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ABSTRACT
The ihtegrallequatigns for pion=-pion scattering formulated by Chew

and Mandélstam are put into a form suitable for numefical solutién° An |

iteration procedure is described that is applicable when the S-wave amplitude

dominates the equations, all higher partial waves being small; this paper

considers only solutioné for which such is the case. The requiremeﬁt that
the equations have consiétent solutions without bound states turns out to

iimit the pion-pion coupling constént to the' range 0.6 < A £ 0.3

‘Results are given for various values of A within this interval.

*
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I. INTRODUCTION

In an earlier paper,1 hénceforth to be referred to as CM, a set Ofv
coupled integral eqﬁdtions for pion—pion scattering has been derived. We_-:”
describe ?ere'the'solution of these equations by a numerical procedure of 
.iteration. Such an iteration procedure follows‘more or less natufally from
the structure of the eqpatioﬁs, and ié found to be straightforward in
application and fapidly convergent. ’Further, checks on the approximations
underlying the_eqpations can be applied onée the equations have been solved
and confirm the legitimacy of these approximations.

A question arising at once is whether these solutions obtained by |
iteration are the only solutions of the nonlinear,integral equatidns; The
: uniqueness is not at all obvious and, in fact, the structure of the equations
indicates that another class of solutions is also poséible, The solutions
obtained'here are characterized by the smallness of all amplitudes with
£ > 0. However, a.rough examination of the equations indicates that
solutions with large P-wave amplitudes are also possible even if the S-wave
| amplitudes are small. It seems likely that this latter type of solution is
the one actually occurring in natufe, Frazer and Fulco have shown fhat a

P-wave resonance brings the calculations of nucleon electromagnetic structure

. : 2 _
into much better agreement with experiment. In this paper, however, we
1

G. F. Chew and S. Mandelstam, "Theory of the Low Energy Pion-Pion
Interaction," UCRL-8728, April 1958.
5 .

W. Frazer and J. Fulco, Phys. Rev, Lett. 2, 365 (1959).
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shall consider only the simplest type of solution, which can be obtained by
the iteration procedure. The study of this type will‘be of help in obtaining
the more complicated solutions. Moreover,‘we cannot be sure that these
simple solutions are devoid of practical'interest, the answer’to the
electromagnetic structure problem lying in some other directioh than a
P-wave resénanceo | |

The first task is the straightforward problem of changing*v&riables
~ so as to achieve finiteblimits of integration. This is done in Section II,
while in Section III. the iteration procedure actually carried out with the
Livefmﬁre 704 computer is described. Finally, in Section IV, we present our

results as a function of A\ , the pion-pion coupling constant.

IT. CHANGE OF VARIABLES
~ The integral equations set up in CM involve the variable ;/ , the
square of the three-momentum in the barycentric system,‘on the negative

real axis in the rénge 00 to <~l. It is convenient to introduce

-1/2 :
x = (._..J)]/ s | | ©(1I.1)
which will run from O to 1. At the same time we replace the functions
EﬂI(;)) = DZI(=))) with FéI(x) , defined by
I I, 1 ' I, 1 '
F, (x) = x E, ( ;E ) = x D, (- ;5 ) . o (11.2)

The S-wave equation CM-(V.14) then becomes

1
2 2 '
FOI(x) = % +agX alx) + =x(1- 3 X % é dx? lL-%g z?% fOI(x“)FO;(x“) ,
z .

(II.3)
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.where
1 2 1 2
Q(X)=(—§~3)K('§;g)
X X
2 | ' 2 1 1
_ = 1 gn X TL1-x 2 tan = ——— 5
B 1 —_x2 X 2 :
’ (IT.h4)
and.
) 1 1 1
L(X,X')= 2. K(""E': "";"é‘)
X~ x X x
: (11.5)
> 1 1 1+ 1-x° ‘
T ¥ T2 2 5 fn
x'° - x 1 - X

1 ' 14 1 - xi?
- v In —
fﬂ 1 - XQQ : X

Equation (II.3) is & linear integral equation which may be solved by standard

methods. We postpone for the moment discussion of a possible singularity
at x' = 0.
.Once the functions FOI(X) have been obtained,.the S-phase shifts
in the physicél région are éiveh'by formula CMG(V,QO).. It is cqnvenient to
introduce a variable that runs between O and 1 as )) covers the physical

interval 0 to o . We therefore define

Vo= e T, ;) > 0 , , - (I1.6)

and rewrite CM-(V.20) as
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2 1 :
- ()= (-5 £ Jae MBI e K gwg )

T 1 - % x12
1l1-y3 cot 80 = T T
» 2 51 £y (x') Fyo(x')
‘3‘1J’(l“‘%)}?fdx'7 2 B2 B R
0 (l~-35-x“ Wy® + %' - 27 %)
(11.7)
where
1 1 1 2
Ry) = (5 - 3 ) =5 -1 3 )
y Y
(11.8)
o 11 2" 14 A1y |
= = 2 tan = —— = l1-y 4n 5
~{2’ y
and
1 1 1
My, x') = —3 (=5-1 —5)
' X'y y x’
(11.9)
2 1 | 2 1+ {1 -5°
= ;‘E 5 ) 1~y in -
yx'T-x'"" -y I
1 1+ 1= x2
e ,Zn a
1 - x2 x

Before writing down the crossing relation for fOI in terms of our
new variables, x and y , we give the’PawaNe eqﬁations corresponding to

(11.3) and (II.7). These are as follows:
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.
F i (x) = 2 Tax 1(x %) £.0x0) 7 Mx0) ' (II.10)
1 X = X+X‘;{ 5 .,X' :L-X~ lAXA, V .
5, o T 1 1
go L LoD E Ted ) 5l Bl

fll(x") Fll(x")

é 1
= [ ax! — ——
0 y2 + x'2 - x"2 y2
(11.11)
Note that to calculate any higher phase shift, neglecting the
right-hand cut, we have simply
o £=1 1 £ I(Xﬂ)(xv)Ezal
(y7) I £+l 2 ; £
tan B = (-1) = [ax — 5
o4 + 1 £ p1d 0 y2 + xqz _ x°2 y2
(L-y7)" "2
(11.12)
for £ > 2 .
This last formula corresponds roughly to a "Born approximation,” once the

left-hand cut is given, and should be valid so long as thé phase shift in
question is small. The right-hand cut is then of the order of magnitude
of the square of the phase shift. The éum over all higher waves is giVen by
Egs. (IV.9) and (IV.10) of CM.

We turn now to the crossing relations CM-(V.8) expressing the
| imaginary parts of the partial-wave amplitudes on the 1eft=hand‘cut in
terms of the imaginarybparts of S and P amplitudes on the physical'cuto

Introducing
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I I
g, (v) = ma(y) ,
' : (11.13).
2" Y2
= —Q-:;-lél—f— , por 7 > o0 ,
1+ cot™ & S _
/]
we have, from CM-(IV.k),
I 2 1 d xe . o 2
£,x) = -2t [ F P(1-23) Ca g, (¥) +ag, & (¥)
Xy vy
% -1
X 1
+ 5(1 -2 -1;- j )('_aIl gl (y) )
2
y .
(IT.14)
where the matrix O.., 1is given by CM=(IV.6) . Note that if gzI(y) remains

finite as y - O , then according to Eqg. (II.14) the same is true for le(x)
as x - 0 . Such would not be the case if D and higher partial waves

were included under the integral in (II.14). One must check a posteriori

that higher partial waves do not maké an important contribution te fﬁI(x)
in the range '%';g x < 1, where the‘polynomial,expansion converges.
The last formula required in terms of the new variables is CM~(V.18),

giving the connection between A and ar o We find

-5 1
ar = A %' f ay ~é§ In
| - o ¥ ey
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As noted in CM, the integral here has a very small value and can be ignored

in a first approximation.

ITITI. THE ITERATION PROCEDURE
The géneral procedure for solving the pibncpion equations is évidente
Qne chooses a valu¢ of A and gets corresponding values for ac from Eq. (II.15),
neglecting the integral. By making some guess for- foI , one solves Eq. (II.3)
to obtain FOI, which may then be used in Eq: {IT.7) to give SOI . At this
stage it is possible from Eq. (II.1k4) to caleulate the part Qf fEI
from the S-wave terms under thé inteéral.‘ In particular, the fOI SO

coming

obtained may be used to correct the a_ through Eq. (II.15) and to solve

I
(II.B) again in a better approximation° At the same fime, fl; may be used
in Eq. (II.10) to give a first approximation to Fll and through (II.11) to
511 o

At this point the cycle starts all over again with the formula
(1I.1%), in which.both S and P terms are kept, and the cycle is repeated‘
until convergence is aéhieved. Higher.partial waves are not considered v
until the end, at which time their phase shifts may be cbtained from (II.12).

- The variations in the‘above procedure are associated with the

starting guess that is made. Cieérly the'rate of convergénce'shculd be
faster thé better the initial guess. We have addpted a program that may not
éive the fastest convergence, but has the advantage‘of being systematic and
correspdnds_physically to the familiar notion of "turning on" £ﬁe interaction
adiabatically.

Note, first of all, that a solution for A =0 is éli phase shif'ts

#anishing identically. .For . A small the S-phase shifts grow linearly
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with A\ , but the gquantities gOI and fzI-, being proportional to sin2 6OI )
are quadratic and therefore so are P and higher phase shifts. One may obtain
the solution for small X\ , therefore, by a power serieé or, alternatively,
by a rapidly converging iteration using the first terms of the power ‘series
as é start. As ‘A becomés of the ordervof magnitude unity, the power-series
approach breaks down, but at any value of A the exact solution for a slightly
: sﬁaller value may always be used as a starting guess. Eveén better; one may
use an extrapolation based on all the lower values of A for which solutions
.have been achieved. |

In fhis way we "turn on" the pion=pion interaction slowly and develop
the solution as a continuous functioﬁ of N . If A 1is negative and
sufficiently large in absolute vélué we get a bound S sfate by the adiabatic
approach: Experimentally no bound state has ;een observed, so that, as
explained in CM, there is a limit to the range of negative A that needs to
be studied. It was also explained in CM that A cannot be tob largé and
positive. b | o |

| As pointed out in the introduction, the sclutions of our equations

obtained by this iteration procedure ‘are probably not the only ones. There
may exist other solutions even at values.of A for which consistent solutions
were obtained by this method,> In such a case, the solutions of the equations
are not unique-~or, to put\it another way, the pgrameter A 1is not a good
way of specifying the solutions. Another possibility is that, for positive
values §f A greater than those giving a consistent‘solution by iteration,
a.so}ution may still exist. In this papef we confiﬁe our attentioﬁ to the

simplest solutions, which can be reached by applying the procedure outlined

above.



UCRL-9001

" 10-

"Let us finally comnsider the question of a possible singularity in the
integral equations (II.3) and (II.10) at x = O. A careful examination of
(II.3) shows that these equations are nonsingular if fOI(x) and. fll(x)b

tend to zero like any power of x , or even like (log x)“l - o

(a > O),.as
x tends to zero.  Now it follows from (II.14) that the contributions to

fZI(x) from _goO(y) and goz(y)- at a particular value of y tend fo zero
like x2 as x tends to zero. The contributions from values of ¥ in the

neighborhood of the origin behave like the functions goo and g02 themselves,

but, as these functions'tend to zero with y 1like (log y)'e, our equaﬁions

are still nonsingular. However, the contribution to fEI(x) from gll(y),

even for a particular finite value of y, behaves like a constant at the origin; _
so that our integral equations are now just singular. |
It is usuvally true of such marginally Singuiar integral~e§pétions
that, if the term in the kernel responsible for the singulérify is less than .
some critical value,,the equation still has a unigue solution obtainable by
standard'methods. Such is the case with our eqﬁation, and since gll furns
out to be extremely small for all relevant values of A, we need not worry
here about the singularity at x = O. For P-wave-~dominant solutions, to

be discussed in a later paper, this singularity is of crucial importance.

IV. CALCUIATIONS AND RESULTS

In numerical calculations with the Livermore TO4 Computer, each of

‘the intervals O to 1 in the x and v variables_was divided into 20

mesh points. The linear integral equations (II.3) and (II.10) were converted
into simultaneous algebraic linear eqpétions and solved by a standard matrix

inversion. The most complicated operation otherwise was the evaluation of

‘various one-dimensional integrals with finite limits and real smoothly
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varying integrands. The time required for one complete'cycle of the equations
- was less than 1 minute and convergence was rapid, four or five»cycleé generally
sufficing.

As expected, for small A +the S-wave phase shifts are roughly
proportional to M., while the P (as well as all higher) phase shifts are
adequately given by the "Born approximation,” (II.12), and are proportional
to ha . What was not expected was that the P phase shift would remain small
throughout the range of A for which physically acceptable sclutions were
found. Our results are_shown in_Figs° 1, 2, and 3 where if may be seen that
nowhere is the P phase shift larger ﬁhan a few degrees., Phase shifts for
L > 2 are so small as to be completely uninteresting.

The smallness of the higher phase shifts confirms'the validity of .
 the basic approximation in CM, wﬁich‘kept only S and P waves in calculating
‘absorptive parts. In fact, keeping the imaginary part of thé P wave is an
unﬁecessary luxury for the type of solution found here. The. contribution of
gll to Eq. (II.14) is negligible.

The contribution of goo’2 to Eq. (IT.1h) determihgs all phase
shifts for £ 2 1, but for £ = O ‘the main features of the solution are
already given by CM-(V.22), which corresponds to setting of foI equal
to zero. For example; the sign of the S phase shifts is opposite to that
of A Dboth in the numerical soluﬁion and in CM=(V.22). The crude apbfoximation
predicts the first bound I = O state at A = -0.36, while our’cohplete
numérical result gives thebcriﬁical value, N = =0.46, The order of
magnitude of thevupper 1imit‘on. A is also given correctly by the rough

arguments of CM, neglecting f’oI° In our numerical solution the spurious

N
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pole in the I = 0 state moves past the arbitrarily chosen limit, >) = =10,

at A = 0.34, whereas the crude estimate yields A\ = 0.50., ,

FromvK. (II:lh) it may be seen that the P-state force due to the
vexchange of an I = 0 S-wave pion pair is attractive, whereas the force dué
toan I =2 S-wave pair is repulsive. For negative N 'and even for small
positive‘ AN, the I=0 exchangesvturn out to be more important and the
P-phasé shift is positive. Fo£ the larger ppéitive A range, the I =2

exchanges dominaté and the P-phase shift changes sign. The competition

between these two forces helps explain the smallness of the'P interaction;

I

“however, the limitation enforced by unitarity on the magnitude of the 8

seems to be the essential obstacle to a strongvP interaction.
The only hope of getting a strong P-wave force from Formula (II.1llk)

appears to lie in making gll large and taking advantage of the large

numerical factor multiplying this term. This would be a "bootstrap" mechani sm;

i.e., the force producing the P-wave resonanée would be due to the exchange
of a resonating P-wave pion pair. Such solutions of the CM equations appear
entirely possible, even though they cannot be reached by the adiabatic

épproach; they will be dealt with in a subsequent paper.
: R

ACKNOWLEDGMENT
We are extremely grateful fo Dr. S. Fernbach and the Livefmore
Compuﬁation Division for the generous help given us,.VIn particular we
should like to thank Mr. Robert Kuhn and Mr. William Carr, who coded the

problem and carried out all the machine computatiOnng' -



UCRL-9001

«13-

CAPTIONS FOR FIGURES

Fig. 1. The cotangent of 500 , multiplied by =5 A 7/ ;)i‘l , as a

function of »/ = q?, for various values of N within the allowed range.

As - N approaches zero the family of curves approaches a horizontal straight
line with unit ordinate. Note that the function for A = -0.5 1is negative

~at vy = O,'indicating the existence of a bound state.

Fig. 2. The cotangent of 502, multiplied by -2 A 7y > Z?l for the same

values of A as shown in Fig. 1. The limit as A approaches zero is the

same as in Fig. 1.

) 2

1 : .2 .
Fig. 3. The cotangent of. 51 , multiplied by A( T ) , for various

B

‘values of A. At A = +0.3%, a value not shown here, 51 has become negative

but is still very small in absolute valﬁe°
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