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Characterization of long period return values of extreme daily temperature 
and precipitation in the CMIP6 models: Part 2, projections of future change 

Michael F. Wehner 
Lawrence Berkeley National Laboratory, Berkeley, CA, USA  

A B S T R A C T   

Using a non-stationary Generalized Extreme Value statistical method, projected future changes in selected extreme daily temperature and precipitation indices and 
their 20 year return values from the CMIP5 and CMIP6 climate models are calculated and compared. Projections are framed in terms of specified global warming 
target temperatures rather than at specific times and under specific emissions scenarios. The change in framing shifts projection uncertainty due to differences in 
model climate sensitivity from the values of the projections to the timing of the global warming target. At their standard resolutions, there are no meaningful 
differences between the two generations of models in their projections of simulated extreme daily temperature and precipitation at specified global warming targets.   

1. Introduction 

The projection of future changes in extreme temperature and pre
cipitation informs policy and decision makers about some of the most 
damaging aspects of anthropogenic global warming. In part 1 of this pair 
of papers comparing the early contributions to the phase 6 of the 
Coupled Model Intercomparison Project (CMIP6) to the previous phase 
(CMIP5), the performance of the two generations of climate models in 
simulating long period return values of daily precipitation and tem
perature were evaluated against gridded observations. The broad 
conclusion in that part of this study is that there is little difference be
tween these two climate model databases in their ability to simulate this 
aspect of the present climate. 

However, some of the models in the CMIP6 are characterized by very 
high climate sensitivity, the response of simulated temperature to in
creases in greenhouse gas (GHG) forcing (Zelinka et al., 2020). As a 
consequence, multi-model projections of future climate change at 
specified future times could be very different between CMIP5 and 
CMIP6. Since the 2016 Paris Agreement, much attention has been 
directed towards “target” stabilized global mean temperatures (UNEP, 
2019). These global warming targets provide policy relevant informa
tion to the reduction and eventual elimination of greenhouse gas emis
sions. A recent special report of the Intergovernmental Panel on Climate 
Change focussed on the difference in impacts between a climate stabi
lized at 1.5C above preindustrial temperatures compared to a stable 
climate a half degree warmer (IPCC, 2018). For instance, increases in the 
severity and/or duration extreme heat events that lead to human mor
tality would be reduced under dramatic reductions in emissions (Lo 
et al., 2019) as would be the incidence of wildfires (Shiogama et al., 

2020). However, even if the GHG emission reductions of the Paris 
Agreement’s “National Determined Contributions” were achieved, 
global mean temperature would very likely exceed 1.5C and likely exceed 
2.0C at 2 100 (DeAngelo et al., 2017). Also, as the NDC’s are not zero 
emission targets, the climate would thereafter continue to warm if other 
actions to eliminate GHG emissions entirely are not put in place. Hence, 
it is appropriate to also examine the impacts of higher temperature 
targets as projected by climate models. 

Projections of 20 year return values of daily extreme temperature 
and precipitation from the CMIP5 models for the 4 most commonly 
considered Representative Concentration Pathways (RCP) have been 
previously presented (Collins et al., 2013; Kharin et al., 2013) at mid 
(2046–2065) and end of (2081–2 100) the 21st century relative to a then 
recent reference period (1986–2005). In this study, we frame projections 
differently by considering the changes at specified global warming 
target temperatures of 1.5, 2, 3 and 4C above “preindustrial” levels. To 
be consistent with the forthcoming 6th IPCC Assessment Report, we 
define preindustrial as the 1851–1900 average as most of the observed 
global warming since the 18th century Industrial Revolution in Europe 
and elsewhere has occurred since 1900. 

As different climate models exhibit a wide range of climate sensi
tivity (Vial et al., 2013), the point in time when global mean tempera
ture change targets are reached varies considerably. High climate 
sensitivity models will reach specified targets earlier than low climate 
sensitivity models. Some low climate sensitivity models may not reach 
the higher targets at all prior to 2100, the common endpoint of the CMIP 
scenario experiments. Table 1 shows the dates when the targets are 
reached for the 24 CMIP6 models used in this study under three Shared 
Socioeconomic Pathways (SSP) scenarios, SSP245, SSP370 and SSP585. 
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Table 2 show these dates for the 21 CMIP5 models used in this study 
under the RCP85 scenario (Hauser and Fischer, 2019). For this partic
ular selection of models, the multi-model averaged dates at which the 
selected global warming targets are reached are roughly the same for 
both generations of models under the high emissions scenarios, RCP85 
and SSP585 despite the wider range of climate sensitivities of the CMIP6 
models. Extreme temperature and precipitation statistics are calculated 
for each model and scenario individually over a 20 year period 
extending from 10 years prior and 9 years after the years in these tables. 

For the CMIP6 models, statistics are calculated first by scenario and 
subsequently averaged over relevant scenarios at the times in the tables 
to characterize the individual models at a specified global warming 
levels. Results are then presented separately for the CMIP5 and CMIP6 
models as equally weighted multi-model averages for each global 
warming target. 

The range of model climate sensitivities, reflected in the range of 
dates in Tables 1 and 2, introduces cross model uncertainty in projected 
climate statistics for a particular time and scenario simply due to the 
difference in simulated temperature changes. By considering fixed 
global temperature change targets, this source of uncertainty is trans
ferred from the projected changes in the values of the actual metrics 
considered, say average annual precipitation maxima, to the uncertainty 
in the timing of the target. However, other important sources of un
certainty remain. Differences in the forced responses of the equator to 
pole temperature gradient and of the land/sea temperature differences 
lead to uncertainty in local mean temperature causing uncertainty in 
nearly any other aspect of local projections. Furthermore, the range of 
biases in models’ mean climatologies as well as differences in process 
representation also lead to projection uncertainty in general, including 
that of extreme temperature and precipitation. Homogenization of the 
global mean temperature change then highlights these model differ
ences. However, there is an important caveat to state when using output 
from transient climate model simulations as a proxy for stabilized 
warmer climate targets. The lag in ocean warming due to the long time 
scales of deep ocean mixing means that the land surface temperatures in 
a transient simulation at a specified global warming target would be 
warmer than in a stable simulation at that same global mean warming 
level. As this study considers changes in extreme temperatures and 
precipitation only over land from the non-stationary SSP and RCP sce
narios, results would be slightly different if the models were integrated 
to a long stable climate. To the extent that temperature and precipitation 
extremes over land are influenced by local temperatures, these projected 
changes may be slightly larger than in such stabilized simulations 
(Mitchell et al., 2017; Wehner et al., 2018). 

Table 2 
Year that CMIP5 models reach target warming levels under the RCP8.5 scenario. 
“-“ means that the target warming level was not reached.   

Warming level 

Model 1.5 2 3 4 
ACCESS1-0 2027 2040 2060 2080 
ACCESS1-3b 2030 2042 2061 2081 
CCSM4 2014 2030 2057 2078 
CESM1-BGCc 2017 2033 2059 2080 
CMCC-CESMd 2037 2047 2067 2086 
CMCC-CM 2029 2041 2061 2078 
CMCC-CMSe 2029 2041 2061 2077 
CNRM-CM5b 2030 2045 2067 2087 
IPSL-CM5A-LR 2010 2026 2047 2065 
IPSL-CM5A-MR 2015 2030 2050 2066 
IPSL-CM5B-LRb 2022 2037 2061 2084 
MIROC-ESM 2020 2030 2052 2069 
MIROC-ESM-CHEM 2018 2030 2050 2067 
MIROC5 2033 2048 2072 – 
MPI-ESM-LR 2017 2037 2061 2081 
MPI-ESM-MRb 2020 2039 2060 2082 
MRI-CGCM3 2041 2052 2076 – 
NorESM1-M 2032 2049 2073 – 
bcc-csm1-1 2019 2036 2059 2083 
bcc-csm1-1-md 2010 2028 2059 2085 
inmcm4 2044 2057 2083 – 
cmip5 average 2024 2038 2061 2078 

* aRx1day only. bRx1day, TNn, TNx only. cTNn, TNx only. dTXx, TXn only. eTNn, 
TNx, TXx, TXn only. 

Table 1 
Year that CMIP6 models reach target warming levels by SSP scenario. “x” means that a particular scenario was not available. “-“ means that the target warming level 
was not reached.  

Model 1.5 2 3 4  

ssp245 ssp370 ssp585 ssp245 ssp370 ssp585 ssp245 ssp370 ssp585 ssp245 ssp370 ssp585 

ACCESS-CM2 2028 2027 2025 2040 2039 2038 2071 2062 2055 – 2082 2072 
ACCESS-ESM1-5 2029 2033 2027 2045 2048 2039 – 2069 2060 – – 2078 
AWI-CM-1-1-MRd 2020 2022 x 2039 2037 x – 2064 x – – x 
BCC-CSM2-MR 2035 2032 2030 2057 2046 2043 – 2074 2065 – – – 
CESM2a 2026 2025 2024 2041 2041 2035 2081 2066 2053 – 2084 2069 
CNRM-CM6-1 2030 2032 2028 2048 2045 2040 2084 2066 2058 – 2083 2072 
CNRM-CM6-1-HR x x 2018 x x 2029 x x 2052 x x 2066 
CNRM-ESM2-1 2037 2036 2032 2055 2052 2045 2088 2072 2064 – 2089 2079 
CanESM5 2013 2013 2012 2024 2023 2022 2049 2043 2040 2083 2059 2054 
EC-Earth3 2022 2022 2024 2044 2038 2035 2085 2063 2057 – 2084 2073 
EC-Earth3-Veg 2010 2011 2011 2033 2032 2027 2067 2057 2050 – 2076 2067 
GFDL-CM4d 2031 x 2029 2049 x 2041 – x 2059 – x 2079 
GFDL-ESM4 2046 2041 2039 2073 2057 2052 – 2083 2075 – – – 
INM-CM4-8 2035 2035 2030 2063 2052 2046 – 2083 2069 – – – 
INM-CM5-0 2037 2032 2030 2072 2050 2046 – 2084 2074 – – – 
IPSL-CM6A-LRb 2018 2019 2018 2033 2034 2034 2065 2055 2050 – 2076 2066 
MIROC6 2046 2043 2040 2073 2059 2053 – – 2076 – – – 
MPI-ESM1-2-HR 2037 2034 2033 2063 2050 2049 – 2081 2073 – – – 
MPI-ESM1-2-LR 2036 2035 x 2057 2052 x – 2078 x – – x 
MRI-ESM2-0c 2030 2031 2026 2049 2045 2038 – 2073 2064 – – 2083 
NESM3 x x 2020 x X 2033 x x 2054 x x 2072 
NorESM2-LM 2055 2051 2042 2085 2069 2056 – – 2077 – – – 
NorESM2-MM 2045 2046 2039 2078 2062 2054 – 2090 2076 – – – 
UKESM1-0-LL 2023 2022 2023 2034 2031 2031 2059 2050 2046 2090 2069 2060 
CMIP6 average 2031 2030 2027 2053 2046 2040 2072 2069 2061 2086 2077 2070 

aRx1day only. bRx1day, TNn, TNx only. cTNn, TNx only, dTNn, TNx, TXn, TXx only. 

M.F. Wehner                                                                                                                                                                                                                                     
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2. Data and methods 

As in Part 1 of this pair of papers, we focus on selected indices from 
the Expert Team on Climate Change Detection Indices (ETCCDI) that are 
“block” maxima. “Hot days” are represented by TXx, the annual 
maximum of the daily maximum temperature. “Warm nights” are rep
resented by TNx, the annual maximum of the daily minimum temper
ature. “Cool days” are represented by TXn, the annual minimum of the 
daily maximum temperature. “Cold nights” are represented by TNn, the 
annual minimum of the daily minimum temperature. “Wet days” are 
represented by Rx1day, the annual maxima of daily total precipitation. 
The indices are constructed from the daily maximum and minimum 
surface air temperatures and daily precipitation totals extracted from 
the CMIP5 and CMIP6 data archives. Values for the past are taken from 
the historical experiments and values for the future are taken from the 
CMIP5 RCP4.5, RCP6.0, RCP8.5 and the CMIP6 SSP245, SSP370 and 
SSP585 emission scenario experiments. Hence, projected changes in 

annual averages of 4 extreme temperature and 1 extreme precipitation 
variables and their long period (twenty year) return values are presented 
at four different warming levels. 

Also as in Part 1, long period return values of daily temperatures and 
precipitation are estimated by fitting a non-stationary Generalized 
Extreme Value (GEV) distribution using ln(CO2) as a covariate repre
senting anthropogenic climate change to long segments of the available 
model daily output (Coles, 2001). GEV distribution parameters are fitted 
using a Maximum Likelihood Estimates (MLE) procedure from the cli
mextRemes software package (Paciorek et al., 2018), a python and R 
library built upon the extRemes library (Gilleland and Katz, 2016, 2011) 
and is available at https://cran.r-project.org/web/packages/clim 
extRemes/index.html. The covariate appears linearly in the GEV loca
tion parameter as μ(t) = μ 0 + μ 1 ln(CO2). Hence, there are four fitted 
parameters, the two components of the location parameter, μ 0,μ 1, the 
scale parameter σ and the shape parameter ξ . Twenty year return values 
defining the preindustrial reference are calculated by fitting the entire 

Fig. 1. Multimodel average projected changes in annual TXx (hot days) from available CMIP5 (left) and CMIP6 (right) at global warming levels of 1.5, 2, 3 and 4C 
above preindustrial (1850–1900) average values. Hatching indicates that the magnitudes of the multimodel projections are less than the cross-model standard 
deviation of the projections. Units: oC. 

M.F. Wehner                                                                                                                                                                                                                                     
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“historical” experiment (usually 1851–2013 for CMIP6 and 1851–2005 
for CMIP5) using all ensemble members and averaging results over the 
1851–1900 period. 20 year return values at the global warming targets 
are then estimated by fitting each SSP or RCP8.5 scenario experiment 
separately and in its entirety (usually 2016–2099 for CMIP6 and 
2006–2099 for CMIP5) and using each available ensemble member as 
replicates. Note that μ 0, σ and ξ are the same for any year of a model’s 
individual historical or scenario experiment but not required to be the 
same between experiments. Results at the global warming targets are 
then extracted from each scenario and combined as discussed above and 
the differences from the preindustrial reference calculated for each 
model. Alternatively, global mean temperature change since preindus
trial could also be used as a covariate and changes in return values (but 
not the average of the extreme indices) extracted directly without 
calculating the timing of the global warming levels. Multi-model aver
ages are performed as a final step by regridding to the coarsest available 

model (the 2.8o CanESM5). As in part 1, projected changes in both the 
average annual indices (i.e. the 1 year return value) and their 20 year 
return values are presented to illustrate the effect of event rarity. Finally, 
in the maps of projected changes shown below, a simple hatching 
scheme, invoked where the magnitudes of the projections are less than 
the cross-model standard deviation of the projections, is used to illus
trate a level of model agreement. 

3. Temperature 

3.1. Hot days 

Fig. 1 shows projected multi-model changes in annual TXx (hot days) 
for available CMIP5 (left) and CMIP6 (right) models at global warming 
levels at 1.5, 2, 3 and 4C above average preindustrial (1850–1900) levels 
as defined by the 20 year intervals of Tables 1 and 2 This result plainly 

Fig. 2. Multimodel average projected changes in 20 year return values of TXx (very hot days) from available CMIP5 (left) and CMIP6 (right) at global warming levels 
of 1.5, 2, 3 and 4C above preindustrial (1850–1900) average values. Hatching indicates that the magnitudes of the multimodel projections are less than the cross- 
model standard deviation of the projections. Units: oC. 

M.F. Wehner                                                                                                                                                                                                                                     
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illustrates that removing model differences in climate sensitivity by 
framing projections in terms of global warming levels as discussed in the 
previous section significantly reduces model differences in the magni
tude of changes. The global land average change of annual TXx is 
slightly (10–20%) larger than each selected global warming level and 
reflects the difference in land and ocean warming that results by con
struction from transient rather than lengthy stabilized simulations. 
However, maximum warming amounts are about twice the selected 
global warming levels. No land regions exhibit cooling of annual TXx in 
either multimodel average. Also, few land regions are hatched indi
cating that the projected changes in annual TXx are quite large 
compared to cross model variability. As discussed below, the differences 
between the model generations at the 4C global warming level in 
average annual TXx changes is the largest of the eight temperature 
metrics discussed in this paper. However, the global average of this 
difference (~0.5C) is small compared to the global average change 
(~5C) and is much smaller at lower global warming levels. 

Similarly, Fig. 2 shows projected multi-model changes in 20 year 
return values of annual TXx (very hot days) for the same set of available 
CMIP5 and CMIP6 models at the selected global warming levels. Despite 
the much larger magnitude of the 20 year return value of TXx than its 
annual average value, the projected future changes do not significantly 
differ between them. Like the annual TXx changes, the global land 
average changes in its 20 year return value are about the same magni
tude in each model generation and slightly larger than the selected 
global warming levels. Maximum return value warmings are larger than 
the maximum annual warmings but tend to be small isolated regions 
reflecting statistical fit uncertainties or internal variability rather than 
anything physically meaningful. Stability of changes in extreme hot 
temperatures across rarities ranging from 20 to 100 year return values 
had been noted previously in comparing results from stationary climate 
model simulations (Wehner et al., 2018) and attributed to the shape of 
the bounded GEV distributions (Coles, 2001). This stability in hot day 
temperature changes extends to 1 year return values and non-stationary 

Fig. 3. Multimodel average projected changes in annual TNn (cold nights) from available CMIP5 (left) and CMIP6 (right) at global warming levels of 1.5, 2, 3 and 4C 
above preindustrial (1850–1900) average values. Hatching indicates that the magnitudes of the multimodel projections are less than the cross-model standard 
deviation of the projections. Units: oC. 

M.F. Wehner                                                                                                                                                                                                                                     
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simulations. While this stability would be expected in the asymptotic 
limit of large return values from two bounded GEV distributions, the fact 
that it happens at such low levels of rarity means that the shape and scale 
parameters from the historical and future simulations are very similar. 
Here, this is not guaranteed as the historical and each future scenario are 
fit to the GEV parameters independently. 

As for projected changes in annual TXx, differences between CMIP5 
and CMIP6 projected changes in 20 year return values of TXx are minor 
and not systematic with large scale differences only being apparent on 
this color scale at the 4C global warming level. In this case, the global 
average of this difference is very smaller (~0.03C) compared to the 
global average change (~5C). 

3.2. Cold nights 

Fig. 3 shows projected multi-model changes in annual TNn (cold 
nights) for available CMIP5 (left) and CMIP6 (right) models at the 

specified global warming levels. As in previous studies framing pro
jected changes at specified times and emissions scenarios (Collins et al., 
2013; Kharin et al., 2013; Sillmann et al., 2013), projected changes in 
cold nights are larger than changes in hot days. Global land average 
changes in annual TNn range from 90% (1.5C target) to 70% (4C target) 
larger than the specified global warming levels. High latitudes warm 
more than low latitudes suggestive of surface albedo feedbacks associ
ated with melting of snow cover as average temperatures rise (Fischer 
et al., 2011). As with hot days, there are no meaningful differences be
tween the CMIP5 and CMIP6 ensembles and all projected changes are 
larger than the cross model standard deviations and no cells are hatched. 

Fig. 4 shows projected multi-model changes in 20 year return values 
of annual TNn (very cold nights) for the same set of available CMIP5 and 
CMIP6 models at the selected global warming levels. A few models 
exhibited pointwise fitting failures that propagate into the multi-model 
average changes, mostly in Africa and South America. In the well 
characterized cells, changes in the 20 year return value of TNn and in its 

Fig. 4. Multimodel average projected changes in 20 year return values of TNn (very cold nights) from available CMIP5 (left) and CMIP6 (right) at global warming 
levels of 1.5, 2, 3 and 4C above preindustrial (1850–1900) average values. Hatching indicates that the magnitudes of the multimodel projections are less than the 
cross-model standard deviation of the projections. Units: oC. 

M.F. Wehner                                                                                                                                                                                                                                     
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Fig. 5. Multimodel average projected percent changes in annual Rx1day (wet days) from available CMIP5 (left) and CMIP6 (right) at global warming levels of 1.5, 2, 
3 and 4C above preindustrial (1850–1900) average values. Hatching indicates that the magnitudes of the multimodel projections are less than the cross-model 
standard deviation of the projections. Units: percent. 

M.F. Wehner                                                                                                                                                                                                                                     
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Fig. 6. Multimodel average projected percent changes in 20 year return values of Rx1day (very wet days) from available CMIP5 (left) and CMIP6 (right) at global 
warming levels of 1.5, 2, 3 and 4C above preindustrial (1850–1900) average values. Hatching indicates that the magnitudes of the multimodel projections are less 
than the cross-model standard deviation of the projections. Units: percent. 

Table 3 
Comparison of CMIP5 and CMIP6 multi-model average extreme temperature 
and precipitation changes over land at the 4C above pre-industrial warming 
level. Middle column: Centered pattern correlation between CMIP5 and CMIP6. 
Right column: Difference in global mean between CMIP5 and CMIP6.   

correlation CMIP5-CMIP6 

Rx1day 0.51 − 5.16% 
Rx1day RV 0.44 − 3.59% 
TNx 0.92 − 0.11C 
TNx RV 0.32 0.00C 
TNn 0.96 − 0.01C 
TNn RV 0.85 0.10C 
TXn 0.98 − 0.15C 
TXn RV 0.86 0.14C 
TXx 0.80 0.45C 
TXx RV 0.24 0.03C  

Table 4 
Relationships between changes at the 4C above pre-industrial warming level in 
the average value of the extreme indices and their twenty year return values for 
the CMIP5 and CMIP6 models over land. Columns labelled “correlation” show 
the centered pattern correlation between the average change and the return 
value change. Columns labelled “RV-index” show the difference between the 
twenty year return value changes and the changes in the average value of the 
indices.   

CMIP6 CMIP5  

correlation RV-index correlation RV-index 
TNx 0.57 0.11C 0.61 0.22C 
TNn 0.93 0.35C 0.95 0.47C 
TXx 0.70 0.55C 0.45 0.13C 
TXn 0.93 0.13C 0.94 0.43C 
Rx1day 0.82 − 1.23% 0.63 0.34%  

M.F. Wehner                                                                                                                                                                                                                                     



Weather and Climate Extremes 30 (2020) 100284

9

annual average value are again very close in magnitude illustrating 
stability of changes across rarity of cold day frequency due the bounded 
nature of the GEV distribution. Again, meaningful differences between 
CMIP5 and CMIP6 are difficult to identify with most large scale differ
ences again being apparent on this color scale only at the 4C global 
warming level. In this case, the global average of this difference is yet 
smaller (~0.1C) compared to the global average change (~7C). 

Projection maps of changes in warm nights and cool days are pre
sented in the appendix but discussed with the other extreme tempera
ture projections in section 5. 

4. Precipitation: wet days 

Fig. 5 shows projected multi-model percent changes in annual 
Rx1day (wet days) for available CMIP5 (left) and CMIP6 (right) models 
at the specified global warming levels. Hatching indicates that at the 
lower global warming targets, projected changes in extreme precipita
tion are not as robustly larger than cross model variations than at the 
higher targets. There is little evidence in Fig. 5 to suggest that CMIP5 
and CMIP6 projected changes in annual Rx1day are meaningfully 
different. 

Fig. 6 shows projected multi-model percent changes in 20 year return 
values of annual Rx1day (very wet days) for the CMIP5 and CMIP6 
models at the selected global warming levels. The projected increases in 
annual Rx1day return values are remarkably similar to annual Rx1day 
itself. Again, the hatched areas where projected percent changes are less 
than cross model standard deviation are small for both model ensembles 
and all warming levels. Projected return values changes are positive 
everywhere with increases for both ensembles as global warming targets 
increase. This even includes the CMIP6 projections at 1.5 and 2C tar
gets.. The hatched areas of less robust projected changes are confined to 
the dry regions of the land mass (the Sahara, northeastern Brazil and 
part of Australia). 

5. Discussion 

Confidence in projected changes in extreme temperature and pre
cipitation in a future warmer climate is limited both by confidence in the 
quality of simulations of the contemporary climate as well as in model 
representation of the known physical mechanisms affected by climate 
change. For a given change in greenhouse gas concentration, the leading 
source of uncertainty in most, if not all, climate change projections is 
“climate sensitivity”, the temperature response of the climate system to 
a change in atmospheric composition (Hawkins and Sutton, 2009). In 
this paper, to inform a decision about the presentation of future changes 
in extreme temperature and precipitation by the lead authors of the 
forthcoming 6th Assessment Report of Working Group One of the 
Intergovernmental Panel on Climate Change (IPCC WG1 AR6), pro
jections of extreme daily temperature and precipitation changes are 
framed in terms of four specified global warming targets rather than by 
individual emissions scenarios over specified time intervals. The area 
hatched as uncertain in maps of projections made at global warming 
target levels is reduced compared to projections maps made at equiva
lent specified times and emission scenarios regardless of the scheme to 
measure multi-model uncertainty. However, this reframing does not 
eliminate the large uncertainty from differences in model climate 
sensitivity. Rather it simply shifts this model structural uncertainty to 
the timing of when a target is reached. 

This reframing reveals that there are no meaningful differences in 
future multi-model projections of changes in extreme temperature and 
precipitation between the mature CMIP5 and the as yet still underway 
CMIP6 ensembles other than that arising from differences in the range of 
climate sensitivities. Furthermore, as shown in the first of these two 

companion papers, there is no meaningful difference in the quality of 
simulated extreme temperature and precipitation when formally eval
uated against available observations. Table 3 presents a summary of the 
relationships between CMIP5 and CMIP6 multi-model average projected 
changes at the 4C above preindustrial global warming level. Differences 
between the two generations of models are larger at this warming level 
than at the lower levels considered here. Differences in the magnitude of 
changes are small for all the temperature indices and their return values 
except hot days (TXx) where the CMIP5 multimodel average is about a 
0.5C warmer than CMIP6 (out of a ~5◦ warming). Centered pattern 
correlations of the changes are high for all of the average extreme 
temperature indices and also for the return value changes of the cold 
temperature extremes. Pattern correlations of the return value changes 
of the warm extremes are low, but the global mean magnitudes are 
nearly the same. The two generations of models differ more in the 
extreme precipitation metrics with wetter changes in the CMIP6 multi
model average. Centered pattern correlations of extreme precipitation 
changes are moderate between CMIP5 and CMIP6. Despite the differ
ences noted here, even the largest are less than the model uncertainty 
criterion used in the figures and would be hatched if similarly plotted. 

This lack of meaningful differences between the two generations of 
climate models in their simulation quality and target projections permits 
them to be combined. It is then recommended to the lead authors of 
IPCC WG1 AR6 that projections of extreme temperature and precipita
tion changes be calculated in this way combining RCP4.5, RCP6.0 and 
RCP8.5 of CMIP5 with SSP245, SSP370 and SSP585 of CMIP6 to most 
fully utilize publicly available climate model output. In this way, pro
jection uncertainty in this targeted framing will most fully sample the 
range of future changes. 

This study also reveals that projected changes in long period return 
values of the four block maxima ETCCDI temperature indices, TXx, TXn, 
TNn, and TNx are insensitive to rarity as twenty year return value 
changes are not very different from the one year return value (i.e. the 
average of the indices) changes. As might be expected, multi-model 
changes in extreme temperatures from the coarse CMIP5/6 models are 
increases everywhere over land and increase as global average tem
perature increases. In fact, changes in the multi-model average of these 
indices, or the one year return value, may adequately inform the multi- 
model average of longer period return values, of any fixed rarity. Table 4 
presents a summary of the relationship between twenty year return 
value changes and average changes over land in the for extreme tem
perature indices separately for the CMIP5 and CMIP6 multi-model av
erages at the 4C above preindustrial global warming level. All return 
value changes are warmer than the corresponding average extreme 
temperature changes, but as increases over land range from about 5 to 
7C, these differences are small and well within cross model un
certainties. Centered pattern correlation between return value and 
average extreme changes are high for the cold temperature extremes and 
moderate for the warm temperature extremes for both generations of 
models. This insensitivity of temperature extreme changes are a prop
erty of the shape of bounded GEV cumulative distribution functions and 
little difference between past and future scale and shape parameters 
(Wehner et al., 2018). In this study, only the location parameters vary 
with time in the non-stationary GEV statistical formalism. However, 
separate GEV fits were made to the past and future segments of the 
model simulations for convenience as there are different numbers of 
realizations available for each CMIP subproject. Hence, the fitted scale 
and shape parameters are not prescribed to be the same for the past and 
future return value estimates although they are not particularly 
different. Nonetheless, there are reasons to consider that in some regions 
they should be non-stationary and functions of local mean temperature 
due to land surface feedbacks. As mean temperature increase, soils 
experience increased evapotranspiration and can become drier. The 
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resultant reduction in evaporative cooling is a potential mechanism for 
further increases in extreme temperatures. Due to the substantial dif
ferences in land component submodels in the CMIP models, there could 
also be substantial differences in their nonstationary properties of 
simulated extreme temperatures. Although out of scope for this study, 
further analysis could be revealing. 

Projected percent changes in the extreme precipitation block max
ima are also expected to depend on rarity. The saturated atmospheric 
conditions leading to extreme precipitation are controlled by the 
Clausius-Clapeyron (C–C) relationship of about 7% per degree (C) of 
local warming (Allen and Ingram, 2002). However, high resolution 
simulations and event attribution studies (Pall et al., 2017; Risser and 
Wehner, 2017; Scoccimarro et al., 2014; Van Oldenborgh et al., 2017; 
Wang et al., 2018) have indicated that very extreme precipitation can 
increase at super C–C rates, a result supported by observations (Lend
erink et al., 2017) and theoretical understanding of how local and 
non-local changes in atmospheric dynamics can affect moisture 
convergence (O’Gorman and Schneider, 2009; Schneider et al., 2010). 
On the other hand, CMIP3 and CMIP5 models do not exhibit such super 
C–C scaling in extreme precipitation (Kharin et al., 2013, 2007). Table 3 
and Figs. 5 and 6 show that the CMIP5 and CMIP6 global land average 
changes in Rx1day and its 20 year return value are very similar in 
pattern and magnitude unlike what would be expected under significant 
super C–C scaling. One reason for this is that the standard horizontal 
resolutions of the CMIP5 and CMIP6 models do not permit the strong 
temperature and moisture gradients characteristic of the severe storms 
such as tropical cyclones or mesoscale convective systems that produce 
extreme precipitation (Walsh et al., 2015; Wehner et al., 2015, 2014). 
Convective parameterization schemes may also constrain extreme pre
cipitation (Li et al., 2011) as they are not generally tuned to replicate the 
tail of the distribution even at high resolutions (Yang et al., 2012). In 
principle, permitting the scale parameter to be non-stationary via a 
dependence on ln(CO2) or temperature might both improve the quality 
of fit and accentuate the differences in the changes in extreme precipi
tation of different rarities. This would provide another important per
formance metric to validate climate models with but is a task for future 
work. 

This paper and its companion paper question the added benefit of the 
CMIP6 to enhancing confidence in projected changes to extreme tem
perature and precipitation. The model errors in simulated available 
global observations remain substantial and users of CMIP5/6 are left to 
question whether this model output is fit for their purposes. Sources of 
model errors relevant to simulated extreme weather are many at this 
coarse horizontal resolution and range from large scale processes such as 
atmospheric blocking (Schiemann et al., 2017) and land processes 
(Mueller and Seneviratne, 2014) to smaller scale unresolved convection 
processes (Cole et al., 2005). Some classes of storms leading to extreme 
precipitation such as tropical cyclones are non-existent or at best unre
alistic at the typical CMIP5/6 resolution of 100 km (Wehner et al., 

2015). Further increases in our confidence in projected changes in 
extreme temperature and precipitation therefore will require a mix of 
higher resolution models and improvement in relevant 
parameterizations. 
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Appendix 

Fig. A1shows projected multi-model changes in annual TNx (warm nights) for available CMIP5 (left) and CMIP6 (right) models at the specified 
global warming levels. Changes in warm nights are very similar to changes in hot days. Similar to Fig. 1, changes in annual TNx are remarkably 
uniform, with continental interiors warming only slightly more than coastal regions for models at the coarse resolution of the standard CMIP5 and 
CMIP6 models. Also, as with the changes in very hot days, changes in the 20 year return value of annual TNx are very similar to changes in its annual 
value. 
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Fig. A1. Multimodel average projected changes in annual TNx (warm nights) from available CMIP5 (left) and CMIP6 (right) at global warming levels of 1.5, 2, 3 and 
4C above preindustrial (1850–1900) average values. Units: oC. 

Fig. A2 shows projected multi-model changes in annual TXn (cool days) for available CMIP5 (left) and CMIP6 (right) models at the specified global 
warming levels. Changes in cool days are very similar to changes in cold nights. Similar to Fig. 2, increases in annual TXn are largest at higher latitudes. 
Also, as with the changes in very cold nights, changes in the 20 year return value of annual TXn are very similar to changes in its annual value. 
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Fig. A2. Multimodel average projected changes in annual TXn (cool days) from available CMIP5 (left) and CMIP6 (right) at global warming levels of 1.5, 2, 3 and 4C 
above preindustrial (1850–1900) average values. Units: oC. 
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