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ABSTEACT 

The integral equations for pion-pion scattering formulated by Chew 

and Mandelstam are put into a form suitable for numerical solution. An 

iteration procedure is described that is applicable when the S-wave amplitude 

dominates the equations, all higher patial waves being small; this paper 

considers only solutions for which such is the case. The requirement that 

the equations have consistent solutions without bound states turns out to 

limit the pion-pion coupling constant to the range -O .'i-6 < X 	0.3. 

Results are given for various values of X within this interval. 

* 
This work was supported in part by the U.S. Atomic Energy Commission and 

in part by the U.S. Air Force under contract No. AF 638327 monitored by 

the AFOSR of the Air Research and Development Conmiand. 



UCRL-9OOl 

S-WAVE-DOMINANT SOLUTIONS OF THE PION-PION INTEGRAL EQUATIONS 

Geoffrey F. Chew, Stanley Mandelstam, and H. Pierre Noyes 

Lawrence Radiation Laboratory and Department of Physics 
University of California 

Berkeley and Livermore, California 

November 17, 1959 

I. INTHODUCTION 

In an earlier paper, 1  henceforth to be referred to as CM, a set of 

coupled integral equations for pion..pion scattering has been derived. We 

describe here the solution of these equations by a numerical procedure of 

iteration. Such an iteration procedure follows more or less naturally from 

the structure of the equations, and is found to be straightforward in 

application and rapidly convergent. Further, checks on the approximations 

underlying the equations can be applied once the equations have been solved 

and confirm the legitimacy of these approximations. 

A question arising at once is whether these solutions obtained by 

iteration are the only solutions of the nonlinear integral equations. The 

uniqueness is not at all obvious and, in fact, the structure of the equations 

indicates that another class of solutions is also possible. The solutions 

obtained here are characterized by the smallness of all amplitudes with 

£ > 0. However, a rough examination of the equations indicates that 

solutions with large P-wave amplitudes are also possible even if the Swave 

amplitudes are small. It seems likely that this latter type of solution is 

the one actually occurring in nature, Frazer and Fulco have shown that a 

P-wave resonance brings the calculations of nucleon electromagnetic structure 

into much better agreement with experiment. 2  In this paper, however, we 

1 G. F. Chew and S. Mandeistam, "Theory of the Low Energy Pion-Pion 

Interaction," UCRL-8728, April 1958. 

2 W.F±az' and J. Fulco, Phys. Rev. Lett. 2, 365 (1959). 
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shall consider only the simplest type of solution, which can be obtained by 

the iteration procedure. The study of this type will be of help in obtaining 

the more complicated solutions. Moreover, we cannot be sure that these 

simple sdlutions are devoid of practical interest, the answer to the 

electromaietic structure problem lying in some other direction than a 

P-wave resonance, 

The first task is the straightfoxward problem of changing variables 

so as to achieve finite limits of integration. This is done in Section II, 

while in Section III. the iteration procedure actually carried out with the 

Livermore 704 computer is described. Finally, in Section IV, we present our 

results as a function of ? , the pionpion coupling constan. 

II. CHANGE OF VARIABLES 

The.integral equations set up in CM involve the variable 	, the 

square of the threemomentum in the barycentric system, on the negative 

real axis in the range oo to l. It is convenient to introduce 

x = ())V2  

whiôh will run from 0 to 1. At the same time we replace the functions 

E)) =D 	with F21(x) , defined by 

- 	 F(x) = x E21( 	) = x D( 	) 0 	 (11.2) 

- 	
The Swave equation cM(v iii.) then becomes 

F01(x) = x + a1x Q(x) + x(l - x2 ) 	f dx 	
f0I(x)F0I(x) 

(11.3) 
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where 

Q(x)= ( 	)K 

= 	1 2 Ln 	
+ 	2' 	

tan 
1ix  

and 

1 	1 	1 L(x,x') = 	2 	K(-, —) 
X X 

2 
 

(II5) 

	

= 2 	1 	 1 	
Ln 
	1 x  

	

7t 	 I2S 	 x 

1 ± II2 

x 

Equation (II3)  is a linear integral equation which may be solved by standa:rd. 

methods. We postpone for the moment discussion of a possible singularity 

at x = 0. 

Once the functions F01(x) have been obtained, the Sphase shifts 

in the physical region are given by formula CM.'(V20). It is convenient to 

introduce a variable that runs between 0 and 1 as covers the physical 

interval 0 to oo 	We therefore define 

1 	
- , 	 > 0 , 	 (11.6) 

and rewrite CM.(v.20) as 
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~l­27  cot 
 110 

1 a1R(y)-(1-- ) 

a +(l_rd' 	0 	0 

	

I ' 2 2 2 	2 	22 
0 	(i 	x )(y ~ x' 	x y ) 

(II7) 

where 

R(y) = ( 

(II ,8) + = I 
= 	 tan * 	y2 ' £n 

and 

1 	1 
M(y, Xli) = 
	2 2 	

- 	 1, 
xy 	y 

(II 9) 

2 	1 	 1 JI On  
X 0 2 X9 2

y2 	 y 

1=2 
1 	£n1 

Before writing down the crossing relation for f 0' in terms of our 

new variables, x and y , we give the Pwave equations corresponding to 

(I1.3) and (II7) These are as follows: 
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1(x) =• x + x 	5 	L(x, x?)  f11(x) F11  F1 	 (x') , 	 (ILio) 

(1 	
2)3/2 cot 811 = 1 
	(i y2 ) 	5 dx I(y, x) f1l(x)  F11(x) 

f1(:) F11(x) 

y +x 	y 

(IIu). 

Note that to calculate any higher phase shift, neglecting the 

right-hand cut, we have simply 

• 	 2-1 	 1 	22-1
le  

2  
2 	 1 	f (')() 

tan8 	= (-1 	 dx 
0 	Y + X V -X Y 

(11.12) 

for 	£ 	2 

This last formula corresponds roughly to a "Born approximation, tt  once the 

left-hand cut is given, and should be valid so long as the phase shift in 

question is small. The right-hand cut is then of the order of magnitude 

of the square of the phase shift. The sum over all higher waves is given by 

Eqs. (IV.9) and (iv.io) of CM. 

We turn now to the crossing relations M(V,8) expressing the 

imaginary parts of the partialwave amplitudes on the left'hand cut in 

terms of the imaginary parts of S and P amplitudes on the physical cut. 

Introducing 
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g(y) = Im A( ) 

-a/2 
= _(; 	

I' 
	 for 	> 0 , 

1+cot 

(II13). 

we have, from CM-(IVlt.), 

f(x) = 	2x2 f 2j p2(i 2 	) a10 
 9

00(y) + a12  g02(y) 

1 

+ 3(1 2 	 )a11  

where the matrix a 	is given by CM-(IV6) 	Note that if g(y) remains 

finite as y - 0 , then according to Eq (11014) the same is true for f(x) 

as x - 0 	Such would not be the case if D and higher partial waves 

were included under the inteal in (11014)0 One must check a pos'teriori 

that higher partial waves do not make an inortant contribution to f(x) 

in the range 	x < 1, where the polynomial expansion converges 

The last formula required in terms of the new variables is CM(V18), 

giving the connection between X and a1 	We find. 

1 
a 	= 	( 	\,+ jZ.en  
I 	 0 	2y2 	3 2y 2 	3_ 

 

(IIi5) 

2, 

{aio  g00 (y) + a12  g02() + 

	

2)ai1  91(y)} 
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As noted in CM, the integral here has a very small value and can be ignored 

in a first approximation. 

III, THE ITERATION PROCEDURE 

The general procedure for solving the pion-pion equations is evident. 

One chooses a value of X and gets corresponding values for a 1  from Eq. (11.15), 

neglecting the integral. By making some guess for f 0' , one solves Eq. (11.3) 

to obtain F01, which may then be used in Eq. (11.7) to give b 	 At this 

stage it is possible from. Eq. (11.14) to calculate the part of f 	coming 

from the S-wave terms under the integral. In particular, the f 0' so 

obtained may be used to correct the a 1  through Eq. (11.15) and to solve 

(11.3) again in a better approximation. At the same time, f 11  may be used 

(11.10) to give a first approximation to F 1'  and through (11.11) to 

At this point the cycle starts all over again with the formula 

(iI,ili.), in which both S and P terms are kept, and the cycle is repeated 

until convergence is achieved. Higher partial waves are not considered 

until the end, at which time their .phase shifts may be obtained from (11,12). 

The variations in the above procedure are associated with the 

starting guess that is made. Clearly the rate of convergence should be 

faster the better the initial guess. We have adopted a program that may not 

give the fastest convergence, but has the advantage of being systematic and 

corresponds physically to the familiar notion of "turning on" the interaction 

adiabatically. 

Note, first of all, that a solution for X = 0 is all phase shifts 

vanishing identically. For . X small the S-phase shifts grow linearly 
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with X , but the quantities g0' and f , being proportional to sin2  8 

are quadratic and therefore so are P and higher phase shifts0 One may obtain 

the solution for small X , therefore, by a power series or, alternatively, 

by a rapidly converging iteration using the first terms of the power series 

as a start. As 	becomes of the order of maguitude unity, the power-series 

approach breaks dom, but at any value of X the exact solution for a slightly 

smaller value may always be used as a starting guess. Even better, one may 

use an extrapolation based on all the lower values of X for which solutions 

have been aehievedo 

In this way we "turn on" the pionpion interaction slowly and develop 

the solution as a continuous functien of X • If X is negative and 

sufficiently large in absolute value we get a bound S state by the adiabatic 

approcho Experimentally no bound state has been observed, so that, as 

explained in CM, there is a limit to the range of negative ? that needs to 

be studied. It was also explained in CM that X cannot be too large and 

positive. 

As pointed out in the introduction, the solutions of our equations 

obtained by this iteration procedure are probably not the only ones. There 

may exist other solutions even at values of X for which consistent solutions 

were obtained by this method. In such a case, the solutions of the equations 

are not unique--or., to put it another way, the parameter ?. is not a good 

way of specifying the solutions. Another possibility is that, for positive 

values of X greater than those giving a consistent solution by iteration, 

a solution may still exist. In this paper we confine our attention to the 

simplest solutions, which can be reached by applying the procedure, outlined 

above. 
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Let us finally consider the question of a possible singularity in the 

integral equations (11.3) and (11.10) at x = 0. A careful examination of 

(11.3) shows that these equations are nonsingulariff01(x) and f11(x) 

tend to zero like any power of x , or even like (log x) 	(a > 0), as 

x tends to zero. Now it follows from (II.li) that the contributions to 

I 	 2 
f2  (x) from g0  (y) and g0  (y) at a particular value of y tend to zero 

2 
like x as x tends to zero. The cOntributions from values of r  in the 

neighborhood of the origin behave like the functions g0 0 and g 0  2 themselves, 

but, as these functions tend to zero with y like (log y 2, our equations 

are still nonsingular. However, the contribution to f(x) from g 11(y), 

even for a particular finite value of y, behaves like a constant at the origin, 

so that our integral equations are now just singular. 

It is usually true of such marginally singular integral equations 

that, if the term in the kernel responsible for the singularity is less than 

some critical value, the equation still has a unique solution obtainable by 

1 
standard methods. Such is the case with our equation, and since g 1  turns 

out to be extremely small for all relevant values of ). , we need not worry 

here about the singularity at x = 0. For P-wave-dominant solutions, to 

be discussed in a later paper, this singularity is of crucial importance. 

IV. CALCULATIONS AND RESULTS  

- 	 In numerical calculations with the Livermore 704 Computer, each of 

the intervals 0 to 1 in the x and y variables was divided into 20 

mesh points. The linear integral equations (11.3) and (11.10) were converted 

into simultaneous algebraic linear equations and solved by a standard matrix 

inversion. The most complicated operation otherwise was the evaluation of 

various one-dimensional integrals with finite limits and real smoothly 
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varying integrands. The time required for one complete cycle of the equations 

was less than 1 minute and convergence was rapid, four or five cycles generally 

sufficing. 

As expected, for small X the S..wave phase shifts are roughly 

proportional to ?.., while the P (as well as all higher) phase shifts are 

adequately given by the UBorn approximation, (II 12), and are proportional 

to 	What was not expected was that the P phase shift would remain small 

throughout the range of X for which physically acceptable solutions were 

found0 Our results are shown in Figs. 1, 2, and 3 where it may be seen that 

nowhere is the P phase shift larger than a few degrees. Phase shifts for 

£ , 2 are so small as to be completely uninteresting. 

The smallness of the higher phase shifts confirms the validity of 

the  basic approx.mation in CM, which kept only S and P waves in calculating 

absorptive parts. In fact, keeping the imaginary part of the P wave is an 

unnecessary luxury for the type of solution found here, The contribution of 

91 
 to Eq. (II,lli) is negligible. 

The contribution of g00 ' 2  to Eq. (II.l4) determines all phase 

shifts for £ >. 1, but for £ = 0 the main features of the solution are 

already given by CM..(V.22), which corresponds to setting of f 0' equal 

to zero. For example, the sigi of the S phase shifts is opposite to that 

of X both in the numerical solution and in CM(V.22). The crude approximation 

predicts the first bound I = 0 state at ? = .-0 , 36, while our complete 

numerical result gives the critical value, ? 	 The order of 

magnitude of the upper limit on 	is also given correctly by the rough 

arguments of CM, neglecting fe', In.our numerical solution thespurious 
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• 	pole in the I =0 state moves past the arbitrarily chosen limit, ) = -10, 

at X = 0,34, whereas the crude estimate yields X = 0.50. 

From Eq. (11.14) it may be seenthat the P-state force due to the 

exchange of an I = 0 S-wave pion pair is attractive, whereas the force.due 

to an I = 2 S-wave pair is repulsive. For negative ?. and even for small 

positive X , the I = 0 exchanges turn out to be more important and the 

P-phase shift is positive. For the larger positive X range, the I = 2 

exchanges dominate and the P-phase shift changes sign. The competition 

between these two forces helps explain the smallness of the P interaction; 

however, the limitation enforced by unitarity on the magnitude of the g0  I 

seems to be the essential obstacle to a strong P interaction. 

The only hope of getting a strong P-wave force from Formula (II.lI-) 

appears to lie in making g1 1  large and taking advantage of the large 

numerical factor multiplying this term. This would be a Thootstrap" mechanism; 

i.e., the force producing the P-wave resonance would be due to the exchange 

of a resonating P-wave pion pair. Such solutions of the CM equations appear 

entirely possible, even though they cannot be reached by the adiabatic 

approach; they will be dealt with in a subsequent paper. 

/ 
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CAPTIOI1S FOR FIGURES 

Fig. 1. The cotangent of 80 , multiplied by 	 ' as a 

function of 	= q , for various values of ). within the allowed range0 

As ?. approaches zero the family of curves approaches a horizontal straight 

line with unit ordinate. Note that.the function for ) = 0.5 is negative 

at ) = 0, indicating the existence of a bound state0 

Fig. 2. The cotangent of 802, multiplied by 2 X 	 for the same 

values of 7... as shown in Fig. 1. The limit as 7... approaches zero is the 

same as in Fig. 1. 

) 	3/2 
Fig. 3. The cotangent of 8l1, multiplied by X 7 + 1 	, for various 

values of X. At 7... = +0.3, a value not shown here, a 	 has become negative 

but is still very small in absolute value. 
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