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Categorization and Reinforcement Learning: 
State Identification in Reinforcement Learning and Network Reinforcement Learning 

 
Vladislav D. Veksler Wayne D. Gray Michael J. Schoelles 

(vekslv@rpi.edu) (grayw@rpi.edu) (schoem@rpi.edu) 
Cognitive Science Department, 110 8th Street 

Troy, NY 12180 USA 
 

Abstract 
We present Network Reinforcement Learning (NRL) as 
more efficient and robust than traditional reinforcement 
learning in complex environments. Combined with 
Configural Memory (Pearce, 1994), NRL can generalize 
from its experiences to novel stimuli, and learn how to deal 
with anomalies as well. We show how configural memory 
with NRL accounts for human and monkey data on a 
classic categorization paradigm. Finally, we argue for why 
the suggested mechanism is better than other reinforcement 
learning and categorization models for cognitive agents and 
AI.  

Keywords: categorization, reinforcement learning, 
category learning, unsupervised learning, cognitive 
modeling, cognitive architectures, artificial intelligence, 
configural. 

Introduction 
A red line is not just red, nor is it just a line, nor is it just a 
red line. It is all of these things at the same time. Given a 
red line, an agent may want to select red-appropriate 
actions, line-appropriate actions, or red-line appropriate 
actions. Identifying the object as a red-line may be 
inefficient, and identifying it as red may be misleading. 

In this paper we identify problems with state 
identification in Reinforcement Learning and suggest a 
mechanism that addresses these problems, Configural 
Memory with Network Reinforcement Learning 
(CMNRL). We will argue that CMNRL is more efficient 
and robust than either instance-based or category-based 
reinforcement learning. We will then describe a classic 
categorization task (Shepard, Hovland, & Jenkins, 1961), 
and suggest the psychological validity of CMNRL by 
simulating human and monkey data from this task.  

Problems with Reinforcement Learning 
It has become popular to use some form of reinforcement 
learning in computational cognitive agents in order to get 
computational agents to act in a psychologically and 
biologically plausible manner (e.g. Fu & Anderson, 2006; 
Holroyd & Coles, 2002; Sutton & Barto, 1998). 
Reinforcement learning (RL) is a procedural component 
of a cognitive agent that can be described as follows: the 
agent must identify its current state, S, and then execute 
some action, A, such that the state-action pair, S–A, has 
the highest utility of all state-action pairs for state S 
(Figure 1). The utility of the selected state-action pair, 
U(S–A), is updated based on environmental feedback in 
the form of a reinforcement signal (e.g. pleasure/pain). 

Exploratory and learning mechanisms vary from one 
version of RL to another, but the basic idea remains.  

 
 

Figure 1. Reinforcement Learning. Left: Flow of 
information in RL agents (no learning shown). Right: 

Identified state, S, and possible actions, A1 through An; 
each arrow represents a competing state-action pair; 

arrow labels U1 through Un represent the utilities of state-
action pairs S–A1 through S–An. 

 
The major problem with reinforcement learning is state 

recognition. Instance-based state identification, where 
each unique set of input activations is considered a 
different state, is largely inefficient due to the exploding 
number of state-action pairs with each new input channel. 
Instance-based RL could require 2n states for n binary 
inputs, and a·2n state-action pairs, where a is the number 
of actions.  

To decrease the decision space, researchers use various 
forms of categorization to preprocess large numbers of 
input channels into more manageable numbers of states 
(for review see Sutton & Barto, 1998). However, creating 
too many categories still results in too large of a 
decision/learning space. As the number of categories 
increases, the category-based agent becomes more similar 
to an instance-based one. Alternatively, bunching up 
objects into a small number of categories may 
misrepresent the environment altogether.  

Consider the following simplified scenario. Imagine a 
world where all apples taste great except brown apples 
(brown-apple is the exception to the apple category). 
Instance-based and category-based RL agents are 
presented with two red, one green, and two brown apples 
each (Table 1). Let us assume that the category-based 
agent in this scenario contains the 'apple' category. At the 
end of the five stimulus-action-reinforcement cycles 
presented in Table 1, the category-based agent would 
know only one thing – that eating apples has a positive 
utility (+1), and thus would continue eating brown apples. 
At the end of the same five cycles, the instance-based 
agent would know the utility of eating red apples (+2), 
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green apples (+1), and brown apples (-2), but would know 
nothing about eating apples in general. Presented with a 
yellow apple, the instance-based agent will not know 
what to do with it, and may throw it away. In this world, 
instance-based agents will never know what to do with 
newly encountered apples, whereas category-based ones 
will never learn to avoid rotten apples. A more efficient 
agent should be able to learn about both categories and 
instances. 

 
Table 1. Instance-based and Category-based 

Reinforcement Learning. Two columns on the right 
display the updated utilities after each I-A-R cycle. 

(I = input; A = action; R = reinforcement) 
I A R Instance-based RL  Category-based RL  

red 
apple Eat +1 U(red-apple,Eat) = +1 U(apple,Eat) = +1 
green 
apple Eat +1 U(green-apple,Eat) = +1 U(apple,Eat) = +2 
red 

apple Eat +1 U(red-apple,Eat) = +2 U(apple,Eat) = +3 
brown 
apple Eat -1 U(brown-apple,Eat) = -1 U(apple,Eat) = +2 
brown 
apple Eat -1 U(brown-apple,Eat) = -2 U(apple,Eat) = +1 

Network Reinforcement Learning 
We can imagine an agent with a dynamic state-space, 
such that the agent could identify categories and category-
exceptions as needed. Such an agent may be able to use 
category-based state identification for all apples except 
brown apples in the example from Table 1.  

Here is the problem: we cannot disregard the fact that a 
brown apple is brown, or that it is an apple. It may be the 
case that action x (e.g. eat) results in different 
reinforcement values between brown-apple and apple 
states (brown-apple is an exception to the apple 
category), and action y (e.g. throw) is the same for the 
brown-apple state as it is for its parent category (brown-
apple follows the apple category rule). Moreover, even if 
brown-apple was originally hypothesized by the agent to 
be an exception to its parent categories, we want to allow 
the agent to learn through experience whether that 
hypothesis is true or not. If the agent fails to forget useless 
exceptions it will continuously shift towards the 
inefficient instance-based state identification.  

Continuing with our example, if we do not disregard 
the parent categories of the identified exception, then we 
have a model of reinforcement learning that recognizes a 
brown apple as three different states – brown, apple, and 
brown-apple. Let us say that we consider all of the state-
action pairs of all of these states, and choose some action, 
A, and receive some reinforcement, r. Does this mean that 
r belongs to brown–A, apple–A, or brown-apple–A?  

To make this more concrete, if you eat a brown apple, 
and it tastes bad, is it because it was an apple, because it 
was brown, or because it was a brown apple? Maybe it is 
time for you to learn that apples just do not taste good. 
Maybe apples taste great but brown apples do not. Maybe 

all brown things taste bad. The only solution from the 
model's perspective is to propagate the reinforcement 
value to all active states, and hope that the utility of the 
apple–eat state is already high enough that the negative 
reinforcement does not significantly hurt it (unfortunately, 
if the 'bad apple' phenomena happens early enough, 
people do get stuck with food aversions). 

Configural Memory with Network 
Reinforcement Learning 
Using simultaneous activation of multiple states and 
simultaneous learning of multiple state-action pair utilities 
(hereafter Network Reinforcement Learning, NRL) has 
been previously suggested by Porta & Celaya (2005). 
They argued that NRL is more efficient than traditional 
RL for 'real world' robot learning. The basic idea behind 
our adaptation of NRL is as follows: unlike traditional 
reinforcement learning where a single state S is identified, 
in NRL we identify multiple states, {S1,S2,...,Sn} (Figure 
2; left). Given n number of identified states and m number 
of possible actions, there are n⋅m competing state-action 
pairs (Figure 2, right; each arrow represents a  competing 
state-action pair). The state-action pair with the highest 
utility is chosen and the winning action, A, is activated. 
Unlike traditional RL where only the winning state-action 
pair is updated, the utility values for all s–A state-action 
pairs are updated with the reinforcement feedback, 
s∈{S1,S2,...,Sn}.  

 
 

Figure 2. Network Reinforcement Learning. Left: Flow of 
information in NRL agents (no learning shown). Right: 

Identified states, S1 through Sn, and possible actions, A1 
through An; each arrow represents a competing state-

action pair. 
 
Porta & Celaya (2005) used feature detectors (higher 

order inputs; e.g. vertical-line and hand-shape neurons are 
considered feature-detectors in humans) as competing 
states. Where our theory differs from Porta & Celaya is in 
our use of incremental configural memory instead of 
arbitrarily preclassified feature detectors. Configural 
representation is very powerful, and is psychologically 
validated via habituation and discrimination studies (for 
review see Pearce, 1994). Configural memory is more 
expressive than feature detectors because it may include 
all possible input configurations (including feature 
detectors). For example, for three inputs (e.g. white, 
square, large) there could be as many as seven configural 
nodes (e.g. white, square, large, white-square, white-
large, large-square, large-white-square). 
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Configural representations are sometimes criticized for 
the exploding number of configurations (e.g. Heydemann, 
1995): for stimuli that vary across 3 binary dimensions 
(e.g. small/large, black/white, triangle/square) a 
configural model would need 26 configural nodes (e.g. 
small, large, black, white, triangle, square, small-black, 
small-white, small-square, ..., small-white-square, small-
white-triangle). Given a stimulus varying on 6 binary 
dimensions, the number of possible configural nodes 
would rise to 126, etc. This problem has been addressed 
in the IAK model (Heydemann, 1995), which uses 
probabilistic sampling to select a small subset of 
configurations, thus avoiding the rapid growth.  

Combining configural memory with NRL (CMNRL) 
provides for simultaneous multi-level state identification, 
such that types and tokens of every level may be used as 
reinforcement learning states. In this type of a model there 
may be different actions attributable to objects at every 
level. For example, animal, dog, golden retriever, and my 
golden retriever named Sparky may all have some actions 
in common and some actions that set them apart. Upon 
seeing Sparky, all of these actions would compete. Upon 
action-feedback, learning would occur for all of the 
activated states, from top-level dog to bottom-level 
Sparky.  
CMNRL versus RL 

CMNRL is more efficient and robust than traditional 
Reinforcement Learning. To observe this, consider the 
case in Table 1. Instance-based RL would fail to 
generalize and make any predictions about a new apple 
object. Category-based RL would fail to learn about the 
negative utility of eating a brown apple. Due to the fact 
that CMNRL updates state-action pairs at both object and 
category levels simultaneously, it is able to generalize, 
and learn about exceptions, as well.  

CMNRL is not a mere combination of a categorization 
model with reinforcement learning. Integration of RL or 
NRL with one of the existing categorization models, such 
as RULEX (Nosofsky, Palmeri, & McKinley, 1994) or 
SUSTAIN (Love, Medin, & Gureckis, 2004), will require 
twice as much feedback for learning. Such integration 
would produce an agent that requires supervised learning 
to identify declarative category structure, and then 
reinforcement learning to learn procedural utilities. In 
contrast, CMNRL considers procedural memory part of 
the categorization process, and thus requires only the 
reinforcement signal as feedback. In other words, 
CMNRL uses the reinforcement signal to learn about 
category structure.  

In the following sections we will describe a classic 
categorization experiment, and compare CMNRL results 
against human and monkey data from this experimental 
paradigm. We will analyze how CMNRL performs this 
task, and contrast it against traditional reinforcement 
learning with and without categorization. We will also 
discuss how standard categorization models perform on 
this task, and where CMNRL stands out from these.  

Shepard, Hovland, & Jenkins, 1961 
The beauty of the Shepard, Hovland, & Jenkins (1961) 
benchmark categorization experiment is in its simplicity. 
Subjects are presented with one of eight objects varying 
across three binary dimensions (e.g. small/large, 
black/white, triangle/square), and have to pick one of two 
responses (e.g. A or B). Feedback is then provided as to 
whether the response was correct.  

 
Figure 3. An example of the six types of categorization 

problems from the Shepard, Hovland, & Jenkins task. For 
each type, subjects must learn that the items in the left 
column are one category, whereas the items in the right 

column are another. 
 
The idea behind this study is to determine the rate at 

which people learn to classify each of the eight objects as 
belonging to one of two categories. Four of the objects 
belonged to category A, and the other four belonged to 
category B. Given this setup, there are only six different 
types of possible category breakdowns. In the example in 
Figure 3 the three binary dimensions are shape (square vs. 
triangle), color (black vs. white), and size (large vs. 
small); categories A and B are represented as left and 
right columns; and the six problem types are marked with 
roman numerals I – VI. 

The general results of the study indicated that human 
performance for problem types I through VI follow the 
order: I > II > (III, IV, V) > VI. These results have been 
replicated in multiple forms (Love, 2002; Nosofsky, 
Gluck, Palmeri, McKinley, & Glauthier, 1994; Smith, 
Minda, & Washburn, 2004), each time confirming the 
main effect found by Shepard, Hovland, & Jenkins over 
forty-five years ago. It is rather simple to explain and 
model the fact that people performed best on problem I 
and worst on problem VI – while only one dimension is 
necessary to predict the category (A or B) in type I 
problems, all three dimensions are necessary for correct 
category identification in type VI. What is less obvious 
for most models of categorization is that performance on 
problem II is better than that on types III, IV, and V.  
Supervised and Unsupervised Category Learning in 
the Shepard, Hovland, & Jenkins categorization task 

In further investigation as to why problem II was 
learned faster than the problem IV, Love (2002) 
hypothesized that this was a result of the learning mode – 
namely, supervised classification learning. In supervised 
classification learning the subject is presented with a 
stimulus, they give a response, and then corrective 
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feedback is provided. Given that much of category 
learning occurs in unsupervised, and sometimes 
completely incidental fashion, supervised classification 
learning is not sufficient in explaining and predicting all 
human categorization behavior.  

Love omitted problems III and V, and changed his 
experimental procedure so that supervised classification 
learning could be directly compared with what he called 
unsupervised-intentional and unsupervised-incidental 
learning modes. Unfortunately the details of the procedure 
are beyond the scope of this paper. The results from the 
supervised category learning condition of Love (2002) 
followed in order with the findings from Shepard, 
Hovland, & Jenkins (1961) and Nosofsky, Gluck, et al. 
(1994). Subject performance on problem types I through 
VI followed the order: I > II > IV > VI. Unsupervised 
category learning, however, lead to performance 
differences in this experiment. In particular, during these 
less volitional modes of category learning, performance 
was better on type IV than type II problems (see Figure 4 
for results). Interestingly enough, further investigation of 
this paradigm by Smith et al. (2004), revealed that rhesus 
monkeys performed better on type IV problems than type 
II problems, as well. 

 
Figure 4. Subject performance during the test phase of 

Love (2002). Error bars represent standard error. 
 
Modeling the Shepard, Hovland, & Jenkins paradigm 

The Shepard et al. paradigm has become one of the 
benchmarks for models of categorization. Among the 
models that have tried to model this task are: configural-
cue model (Gluck & Bower, 1988), DALR (Gluck, 
Glautheir, & Suton, 1992, as cited by Nosofsky, Gluck, et 
al., 1994), the rational model (Anderson, 1991, as cited by 
Nosofsky, Gluck, et al., 1994), ALCOVE (Kruschke, 
1992), ALCOVE-RL (Phillips & Noelle, 2004), RULEX 
(Nosofsky, Palmeri, & McKinley, 1994), SUSTAIN 
(Love, Medin, & Gureckis, 2004), and IAK (Heydemann, 
1995). The latter five of these eight models produced the 
same problem performance ordering as the human 
supervised classification data would suggest: I > II > (III, 
IV, V) > VI. However, the models that failed at 
replicating human supervised classification data might 
have actually provided good fits to unsupervised category 
learning data from Love (2002) and rhesus monkey data 
from Smith et al. (2004), predicting the advantage in 

performance on problems III, IV, V over problem II. 
None of the leading categorization models have attempted 
to explain both modes of category learning.  

Among the failed attempts to model human supervised 
classification data was the configural-cue model, which 
very closely resembles the CMNRL setup on this task. 
The major difference between CMNRL and configural-
cue is that CMNRL uses NRL instead of the least mean 
squares rule learning used by the configural-cue model. 
The use of NRL allows CMNRL to capture exploration 
and trial-and-error learning. It also affords the use of 
unsupervised learning, where the environment feeds back 
a reinforcement signal instead of suggesting the correct 
category for each object. This distinction is most 
important because supervised forms of learning are not 
always available in natural environments. The necessity 
for supervised learning is a problem with all 
categorization models cited above. 

Modeling Shepard, Hovland, & Jenkins, 1961 
with CMNRL 
Traditionally the Shepard, Hovland, & Jenkins paradigm 
was viewed as a study of declarative category learning; 
that is, each of the eight objects had to be classified as 
category A or B. We assume, however, that since the 
subjects had to respond, there is a procedural component 
involved. Thus we use NRL to model the responses, and a 
configural representation to identify the stimuli.  

As previously mentioned, for stimuli that vary across 3 
binary dimensions, as in Figure 3, a configural model 
would need a maximum of 26 configural nodes. For the 
simple stimuli used in this experimental paradigm we 
assume that human subjects have all 26 possible 
configurations in memory. With only two possible 
responses (e.g. A and B), there are a total of 52 state-
action pairs (Figure 5). 

 

 
Figure 5. CMNRL setup for the Shepard, Hovland, & 

Jenkins (1961) paradigm. 
  

There are three free parameters in the current 
implementation of NRL – utility of exploration (Ue), 
perceived utility of positive reinforcement (U+), and 
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perceived utility of negative reinforcement (U-). Every 
trial the model was presented with three known 
dimensions and had to answer the fourth. If the 
exploration parameter, Ue, was higher than utility values 
of all competing state-action pairs, the model would try an 
action at random; otherwise the model would activate the 
action of the state-action pair with the highest utility 
value. If the model answered correctly, positive 
reinforcement, U+, would propagate to all active state-
action pairs. If the model answered incorrectly, negative 
reinforcement, U-, would propagate to all active state-
action pairs.  

For example, if the model saw large-white-square in 
condition IV of Figure 3 there would be seven configural 
nodes active (white, square, large, white-square, white-
large, large-square, and large-white-square), and 
fourteen competing state-action pairs. If white-square–B 
had the highest utility of all other state-action pairs, and 
had a higher utility than the parameter Ue, the model 
would execute action B. In this case, the answer would be 
correct, and the utilities for all seven active state-action 
pairs (white–B, square–B, large–B, white-square–B, 
white-large–B, large-square–B, and large-white-square–
B) would be incremented by U+. 

Given that the ratios of these parameters rather than 
their absolute values are of the essence, Ue was held 
constant at 1.0 for all model runs. A genetic algorithm 
(using the least mean square error, LMSE, criterion) was 
employed to find the best fitting parameters for each of 
the six datasets: Nosofsky, Gluck, et al. (1994), Love 
(2002) supervised, Love unsupervised intentional, Love 
unsupervised incidental, Smith et al. (2004) human, and 
Smith et al. rhesus monkey. Comparisons to the data from 
Nosofsky, Gluck, et al. (1994) study were limited to the 
first 192 trials only (same number of trials as Smith et al., 
2004).  

This is a simple setup that should demonstrate the 
flexibility of NRL to learn categories, and do so in a 
humanlike (or monkeylike) fashion. The ability of NRL to 
explain the differences between various category-learning 
modes with mere adjustments of perceived positive and 
negative reinforcement gives additional power to the 
proposed model – including more free parameters in a 
model could explain much more data, but would be much 
less meaningful; see (Su, Myung, & Pitt, 2005). 
Modeling Results 

The U+,U- parameter pairs that produced the lowest 
root mean square errors (RMSE) are shown in Table 2. 
RMSE was a stricter criterion for the model than r2. 
Although higher r2 values were found (e.g. best 
correlation value for Smith et al. monkey data was 0.986, 
RMSE=0.198), maximizing r2 values, as opposed to 
minimizing RMSE values, sometimes resulted in 
accidental correlations (e.g. although the best correlation 
value for Love unsupervised incidental data was 1.000, 
RMSE=0.183, the actual error-rate averages on problem 

types I, II, IV, and VI were 47%, 50%, 49%, and 50%, 
respectively, signifying random behavior).  

 
Table 2. Best parameter fits for each of the six datasets. 

Fit U+ U- R2 RMSE 

Nosofsky, Gluck, et al. (1994) 0.22 -1.85 0.986 0.017 

Love (2002) Supervised 0.65 -0.60 0.971 0.067 
Love (2002) Unsupervised 

Intentional 6.98 -6.60 0.983 0.024 
Love (2002) Unsupervised 

Incidental 4.56 -4.30 0.986 0.023 

Smith et al. (2004) Human 0.14 -0.43 0.959 0.024 

Smith et al. (2004) Monkey 0.01 -1.03 0.911 0.041 
 
The better (lower RMSE) parameter values seemed to 

be related to the ratio of positive to negative 
reinforcement, U+:U-, and the average absolute 
reinforcement value, U+- (U+- is equivalent to the ratio 
of average absolute reinforcement value to the utility of 
exploration, U+-:Ue, because Ue=1.0). The best RMSE 
values for Love’s experiments, each involving 80 learning 
trials, and 24 test trials where no learning occurred, had 
the U+:U- ratio of ≈1.1:1. For the 192-trial experiments 
of Nosofsky et al. and Smith et al. the best U+:U- ratios 
were ≈1:5. The top U+:U- ratios for the 2000-trial 
monkey experiment were in the range between ≈1:10 and 
≈1:1000. Seemingly, in this sort of an experiment, as the 
number of trials increases, the average perceived positive 
reinforcement value drops, while the average perceived 
negative reinforcement value grows. Although this makes 
sense intuitively (when Michael Jordan misses a foul shot, 
he gets down on himself quite a bit more than when a 
novice does the same), the NRL mechanism currently in 
place in the CMNRL architecture does not yet account for 
this phenomenon. 

Top U+- values seemed to correlate with learning 
mode. Of the three human supervised classification 
experiments – Nosofsky et al., Love supervised, and 
Smith et al. human – average U+- of the top parameter 
sets was 0.64. Of the unsupervised categorization 
experiments by Love, average U+- of the top parameter 
sets was 5.61. What this really means is that Ue was 
relatively small for supervised classification, and 
relatively large for unsupervised learning modes. This too 
makes intuitive sense – the average utility of exploration 
should be higher when we are learning actively, i.e. trial-
and-error, as in the three supervised classification 
experiments.  

Like ALCOVE, ALCOVE-RL, RULEX, SUSTAIN, 
and IAK, CMNRL was able to capture the general trend 
in performance across the six problem types in human 
supervised classification learning, going beyond other 
categorization models like configural-cue, DALR, and the 
rational model. With mere adjustments of positive and 
negative reinforcement values, CMNRL was also able to 
explain category learning in rhesus monkeys, as well as 
unsupervised category learning in humans.  
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Summary 
In this paper we argued that CMNRL is more efficient 
and robust than either instance-based or category-based 
reinforcement learning. We also suggest the 
psychological validity of CMNRL by simulating human 
and monkey data from a classic categorization paradigm 
(Shepard, Hovland, & Jenkins, 1961).  

CMNRL uses configural memory, where multiple types 
and tokens are activated simultaneously upon object 
recognition (e.g. my red robin activates {my red robin, 
red robins, red, robins, birds, animate objects, ...} nodes). 
Network Reinforcement Learning extends traditional RL 
to handle simultaneous activation of multiple types and 
tokens. Whereas traditional RL perceives the world as a 
single state, NRL uses multiple nodes to represent the 
state of the world. Whereas traditional RL reinforces one 
state-action pair at a time, NRL updates the utilities of all 
relevant state-action pairs. In this manner, CMNRL does 
not fail to generalize from its experiences, nor to account 
for anomalies.  

In simulating data from the Shepard, Hovland, & 
Jenkins paradigm, CMNRL went beyond other 
categorization models. First, CMNRL is an example that 
it is not necessary to include a separate model of 
categorization along with a procedural mechanism – the 
procedural mechanism in CMNRL, NRL, is an essential 
part of the categorization mechanism. Second, CMNRL 
does not rely on supervised learning. This is important 
because the answers are not always available in the 
environment, only the reinforcement signals. Last, but not 
least, CMNRL captures and explains the data from both 
supervised and unsupervised modes of category learning. 
The differences between the two types of experiments are 
explained in CMNRL using the relative utility of 
exploration. During the supervised learning mode, 
subjects were more likely to explore (learn by trial and 
error). During unsupervised learning modes, subjects 
were more likely to learn passively (no exploration).  

CMNRL combines declarative structure and procedural 
learning to make for a more complete procedural 
mechanism and a more complete categorization 
mechanism. This issue of integration makes CMNRL a 
better candidate of memory implementation for cognitive 
architectures. Without much redesign or modeling efforts, 
CMNRL may be used to create a cognitive agent that can 
learn a new environment from scratch, explore, and 
improve performance on arbitrary tasks. Future work on 
CMNRL will involve testing the mechanism in foraging 
environments, simple games, and language learning.  
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