also be useful to de-

fine the total number of observed anti-atoms in null and stochastic trials, Nn =
K∑
i=1

nk and

Ns =
K′∑
i=1

n′k.

Given this, the likelihood P (D|s, r, I) is straightforward to evaluate. All trials are con-
ditionally independent given s and r, so the overall likelihood will just be the product of
the likelihoods of all null and all stochastic trials. Probabilities for the possible observed
number of anti-atoms in each null trial are all Poissonian with the same mean r, while in
the stochastically driven trials, the probabilities involve an additional binomial sub-sampling
(with “success” probability s) of the same underlying Poissonian process. As the Poisson
distribution is the maximum entropy distribution with a specified rate parameter, there is
no reason to expect that the likelihoods should not be Poissonian (see Sec. C.1) [108]. The
aggregate data from the 2014 run do confirm that the distribution is Poissonian. Since

∞∑
z>x

sx(1− s)z−x r
z

z!
e−r =

(rs)x

x!
e−rs, (7.9)

the subsampling is equivalent to a Poisson process with rate sr. Thus, the overall likelihood
for the K = 10 null trials and the K ′ = K = 10 interleaved stochastic trials can be written
as

P (D|s, r, I) =
K∏
k=1

(r)nk

nk!
e−r

(sr)n
′
k

n′k!
e−sr ∝ rNn+Ns sNs e−Kr(1+s), (7.10)

where we have dropped overall constant factors which will cancel out upon normalization
of the posterior distribution, see Eq. 7.8. In particular, only the total counts over the null
and over the stochastic trials, Nn and Ns, are relevant, justifying the manner in which we
reported results in Sec. 7.1.

To determine the posterior density p(s, r|D, I), we do require a definite choice for the joint
prior density π(s, r|I). We have no information that would lead to any logical or physical
dependence between these parameters a priori, so we take the priors for the parameters to
be independent: π(s, r|I) = π(s|I) π(r|I). To try to maximize how much we learn from
the data themselves, we follow conventional Bayesian practice in choosing the priors to be
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uninformative. As discussed in Appendix C, various distinct notions of what it means to
be uninformative have been introduced with various rationales, but fortunately in our case,
most of the widely-adopted definitions all lead to the same functional form for the priors for
both the baseline rate r and the survival probability s.

The uninformative prior for a Poisson rate parameter such as r is

π(r|I) ∝ 1√
r
. (7.11)

This prior is improper (non-normalizable) over the domain 0 ≤ r <∞, due to the behavior
of its integral for r →∞, but the posterior will be perfectly normalizable. The uninformative
prior for a binomial probability, such as s is

π(s|I) =
1

π
√
s(1− s)

. (7.12)

This expression is normalized over the domain 0 ≤ s ≤ 1.
We consider the effect of the choice of prior by replacing the uninformative priors of

Eq. 7.11 and 7.12 with their conjugate priors. These are priors with the same functional
form, but with adjustable hyperparameters. For the Poisson rate we consider

π(r|I) ∝ rα, (7.13)

and for the binomial probability we consider the form

π(s|I) ∝ sa(1− s)b. (7.14)

The uninformative choice is α = a = b = −1/2. For 1 ≥ a, b ≥ −1
2

and 0 ≥ α ≥ −1
2
, we find

our final bounds on |Q| do not change up to the first significant digit. For −1
2
≥ a, b > −1,

the final bounds can change significantly, but this is a perverse choice of hyperparameters,
as the posterior on s becomes non-normalizable when a, b = −1.

Using the uninformative priors and completing the integrals, which can be done analyti-
cally, we find

p(s|D, I) ∝
sNs−

1
2 Γ
(
Nn +Ns + 1

2

)
(K(1 + s))Nn+Ns+

1
2

√
1− s

. (7.15)

The proportionality constant is determined by ensuring
∫ 1

0
ds p(s|D, I) = 1.

Relating s to Q (p(|Q||s,M, I))

Now we turn to the other contribution to Eq. (7.5), namely the probability density function
p(|Q| |s,M, I) that encodes our knowledge about the correlation between the charge magni-
tude |Q| and the survival probability s, determined from the Monte Carlo simulations, M.
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Function Form Free parameters ∆BIC ∆F
error function 1 + erf(x−x0

σ
) 2 0 0

logistic 1 + tanh(x−x0
σ

) 2 0.8 2

Weibull e−(x/σ)k 2 2 -

Gudermannian π − 2
∫ x−x0

σ0
0

dt
cosh(t)

2 4 5

Gumbel 1− e−e−
x−x0
σ 2 7 8

Fisk 1
(x/σ)β+1

2 47 49

Fréchet 1− e−
(
|x−x0|
σ

)−α
3 104 -

arctan π − 2 arctan(x−x0
σ

) 2 120 123

Table 7.1: Comparison of model selection criteria BIC and estimated logarithm of the Bayes
factor, F, for fitting sigmoid functions to the Monte Carlo results. All criteria are compared
relative to the error function, which was found to be the best. The “Form” column gives
the form of the distribution as a function of x up to a normalization constant. Any other
variable in the expression is a free parameter. Uninformative priors were used to compute F.
Fréchet and Gumbel do not have entries in the third column as the cutoffs necessary for the
priors for the parameters of those distribution are not the same as the cutoffs on the priors
for the error function. Thus, ∆F in these two cases is dependent on the choice of cutoff of
prior.

We performed simulations at each of a sequence of different charge values Qi, i = 1 . . . , C,
distributed approximately uniformly in logarithm over the relevant range where the survival
probability s shows appreciable variation. For each Qi, we numerically propagated Ni ∼ 103

anti-atoms to determine the number Xi that escaped the trap during the hold interval when
subjected to the stochastic forcing.

We determine p(|Q| |s,M, I) by curve-fitting a parameterized fit function s = S(|Q| |a, I)
to the survival results from the Monte Carlo simulations, where the a are some set of
adjustable parameters.

Table 7.3 compares a number of different functional forms, including those that commonly
arise in survival analysis and the theory of extreme values, such as the logistic, Weibull,
Gumbel, as well as other cumulative distributions with a “sigmoidal” shape. Based on
comparisons of the Bayesian Information Criterion (BIC), and estimated Bayes’ factors [109]
between best fits within each functional family, a clear winner emerged, so we settled on a
survival function of the following simple form:

S(|Q| |Q0, σ0, I) =
1 + erf

(
Q0−|Q|
σ0

)
1 + erf

(
Q0

σ0

) , (7.16)

involving an adjustable “location” hyperparameter Q0 and “scale” hyperparameter σ0 > 0.
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See Appendix C for details on model selection. As we are considering a small number
of fit points (simulations were run for 14 different values of Q) and considering roughly
the same number of fit parameters for all fits, the Akaike information criterion (AIC) [110]
performs nearly identically to the BIC. Although the error function relation cannot be derived
theoretically from first principles, such a functional form involving the error function is
not implausible as an approximation, given that the stochastic drive essentially induces a
diffusion in energy space, and this choice evidently provides a very close fit to the Monte
Carlo simulations, as seen in Fig. 7.1. Note that the survival probability s is a monotonically
decreasing function of the charge magnitude |Q|, as would be anticipated, so the function
can in principle always be inverted, although it does flatten out considerably for sufficiently
large or small |Q|.

With this functional shape, the survival curve fitting is similar to a Bayesian “probit”
regression [111]. Note that we must also introduce one additional nuisance parameter, φ0,
which measures the survival probability for simulated trajectories in the absence of stochastic
forcing. This is necessary for correct inference of the survival probability conditioned on |Q|,
because many of the sampled initial conditions do not in fact lead to trapped anti-atom
trajectories, even in the absence of stochastic forcing. But after integrating over φ0, the
precise value of φ0 does not directly contribute to our posterior estimate for |Q| as a function
of s, and the overall effect is just to slightly broaden the distribution for the hyperparameters
which do determine the shape of the survival or calibration curve connecting |Q| and s.
Taking this into account gives

p(Q0, σ0|M, I) =

∫ 1

0

dφ0 p(Q0, σ0, φ0|M, I). (7.17)

Bayes’ theorem can then be used to find the posterior for the fit parameters Q0, σ0, and
φ0, based on the priors and the likelihood function for the Monte Carlo output

p(Q0, σ0, φ0|M, I) = π(Q0, σ0, φ0|I)
p(M|Q0, σ0, φ0, I)

p(M|I)
. (7.18)

Recall that our simulations M are C simulations, with differing values of the antihydrogen
charge, of Ni anti-atom trajectories to determine the number Xi of the trajectories that
escape the trap. As the survival is a binomial process, the likelihood for the Monte Carlo
trajectory samples is

p(M|Q0, σ0, φ0, I) =
C∏
i=1

(
Ni
Xi

)
(φ0S(Qi|Q0, σ0, I))xi(1− φ0S(Qi|Q0, σ0, I))Ni−Xi . (7.19)

We do, in principle, have to choose a prior density π(Q0, σ0, φ0|I), but given the large
number of Monte Carlo samples, essentially any diffuse or uninformative prior will lead to
nearly the same posterior density. Because of the large sample size we can approximate the
integrals via a Laplace expansion, which treats the likelihood as a Gaussian function [109].
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More details on this approximation are presented in Appendix C. Define aν as a vector of
the fit parameters, Q0, σ0, and φ0. We find the maximum likelihood estimate of these fit
parameters by optimizing Eq. 7.19 and call the result a∗ν . Under this approximation, we can
write

p(M|Q0, σ0, φ0, I) ∝ e
1
2

(aµ−a∗µ)(aν−a∗ν)∂µ∂ν ln(p(M|Q∗0,σ∗0 ,φ∗0,I)), (7.20)

The proportionality constant will drop out upon the normalization of the posterior in
Eq. 7.18.

We can then decompose the probability density p(|Q| |s,M, I) in terms of a convolu-
tion over the distribution representing our uncertainty as to the correct values of the fit
hyperparameters

p(|Q| |s,M, I) =

∫ ∞
−∞

dQ0

∫ ∞
0

dσ0 p(Q0, σ0|M, I) p(|Q| |s,Q0, σ0, I). (7.21)

In decomposing the probability density in this way, we have used the fact that the fit param-
eters are not logically dependent on the value of s, while Q0 and σ0 are assumed to exhaust
all of the information contained inM relevant to predicting Q from the survival probability
s. The first probability density p(Q0, σ0, φ0|M, I) in the integrand of (7.21) encodes all of
our uncertainty due to sampling error, given a finite number of Monte Carlo simulations. If
we truly believed that the functional family used in our curve-fitting reflected the actual un-
derlying functional relationship between s and Q for an appropriate (if imperfectly known)
choice of fit parameters, then we would take the second density in the integrand to be a
Dirac delta function

p(|Q| |s,Q0, σ0, I) = δ
(
|Q| − Q(s|Q0, σ0, I)

)
, (7.22)

where Q(s|Q0, σ0, I) = S−1(s|Q0, σ0, I) is the functional inverse of the chosen fit function.
But we can also incorporate systematic effects by broadening this delta function into, say, a
truncated Gaussian with a width σ(s) corresponding to the expected size of all the combined
systematic uncertainties

p(|Q| |s,Q0, σ0, I) ∝ 1

σ(s)
e
− (|Q|−Q(s|Q0,σ0,I))

2

2σ(s)2 , (7.23)

where the distribution is truncated and renormalized as necessary to avoid negative values
of |Q|.

As is usually the case, these sorts of systematic uncertainties can often only be quanti-
fied approximately. Our analysis is relatively insensitive to systematic errors. The analytic
expression Eq. 7.1 show that field errors enter the bound on |Q| linearly. Details of the mag-
netic field structure beyond the magnetic field magnitude maxima and minima are likewise
unimportant as they do not effect the trap depth. Since these fields are known to ∼ 1%,
they have a negligible effect to the level we report our limits. Simulation convergence studies
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Figure 7.2: Simulated survival probability s as a function of |Q| for the stochastic trials for
three different distributions of initial energy. The bands of varying thicknesses are the 68.3%
confidence region from a Bayesian fit to the data. The orange band assumes a linear initial
distribution, the blue band assumes a Maxwellian, and the purple assumes a uniform initial
energy distribution. The width of each band represents Monte Carlo sampling error, given a
well-defined distribution of initial conditions, while the separation between the bands reflects
systematic uncertainty regarding which distribution of initial conditions is adopted.

show that the step size need not be shorter than 4 µs (we used 0.8 µs for the simulations
reported here). They also indicate that the electrode drive filter time response need only be
known on the order of 4 µs; this is well within our system accuracy. Simulations show that
s is not significantly influenced by the spatial region from which the anti-atoms are initially
launched. All the data was taken over adjacent half shifts. We know of no mechanism that
could have significantly altered the trapping rate r in sync with the strict alternation of the
Stochastic and Null trials. Likewise studies of independent detector properties and detected
untrapped anti-atoms find no in-sync (or otherwise) detector variations. The expected num-
ber of cosmics incorrectly identified as anti-atoms is b = 0.15 over all twenty trials. This
can be included into the analysis by replacing the Poisson rates, r and rs in Eqs. 7.10,7.11
with b+ r and b+ rs. Including this has no effect on the result to the two significant figures
reported here.

We find that the dominant source of systematic error lies in the uncertainty as to the
appropriate distribution of initial conditions for the energy of trappable antihydrogen atoms.
Fig. 7.2 shows the difference in the fitted survival curve s(|Q|) based on initial conditions
described by a Maxwellian, uniform, or linear energy distributions, which span the range
of plausible variation in the choice of an initial energy distribution. By setting σ(s) ≈
10−9

√
s(1− s), we find that we can account for the discrepancies. This will also account for
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the other systematic effects, such as electromagnetic field errors, and ambiguities in choice
of the functional form of the survival function, as we find those to be much smaller.

Bounding Q

Completing all of the integrals (several of which can be performed analytically, which cuts
down on the numerical complexity of the calculation), we arrive at the posterior density for
|Q|, from which we can find credible bounds on the magnitude |Q| at any chosen level of
credence. The cumulative distribution is plotted in Fig. 7.3, while the credible limits for
various common choices of confidence levels are summarized in Table 7.2. In particular, we
find no appreciable difference when Monte Carlo sampling errors are included. This is not
surprising given the large number of Monte Carlo samples, and apparent goodness of fit of
the error function. Accounting for the systematic effects degrades the limit slightly. With
all effects taken into account, we find |Q| < 7.1 × 10−10 at 68.3% confidence. The result,
close to the analytic estimate of Eq. 7.1, is a factor of 20 improvement over the best previous
bound [27]. Since the charge anomaly of the antiproton is bound [7] within 7 × 10−10, our
result and the assumption of charge superposition limits the charge anomaly of the positron
to 10−9, an improvement over the best previous bound on the positron anomaly by a factor
of 25 [93,94].

If we take Q = 0 and change the equation of motion, Eq. 7.2 to

M~̈x(t) = ~∇[~µ · ~B(~x)] + α~∇| ~E(~x, t)|2 (7.24)

we can interpret our experiment as setting a bound on the polarizability, α, of the anti-
hydrogen under the assumption that antihydrogen has no charge. This sets a limit (with-
out incorporating systematic uncertainties) of α < 3 × 106 α0, at 68.3% confidence, where
α0 = 4πε0 0.667× 10−30 m3 is the known polarizability of hydrogen [112].

If instead we take Q = 0 and α = 0, and change the equation of motion to

M~̈x(t) = ~∇[~µ · ~B(~x)] + ~∇[~p · ~E(~x, t)], (7.25)

we can interpret our experiment as setting a bound on the permanent electric dipole moment
of antihydrogen, ~p, under the assumption that antihydrogen has no charge and polarizability.
This gives a bound (again, without incorporating systematic uncertainties) of 10−9 e cm
at 68.3% confidence. If this moment was to come from, for instance, a positron dipole
moment, quantum corrections loosen this bound to about 10−5 e cm [113]. This is many
orders of magnitude greater than the current bound on the electron dipole moment of 9.7×
10−29 e cm [114]. In principle, our analysis should be done to set a joint bound on the charge,
polarizability, and permanent electric dipole moment, but as these bounds are far from the
expected values of the quantities (by invoking the CPT theorem), we do not feel this is an
informative analysis with this data set.

A new measurement could improve the charge (and dipole) limit, guided by the scaling
in Eq. 7.1. Increasing the number of potential transitions that an antihydrogen experiences
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Figure 7.3: The cumulative distribution function (CDF) of the posterior prediction of |Q|.
The value of |Q| where the CDF is 1−α gives the upper limit on |Q| given the measurement
and analysis (with statistical and systematic uncertainties incorporated) at 1−α confidence.

will improve the limit, but this improvement scales as a square root. The potential ∆Φ
is limited by the electrodes and is not expected to be able to be increased. The neutral
well depth Ewell is limited by the temperature of the antihydrogen such that sufficiently
many anti-atoms are trapped. With improved mixing techniques and using methods such
as adiabatic or laser cooling, Ewell could be reduced [115]. A better characterization of the
initial energy distribution of antihydrogen would reduce the largest systematic effect and
reduce the bound. Increased statistics in the null and stochastic trials would allow for a
slight improvement in the charge bound, but is not expected to improve the measurement
significantly.
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Q∗ (×109)
Uncertainties Incorporated 1σ 90% 99%

Data 0.59 1.0 1.5
Data+MC 0.60 1.0 1.5

Data+MC+Systematics 0.71 1.3 2.0

Table 7.2: Summary of probabilistic limits, determined from P (|Q| ≤ Q∗|D,M, I), on the
normalized charge magnitude |Q|, expressed in parts per billion. The three rows reflect var-
ious sources of uncertainty incorporated into the posterior bound on |Q|. The three columns
represent different confidence levels, meaning probabilities for the Bayesian posterior credible
regions. The first row (Data) includes only the posterior uncertainty upon conditioning on
the limited number of actual observations, and assumes perfect knowledge of the survival (s
versus |Q|) curve. The second row (Data+MC) also incorporates uncertainty due to the fact
that the survival curve has been fit using a large but finite number of Monte Carlo samples
at a finite number of Q’s. The third row (Data+MC+Systematics) incorporates additional
systematic uncertainty as to the shape of the survival curve, due primarily to the choice of
the ensemble of initial conditions.
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Chapter 8

Bounding the antihydrogen mass

In this chapter we describe design considerations for ALPHA-g, a new antihydrogen trap op-
timized to make measurements of f, the gravitational to inertial mass ratio of antihydrogen.
Here, we focus on a toy model of the trap and consider analysis of potential data from the
trap. Significant design changes have been considered by C. So and J. Fajans, and ultimately
our toy model should be replaced with their new design to confirm the results.

Since the gravitational to inertial mass ratio is known to be extremely close to 1 for hy-
drogen, by the CPT theorem we would expect f = 1 [7]. However, no precise measurements
of the gravitational antihydrogen mass have been made. The ALPHA experiment placed a
loose bound of −65 < f < 110 at 95% confidence [18]. With a new trap, ALPHA-g, designed
specifically for mass measurements, we hope to improve this limit so that the uncertainty in
f is less than 1%.

We find that, in our simplified model of the experiment, a ∼1% measurement with anti-
atoms with temperature 100 K and 500 annihilations, is achievable.

8.1 ALPHA-g apparatus

The ALPHA-g apparatus is quite similar to the ALPHA-II apparatus described in Sec. 2.2.
The primary difference is that ALPHA-g will be oriented vertically so that there is a grav-
itational potential gradient between the two ends of the trap. In addition to the octupole,
mirror coils, and solenoid, ALPHA-g will have a gradient coil that will cancel out the effect
of the gravitational gradient to make the potential flat inside the trap if the mass of antihy-
drogen is the same as hydrogen. However, if the antihydrogen mass differs from the hydrogen
mass, the potential will not look flat and the effect will be observable as a difference in the
number of antihydrogen that leave the top versus bottom of the trap. The gradient coil has
field

~B =
χMg

µ

(
~z − ~x+ ~y

2

)
, (8.1)
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where g is the acceleration due to gravity (assumed constant over the extent of the trap), M
is the inertial mass of hydrogen (which we equate with the inertial mass of antihydrogen),
and µ is the magnitude of the magnetic moment of antihydrogen. Here, χ is an adjustable
parameter, used to tune the number of particles escaping the trap through the top versus the
bottom. While the sensitivity of the simulated measurements are largely unaffected by χ,
the measurements are more symmetric about f = 1 for χ tuned such that an equal number
of antihydrogen escape from the top and bottom. χ = 1 does not have equal numbers of
anti-atoms going up and down as there are other magnetic fields that also contribute a z
gradient. This also means that a tuned value of χ is dependent on the magnitude of the
confining fields.

8.2 Simulations

The simulation used here is similar to the one described in Sec. 7.2, and we will only highlight
the different aspects. The equation of motion, Eq. 7.2, is modified to

M~̈x = ~∇[~µ · ~B]− fM~g. (8.2)

Variations in g over the trap have negligible contributions for 1% measurements, but could
be important for precision measurements at later stages of the experiment.

In the simulations, we choose values for experimental parameters that would be reason-
able for ALPHA-g. We choose the solenoid field to be Bsol = 0.5 T. The length of the
octupole is chosen to be 1.6 m, and the distance between the mirror coils is chosen to be
1.4 m. Ultimately, as ALPHA-g designs are finalized, these simulations will need to be
repeated with actual design parameters.

Simulated anti-atoms are launched in a volume corresponding to the volume of the
positrons in the experiment. The antihydrogen have an energy distribution obeying a 3D
Maxwellian distribution at a temperature T . In this simulation, the temperature is an ad-
justable parameter. We study what T is necessary to achieve a desired sensitivity in the
antihydrogen mass. We modify the octupole and mirror fields correspondingly with temper-
ature, such that µ∆| ~B| = T, where ∆ denotes a difference in magnetic between the edge
of the trap and the center. The anti-atoms are then allowed to randomize for 1 s. After
the randomization, the mirror fields are shut down with an exponential shape with a time
constant of 10 s. The times at which the anti-atoms leave the trap are then stored.

For each value of f, we simulate N ∼ 10000 annihilation events Z = {(zi, ti)|i ∈ 1, ..., N},
where zi is the vertical annihilation position and ti is the annihilation time. To simulate an
experimental run, η annihilation events are randomly drawn (without replacement) from Z to
form a set ξj = {(zk, tk)|k ∈ 1, ..., η} [63]. We assumed experimental runs with η = 100, 500,
or 1000 annihilations. We generate K = 1000 of these experimental runs (subsamplings) for
the set Ξ = {ξj|j ∈ 1, ..., K}. Note that since N is generally smaller than Kη, many samples
from Z can be found in more than one collection from Ξ.
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8.3 A statistical bound on the antihydrogen mass

We would like to determine a confidence belt at 1 − α confidence for f, the ratio of the
gravitational to inertial mass of antihydrogen. We form the confidence intervals by a Neyman
construction [116]. See details on the Neyman construction in Sec. C.4.

An issue that plagues the construction of a confidence interval for f is systematic effects.
The obtained limits are sensitive to temperatures, particle distributions, and the magnetic
fields in ALPHA-g. The anticipated mass measurement sensitivities are estimated assuming
perfect knowledge, and thus an experimental measurement will have poorer sensitivity. These
simulation studies should be repeated for a variety of possible scenarios to determine how
each systematic factor affects the final result. In particular, if the temperature is unknown, it
will need to be treated as a nuisance parameter, and more sophisticated statistical methods
may be necessary. Further, one must justify and employ properly devised experimental
techniques to best ensure that a reverse cumulative average over the period during which
the data is acquired is justified. In particular, it is vital to rule out wild fluctuations in
temperature and field configurations during data acquisition.

Reverse Cumulative Average

This work below is an extension of the reverse cumulative average technique developed in
Ref. [18]. We build a reverse cumulative average value of the vertical annihilation point
for each ξj (a collection of η annihilation times and vertical positions) in Ξ. The reverse
cumulative average 〈z〉j(t) is defined for each ξj as

〈z〉j(t) ≡
∑

(zk,tk)∈ξj ,tk≥t zk∑
(zk,tk)∈ξj ,tk≥t 1

. (8.3)

This is the average of the z positions of all annihilations that occur at time t or later. This
is a useful definition as it captures the dynamics of the anti-atoms that are most sensitive
to the gravitational field at late times, while still including the majority of anti-atoms that
leave the trap before these late times. The reverse cumulative average thus highlights the
temporal regions with the most gravity information in a way that minimizes the uncertainty
from poor statistics.

We determine the confidence belt, corresponding to where 1−2α of the reverse cumulate
averages lie, as follows. For each time t, and each hypothetical value of the ratio of grav-
itational to inertial mass of antihydrogen, f, the reverse cumulative averages of all of the
〈z〉j(t) corresponding to each ξj ∈ Ξ are sorted. Then, two error bounds zα<(t) and zα>(t)
are chosen in such a way that precisely αK cumulative averages are below zα<(t) and αK
cumulative averages are above zα>(t). We call this the acceptance region, and examples are
shown in Fig. 8.1. Note that K is the number of simulated experiments, and the confidence
belts are true confidence belts, in the frequentist sense, in the K →∞ limit.

To obtain a confidence interval, we first choose a value of t, called t∗. In principle t∗ could
be any time, but there will be certain times that distinguish masses better than other times.
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Temperature (mK) Number of annihilations Sensitivity (at 90% confidence)
20 100 ∼0.8%
20 500 ∼0.3%
20 1000 ∼0.2%
100 100 ∼2%
100 500 ∼1%
100 1000 ∼0.7%
300 100 ∼6%
300 500 ∼2%
300 1000 ∼2%

Table 8.1: The statistical sensitivity of antihydrogen mass measurement achievable on
ALPHA-g as a function of antihydrogen temperature (T ) and number of annihilations (η).
Here, t∗ = 45 s. This analysis ignores any systematic effects.

If t∗ is chosen to be large, then the distinguishability is limited by poor statistics. Only a
small fraction of the η annihilations are used to place limits, which yields large variances. If
t∗ is chosen to be small, the statistics are better, but many of the particles are too energetic
to be noticeably influenced by the gravitational potential. Thus, an intermediate value of t∗

is optimal. We report later on some choices of t∗, but our results are relatively insensitive to
specific but sensible choices of t∗.

A simulated experimental run yields a measurement 〈z〉exp(t∗). A value of the mass
ratio of antihydrogen to hydrogen, f, is accepted at 1 − 2α confidence if it is true that
zα<(t∗) < 〈z〉exp(t∗) < zα>(t∗). The collection of the accepted values of f become the frequentist
confidence interval for f at 1−2α confidence. Note that the value of t∗ must be chosen prior
to looking at actual data. Failure to do this will result coverage issues, with the resultant
interval not being significant to the claimed level of precision [6].

As with any Monte Carlo estimate, we need to be careful that zα<(t) and zα>(t) are not
affected by the finite number of simulations performed to sample the distribution. This is
true when N � η, and by testing various values of N we have found we are in a regime
where the bounds are not sensitive to N . We also found that the dependence on N is most
significant at large t. Thus, as long as t∗ is chosen not to be large (which is a poor choice for
reasons outlined earlier), the finite numbers are irrelevant.

In Table 8.1 we show possible precision of mass measurements under this analysis for
various values of temperature, T, and number of annihilations, η. We highlight some of the
acceptance regions and confidence intervals used to obtain these results below.

In Fig. 8.1, we compare the 90% acceptance regions when the temperature, number of
annihilations, and χ are varied. With T = 100 mK and η = 500, there is no overlap between
the f = 0.98, f = 1.00, and f = 1.02 bands if t∗ < 55 s. This means f = 1.00 can be
distinguished from f = 0.98 and f = 1.02 (at 90% confidence), and a < 4% measurement is
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Figure 8.1: The 90% acceptance regions of the reverse cumulative average as temperature,
number of annihilations, and χ are varied. The brown band is the 90% acceptance region for
f = 0.98, the purple band for f = 1.00 and the yellow band for f = 1.02 for the parameters
shown in the plots. Unless otherwise noted, χ = 1. Different values of f can be distinguished
for a particular t∗ if there is no overlap between the bands at t = t∗.

feasible. The acceptance regions are also distinguishable when χ is adjusted to make an equal
number of atoms go up and down when f = 1.00. However, in this case the distance between
each of the bands is roughly equidistant whereas the f = 1.02 and f = 1.00 acceptance
regions were close in the χ = 1 case.

Raising the temperature to 300 mK while keeping η = 500 shifts the distributions toward
lower values of 〈z〉, but does not widen the acceptance regions. The shift causes the f = 1.02
and f = 1.00 acceptance regions to overlap, meaning that these two values of f cannot be
distinguished. With an appropriate choice of t∗, f = 0.98 can be distinguished from f = 1.00.

When η = 100, the acceptance regions widen compared to the η = 500 case. For T =
100 mK and η = 100, there is now significant overlap between the f = 1.00 and f = 1.02
bands, meaning these cannot be distinguished. There are regions where the f = 1.00 and
f = 0.98 bands do not overlap, meaning these can be distinguished with an appropriate
choice of t∗.
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Figure 8.2: The 90% confidence belts for f for the parameters shown in the plots. The
purple band has t∗ = 5 s and the green band has t∗ = 45 s. Unless otherwise noted, χ = 1.
An analysis of the experimental data would yield a value for the reverse cumulant 〈z〉exp(t∗).
This is drawn as a horizontal line on the corresponding plot, and the overlap between the
line and the confidence belt is the 90% confidence interval for f.

In Fig. 8.2, we construct 90% confidence belts for f for some of the scenarios in Table 1.
The width of the confidence belt corresponds to the sensitivity of the experiment. The
sensitivity achievable in each scenario is the width of the confidence belts near f = 1.00. The
sensitivity with t∗ = 5 s and t∗ = 45 s are comparable, with t∗ = 45 s performing slightly
better. We see that adjusting χ such that the upgoing number of anti-atoms matches the
downgoing number centers the confidence intervals around f = 1.00, but does not seem to
affect the sensitivity.

The results in Table 8.1 show that, at least in this idealized model of ALPHA-g and the
analysis, an up/down (100% sensitivity) measurement should certainly be feasible. In fact,
with ∼ 100 particles, measurements to bound the antihydrogen mass to within a few percent
of the hydrogen mass seem possible.

Future work will reconsider these analyses with a more accurate model of the trap,
and will consider inclusion of systematic effects such as the uncertainty in antihydrogen
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temperature. Ref. [18] presents an alternate analysis method related to the Fisher criterion.
The difference in statistical power of that test compared to the reverse cumulative average
test presented here would be an interesting future study. As highlighted earlier, it is crucial
to choose (and stick to) an analysis method before any data is taken such that a frequentist
analysis is valid.
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Chapter 9

Conclusion

In this thesis, we have demonstrated three main ideas. First, we improve on the analy-
sis of plasma data for diagnostics of temperature and density. Second, we analyzed the
cooling of electron plasmas when trapped inside of a microwave cavity. Last, we described
measurements of charge and mass of antihydrogen.

Many directions for future work in these areas are discussed in each chapter, and we
only touch on the most important aspects here. For the diagnostics, when the new codes for
temperature and plasma profile are written, they will need to be tested against a plethora
of images and temperature dumps. Particularly, discovering use cases that will result in
problems for the algorithm and rectifying these is an engineering challenge. Parameters of
the method such as the bin width for the discrete, binned temperature fitter will need to be
optimized. Ultimately, we will have to show that these new methods work better than the
currently accepted methods.

Both the diagnostics and cavity cooling problem can benefit from careful simulations of
plasma transport. The diagnostic problem has the simpler problem of determining how the
plasma profile changes as the potential wells confining the plasma changes. The cooling
problem must consider the effects of collisions and transport in inhomogenous magnetic
fields. One approach to this problem would be to extend the validity of PIC codes to
colder temperatures through approximations, such that the Debye length does not become a
computational limitation. Another approach would be to develop an N-body simulation, but
this has challenges such as the Green’s function of the Laplace equation being complicated
inside the Penning-Malmberg trap.

An extension of the analytic methods of this thesis that carefully consider collisions
would also be fruitful. Experimentally, collisions do not seem to be a limitation in the
temperature diagnostic presented in Chap. 5, yet our naive analysis there would suggest
that this is a limitation. We assume that collisions trivially convert perpendicular cooling
to parallel cooling in the cavity cooling problem, but there may be effects ignored by this
simplification. In addition, the coupling of the superradiant mode and the cavity could be
affected by collisions, which we have not considered.

For measurements of antihydrogen properties, a better charge measurement is an obvious
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next step. The trapping rate at ALPHA has improved significantly since the measurement
was conducted, and this could reduce some of the statistical uncertainties. While this yields
a slight improvement, ultimately longer hold times will be necessary for order of magnitude
improvements on the charge limit. Significant design work is under way for ALPHA-g, and
progress is being made to completing the apparatus.
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Appendix A

Hamiltonian Dynamics of Charged
Particles

A.1 Adiabatic Invariants

Consider a Hamiltonian, H, depending on position coordinates ~q and momentum coordinates
~p [117]. For any pair of cyclic coordinates, consider

A =

∮
pdq =

∫ qt(t+τ)

qt(t)

pdq (A.1)

Where qt is the position coordinate at the turning point where dq/dt = 0, and τ is the time
between periods. Now, suppose there is a parameter λ in the Hamiltonian that varies slowly
with respect to timescales in the problem. Define E = H(p(E(t), Q, λ(t)), q, λ(t)). Look at

dA

dt
= p

dq

dt

∣∣∣∣q=qt(t+τ)

q=qt(t)

+

∫ qt(t+τ)

qt(t)

(
∂p

∂t

)
q

dq

=

∫ qt(t+τ)

qt(t)

((
∂p

∂E

)
q,λ

dE

dt
+

(
∂p

∂λ

)
q,E

dλ

dt

)
dq

(A.2)

We see that

dE

dt
=
∂H

∂p

dp

dt
+
∂H

∂q

dq

dt
+
∂H

∂λ

dλ

dt
=
∂H

∂λ

dλ

dt
(A.3)

where the second equality is true by Hamilton’s equations. Also, since E has no explicit λ
dependence,



APPENDIX A. HAMILTONIAN DYNAMICS OF CHARGED PARTICLES 91

0 =
∂E

∂λ
=
∂H

∂p

(
∂p

∂λ

)
q,E

+
∂H

∂λ

1 =
∂E

∂E
=
∂H

∂p

(
∂p

∂E

)
q,λ

(A.4)

Plugging these relations in to Eq. A.2 gives

dA

dt
=

∫ qt(t+τ)

qt(t)

((
∂p

∂E

)
q,λ

∂H

∂λ
+

(
∂p

∂λ

)
q,E

)
dλ

dt
dq. (A.5)

Which is zero by Eq. A.4. Thus, dA/dt ≈ 0 and A is approximately conserved.
A is actually conserved to a high-degree of accuracy [30]. Assuming the Hamiltonian can

be separated into a cyclic part and a perturbation parameterized by a small parameter ε, A is
conserved to a time that is exponential in ε, as long as the potentials are well-behaved [118].
This can be calculated analogously to calculating the quantum reflection coefficient in the
WKB approximation [119,120].

In Strongly Magnetized Plasmas

In magnetized plasmas, adiabatic invariants are particularly useful to characterize plasma
properties across changing properties of the system. Often, they can offer insights into the
behavior of a system without doing any calculations.

First, Consider a plasma in a static, strong magnetic field pointing in the z direction.
Plugging in the canonical momentum pθ = mr2θ̇ − er2B/2, we see that

A =

∮
pθdθ = πm

u2
⊥
ωc
. (A.6)

Thus, for a constant magnetic field (as in a solenoid) the kinetic energy in the perpendicular
direction is an adiabatic invariant [30].

Considering the motion parallel to the magnetic field gives

J =

∮
pzdz.

For a Penning-Malmberg trap, this invariant is useful in characterizing bounce motion.

A.2 Effective Hamiltonian

Consider a Hamiltonian system depending on a variable ξ that is cyclic over a fast timescale,
and η that evolves over a slower timescale. As before, define [121,122]
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J =

∮
dξ pξ (A.7)

Note that this definition is only reasonable if ξ is fast compared to other timescales in the
problem. Otherwise the orbits would not close and the integral would be ill-defined. We see
that

∂J
∂H

=

∮
dξ

∂pξ
∂H

=

∮
dt ≡ ∆t. (A.8)

This is the period of one cycle in ξ. We also see

∂J
∂η

=

∮
dξ

∂pξ
∂η

=

∮
dξ

∂pξ
∂H

∂H

∂η
= −

∮
dt
dpη
dt
≡ −∆pη

∂J
∂pη

=

∮
dξ

∂pξ
∂pη

=

∮
dξ

∂pξ
∂H

∂H

∂pη
=

∮
dt
dη

dt
≡ ∆η

(A.9)

Thus, this gives a prescription for a guiding center Hamiltonian. J acts like a Hamiltonian
with time redefined by ∆t given above.

Drifts

Consider a particle in an azimuthally symmetric magnetic field that can vary in r and z.
The hamiltonian for a particle in this field is

H =
p2
r

2m
+

(pθ + eAθ(r, z))2

2m
+

p2
z

2m
− eΦ(~x) (A.10)

We define the guiding center coordinate to be the solution to

pθ + eAθ(rgc(pθ, z), z) = 0. (A.11)

Expand the scalar and vector potentials to first order about rgc and evaluate all quantities
at the guiding center coordinate. Now consider the integral of motion in the r direction

J =

∮
dr pr

≈
∮
dr
√

2mH − p2
z − e2B2

zδr
2 + 2meΦ + 2meErδr

=

∮
dr

√
2m

(
H − p2

z

2m
+ eΦ +

m

2

E2
r

B2
z

)
+ e2B2

z

(
δr − mEr

eBz

)2

=
4πm

eBz

(
H − p2

z

2m
+ eΦ +

m

2

E2
r

B2
z

)
(A.12)
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The last line is clear as this is the area of a circle with radius squared equal to the first term.
Assuming an azimuthally symmetric potential and using the negative of this as an effective
hamiltonian gives the following velocity equations

∆θ

∆t
≈ H⊥
eB2

z

∂Bz

∂r
− Er
Bz

− m

eBz

Er
Bz

∂

∂r

(
Er
Bz

)
∆rgc
∆t
≈ 0

∆z

∆t
=
pz
m
.

(A.13)

The terms in the first equation are the ~∇| ~B| drift and the ~E × ~B drifts. The third term is

a ~∇| ~E| drift that can be attributed to the definition of rgc [123]. We see the radial and z
velocity are simple in this level of approximation. This also shows that in strong magnetic
fields, particles will stick to field line as their radial guiding center coordinate is constrained.

Higher order drifts can be obtained by keeping further terms in these expansions as well
as expanding the scalar and vector potential to higher orders around the guiding center
coordinate in Eq. A.12.

Example: Particles in a changing field

Suppose charged particles are in a strong magnetic field. These particles start in a region
of high field and travel to a region of lower field (though still large enough to be strongly
magnetized). As shown above, the particles will follow the magnetic field lines. Assuming
no azimuthal dependence in the magnetic field, Gauss’s law for magnetism requires

∂Bz

∂z
+

1

r

∂

∂r
(rBr) = 0. (A.14)

Note that with the substitution

Br = −r
2

∂Bz

∂z
, (A.15)

Eq. A.14 is satisfied, as long as r ∂
2Bz
∂z∂r
� ∂Bz

∂z
. For example, this is true in an ideal solenoid [72].

A field line satisfies dz/dr = Bz/Br, so plugging this form in gives

dz

dr
= −Bz

2

r

(
∂Bz

∂z

)−1

dBz

Bz

= −2dr

r

B0

B1

=
r2

1

r2
0

.

(A.16)
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Thus, the radial position of the charged particles increases by a factor of
√
B0/B1 in traveling

from the region of strong field to lower field. This means that the radius of a plasma will
expand by the same factor when a plasma travels from a region of strong field to lower field.
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Appendix B

Vlasov Equation and Equilibria

B.1 Derivation of the Vlasov equation

Here we will derive the Vlasov equation, the PDE for the time evolution of the plasma
distribution. We will follow [124], and further details are given in the reference. Assume
a single component plasma of particles with charge −e subjected to homogenous applied
electric and magnetic fields, ~E and ~B. Consider one of the particles in the plasma. Call the
6-vector of this particle’s position and velocity xµ = (~r,~v). The equation of motion for this
particle is

dxµ

dt
=

 ~v

− e
m

( ~E + ~v × ~B)− e
∑
i

G(~r − ~ri)

 (B.1)

where the sum is over all of the other particles in the plasma. G is the Green’s function
for the Laplace equation with appropriate boundary conditions. Now, define f(~r,~v) =∑
i

δ3(~r − ~ri)δ3(~v − ~vi). The above equation becomes

dxµ

dt
=

 ~v

− e
m

( ~E + ~v × ~B)− e
∫
d3~r′

∫
d3~v′ f(~r′, ~v′)G(~r − ~r′)

 (B.2)

Assume that the ensemble average of f(~r,~v) is sufficient in describing the plasma, and thus
replace the f(~r,~v) in the expression above with its ensemble average. Note that this is the
key simplification and departures from this simplification lead to the Fokker-Planck terms
not present in the Vlasov equation. Then, we can write

dxµ

dt
= aµ =

(
~v

− e
m

( ~E + ~Eself + ~v × ~B)

)
, (B.3)

where ~Eself is the integral over the Green’s function. Define the probability density of the
particle coordinate xµ(t) as
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P = 〈δ6(xµ − xµ(t))〉, (B.4)

where the brackets denote an ensemble average. Let P̃ be the Fourier transform of P. We
see

P̃ = 〈e−ikµxµ(t)〉. (B.5)

Using the equation of motion, we get that the change in P̃ by a first order perturbation in
dt is

δP̃ = 〈e−ikµxµ(t+dt)〉 − 〈e−ikµxµ(t)〉
≈ 〈e−ikµxµ(t)(1− ikνaνdt)〉 − 〈e−ikµx

µ(t)〉
= −ikνdt〈e−ikµx

µ(t)aν〉
= −dt F(∂µ(aµP )).

(B.6)

where F denotes the Fourier transform. Taking the inverse transform gives

∂P

∂t
= −∂µ(aµP ).

Rewriting in terms of ~r and ~v gives

∂P

∂t
= − ∂

∂~r
· (~v P )− ∂

∂~v
·
(
− e

m
( ~E + ~Eself + ~v × ~B)P

)
.

Note that

∂

∂~v
· (~v × ~B) P = ~B P ·

(
∂

∂~v
× ~v
)
− ~v · ∂

∂~v
× ( ~B P )

= ~v · ~B × ∂P

∂~v

= (~v × ~B) · ∂P
∂~v

.

Thus

∂P

∂t
+ ~v · ∂P

∂~r
− e

m
( ~E + ~Eself + ~v × ~B) · ∂P

∂~v
= 0

Since no particle in the plasma is distinguishable, it must be that the distribution of one
particle is equivalent to the distribution of any other particle. Hence, we identify P ∝ f,
and the above equation becomes the Vlasov equation

∂f

∂t
+ ~v · ∂f

∂~r
− e

m
( ~Etot + ~v × ~B) · ∂f

∂~v
= 0. (B.7)
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~Etot = ~E + ~Eself and must satisfy Maxwell’s equations, such that

~∇ · ~Etot = −∆V = −e
∫
d3~v f(~r,~v), (B.8)

which is of the form in Eq. B.2 if the Green’s function is known. We also assumed here that
the magnetic fields produced by the plasma are negligible compared to the applied fields.

B.2 Equilibrium Solutions

We see that plugging in any distribution of the form f(H) satisfies the Vlasov and Laplace
equations because of Hamilton’s equations (the coordinates are still for the one particle in
the previous section, so the argument is valid) [121]. Similarly, if the Hamiltonian does not
depend on θ (it is azimuthally symmetric), the canonical angular momentum pθ will be a
conserved quantity. For example, in an ideal solenoid field, pθ = mr(vθ−rωc/2) is conserved.
A general solution will depend on the linear combination of the two, and hence will be of
the form f(H − ωpθ), which is called a “rigid rotor” plasma [125].

Appealing to the second law of thermodynamics, we would expect the maximum entropy
distribution of this class of distributions to be the physical solution to the Vlasov equation
(see details in Appendix C.1) [91]. Assuming the energy has mean T, the form is

f(~r,~v) ∝ exp

(
−H − ωpθ

T

)
. (B.9)

Integrating over all velocities (and ignoring relativistic effects) gives

n(r) =

∫
d3~v f(~r,~v) = n0 exp

(
mω(ω − ωc)r2

2T
+
eV (~r)

T

)
, (B.10)

where n0 is a normalization constant related to the plasma density. Including the effects of
collisions ignored earlier yields the full Fokker-Planck equation with friction and diffusion
terms. These terms are zero when the distribution has the form of Eq. B.9, so this form is
justifiable without a maximum entropy principle as well [30].

Debye Shielding

Let there be a point charge with charge −e at a position ~r′ inside of a non-rotating electron
plasma in a weak magnetic field. To find the form of V (~r), we look at the Laplace equation
for the potential, plugging in the form of Eq. B.10

−∆V (~r) = −e
(
n0e

eV (~r)
T + δ3(~r − ~r′)

)
, (B.11)

Under the condition |eV (~r)| � T, the equation becomes
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∆V (~r) = e

(
n0

(
1 +

eV (~r)

T

)
+ δ3(~r − ~r′)

)
. (B.12)

As a constant in the potential is irrelevant, we redefine the potential to absorb the constant.
Then, finding the potential becomes the problem of finding the Green’s function of the
Helmholtz operator. This is discussed in many texts, including [72]. If there are no boundary
conditions, and assuming the plasma is localized, the viable solution should decay far away
from the point charge. Thus, the potential is

V (~r) =
e

4π|~r − ~r′|
e
− |~r−~r

′|
λD , (B.13)

where λD =
√
T/n0e2 is the Debye length of the plasma. The charges in the plasma screen

the potential of the point charge when |~r − ~r′| � λD.

Plasmas at high temperatures

Consider an extremely hot electron plasma, and take the origin of the coordinate system to
be at the center of the plasma. Then, the Laplace equation for the potential becomes

−∆V (~r) = −en0 exp

(
mω(ω − ωc)r2

2T
+
eV (~r)

T

)
≈ −en0. (B.14)

Assuming the vacuum solution allows for a harmonic potential over the extent of the plasma,
we have

V (~r) = −en0

2
z2 − en0

4
r2 (B.15)

The solution to this, assuming boundary conditions are irrelevant to the shape of the plasma,
is

f(~r) = −en0e
− |~r|

2

2λ2
D . (B.16)

So we can expect hot plasmas to have a Gaussian radial profile.

Plasmas at low temperatures

Consider an extremely cold electron plasma. Then from Eq. B.10 it is clear that the following
criterion needs to be satisfied for the plasma density to be nonzero anywhere [126].

−m
2
ω(ω − ωc)r2 + eV (~r) = Ω(T ) (B.17)

Let us see if we can find a form where the right hand side is independent of spatial coordinates.
Taking a derivative with respect to z shows that V is independent of z. This means that inside



APPENDIX B. VLASOV EQUATION AND EQUILIBRIA 99

the plasma the plasma “cancels out” the applied external potential to make the potential
flat. Taking derivatives with r in the appropriate way to get the Laplacian yields

e∆V (~r) = −2mω(ω − ωc) = −e2n(~r) (B.18)

Solving for the density gives

n(~r) =
2mω(ω − ωc)

e2
(B.19)

and thus the constant density assumption was a consistent one. Intuitively, the plasma is
constant so that its self potential will be quadratic in r to cancel out the effective rotation
potential. Obviously, since there is finite charge, this relation only holds out to a boundary.
Determination of this boundary is discussed later in Sec. 4.1. This means that the plasma
has a hard edge.
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Appendix C

Statistics

In this appendix we give an overview of statistical ideas that are referred to in the thesis.

C.1 Maximum Entropy Distributions

The second law of thermodynamics states that systems tend toward states with higher en-
tropy. Then, if there is a state that has maximized entropy, this must be the eventual state
of the system. Thus, given no other information than a set of constraints for a system, we
expect that the system will be in the distribution that maximizes the entropy under those
constraints.

The Shannon entropy for a probability distribution p(x) is defined, as in statistical physics
(with kB = 1) as [127],

H = −
∫
dx p(x) ln(p(x)) (C.1)

The Shannon entropy is defined similarly for discrete and multivariate distributions.
Suppose the constraints are expectation of functions fj(x) set to take values aj. We wish

to extremize

L = −
∫
dx p(x) ln(p(x))− λj

(
aj −

∫
dx fj(x)p(x)

)
, (C.2)

where the λj are Lagrange multipliers. Note that f0(x) = 1 and a0 = 1 is always a constraint
as probability distributions are normalized. Taking the functional derivative of L with respect
to p gives [121]

δL
δp

= −1− ln(p(x)) + λjfj(x). (C.3)

Setting this to zero extremizes the functional. Solving for p(x) gives
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p(x) ∝ eλjfj(x), (C.4)

and the constraint equations can be used to solve for the λj.

Fixed mean on [0,∞)

Consider the class of probability distributions p : [0,∞)→ [0, 1]. Denote a random variable
drawn from this distribution as H and specify E(H) = T. Then, by Eq. C.4

p(H) ∝ eλH (C.5)

Normalizing and using the condition on the mean gives

p(H) ∝ e−H/T . (C.6)

Thus, the exponential distribution is the maximum entropy distribution over the positive
reals with a constrained mean.

Fixed mean and variance on (−∞,∞)n

Consider the class of probability distributions p : Rn → [0, 1] for n ∈ Z+. Denote a random
variable drawn from this distribution as ~x and specify E(~x) = ~µ and E(|~x− ~µ|2) = σ2. Then,
by Eq. C.4

p(~x) ∝ eλ1~x+λ2|~x−µ|2 (C.7)

Then, normalizing and using the condition on the mean and variance gives

p(~x) ∝ e−
|~x−~µ|2

2σ2 . (C.8)

Thus, the Gaussian distribution is the maximum entropy distribution over Rn with a con-
strained mean and variance.

Fixed rate on N
We will show the Poisson distribution is the maximum entropy distribution for a fixed rate
over N. While this is possible to show directly, it requires a different entropy function to
account for the independence of the events [103, 105]. Thus, we will show the maximum
entropy nature of the Bernoulli process, and build up the Poisson distribution from this
result.

Consider a process with two possible outcomes. Constrain the first outcome to happen
with probability p. This is constrained enough to only allow one probability distribution
(the one where the first outcome happens with probability p and the second with probability
1− p), and thus this is the maximum entropy distribution.



APPENDIX C. STATISTICS 102

Now, consider summing up N Bernoulli processes. Then, for distinguishable events,
the probability of k successes would just be pk(1 − p)N−k. However, because the events are
indistinguishable, we must account for the equivalence with the binomial coefficient and thus

p(k) =

(
N
k

)
pk(1− p)N−k. (C.9)

We will reinterpret the first outcome as an event happening and the second outcome as
an event not happening. Further, we assume that the first outcome has a low probability of
occurring. We take the limit N →∞, but with a fixed Poisson rate Np→ λ in the previous
equation. Through some manipulation, the above equation becomes [128]

p(x) =
λx

x!
e−λ. (C.10)

So, for a sequence of indistinguishable events, the Poisson distribution is the maximum
entropy distribution for a fixed rate over the positive integers.

C.2 Uninformative priors

In this section we briefly discuss the notion of uninformative priors in Bayesian analysis.
There are many notions of how “uninformative” should be defined, but we only focus on the
Jeffreys notion here. For one parameter distributions like the ones discussed in this thesis,
many notions of uninformative are equivalent [129–131].

Jeffreys prior

While a uniform prior may seem to weight all possible values of a parameter equally, it
suffers from the fact that under a coordinate transformation, the prior may no longer weight
all possible values equally. For example, suppose a probability, s ∈ [0, 1], is being measured
as in Sec. 7.3. One might argue that it was not the probability, but the odds s/(1− s) being
measured. A uniform distribution in s is no longer uniform in s/(1− s).

Jeffreys’ solution is to construct the prior such that it is invariant under coordinate
transformations. For a likelihood function f(~x|θ), (~x and θ can be vectors in different
spaces), this is defined as

π(θ) =

√
detE

(
∂2

∂θi∂θj
ln(f(~x|θ))

)
(C.11)

The matrix inside of the determinant is the Fisher information matrix [102].
Consider the transformation of the prior π(θ) into a function of φ. We see
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π(φ) =

∣∣∣∣det
∂θ

∂φ

∣∣∣∣ π(θ)

=

√(
det

∂θ

∂φ

)2

detE
(

∂2

∂θi∂θj
ln(f(~x))

)

=

√
detE

(
∂θ

∂φ

∂2

∂θi∂θj
ln(f(~x))

∂θ

∂φ

)

=

√
detE

(
∂2

∂φi∂φj
ln(f(~x))

)
(C.12)

And thus the prior is independent of parameterization.
Consider a Poisson rate λ. That is, in the above f(x|λ) = e−λλx/x!. We have∣∣∣∣∂2 ln(f(x|λ))

∂λ2

∣∣∣∣ =
x

λ2
. (C.13)

For a Poisson distribution, E(x) = λ, so this gives π(λ) ∝ 1/
√
λ.

Consider a binomial process of N trials with rate p. This means, f(x|p) ∝ px(1− p)N−x.
We have ∣∣∣∣∂2 ln(f(x|p))

∂λ2

∣∣∣∣ =
Np2 − 2px+ x

(1− p)2p2
. (C.14)

For a binomial distribution, E(x) = Np, so this gives π(p) ∝ 1/
√
p(1− p).

C.3 Model Selection

Given multiple valid models, it is not trivial to select which model represents the data best.
While a fit with more parameters will tend to reduce the total residuals of the fit and the
data, it is prone to overfitting and lose predictive power. The interplay between these two
is characterized by information criteria. There are various information criteria used, but
here we will consider the Bayes factor, the Bayesian information criterion (BIC), and cross-
validation.

In this section, D will represent the data with N points that is being fit, and Mi will
represent models used to fit the data. As in Sec. 7.3, I represents all background information.

A Bayesian approach

The Bayesian approach is to directly compute the probability of the models given the data,
that is p(M|D, I). This is intractable as p(D|I) in Bayes’ theorem can be hard to compute
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in this case. However, by taking a ratio of posteriors, the term cancels, and we see how one
model fares relative to another model. Calling the log of the ratio of the posteriors F, we
find, using Bayes’ theorem

F = ln

(
p(M1|D, I)

p(M2|D, I)

)
= ln

(
p(D|M1, I)

p(D|M2, I)

p(M1)

p(M2)

)
. (C.15)

If the prior probabilities of the models are taken to be the same, this reduces to the log of the
ratio of the likelihoods given the models. This is the log of the Bayes factor. This provides
a systematic way to weight models over other models from a priori information.

For simplicity, let the model, Mi, be a functional form that depends on a set of n fit
parameters, ~µ. We are only able to determine p(D|Mi, I) through ~µ. This is just the evidence
integral (the denominator in Bayes’ theorem), and thus

p(D|Mi, I) =

∫
dn~µ p(D|~µ,Mi, I)π(~µ|Mi, I). (C.16)

p(D|~µ,Mi, I) is easily computable once Mi and ~µ are given. Uninformative priors can be
chosen for π(~µ|Mi, I) (see previous section), or this can actually incorporate prior knowledge
of the parameters. Thus, the problem of computing F in Eq. C.15 has been reduced to
computing integrals. There are techniques like Markov-chain Monte Carlo that have been
developed for this purpose [63].

If the fit is well-constrained, further simplifications can be made. As the fit specification
improves, the likelihood p(D|~µ,Mi, I) looks like a δ function and make the integral trivial.
The Laplace approximation quantifies this intuition. As in Sec. 7.3, the best-fit parameters
can be found by maximizing

l(~µ) = ln(p(D|~µ,Mi, I)) (C.17)

with respect to its argument. Call the maximum likelihood value of the fit parameters ~µ∗.
We can expand around this maximum to obtain

p(D|~µ,Mi, I) ≈ el(~µ
∗)e

1
2

(~µ−~µ∗)ρ(~µ−~µ∗)σ∂ρ∂σl(~µ∗), (C.18)

where there is obviously no term linear in ~µ as ~µ∗ is an extremal point. If the fit is well-
specified, the curvature, ∂ρ∂σl(~µ

∗), should have large entries in it. Thus, this makes the
problem suitable for the Laplace approximation. Assume that all parameters of ~µ are defined
on (−∞,∞). If this is not the case, we can usually extend the parameter to take on all values
of this range without affecting the result. This is true when the parameter is constrained
enough such that without imposing a strict cutoff for the parameter values, the probability of
the parameter taking on a value outside its range of validity is extremely small. We expand
the prior around the maximum likelihood and only keep the 0th order term to get
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p(D|~µ,Mi, I) ≈
∫
dn~µ el(~µ

∗)e
1
2

(~µ−~µ∗)ρ(~µ−~µ∗)σ∂ρ∂σl(~µ∗)π(~µ|Mi, I)

≈

√
(2π)n

− det ∂ρ∂σl(~µ∗)
el(~µ

∗)π(~µ∗|Mi, I),

(C.19)

provided the prior grows slower than the Gaussian term. This provides a tractable way to
approximate F without the need to compute any multi-dimensional integrals. Note that
as we need to evaluate the prior at a certain point, we do have to have regular priors for
Eq. C.19 to make sense. This is no problem if the two fit models have parameters with the
same prior, as then the factor cancels out. However, if the two fit models have parameters
with different (non-normalizable) priors, then cutoffs need to be chosen for those priors and
the selection criterion can unfortunately be affected by this cutoff.

Corrections to Eq. C.19 can come from either approximation. First, In expanding the
likelihood, one should check that the Eq. C.17, is a good approximation of the likelihood and
that the third order term is irrelevant. Second, it should be checked that higher order terms
in the expansion of the prior in Eq. C.19 are also not relevant. Note that linear terms in
the prior are irrelevant (they integrate to zero), so the relevant term to check is the second
order term in the expansion of the prior.

As the number of observation points becomes large, the result simplifies even further.
Consider the determinant of the curvature of the log-likelihood in Eq. C.19. Note that l(~µ∗)
is just a sum of the log of the likelihood function evaluated at each data point. Assuming
that these data points are uncorrelated, this is just a sum of uncorrelated variables. Thus,
the law of large numbers says that in the N →∞ limit, the sum should converge to N times
the expectation of the log-likelihood for one point over the data. Thus, in this limit

ln(p(D|~µ,Mi, I))
N→∞

= l(~µ∗)+
n

2
ln(2π)−n

2
ln(N )+

1

2
ln(− det ∂ρ∂σl1(~µ∗))+ln(π(~µ∗|Mi, I)).

(C.20)
Where l1(~µ) is the expectation of the log-likelihood of one point over the distribution. When
N → ∞, l(~µ∗) scales as N as it is a sum of N uncorrelated variables. The only other term
that grows with N is the ln(N ), so it is kept. Then, multiplying by −2 gives

BIC = −2l(~µ∗) + n ln(N ). (C.21)

This is a simple expression that can be evaluated easily and is relatively robust [109] .
Dependence on the prior has dropped out of this expression. While the Bayes factor certainly
has more information, for a quick comparison of models, the BIC is good for these reasons.

For our model selection in Sec. 7.3, N was not large, as the n ln(N ) is about the same as
the n ln(2π) term that is thrown out in the asymptotic expansion. However, we still found
that it was useful in model selection.
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Models without a functional form

Though not discussed in the thesis, one may be interested in models to describe the data
that do not have a functional form. This includes, for example, decision-tree and clustering
machine learning methods. For these models, the AIC and BIC are not applicable as the
number of fit parameters that goes into calculating AIC and BIC are not well-defined. Thus,
it is extremely common to use cross-validation as a means of model selection [132]. The
idea of cross-validation is to split the model into training and validation sets, where the
validation sets are disjoint. Fits are performed on the training set and the performance is
directly measured on the validation set. Since no elements of the validation set are used in
the fit, this method automatically prevents overfitting.

The number of sets to choose depends on the problem. For small problems like the ones
discussed in this thesis, each validation set could contain one element. This is called hold
one out validation. While computationally expensive, hold one out validation best emulates
the performance of the model if it were fit on all of the data, as the training sets look very
similar to the whole dataset. For large datasets, it is more common to choose n disjoint sets,
so that the same statistic can be approximated but with less computational cost.

Cross-validation is also simple to implement in that no extra work beyond fitting is
necessary. This contrasts, for example, computing a Bayes factor which can involve numerical
integrals or a bit of analysis to get an amenable expression.

C.4 Confidence Intervals

Frequentist

Frequentist methods construct a 1−α confidence intervals such that, if the experiment were
repeated many times, the interval would contain the true value 1−α of the time. Ideally, this
would be exactly 1−α of the time, but overcoverage (when the true value is contained greater
than 1 − α of the time) is usually inevitable, especially when the likelihood distribution is
discrete.

Confidence intervals are constructed using the Neyman construction [6, 7, 116]. For sim-
plicity, we will describe the construction with one measured parameter x, and one quantity
to create an interval for, θ. We will discuss the multi-dimensional case later. Let f(x|θ) be
the likelihood function of x. If x ∈ R (or a subset of R), for each value of θ, an interval
[aθ, bθ] is chosen such that

1− α =

∫ bθ

aθ

dx f(x|θ). (C.22)

Or, if x ∈ Z (or a subset of Z), for each value of θ, an interval [aθ, bθ] is chosen such that
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Figure C.1: Construction of confidence intervals. For each θ (the quantity to set a limit on),
a horizontal interval of x (the measured quantity) is chosen, such that it satisfies Eq. C.22
or Eq. C.23. The union of these horizontal intervals forms the 90% confidence belt. When a
measurement is made, a vertical line is drawn at the measurement (shown here as a dotted
line). The intersection of this line and the confidence belt is corresponding confidence interval
for θ that the measurement allows [6, 7]. Figure is modified from Ref. [6].

1− α ≤
bθ∑
aθ

f(x|θ), (C.23)

as equality cannot be guaranteed when discrete packets of f are added.
The collection of these lines for each θ form a confidence belt. When an experiment

measures a value x, all values of θ such that x ∈ [aθ, bθ] are accepted, and the collection
of accepted θ becomes the 1 − α confidence interval on θ. Fig. C.1 graphically depicts this
process.

The choice of the upper and lower limits for each θ are arbitrary in the construction of
the confidence belt as long as the method used to determine them is not influenced by the
data itself, and Eq. C.22 or Eq. C.23 is satisfied for all values of θ within the physical bounds
on θ. The choice may depend on whether one desires a lower bound or an upper bound,
though there are methods such as the Feldman-Cousins method [6] that smoothly transition
between one and two-sided confidence intervals.

Choosing and committing to a method before conducting an experiment is imperative [6].
Suppose an experimenter decides to quote an upper limit if he or she observes less than
or equal to the expected number of background events and quotes a two-sided limit if he
observes more than the expected number of background events. Then, even if in each case
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Figure C.2: The 90% confidence belts that a flip-flopping physicist, as described in the text,
would produce for Gaussian distributed data with an expected background rate b̄ = 3. The
kink in the plot results at x = 3 from the arbitrary decision made by the experimenter. For
the signal means in the range 1.36 < s̄ < 4.28, the coverage, or the probability contained in
the horizontal belts, is 85%, which is undercovering [6]. Figure is modified from Ref. [6].

the flip-flopping physicist plans to use a method that will return 1− α confidence intervals,
there will be regions where the coverage is less than 1− α, as shown in Fig. C.4. Then, the
intervals the experimenter publishes are not confident to 1 − α. In terms of the definitions
given earlier, if the experiment were repeated many times, there are some values of the true
signal value θ such that the limits set on θ will contain the true value less than 1− α of the
time, and thus is not a valid method to construct confidence intervals.

In multiple dimensions, the construction is identical. The integration (or summation)
regions in the multi-dimensional analog of Eq. C.22 or Eq. C.23 can be any multi-dimensional
region such that the condition is satisfied for a given ~θ, as long as the choice is independent
of the measurement. The ~θ is accepted if the measured x is contained within that multi-
dimensional region.

Bayesian

In a Bayesian formalism, building a confidence interval1 is straightforward. To construct
a confidence interval at 1 − α confidence on a quantity θ based on an observation D, one
computes the posterior for θ. The interval [θ1, θ2] must satisfy [7]

1Sometimes a Bayesian confidence interval is called a credible interval to distinguish it from a frequentist
confidence interval.
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1− α =

∫ θ2

θ1

dθ p(θ|D). (C.24)

As with the frequentist case, any choice of θ1 and θ2 that satisfies this is a valid confidence
interval. If one would like to place an upper bound on θ (assuming θ > 0), one could set
θ1 = 0 and solve for θ2. One way to construct a two-sided interval would be to find the value
of θ where p(θ|D) is maximal, and then take a symmetric interval about that point that
satisfies Eq. C.24.

p(θ|D) can be determined from the likelihood using Bayes theorem. This gives

p(θ|D) =
p(D|θ)π(θ)

p(D)
. (C.25)

p(D) can be determined by requiring that the integral of p(θ|D) over all physical θ must be
1. p(D|θ) is the likelihood function of the data. π(θ) can be chosen to be uninformative (see
Sec. C.2), or can actually take into account prior knowledge of θ.

Note that in the Bayesian formalism, no choices (except for the prior) are made to
construct the posterior, p(θ|D). This means that the posterior distribution is insensitive to
whether the method to construct it was decided before or after a measurement was made,
unlike frequentist methods. Any interval satisfying Eq. C.24 is a valid confidence interval at
1 − α confidence, so the confidence interval is also insensitive to whether the construction
method was decided before or after a measurement was made.

If θ is n-dimensional quantity (a joint bound on more than one parameter is desired),
the equation is the same, but the integration region can be any curve in n-dimensional space
that satisfies the above constraint.
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Appendix D

Codes

In this appendix we provide the code used in this thesis.

D.1 Levenberg-Marquardt Algorithm

The following is CUDA [51] code and is an implementation of the Levenberg-Marquardt
algorithm for a GPU. This script can be exported as a dll to perform the modified Gaussian
fits of Sec. 4.3.

// Win32Project1.cpp : Defines the exported functions for the DLL application.

//

#include "stdafx.h"

#include <stdlib.h> // For: exit, drand48, malloc, free, NULL, EXIT_FAILURE

#include <stdio.h> // For: perror

#include <math.h> // For: fabs

#include <iostream>

#include <fstream>

#include "ConsoleApplication1.h"

//#include <sys/time.h>

#include <cuda.h>

#include <cublas_v2.h>
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#include "cuda_runtime.h"

#include "device_launch_parameters.h"

#include <windows.h>

#define NUM_THREADS 256

#define eps2 1e-5

#define MAXITER 500

/*float read_timer()

{

static bool initialized = false;

static struct timeval start;

struct timeval end;

if (!initialized)

{

gettimeofday(&start, NULL);

initialized = true;

}

gettimeofday(&end, NULL);

return (end.tv_sec - start.tv_sec) + 1.0e-6 * (end.tv_usec - start.tv_usec);

}*/

//Use this method when the vector is small enough that it’s not worth using the

GPU to take the infinity norm

float infnorm(const float *A, const int len){

/*Inputs: Small vector of floats A on host and the length (len) of it*/

float toReturn = 0.;

for (int i = 0; i<len; i++){

float tmp = abs(A[i]);

if (tmp > toReturn) toReturn = tmp;

}

return toReturn;

}

//Use this method when the vector is small enough that it’s not worth using the

GPU to take the 2 norm

float twonorm(const float *A, const int len){

/*Inputs: Small vector of floats A on host and the length (len) of it*/

float toReturn = 0.;

for (int i = 0; i<len; i++){
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toReturn += A[i] * A[i];

}

toReturn = sqrtf(toReturn);

return toReturn;

}

/*Method will use cuBLAS to calculate A^T A*/

void gpu_blas_mmul(cublasHandle_t &handle, const float *A, float *C, const int m,

const int k) {

/*Input A is a device columnated mxk matrix

output C will be a device columnated kxk matrix, with only the lower diagonal

filled*/

int lda = m, ldc = m;

const float alf = 1.;

const float bet = 0.;

const float *alpha = &alf;

const float *beta = &bet;

// Do the actual multiplication

cublasSsyrk(handle,

CUBLAS_FILL_MODE_LOWER, CUBLAS_OP_N,

m, k,

alpha,

A, lda,

beta,

C, ldc);

}

/*Method will use cuBLAS to calculate g = Ax+bet g*/

void gpu_blas_applymat(cublasHandle_t &handle, const float *A, const float *x,

float *g, const int m, const int n, const float bet = 0., bool trans = true){

/*Input A is a device columnated mxn matrix, input x is a device nx1 vector

output g will be a device columnated kx1

vector

trans says whether A should be transposed or not before being applied to x*/

int lda = m;

int incx = 1;

int incy = 1;

const float alf = 1.;

const float *alpha = &alf;

const float *beta = &bet;
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// Do the actual application, with transpose turned on or not

if (trans) cublasSgemv(handle, CUBLAS_OP_T, m, n, alpha, A, lda, x, incx, beta,

g, incy);

else cublasSgemv(handle, CUBLAS_OP_N, m, n, alpha, A, lda, x, incx, beta, g,

incy);

}

/*Prints entries of A that is mxn.*/

void print_matrix(const float *A, int m, int n) {

for (int i = 0; i < m; ++i){

for (int j = 0; j < n; ++j){

std::cout << A[j * m + i] << " ";

}

std::cout << std::endl;

}

std::cout << std::endl;

}

void FindCenterMoments(const float*Image, float *center, const int width, const

int height){

/*This routine finds the center of the distribution as the weighted average of

all the pixels,

,.with the weight being the intensity of the image at the pixel

The input is a linearized widthxheight vector Image on the host.

Each entry of center will be updated with the found value of the center (x and

y coordinates)*/

float avgx = 0.;

float avgy = 0.;

float totweight = 0.;

for (int i = 0; i<width; i++){

for (int j = 0; j<height; j++){

float toAdd = Image[i + j*height];

avgx += (float)i*toAdd;

avgy += (float)j*toAdd;

totweight += toAdd;

}
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}

*center = avgx / totweight;

*(center+1) = avgy / totweight;

/*printf("Center: (%f,%f)\n", center[0], center[1]);*/

}

float FindCenterSlopes(const float *Image, float *center, const int width, const

int height){

/*This routine finds the center of the distribution as the weighted average of

all the pixels, with the weight being the intensity of the image at the

pixel

The input is a linearized widthxheight vector Image and a 2x1 vector center on

the host.

Each entry of center will be updated with the found value of the center (x and

y coordinates)*/

float *w = (float*)malloc(sizeof(float)*width*height);

float *m = (float*)malloc(sizeof(float)*width*height);

center[0] = 0.;

center[1] = 0.;

float dist = 10.;

int k = 0;

/*Finding the minimum value of the distribution is useful, so we will do it

here*/

float minval = 100000.;

for (int i = 0; i<width*height; i++){

if (Image[i]<minval && Image[i] != 0) minval = Image[i];

}

printf("%f\n", minval);

/*Gradient are calculated only once, but this information is reused*/

for(int j=0;j<height;j++){

for(int i=0;i<width;i++){

float unorm = 0.;

float vnorm = 0.;

if(Image[i+j*height]!=0 && Image[(i+1)+(j+1)*height]!=0 && Image[i+(j+1)*

height]!=0 && Image[(i+1)+j*height]!=0){
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unorm = Image[(i+1)+(j+1)*height]-Image[i+j*height]; //Intensity

gradient along x+y

vnorm = Image[i+(j+1)*height]-Image[(i+1)+j*height]; //Intensity

gradient along x-y

}

w[i+j*height] = unorm*unorm+vnorm*vnorm; //Initially, the weights are

the norm of the gradient vector.

if(unorm!=vnorm && i!=width-1 && j!=height-1) m[i+j*height] = (unorm+

vnorm)/(unorm-vnorm); //Prevent divide by zero.

else{

m[i+j*height] = 0.;

w[i+j*height] = 0.;

}

}

}

/*Termination condition is when the best guess for the center changes by less

than a pixel after applying this algorithm.

We place a hard cutoff at 100 steps

*/

while(dist>1. && k<100){

k++;

//Find weights

if(k>1){

for(int j=0;j<height-1;j++){

for(int i=0;i<width-1;i++){

if(Image[i+j*height]!=0 && Image[(i+1)+(j+1)*height]!=0 && Image[i+(j+1)*

height]!=0 && Image[(i+1)+j*height]!=0){

float unorm = Image[(i+1)+(j+1)*height]-Image[i+j*height]; //

Intensity gradient along x+y

float vnorm = Image[i+(j+1)*height]-Image[(i+1)+j*height]; //

Intensity gradient along x-y

float d = (((float)i-center[0])*((float)i-center[0])+((float)j-center

[1])*((float)j-center[1])); //Distance from current pixel to the

current best guess for the center

w[i+j*height] = (unorm*unorm+vnorm*vnorm)/d; //Weight is the norm of

gradient over distance.

}

else{

w[i+j*height] = 0.;

}

}
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}

}

//Use the analytic expressions to calculate what the weighted center should

be:

float sum1 = 0.;

float sum2 = 0.;

float sum3 = 0.;

float sum4 = 0.;

float sum5 = 0.;

for(int i=0;i<height*width;i++){

float xk = (float)(i%height);

float yk = (float)((i-xk)/height);

float denom = (m[i]*m[i]+1.);

sum1 += m[i]*w[i]*(yk-m[i]*xk)/denom;

sum2 += w[i]/denom;

sum3 += m[i]*w[i]/denom;

sum4 += (yk-m[i]*xk)*w[i]/denom;

sum5 += m[i]*m[i]*w[i]/denom;

}

float Delta = sum3*sum3-sum5*sum2;

float newx = (sum1*sum2-sum3*sum4)/Delta;

float newy = (sum1*sum3-sum5*sum4)/Delta;

//This is the distance squared from the old center to the new one

dist = (newx-center[0])*(newx-center[0])+(newy-center[1])*(newy-center[1]);

//Update the center

center[0] = newx;

center[1] = newy;

}

//printf("Center: (%f,%f) in %d steps\n",center[0],center[1],k);

free(m);

free(w);

return minval;

}

/*Use a Cholesky Decomposition to solve Ax=g*/
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void CholeskySolve(cublasHandle_t &handle, const float *A, float *g, const int

numparams){

/*Input is A, a numparamsxnumparams host positive definite symmetric matrix

filled on the lower

diagonal

g is device a numparamsx1 vector*/

float *L = (float*)malloc(sizeof(float)*numparams*numparams);

/*Use analytic expressions for the Cholesky decomposition*/

if (numparams == 4){

L[0] = sqrtf(A[0]);

L[1] = A[1] / L[0];

L[2] = A[2] / L[0];

L[3] = A[3] / L[0];

L[5] = sqrtf(A[5] - L[1] * L[1]);

L[6] = (A[6] - L[1] * L[2]) / L[5];

L[7] = (A[7] - L[1] * L[3]) / L[5];

L[10] = sqrtf(A[10] - L[2] * L[2] - L[6] * L[6]);

L[11] = (A[11] - L[2] * L[3] - L[6] * L[7]) / L[10];

L[15] = sqrtf(A[15] - L[11] * L[11] - L[3] * L[3] - L[7] * L[7]);

}

if (numparams == 6){

L[0] = sqrtf(A[0]);

L[1] = A[1] / L[0];

L[2] = A[2] / L[0];

L[3] = A[3] / L[0];

L[4] = A[4] / L[0];

L[5] = A[5] / L[0];

L[7] = sqrtf(A[7] - L[1] * L[1]);

L[8] = (A[8] - L[1] * L[2]) / L[7];

L[9] = (A[9] - L[1] * L[3]) / L[7];

L[10] = (A[10] - L[1] * L[4]) / L[7];

L[11] = (A[11] - L[1] * L[5]) / L[7];

L[14] = sqrtf(A[14] - L[2] * L[2] - L[8] * L[8]);

L[15] = (A[15] - L[2] * L[3] - L[8] * L[9]) / L[14];

L[16] = (A[16] - L[2] * L[4] - L[8] * L[10]) / L[14];

L[17] = (A[17] - L[2] * L[5] - L[8] * L[11]) / L[14];

L[21] = sqrtf(A[21] - L[3] * L[3] - L[9] * L[9] - L[15] * L[15]);

L[22] = (A[22] - L[15] * L[16] - L[3] * L[4] - L[10] * L[9]) / L[21];
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L[23] = (A[23] - L[15] * L[17] - L[3] * L[5] - L[11] * L[9]) / L[21];

L[28] = sqrtf(A[28] - L[4] * L[4] - L[10] * L[10] - L[16] * L[16] - L[22] * L

[22]);

L[29] = (A[29] - L[4] * L[5] - L[10] * L[11] - L[16] * L[17] - L[22] * L[23])

/ L[28];

L[35] = sqrtf(A[35] - L[5] * L[5] - L[11] * L[11] - L[17] * L[17] - L[23] * L

[23] - L[29] * L[29]);

}

//Copy the Cholesky factors to GPU to be able to use cuBLAS

float *d_L;

cudaMalloc((void **)&d_L, sizeof(float)*numparams*numparams);

cudaMemcpy(d_L, L, sizeof(float)*numparams*numparams, cudaMemcpyHostToDevice);

//Use cuBLAS twice to solve the triangular system L^TLx = g

const float alf = 1.;

const float *alpha = &alf;

cublasStrsm(handle,

CUBLAS_SIDE_LEFT, CUBLAS_FILL_MODE_LOWER,

CUBLAS_OP_N, CUBLAS_DIAG_NON_UNIT,

numparams, 1,

alpha,

d_L, numparams,

g, numparams);

cublasStrsm(handle,

CUBLAS_SIDE_LEFT, CUBLAS_FILL_MODE_LOWER,

CUBLAS_OP_T, CUBLAS_DIAG_NON_UNIT,

numparams, 1,

alpha,

d_L, numparams,

g, numparams);

free(L);

cudaFree(d_L);

}

/*Computes the Jacobian matrix on the GPU*/

__global__ void make_jacobian(const float *values, const int *mask, const float *

beta, const float* center, float *jacob, float *resid, const int height, const
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int width, const int numparams){

/*Input is values, a heightxwidth device matrix of image intensity values

beta, a numparamsx1 device vector

center, a 2x1 device vector (information in center not used if numparams==6)

Jacobian is an empty device matrix of size (height*width)xnumparams that will

have the jacobian

resid is a heightxwidth device matrix that will store residuals at each point*/

int tid = threadIdx.x + blockIdx.x * blockDim.x;

if (tid >= height*width) return;

if (values[tid] == 0) return;

//Each thread looks at one point of the image

float x0 = (float)(tid%height);

float y0 = (float)((tid - x0) / height);

float dist, norm, expon, exponentiated;

//Calculate each component of the Jacobian. The analytic expressions for the

derivative are used

if (numparams == 4){

dist = (center[0] - x0)*(center[0] - x0) + (center[1] - y0)*(center[1] - y0);

norm = sqrtf(dist) / beta[1];

expon = -powf(norm, beta[2]);

exponentiated = expf(expon);

}

if (numparams == 6){

dist = (beta[4] - x0)*(beta[4] - x0) + (beta[5] - y0)*(beta[5] - y0);

norm = sqrtf(dist) / beta[1];

expon = -powf(norm, beta[2]);

exponentiated = expf(expon);

}

//resid is filled with the value at the point minus the fit value.

resid[mask[tid]] = values[tid] - (beta[0] * exponentiated + beta[3]);

jacob[mask[tid]*numparams] = exponentiated;

jacob[mask[tid]*numparams + 1] = beta[0] * exponentiated*beta[2] * (-expon) /

beta[1];

jacob[mask[tid]*numparams + 2] = beta[0] * exponentiated*expon*logf(norm);

jacob[mask[tid]*numparams + 3] = 1.;

if (numparams == 6){
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jacob[mask[tid]*numparams + 4] = beta[0] * exponentiated*(x0 - beta[4])*beta

[2] * (-expon) / dist;

jacob[mask[tid]*numparams + 5] = beta[0] * exponentiated*(y0 - beta[5])*beta

[2] * (-expon) / dist;

}

}

__declspec(dllexport) int __cdecl ComputeFit(const float* values, const int width

, const int height, float *beta)

{

//This code should be compiled with a physical connection to the GPU computer.

If compiled over a remote connection, it will fail.

/*Define the size of the image and how many parameters we would like to fit*/

const unsigned int numparams = 6;

/*Initialize variables*/

//float *values = (float*) malloc(sizeof(float)*width*height);

int *mask = (int*)malloc(sizeof(int)*width*height);

float *d_resid, *d_jacob, *d_values, *d_newresid, *d_newjacob;

int *d_mask;

cudaMalloc((void **)&d_values, sizeof(float)*width*height);

cudaMalloc((void **)&d_mask, sizeof(int)*width*height);

float center[2] = { 0., 0. };

int totpoints = 0;

for(int i=0;i<width*height;i++){

if(values[i]==0) mask[i] = 0;

else{

mask[i] = totpoints;

totpoints++;

}

}

float *resid = (float*)malloc(sizeof(float)*totpoints);

float *jacob = (float*)malloc(sizeof(float)*numparams*totpoints);

cudaMalloc((void **)&d_resid, sizeof(float)*totpoints);

cudaMalloc((void **)&d_jacob, sizeof(float)*numparams*totpoints);

cudaMalloc((void **)&d_newresid, sizeof(float)*totpoints);
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cudaMalloc((void **)&d_newjacob, sizeof(float)*numparams*totpoints);

//float start = read_timer();

//printf("I/O time: %f\n", start - begin); //I/O time is not included in

performance analyses

//FindCenterMoments(values,center,width,height);

//float minval = 1.;

float minval = FindCenterSlopes(values, center, width, height); //Find the

center of the distribution

//First three initial values are hard-coded, the chosen values don’t matter too

much

//float beta[6] = {10.,50.,2.0,minval,center[0],center[1]};

beta[0] = 10.;

beta[1] = 500.;

beta[2] = 2.0;

beta[3] = minval;

beta[4] = center[0];

beta[5] = center[1];

float* d_center, *d_beta;

cudaMalloc((void **)&d_center, sizeof(float) * 2);

cudaMalloc((void **)&d_beta, sizeof(float)*numparams);

//float end = read_timer();

//printf("Center Time: %f\n", end - start);

//Copy the vectors to the device

cudaMemcpy(d_values, values, sizeof(float)*width*height, cudaMemcpyHostToDevice

);

cudaMemcpy(d_center, center, sizeof(float) * 2, cudaMemcpyHostToDevice);

cudaMemcpy(d_beta, beta, sizeof(float)*numparams, cudaMemcpyHostToDevice);

cudaMemcpy(d_mask, mask, sizeof(int)*width*height, cudaMemcpyHostToDevice);

int blks = (height*width + NUM_THREADS - 1) / NUM_THREADS;

cudaThreadSynchronize();

//Set up the problem by calculating the Jacobian, J^T J, and J^Tf

make_jacobian <<< blks, NUM_THREADS >>> (d_values, d_mask, d_beta, d_center,

d_jacob, d_resid, height, width, numparams);
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float *A = (float*)malloc(sizeof(float)*numparams*numparams);

float *g = (float*)malloc(sizeof(float)*numparams);

float* d_A, *d_g;

cudaMalloc((void **)&d_A, sizeof(float)*numparams*numparams);

cudaMalloc((void **)&d_g, sizeof(float)*numparams);

cublasHandle_t handle;

cublasStatus_t stat;

stat = cublasCreate(&handle);

if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("CUBLAS initialization failed\n");

if(stat == CUBLAS_STATUS_NOT_INITIALIZED) return -2;

return -1;

}

gpu_blas_mmul(handle, d_jacob, d_A, numparams, totpoints);

gpu_blas_applymat(handle, d_jacob, d_resid, d_g, numparams, totpoints, 0.,

false);

/*Define the size of the image and how many parameters we would like to fit*/

bool found = 0;

int iter = 0;

float mu = 1.;

float nu = 2.;

float diffnorm, xnorm, Fold, Fnew, rho;

float* h = (float*)malloc(sizeof(float)*numparams);

//float newx[4] = {0.,0.,0.,0.};

float newx[6] = { 0., 0., 0., 0., 0., 0. };

float *d_h;

float *d_newx;

cudaMalloc((void **)&d_newx, sizeof(float)*numparams);

cudaMalloc((void **)&d_h, sizeof(float)*numparams);

float *d_Acopy;

cudaMalloc((void **)&d_Acopy, sizeof(float)*numparams*numparams);
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//Store the current value of the residual to see if gets better

cublasSnrm2(handle, totpoints, d_resid, 1, &Fold);

while (!found && (iter<MAXITER)){

iter += 1;

//Copy d_g and A since we don’t want to modify it unless we take a step

cublasScopy(handle, numparams, d_g, 1, d_h, 1);

cudaMemcpy(A, d_A, sizeof(float)*numparams*numparams, cudaMemcpyDeviceToHost);

//Apply dampening with mu

for (int i = 0; i<numparams; i++){

A[i + numparams*i] += mu*A[i + numparams*i];

}

//Solve for the step size, d_h

CholeskySolve(handle, A, d_h, numparams);

cudaMemcpy(h, d_h, sizeof(float)*numparams, cudaMemcpyDeviceToHost);

//If step is small, we will terminate

for (int i = 0; i<numparams; i++){

newx[i] -= beta[i];

}

diffnorm = twonorm(h, numparams);

xnorm = twonorm(beta, numparams);

if ((diffnorm<eps2*(xnorm + eps2))) found = 1;

else{

int check = 0; //Will check if a parameter that shouldn’t go negative goes

negative

for (int i = 0; i<numparams; i++){

newx[i] = beta[i] + h[i];

if (newx[i]<0 && i != 0 && i != 3) check++;

}

if (check == 0){

/*Compute the new Jacobian and residual when the step is taken, see if it

reduces the

total residual*/

cudaMemcpy(d_h, h, sizeof(float)*numparams, cudaMemcpyHostToDevice);
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cublasScopy(handle, totpoints, d_resid, 1, d_newresid, 1);

gpu_blas_applymat(handle, d_jacob, d_h, d_newresid, numparams, totpoints,

1., true);

cudaMemcpy(d_newx, newx, sizeof(float)*numparams, cudaMemcpyHostToDevice);

//int blks = (height*width + NUM_THREADS - 1) / NUM_THREADS;

make_jacobian <<< blks, NUM_THREADS >>> (d_values, d_mask, d_newx,

d_center, d_newjacob, d_newresid, height, width, numparams);

cublasSnrm2(handle, totpoints, d_newresid, 1, &Fnew);

rho = Fold - Fnew;

}

else rho = 0;

//If rho>0, the residual is decreasing, so save take this step and save the

results

if (rho>0){

for (int i = 0; i<numparams; i++) beta[i] = newx[i]; //Take the step

Fold = Fnew; //Update total residual value

cublasScopy(handle, totpoints*numparams, d_newjacob, 1, d_jacob, 1); //

Update Jacobian

cublasScopy(handle, totpoints, d_newresid, 1, d_resid, 1); //Update

residual matrix

gpu_blas_mmul(handle, d_jacob, d_A, numparams, totpoints); //Update A

gpu_blas_applymat(handle, d_jacob, d_resid, d_g, numparams, totpoints, 0.,

false); //Update g

mu /= 3.; //Make mu smaller to see if we can take a big step

nu = 2;

}

else{

//This was a bad step

mu *= nu; //Make mu larger to take a smaller step next time

nu *= 2; //We’ll take an even smaller step if it fails again.
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}

}

}

//Display results

printf("Number Steps: %d\n", iter);

print_matrix(beta, numparams, 1);

//Free up memory free(resid);

free(jacob);

free(g);

free(h);

free(mask);

cudaFree(d_resid);

cudaFree(d_newresid);

cudaFree(d_values);

cudaFree(d_jacob);

cudaFree(d_newjacob);

cudaFree(d_center);

cudaFree(d_beta);

cudaFree(d_A);

cudaFree(d_g);

cudaFree(d_newx);

cudaFree(d_h);

cudaFree(d_mask);

cublasDestroy(handle);

return iter;

}

int main(){

return 0;

}

D.2 Discrete Temperature Fitter

The following is Mathematica [70] code to perform fits for temperatures of binned data, as
described in Sec. 5.5.

q = Import["C:\\Users\\lenny\\Downloads\\fwdrecode\\PMTCSV_42162_Dump-Cold_\
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SIS_PMT_CATCH_OR.csv"];

q = q[[2 ;;]];

r = Import["C:\\Users\\lenny\\Downloads\\fwdrecode\\ColdDumpE4E5.dump",

"Table"];

VT = Interpolation[r];

start = 17;

minbins = 5;

maxbins = 30;

temps = {};

pvalues = {};

For[cutoff = start + minbins, cutoff <= start + maxbins, cutoff++,

tot = Sum[q[[i, 3]], {i, start, cutoff}];

Vbar = 1/tot Sum[q[[i, 3]] VT[q[[i + 1, 2]]], {i, start, cutoff}];

l = (tot - 1) Log[x[1]] - Log[x[2]] -

x[1] (Exp[-(VT[q[[cutoff + 1, 2]]]/x[2])] -

Exp[-(VT[q[[start, 2]]]/x[2])]) +

Sum[q[[i, 3]]*

Log[(Exp[- VT[q[[i + 1, 2]]]/x[2]] -

Exp[- VT[q[[i, 2]]]/x[2]])], {i, start, cutoff}];

m = FindMaximum[{l}, {{x[2], Vbar - VT[q[[cutoff + 1, 2]]]}, {x[1],

tot*Exp[VT[q[[cutoff + 1, 2]]]/(

Vbar - VT[q[[cutoff + 1, 2]]])]}}, MaxIterations -> 10000,

Method -> "PrincipalAxis"];

curv = -2*Table[D[D[l, x[i]], x[j]], {i, 1, 2}, {j, 1, 2}] /.

m[[2]];

temps = Append[

temps, {cutoff, m[[1]], m[[2]], Vbar - VT[q[[cutoff + 1, 2]]],

tot*Exp[VT[q[[cutoff + 1, 2]]]/(Vbar - VT[q[[cutoff + 1, 2]]])],

curv}];

pvalues =

Append[pvalues,

Table[(Gamma[q[[i, 3]] + 1,

x[1] (Exp[- VT[q[[i + 1, 2]]]/x[2]] -

Exp[- VT[q[[i, 2]]]/x[2]]) /. m[[2]]])/(Factorial[

q[[i, 3]]]) , {i, 1, 60}]]]
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