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Abstract

Topological Phase Transitions

by

Lokman Tsui

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dung-Hai Lee, Chair

The study of continuous phase transitions triggered by spontaneous symmetry breaking
has brought revolutionary ideas to physics. Recently, through the discovery of symmetry
protected topological phases, it is realized that continuous quantum phase transition can
also occur between states with the same symmetry but different topology. The subject of
this dissertation is the phase transition between these symmetry protected topological states
(SPTs). There are two main parts in this dissertation.

In the first part we consider spatial dimension d and symmetry group G so that the
cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that
the phase transition between the trivial SPT and the root states that generate the Z2n or
Z groups can be induced on the boundary of a d+1 dimensional G × ZT

2 -symmetric SPT
by a ZT

2 symmetry breaking field. Moreover we show these boundary phase transitions
can be “transplanted” to d dimensions and realized in lattice models as a function of a
tuning parameter. The price one pays is for the critical value of the tuning parameter
there is an extra non-local (duality-like) symmetry. In the case where the phase transition is
continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations
corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the
transition. This theory also predicts other phase transition scenarios including first order
transition and transition via an intermediate symmetry breaking phase.

In the second part, we study the phase transition between bosonic topological phases
protected by Zn×Zn in 1+1 dimensions. We find a direct transition occurs when n = 2, 3, 4
and in all cases the critical point possesses two gap opening relevant operators: one leads
to a Landau-forbidden symmetry breaking phase transition and the other to the topological
phase transition. We also obtained a constraint(c ≥ 1) on the central charge for general
phase transitions between symmetry protected bosonic topological phases in 1+1D.
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Chapter 1

Introduction to Topological Phases

Since the ancient times, humans have been wondering about the phases of matter. It was
Laudau (1) who made a breakthrough in the early 20th century. He realized that different
phases corresponds to the realization of different symmetries, and in a phase transition, a
higher symmetry group is broken into a lower symmetry subgroup. For example, a magnet
undergoes a phase transition as temperature is raised past a critical value to go from a ferro-
magnetic state to a paramagnetic state. The ferromagnetic state has a magnetization which
breaks rotation symmetry, which is restored in the paramagnetic state. Another example
is the melting of ice. In ice the water molecules are arranged in a periodic crystal which
has only a discrete crystalline symmetry, which is a subgroup of the continuous translation
and rotation symmetry enjoyed by water molecules in the liquid phase. For some time it
appeared convincing that this is the complete story for the classification of phases of matter.

In the last three decades, a strange new class of phases was discovered by humans and
is coined the term “topological phases”. These phases all enjoy the same symmetry, but
one can never continuously deform two distinct phases into one another without closing the
energy gap. In other words, a phase transition occurs without any symmetry breaking. An
experimental realization of such phases is the celebrated discovery of fractional quantum
hall effect(FQHE) (2). Following the discovery of FQHE, a rapid burst of theoretical and
experimental activities uncovered a huge plethora of other topological phases. The word
“topology” means the study of properties invariant under continuous deformation. The dis-
tinction between topological phases is not in their symmetry, but in their topology. At
the current understanding, topological phases are gapped phases of matter and can be di-
vided into two categories. The first category are known as symmetry-protected topological
phases(SPT) (3;4;5). Each of these phases have a unique groundstate with a full energy gap
when defined on a closed(i.e., boundary-free) manifold and exhibit the full symmetry of the
Hamiltonian. However, these states are grouped into different “topological classes” such
that it is not possible to cross from one topological class to another without closing the
energy gap while preserving the symmetry. In this class the fundamental degrees of freedom
may be fermionic, which includes topological insulators and superconductors, or bosonic,
which includes various spin systems. The second category, in contrast, can have degenerate
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Non-trivial SPT Trivial SPT

Figure 1.1: (Color online) A caricature showing the necessity of gapless excitations on the
boundary of a non-trivial SPT. The blue and green regions represent a trivial and a non-
trivial SPT respectively. If the interface between a trivial and non-trivial SPT were gapped,
then a small island of trivial SPT may be grown inside a non-trivial SPT, and gradually
expand to occupy the entire system without closing the energy gap hence adiabatically
connecting a trivial and non-trivial SPT.

groundstates when defined on a topologically non-trivial closed manifold. They are called
“topologically ordered” states. In this dissertation we will focus on the bosonic SPTs which
belong to the first category.

1.1 Symmetry-Protected Topological Phases

Symmetry protected topological(SPT) phases are the non-degenerate ground states of local
lattice Hamiltonians each respecting the same global symmetry group G. These ground
states remain invariant under G and are separated from their respective excited states by
an energy gap. If two Hamiltonians can be made equal by adding or removing symmetry
preserving local terms while preserving the excitation gap, they are viewed as equivalent.
Correspondingly ground states of equivalent Hamiltonians are viewed as the same phase.

Given two SPTs in the same dimension, we may try to stack them on top of each other.
This stacking operation provides an abelian group structure to the SPTs. The trivial group
element is the direct product state. All the other states which cannot be smoothly deformed
to the trivial state are non-trivial SPTs.

The hallmark of non-trivial SPTs is the presence of gapless boundary excitations. The
fact that a non-trivial SPT must have a gapless boundary can be understood as follows. A
SPT with boundary can be alternatively viewed as the same SPT interfaces with vacuum,
i.e., a trivial SPT. If there were no gapless excitations at the interface we can gradually
expand an island of trivial SPT embedded in the non-trivial one until it occupies the entire
system without closing the energy gap (See Fig. 1.1). Since such expansion, or more precisely
the local modification of the Hamiltonian which causes such expansion, does not have to
break the symmetry, this contradicts the notion of trivial and non-trivial SPT being in two
inequivalent classes. Hence a non-trivial SPT must have gapless boundary excitations which
cannot be gapped out if the protection symmetry is not broken.
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Example of fermionic SPT: Chern Insulator

To be concrete, lets consider an example of fermionic SPT, a Chern insulator. Consider a
2-by-2 single particle Bloch Hamiltonian in two spatial dimensions. Such a hamiltonian has
the general form

h(~k) = a0(~k)σ0 + ax(~k)σx + ay(~k)σy + az(~k)σz

And the single-particle energy eigenvalues are E(~k) = σ0 ±
√
a2
x + a2

y + a2
z. Focusing on

gapped phases, and deforming the energy gap to a constant, we may assume σ0 = 0 and
a2
x + a2

y + a2
z = const. Thus the space of gapped 2-by-2 Bloch hamiltonians with constant

energy gap forms a 2-sphere parametrized by (ax, ay, az). As a function of ~k belonging

to the Brillouin zone, the hamiltonian h(~k) is a map from the torus T 2 to the sphere S2.
Such maps form distinct equivalent classes under continuous deformation. They can be
distinguished by computing a topological invariant known as the Chern number, which is
the integral of the Berry phase curvature over the Brillouin zone. If the function h(~k) can be
deformed to a constant map, it is considered as a “trivial” insulator. Otherwise it is a non-
trivial topological insulator. It turns out that when the corresponding lattice hamiltonian
is defined on a manifold with open boundary, the “trivial” insulator will still be gapped
while the “non-trivial” topological insulator will have gapless excitations (a chiral complex
fermionic mode) on the boundary. The direction of the chiral mode (left or right moving)
depends on the sign of the Chern number. Under stacking, these Chern insulators form the
group of integers Z. Physically the inequivalent phases are labelled by the difference between
the number of right moving chiral modes and left chiral modes nR − nL.

In the above example, since the gapless mode is chiral, no symmetry is needed to protect
it from being gapped out. In other words, the protection symmetry is actually just the trivial
group with only the identity element. We may use the Chern insulator to engineer another
SPT with a non-trivial protection group as follows. If we combine a Chern insulator for
spin up electrons with one right-moving chiral edge modes and a Chern insulator for spin
down electrions with one left-moving chiral edge modes, the result is another fermionic SPT.
Without any symmetry, we may gap out the boundary edge modes (labelled by ψR↑, ψL↓)

via the mass coupling ψ†R↑ψL↓ + h.c.. However if we impose the time reversal symmetry T̂

which transforms ψR↑ → ψL↓ and ψL↓ → −ψR↑ so that T̂ 2 = (−1)nF is the fermion parity,

then the mass term ψ†R↑ψL↓ + h.c. is forbidden. Hence in this case the fermionic SPT is
protected by the time-reversal symmetry. This is known as the spin hall insulator and has a
Z2 classification.

Example of bosonic SPT: Haldane Chain

Another example of SPT is the Haldane chain. In this case the degree of freedoms are bosonic
integer-spin variables, arranged in a one spatial dimensional chain geometry. Each unit cell
consists of two spin-1/2 variables, hence forming an integer (spin-0 or spin-1) variable in each
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a)

b)

c)

d)

Figure 1.2: (Color online) (a) The Hamiltonian and groundstate wavefunction for a trivial
bosonic SPT. The oval is a unit cell consisting of two spin-1/2 denoted as a black dot.
The Hamiltonian is H0 =

∑
<i,j> ~si · ~sj where < i, j > are summed over the blue bonds.

In the groundstate, spin-1/2’s form spin singlets within each unit cell resulting in a direct
product state. (b) The groundstate wavefunction of the non-trivial SPT(Haldane chain). The
hamiltonian consists of singlet coupling for spin-1/2s across different unit cells. A dangling
spin-1/2 remains on each edge when defined on an open chain. (c) Tuning a parameter λ
to interpolate between the trivial and non-trivial SPTs. As λ approaches the critical value
λc = 1/2, the dangling spin-1/2 becomes more and more delocalized from the edge. (d) The
critical state at λ = λc. The dangling spin-1/2 from the edge becomes completely delocalized
and freely propagate in the gapless bulk. As a result the bulk has fractionalized (spin-1/2)
excitations (spinons) despite each unit cell having integer spin.

cell. Suppose each unit cell enjoys the SO(3) spin rotation symmetry for integer spins. In
the trivial SPT state, the spin-1/2’s within each unit cell forms a singlet. The groundstate is
hence a direct product state of spin singlets over all cells. In the non-trivial SPT state, the
spin-1/2’s form singlet with a neighbour spin-1/2 in an adjacent cell (see Figure 1.2(a,b)).
It is observed that a dangling spin-1/2 resides on the edge of the non-trivial SPT state when
defined on an open chain. The dangling spin-1/2 cannot be gapped out while preserving the
SO(3) symmetry on each unit cell. This leads to a four-fold groundstate degeneracy on an
open chain since on each edge there is a two-fold degeneracy assocated with the spin-1/2.
Such edge degeneracy is the manifestation of “gapless” boundary states in the case of a 0-d
boundary.

If two non-trivial spin chains are stacked together, then on each edge there will be two
dangling spin-1/2’s. It will be possible to couple the two spin-1/2’s on each edge to gap out
the boundary, resulting in a trivial SPT state. Hence the bosonic SPT protected by SO(3)
in 1d have a Z2 classification.
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Classification of bosonic SPT via group cohomology

The Z2 classification for the Haldane chain example is a special case of a general classification
result. For fixed spatial dimension d and symmetry group G, it is proposed (5) that the
SPT phases form an 1-1 correspondence with the cohomology group Hd+1(G,U(1)). For
example, H2(SO(3), U(1)) = Z2. Its definition is presented in Appendix A.1. In the 1-d
case, H2(G,U(1)) corresponds to the projective representations of group G. We remark that
this proposal does not provide a complete classification result. In fact, some exceptional
phases are discovered outside the cohomology classification (7). In the dissertation we simply
focus on the phases transition between the SPTs classified by the cohomology group (8;9).

1.2 Quantum Phase transitions between topological

phases

Having familiarized ourselves with topological phases, we will now turn to the focus of this
dissertation: the study of phase transitions between topological phases. In particular we
focus on the quantum(i.e. zero temperature) phase transitions. Before we begin, we should
explain our motivations: why study phase transitions?

The study of phase transitions brought tremendous impact on theoretical physics, stim-
ulating the development of very deep understanding of nature including the concept of uni-
versality class, renormalization group flow, and conformal field theory. As explained before,
Landau’s theory of symmetry breaking phase transitions is a very successful theory. A generic
phases transition involves the breaking of a higher symmetry group into a lower symmetry
group. This can be quantified through the measurement of an order parameter. In the state
of higher symmetry, the order parameter remains zero while it gains a non-zero value in the
lower symmetry phase. In the example of ferromagnetic to paramagnetic phase transition,
the magnetization is the order parameter. When people measure how this order parameter
vanishes as one approaches the critical point, they noticed something immensely preculiar.
As some control parameter t is tuned towards the critical value tc at which the phase tran-
sition occurs, the order parameter m vanishes. In general m vanishes as some power law:
m ∝ |t − tc|β, where β is a dimensionless number known as a critical exponent. We can
study how various other quantities(e.g. heat capacity, susceptibility, correlation length) be-
have near the critical point and define a variety of other critical exponents. Amazingly,
across a variety of seemingly different experiments with different materials, the measured
sets of critical exponents are identical as long as they have the same spatial dimensions and
the same symmetry breaking pattern. This allows physicists to neatly group many different
phase transitions into a single “universality class”.

The root of this phenomenon is the emergence of conformal symmetry, or scale invariance,
at the critical point. This is best understood in 1+1 spacetime dimensions. As the control
parameter approaches its critical value, the energy gap closes and the correlation length
diverges. The system becomes self-similar upon rescaling and acquires a very large emergent
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symmetry group of conformal transformations. In 1+1 spacetime dimension, the conformal
symmetry turned out to be so large that they impose severe constraints on the possible
representations of the symmetry (with some assumptions). Thus the critical points which
fall into different representations of the conformal symmetry also becomes highly constrained.
This lead to the distinct universality classes which are observed.

Thus the study of phase transitions have far reaching consequences and is highly inter-
esting. After the discovery of topological phases, it is a natural question to ask what is so
special about the quantum phase transitions between topological phases. This dissertation
is born out of an attempt to answer this question.

1.3 Outline

The following two chapters summerize our study on topological phase transitions. In Chapter
2 we develop a holographic theory of phase transitions between a class of bosonic SPTs. We
find that a critical point between topological phases protected by group G can be interpreted
as the boundary state of another SPT in one higher dimension protected by G × ZT

2 . The
higher dimensional SPT can be interpreted as having ZT

2 domain walls decorated by the
lower dimensional SPT. The extra ZT

2 symmetry acts as a duality transformation between
the two distinct lower dimensional SPTs living on the boundary. It also elucidates a physical
picture that the critical point is the proliferation of gapless boundary states of the non-trivial
SPT.

In Chapter 3 we study the critical point between 1-d SPTs protected by Zn×Zn. We found
that a direct transition occurs for n ≤ 4 and obtained an exactly solvable analytical model
which is verified by DMRG simulations. We observe that the central charge is always greater
than or equal to 1, which can be generalized to 1D phase transition between topological
phases protected by any discrete unitary symmetries. We also found the critical point is a
multicritical point, in the sense that it has two relevant symmetric operators. One drives
the SPT transition and the other drives the transition between two spontaneous symmetry
breaking phases whose symmetries do not have subgroup relations, i.e. a Laudau forbidden
transition.
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Chapter 2

A Holographic Theory of Phase
Transitions Between Symmetry
Protected Topological States

2.1 Introduction

Suppose we have a bulk Hamiltonian describing a bosonic SPT. This hamiltonian has a
tuning parameter λ, and by changing λ the ground state of H(λ) goes from one SPT to
another inequivalent SPT. Our purpose is to study the possible phase transition(s) occurring
for intermediate values of λ. We propose the following conjecture: in a direct transition,
the critical state is a proliferation of the gapless boundary states that lives on the boundary
between the two SPTs. (Recall that from section 1.1, the boundary of a non-trivial SPT
carries gapless boundary states which cannot be gapped out while preserving the protection
symmetry G. )

The motivation of the conjecture is as follows. Take the Haldane chain (Figure 1.2) as
an example. Suppose the Hamiltonian is now a linear interpolation between the trivial (H0)
and non-trivial (H1) chains parametrized by λ. As we tune λ so that the system approaches
the critical point λc = 1/2, the energy gap closes and the spin-1/2’s on the edge becomes
more and more delocalized (with localization length inversely proportional to the energy
gap)(Figure 1.2(c)). At the critical point λc, the gap completely closes and the localization
length becomes infinity. Thus the edge modes becomes free to propagate throughout the
bulk at the critical point.

Put it another way, we can imagine a spatially dependent parameter λ(~x) such that on
one side of the system (x > 0), it is in one SPT (λ(~x) > λc) while on the other side (x > 0),
the system belongs to the other SPT (λ(~x) < λc). Near x = 0, the value of λ ∼ λc. Thus we
can view the gapless boundary state that lives near x = 0 as a spatially confined bulk critical
state. In other words the gap closure at the boundary between two inequivalent SPTs can
be viewed as a spatial coordinate tuned phase transition between the two SPTs (6).
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Figure 2.1: (Color online) Three possible scenarios for the phase transition between two
different SPTs. Red dots represent continuous quantum critical points, red circle represents
first order phase transition, and “SSB” stands for spontaneous symmetry breaking.

To elucidate the above physical picture, we arrived at the following theorem, which is
the main result of this chapter:

Theorem The three scenarios of phase transition (see Fig. 2.1) between a trivial d-
dimensional G-symmetric SPT and a non-trivial SPT satisfying a special condition can be
realized at the boundary a d+1 dimensional G × ZT

2 symmetric SPT under the influence
of a boundary ZT

2 symmetry breaking field. The condition the non-trivial G-symmetric
SPT must satisfy is that it is not equivalent to the stacking of any two other identical G-
symmetric SPTs. This condition will be referred to as the “non double stacking condition”
(NDSC) in the rest of the chapter. Any G whose Hd+1(G,U(1)) contains a Z2n or Z fac-
tor will have SPTs, e.g., that corresponds to the generator of Z2n or Z, satisfy this condition.

Here the ZT
2 transformation inverts the sign of a local Ising variable and performs a

complex conjugation on the wavefunction. Because the Ising variable in question is not nec-
essarily time reversal odd, this ZT

2 is not the usual time reversal symmetry. This theorem
allows us to construct explicit lattice models to describe the SPT phase transition. In par-
ticular these lattice models possess a non-local transformation (a “duality transformation”)
relating the trivial and non-trivial SPTs on the opposite sides of the transition. In the case of
continuous phase transition, the critical theory exhibits an emergent (non-local) symmetry.
The excitations at such critical point, sometimes fractionalized, correspond to “dynamically
percolated” boundary excitations of the non-trivial SPT on one side of the transition.(The
last statement was conjectured in Ref. (6).)

Most of the remaining of the main text, namely, section 2.2 – section 2.4 presents a sketch
of the proof for the theorem. In these discussions we shall focus on physical arguments while
keeping mathematics to a minimum level. The formal proofs are left in the appendices. The
mathematical tool we use in this chapter is the standard group cohomology cocycle manip-
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ulation. In the following we give the outline for the main text and appendices separately.

The outline of the main text

In section 2.2 we discuss the special G × ZT
2 SPT whose boundary, in the presence of ZT

2

symmetry breaking field, exhibits the phase transition between a trivial and non-trivial G-
symmetric SPTs in one space dimension lower. In section 2.3 we discuss the NDSC condition
imposed on the non-trivial G-symmetric SPTs on one side of the transition. In section 2.4
we discuss the three possible scenarios (Fig. 2.1) of the SPT transition and relate them to
the boundary physics of the G×ZT

2 SPT. In section 2.5 we present simple examples of lattice
models in one and two dimensions. These models are constructed under the framework en-
abled by the theorem. We shall discuss the phase transitions they exhibit. Finally in section
2.6 we conclude and discuss directions for future studies.

The outline of the appendices

In Appendix A.1 we show how to construct the (fixed point) ground state wavefunction and
their associated exactly solvable hamiltonian for G-symmetric SPTs in general dimensions.
Here G can contain both unitary and anti-unitary elements. In Appendix A.2 we construct
the basis states spanning the low energy Hilbert space for the boundary of a G-symmetric
SPT, and derive how do they transform under the action of G. In Appendix A.3 we focus on
G = G × ZT

2 and dimension=d+1. In (A.3) we focus on a particular subset of the cocycles
of Hd+2(G × ZT

2 , U(1)). In (A.3) we determine the condition for the non-trivialness of the
chosen cocycles. In (A.3) we show that the SPTs constructed from these cocycles correspond
to decorating the proliferated ZT

2 domain walls with G-symmetric SPTs. In Appendix A.4
we show that the boundary Hilbert space of the G×ZT

2 SPT contains an invariant subspace
which is spanned by a basis isomorphic to the usual basis for studying G-symmetric SPTs
in d dimension. In part (A.4) we show how to utilize this basis to write down a family
of d-dimensional lattice models exhibiting phase transition(s) between two inequivalent G-
symmetric SPTs. For these models we show that the extra ZT

2 symmetry acts non-locally.
In Appendix A.5 we show how the extra ZT

2 symmetry implies there is no local G × ZT
2

symmetric hamiltonian that can gap out the d-dimensional system without spontaneous
symmetry breaking. In Appendix A.6 and A.8 we show how the framework developed in the
chapter can be applied to obtain simple lattice hamiltonians in one and two space dimensions.
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2.2 The G× ZT
2 symmetric SPT in d + 1 dimensions

from proliferating decorated ZT
2 domain walls

Generalizing the work of Ref. (10), we consider a subset of d+1 dimensional G×ZT
2 symmetric

SPTs constructed by proliferating ZT
2 domain walls each “decorated” with a non-trivial d-

dimensional G-symmetric SPT (satisfying the NDSC). The basis states spanning the Hilbert
space for this problem is

∏
i |ρi, gi〉 where i labels the lattice sites and ρi = ±1 ∈ ZT

2 , gi ∈ G.
Hence each site has an Ising-like variable. This variable reverses sign under the action of ZT

2 .
A state with non-zero expectation value of such Ising variable breaks the ZT

2 symmetry. From
such a symmetry breaking state we can construct a ZT

2 -symmetric state by “proliferating”
the domain walls separating regions with opposite value of the Ising variable . (This means
the ground state is a superposition of all possible Ising configurations.) Such domain walls are
orientable d-dimensional manifolds and we choose the orientation consistently. To construct
the d+1 dimensional SPT, these domain walls are decorated with the G-symmetric SPT1 or
SPT1 (the inverse of SPT1) according to the following rule. If the orientation of a domain
wall points from the +1 domain to the −1 domain it is decorated with SPT1. If the reverse
is true it is decorated with SPT1. Because the ZT

2 operation reverses the sign of the Ising
variable, it must transforms SPT1 into SPT1. A domain wall decorated with SPT1 is said
to be conjugate to the one decorated with SPT1 because when they are stacked together
their respective SPTs combine to become trivial.

If we construct the wavefunctions for SPT1 and SPT1 according to Appendix A.1, the
wavefunction associated with SPT1 is the complex conjugate of that of SPT1. Hence the
non-trivial element of ZT

2 has two effects – it inverts the sign of the Ising variable as well
as performing the complex conjugation on the wavefunction. Because the Ising variable in
question does not have to be time-reversal odd, the ZT

2 discussed here can be different from
the usual time reversal symmetry.

If the d + 1 dimensional system has boundary, and which respects the ZT
2 symmetry,

the proliferated fluctuating bulk domain walls can intersect it. The intersection is d − 1-
dimensional (see Fig. 2.2) and is itself the boundary of the domain wall. Thus they harbor
gapless boundary excitations of the SPT on the domain wall. However when two “conjugate”
intersections come close the gapless excitations on them can quantum tunnel. (A pair of
conjugate intersections are the respective intersections of a pair of conjugate domain walls
with the boundary.) When such quantum tunneling is strong a gap can open and effectively
the two conjugate intersections annihilate each other.

2.3 The NDSC and the non-trivialness of the

G× ZT
2 -symmetric SPT

In Appendix (A.3) we prove mathematically that the state arises from proliferating the
decorated ZT

2 domain walls is non-trivial only if the SPT on the wall satisfies the NDSC.
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Figure 2.2: (Color online) Intersection of domain walls with the boundary of a d+ 1 dimen-
sional system, for (a) d = 1 and (b) d = 2. The value of the ZT

2 Ising variable for regions
colored blue and green are +1 and -1 respectively. The domain walls are decorated with a
d-dimensional SPT. Their intersections with the boundary are d − 1-dimensional, denoted
by black dots in (a) and solid lines in (b) respectively. These intersections host gapless
boundary excitations of the SPT living on the domain walls.

Now we explain why this condition is necessary. Let’s suppose SPT1, the SPT that the
domain walls are decorated with, violates the NDSC and SPT1 = (SPT1/2)2 for certain
G-symmetric SPT1/2. In the following we show it is possible to perturb the boundary with
a local G× ZT

2 symmetric hamiltonian ∆H and gap out the gapless excitations.
Let ∆H coats the boundary with an additional layer of a SPT1/2 or SPT1/2 depending

on whether the ZT
2 variable on the boundary is +1 or −1. Since SPT1/2 is G-symmetric, ∆H

respects the G-symmetry. Moreover because the coating switches from SPT1/2 to SPT1/2

when the ZT
2 variable is flipped, ∆H also respects the ZT

2 symmetry. The fact ∆H is local
is because the coating only depends on the value of the ZT

2 variable locally.
Without loss of generality let’s suppose the orientation of the domain wall points from

the +1 domain to the −1 domain. This will induce an orientation on the intersection of the
domain wall and the boundary. In Fig. 2.2 this means the blue region is “inside” and the green
is “outside”. Also let us choose the orientation of the coated film so that the orientation of
the boundary between SPT1/2 and SPT1/2 agrees with that of the domain wall intersection.
Without the coating the domain intersection carries the boundary gapless excitations of
SPT1. After the coating the interface between SPT1/2 and SPT1/2 will be stacked on top
of the original intersection. In the coated film of Fig. 2.3, when viewed from the SPT1/2

domain, the interface should host the boundary modes of SPT1/2. On the other hand when
viewed from the SPT1/2 domain the interface has the opposite orientation, thus it should
host the conjugate of the SPT1/2, i.e., the SPT1/2 boundary modes. As a result the stacked

intersection/interface hosts the stacked boundary modes of SPT1 and SPT1/2
2

= SPT1.
Therefore they cancel and the gapless excitation on the domain wall/boundary intersection
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Figure 2.3: (Color online) Getting rid of the gapless boundary excitations if the SPT (SPT1)
used to decorate domain walls can be written as the square of another SPT (SPT1/2). This
is achieved by coating the surface with a layer of (SPT1/2) on -1 domains and SPT1/2 on +1
domains (left panel). The combined boundary excitations on the intersection is gapped as
denoted by the dashed line in the right panel.

are gapped out. This means the G×ZT
2 -symmetric SPT must be trivial because it is possible

to add totally symmetric boundary perturbation to remove the gapless excitations. Hence in
order for the SPT derived from proliferating the decorated ZT

2 domain wall to be non-trivial
the NDSC must be satisfied.

2.4 The ZT
2 symmetry breaking field and the three

possible phase transition scenarios

Now let’s assume the proliferated domain walls are decorated with the SPT satisfying the
NDSC. In Appendix A.4 we show that the boundary of such G× ZT

2 SPT has an invariant
subspace “transplantable” to one dimension lower (11). This invariant subspace can be made
into the lowest-energy subspace by turning on fully G×ZT

2 symmetric boundary perturbation.
The basis set of such subspace is

∏
µ |gµ〉B, gµ ∈ G where µ labels the boundary sites. They

transform under G and the non-trivial element of ZT
2 according to

Sg
∏
µ

|gµ〉B =
∏
µ

|ggµ〉B, g ∈ G (2.1)

S−1

∏
µ

|gµ〉B = φ({gµ})K
∏
µ

|gµ〉B, − 1 ∈ ZT
2 (2.2)

where the pure phase

φ({gµ}) =
∏
∆

[νd+1(e, {gµ}∆)]σ(∆) (2.3)
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is the ground state wavefunction of the G-symmetric SPT used to decorate the domain wall,
and K stands for complex conjugation. Here νd+1 is a U(1) phase factor whose arguments
are d + 2 elements in G. It is a representative in the group cohomology class of G that
corresponds to the G-symmetric SPT, so it is fully determined by the group structure and
the choice of a particular G-symmetric SPT (See Appendix A.1 for a review of group co-
homology). The product is carried over the d-dimensional simplices ∆ which triangulate
the d-dimensional boundary. σ(∆) = ±1 is the orientation of each simplex and {gµ}∆ is a
shorthand for the d+ 1 group elements assigned to the vertices of ∆.

In Appendix (A.4) we show how to construct a family of d-dimensional lattice models
using the above basis set. These models depend on a parameter λ ∈ [0, 1],

H(λ) = (1− λ)H0 + λH1, (2.4)

where

H0 = −J
∑
µ

∑
gµ,g′µ

|{g′µ}〉B B〈{gµ}|, (2.5)

and

H1 = −J
∑
µ

∑
gµ,g′µ

φ({g′µ})
φ({gµ})

|{g′µ}〉B B〈{gµ}|. (2.6)

In the above equations J > 0 (and can be taken to very large value) and |{g′µ}〉B stands for
the complex conjugation of |{g′µ}〉B. It is shown in Appendix A.3 that both H0 and H1 are
invariant under the action of G, and that the ground state of H0 is the trivial G-symmetric
SPT while the ground state of H1 is the non-trivial G-symmetric SPT described by the
wavefunction in Equation (2.3). Upon the action of the non-trivial element of ZT

2 transforms
H0 and H1 according to

S−1H0S
−1
−1 = H1 and S−1H1S

−1
−1 = H0. (2.7)

Consequently H(λ = 1/2) has an extra ZT
2 symmetry (Equation (2.2)). For other values of

λ there is only the G symmetry (Equation (2.1)). (Therefore we can view λ − 1/2 as a ZT
2

symmetry breaking field. )

In Appendix A.5 we prove that due to the non-local action of S−1, H(λ = 1/2) is
either gapless or the G × ZT

2 symmetry is spontaneously broken. This implies at λ = 1/2
the d-dimensional system can be in one of the three following phases. (1) Gapless and
G × ZT

2 symmetric. (2) Gapped but spontaneously breaks the ZT
2 symmetry. (3) Gapped

and spontaneously breaks the G (or both the G and ZT
2 ) symmetry. Because at λ = 1/2 the

system must be in one of the three phases discussed above, there are three possible routes for
the phase transition from the trivial to non-trivial G-symmetry SPTs (Fig. 2.1). We discuss
these three scenarios in the following. We shall do so from the view point of the d-dimensional
system or that of the boundary of the d+1 dimensional system interchangeably.
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Figure 2.4: (Color online) The two inequivalent G-symmetric SPTs induced by opposite
values of the boundary ZT

2 symmetry breaking field. Here blue and green denote the triv-
ial and non-trivial SPT, respectively. The interface between these two SPT’s are also an
ZT

2 domain walls whose intersections with the boundary (the black dots) host the gapless
boundary excitations of the SPT used to decorate the domain wall. The grey region in the
center denotes the G× ZT

2 SPT with unbroken ZT
2 symmetry.

Continuous phase transition

This scenario corresponds to the boundary of the G × ZT
2 SPT being gapless. Under such

condition the gapless excitations on the intersections of the fluctuating bulk domain walls
and the boundary gives rise to a gapless boundary. These gapless-modes-infested domain
wall intersections quantum fluctuate and delocalize throughout the boundary of the d + 1
dimensional system. This is the “dynamic percolation” picture conjectured in Ref. (6).

Now let’s imagine introducing the ZT
2 symmetry breaking field on the boundary (and

only on the boundary). Now the ZT
2 domain wall can no longer intersect the boundary at

sufficiently low energies. As a result the boundary is gapped. The two possible directions of
the ZT

2 symmetry breaking field leads to two G-symmetric SPTs corresponding to the ZT
2

variable having opposite expectation values. In the following we show that these two SPTs
are topologically inequivalent.

To do that we just need to demonstrate the interface between the two SPTs is necessarily
gapless. This can be achieved by breaking the ZT

2 symmetry so that half of the boundary
has positive and the other half has negative ZT

2 symmetry breaking field. The interface
between these two halves are ZT

2 domain walls and they have to connect to the fluctuating
domain wall in the bulk (See Fig. 2.4). Hence they host gapless excitations. This implies the
two G-symmetric SPTs on the boundary induced by opposite ZT

2 -breaking field are indeed
inequivalent.
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First order phase transition

Here we consider the case when the state at λ = 1/2 spontaneously breaks the ZT
2 symme-

try. In this case there will be degenerate ground states corresponding to the ZT
2 variable

having opposite expectation values. An infinitesimal ZT
2 symmetry breaking field will lift

the degeneracy and result in uniquely gapped G-symmetric phases on either side of λ = 1/2.
From the boundary point of view because the ZT

2 symmetry is spontaneously broken the
fluctuating domain walls no longer intersect the boundary at low energies. This removes
the gapless excitations associated with the interaction. The same argument associated with
Fig. 2.4 implies the two gapped G symmetric phases induced by opposite value of the sym-
metry breaking field are topologically inequivalent. Thus we have two distinct G-symmetric
SPTs whose energy crosses at the transition point – i.e. a first order phase transition has
occured. This is depicted as the second scenario in Fig. 2.1.

An intermediate symmetry breaking phase

In the third scenario the boundary of the G×ZT
2 symmetric SPT spontaneously breaks the

G (or both the G and ZT
2 ) symmetry. Because of the G symmetry breaking the gapless

excitations at the domain wall intersections are gapped out. From the point of view of the
d-dimensional system the ZT

2 symmetry breaking field, i.e., the perturbation induced by λ
deviating from 1/2, is G-symmetric. Because of the existence of energy gap, infinitesimal
symmetry breaking field can only act within the degenerate ground state manifold (i.e. the
subspace spanned by the degenerate ground states) . Because the G symmetry is spon-
taneously broken such ground state manifold must carry a multi-dimensional irreducible
representation of G. Since the ZT

2 symmetry breaking field is G symmetric, it should be
proportional to the identity operator within the ground state manifold. Consequently for
values of λ in the immediate neighborhood of 1/2 the ground states remain degenerate and
the G symmetry remains spontaneously broken. When λ deviates sufficiently from 1/2 the
G-symmetry has to be restored at some point because the limiting states at λ = 0 and λ = 1
are G-symmetric. Thus two Landau-like G symmetry restoring critical points must intervene
at intermediate λ. This gives rise to the possibility depicted as scenario (3) in Fig. 2.1.

In section 2.5 we construct a simple solvable models for which scenario (1) and (3) are
realized. Scenario (2) is suggested to occur in a numerical study on 2D Z2 SPT phase tran-
sition (12). We have not encountered an example where topological ordered (13) state appears
on the boundary as discussed in Ref. (14;15;16;17;18;19;20;21), though it would be interesting for
future studies.
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2.5 Example: phase transition between

Z2 × Z2-symmetric SPTs in d = 1

A solvable case in one dimension

In one dimension there are two inequivalent Z2×Z2-symmetric SPTs (H2(Z2×Z2, U(1)) =
Z2). We follow the recipe in Appendix A.3 to construct the solvable Hamiltonians for the
trivial and non-trivial Z2 × Z2-symmetric SPTs and a family of interpolating hamiltonians
which realize scenario (1) of Fig. 2.1. Consider two spin-1/2 variables σ2i−1 and σ2i in each
unit cell i. The Z2 × Z2 group acts as global π rotations along x and z directions on all
spins. As detailed in Appendix A.6 the trivial/non-trivial Hamiltonians and the non-trivial
element of ZT

2 transformation are given by

H0 =
∑
i

(σx2i−1σ
x
2i + σz2i−1σ

z
2i) (2.8)

H1 =
∑
i

(σx2i−2σ
x
2i−1 + σz2iσ

z
2i+1) (2.9)

H(λ) = (1− λ)H0 + λH1 (2.10)

S−1 =
∏
i

(
1 + σz2i−1σ

z
2i+1

2
+

1− σz2i−1σ
z
2i+1

2
σx2i)K (2.11)

Here K stands for complex conjugation. It is straightforward to show that the trivial/non-
trivial Hamiltonians transform into each other under S−1. Equation (2.8) and Equation (2.9)
and any linear combination of them are exactly solvable by going to the Majorana fermion
representation (see Fig. A.4). In such representation H0 contains intra-unit-cell (the rect-
angle boxes) coupling and H1 contains inter-unit-cell coupling. The critical Hamiltonian
(H0 + H1)/2 consists of two decoupled critical Majorana chains. As a result it exhibits
central charge c = 1. In the spin 1/2 representation (H0 + H1)/2 is the XX model which
possesses gapless spin-1/2 excitations. Since H1, the dimerized XX model, has spin-1/2 edge
states, this gives an explicit example where the gapless excitations of the critical state are
delocalized, or dynamically percolated, edge excitations.

Although the hamiltonians in Equation (2.10) is exactly solvable it has one undesirable
feature, namely, it actually has higher symmetry (U(1)) than Z2 × Z2 (U(1) × ZT

2 rather
than Z2 × Z2 × ZT

2 in the case of λ = 1/2). In the following we add perturbations to
Equation (2.10) to break the extra symmetry while maintain the solvability. Consider the
following hamiltonian

H(λ, α) =
∑
i

(1− λ)
[
ασx2i−1σ

x
2i + (1− α)σz2i−1σ

z
2i

]
+ λ

[
ασx2i−2σ

x
2i−1 + (1− α)σz2iσ

z
2i+1

]
, (2.12)

where α, λ ∈ [0, 1]. For α 6= 1/2 the symmetry of the model is reduced to Z2 × Z2. Like
Equation (2.10) this model is exactly solvable after going to the Majorana basis. The phase
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α

 λ

0 1

1

Figure 2.5: (Color online) The phase diagram of Equation (2.12). The regions SPT0, SPT1

correspond to trivial and non-trivial SPTs, respectively. SBx, SBz correspond to sponta-
neous symmetry-breaking with 〈σx〉 and 〈σx〉 non-zero, respectively. The solid black lines
mark continuous phase transitions. Along the λ = 1/2 line there is either spontaneous
symmetry breaking or gapless excitation.

diagram is shown in Fig. 2.5. Under S−1, λ transforms into 1−λ while α remains fixed. Along
the line (λ, α) = (1/2, α) the ZT

2 symmetry is respected. Under that condition the system
is either gapless or exhibits spontaneous symmetry breaking as predicted by the theorem in
Appendix A.5. Interestingly the critical point between SPT0 and SPT1 at (λ, α) = (1/2, 1/2)
is also the transition point between two symmetry breaking phases. Moreover because the
residual symmetry groups respected by the two symmetry breaking phases do not have
subgroup relationship, the transition is an example of Landau forbidden transitions. Hence
in this example the critical point between two SPTs is simultaneously the critical point of
a Landau forbidden transition. Along the line (λ, α0) where α0 6= 1/2, the two SPT phases
are intervened by a spontaneous symmetry breaking phase hence realizing the third scenario
discussed in section 2.4.

Continuous phase transition in models with only Z2 × ZT
2

symmetry (except at the critical point)

In the last subsection after the removal of the extra U(1) symmetry the transition between
the SPTs is no longer direct. As a result one might wonder whether the continuous critical
point is realizable without enlarging the symmetry group.

This motivates us to look for models with only Z2×Z2 symmetry (except at the critical
point) while exhibiting a continuous direct transition between two inequivalent SPTs. The
more general model is still exactly solvable at two limits, namely λ = 0 and 1 where it gives
two inequivalent SPTs. However unlike the simple example the model is not solvable for
intermediate values of λ. In the following we perform density matrix renormalization group
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(DMRG) (22) calculation to study the intermediate λ including the critical point.
The Hamiltonian we consider is given by (as shown in Fig.2.6(a))

H =

N/6∑
i=1

[λ(Sx6i−5S
x
6i−4 + bSy6i−5S

y
6i−4)

+(1− λ)(Sy6i−4S
y
6i−3 + bSz6i−4S

z
6i−3)]

+λ(Sz6i−3S
z
6i−2 + bSx6i−3S

x
6i−2)

+(1− λ)(Sx6i−2S
x
6i−1 + bSy6i−2S

y
6i−1)

+λ(Sy6i−1S
y
6i + bSz6i−1S

z
6i)

+(1− λ)(Sz6iS
z
6i+1 + bSx6iS

x
6i+1)], (2.13)

where Sx, Sy and Sz are spin 1/2 operators, λ and b are coupling parameters. The unit
cell of Equation (2.13) contain 6 sites each possessing a spin 1/2. These six spin 1/2s in
each unit cell add to form integer total spins. The Z2×Z2 group is generated by π rotation
around any two, e.g., x, y, spin axes for all spins.

When b = 1, the ZT
2 transformation S−1 flips λ ↔ 1 − λ, is defined by S−1 = U1U2K,

where

U1 =

N/3∏
i=1

UXY,3i−2UY Z,3i−1UZX,3i

UAB,j =

(
1 + σAj

2
+

1− σAj
2

σBj+1

)(
1 + iσBj+1√

2

)

U2 =

N/3∏
i=1

σy3i−2σ
z
3i−1σ

x
3i

It may be checked that S2
−1 = 1 and it commutes with global Z2×Z2 rotations generated

by
∏

i σ
x
i and

∏
i σ

z
i .

In the limits λ = 0 and λ = 1 the system consists of decoupled dimers. It is simple to
check that for b > 0 the ground state of each dimer is a spin singlet, and the bulk energy
spectrum is gapped under periodic boundary condition. Under the open boundary condition
there are gapless edge modes for λ = 0, while there is no edge state for λ = 1. So, these
two limits are topologically distinct and we expect a phase transition between them for some
intermediate value of λ.

The phase diagram of Equation (2.13) is illustrated by Fig.2.6(b). We find that for
λ < 0.5 the system is in a non-trivial SPT phase. This is manifested by the fact that
under periodic boundary condition (PBC) there is an energy gap while in open boundary
condition (OBC) it is gapless (see Fig. 2.7). In contrast for λ > 0.5 the system is in a
trivial SPT phase. This is manifested by the existence of an energy gap in both periodic and
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(a)

(b)

SPT0SPT'
0 1/2 1

λ

λ 1-λ λ 1-λ λ 1-λ λ 1-λ λ 1-λ λ 1-λ

Figure 2.6: (Color online) (a) Sketch of the interactions in the model Hamiltonian of Equa-
tion (2.13). Three different types of the interaction are represented by three different
colored bonds. For example, black bonds denote (Sxi S

x
i+1 + bSyi S

y
i+1), red bonds denote

(Syi S
y
i+1 + bSzi S

z
i+1), and blue bonds denote (Szi S

z
i+1 + bSxi S

x
i+1). λ and (1 − λ) are the

strength of the interactions. It is represented by single bonds and double bonds respectively.
A dashed box denotes one unit cell. (b) Phase diagram for Equation (2.13). The λ < 1/2
region is occupied by a non-trivial SPT, while the λ > 1/2 region is occupied by trivial SPT.

open boundary conditions (Fig. 2.7(a,b)). Interestingly, there is indeed a continuous phase
transition between the two SPT phases occurring at λ = 1/2 for all b > 0 we have studied.
Numerics indicate the central charge of this critical point is c = 1 (see Fig. 2.8)), the same
as that of the solvable case. Since c = 1 allows continuous varying critical exponents, we go
on to extract the energy gap exponent α,

∆ ∼ |λ− 1/2|α, (2.14)

for different values of b. The results are shown in Fig. 2.9. For more details of the DMRG
calculation see Appendix B.7.

The above example proves that scenario (1) in Fig. 2.1 is indeed attainable for phase
transition between SPTs protected by only Z2 × Z2.

Phase transition between Z2 symmetric SPTs in 2D

In this subsection we follow the framework set in previous sections to construct a lattice
model describing phase transition between by 2D Z2-symmetric SPTs. (According to the
cohomology group classfication there are two inequivalent Z2-symmetric SPTs in 2D).

Consider a triangular lattice. For each site i there is an Ising variable σi := σzi = ±1.
The trivial SPT hamiltonian is

H0 = −
∑
i

σxi . (2.15)

After some math the non-trivial SPT Hamiltonian can be reduced to

H1 =
∑
i

[
Π〈j,k〉i

(
1−σjσk

2

)] [
i(
∑6
j=1 σj)

]
σxi . (2.16)
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Figure 2.7: (Color online) Excitation gap ∆ as a function of λ at b = 1 (Equation (2.13)).
(a) For periodic boundary condition, ∆ is finite except the critical point (λ = 1/2). (b) For
open boundary condition, ∆ = 0 for λ < 1/2 due to the presence of gapless edge modes in
the non-trivial SPT phase. For λ > 1/2 the SPT is trivial hence ∆ > 0.

Figure 2.8: (Color online) Entanglement entropy scaling for Equation (2.13) at λ = 1/2 and
various values of b. Panel (a) shows the result for periodic N = 72 and 144 site chains for
b = 1. Panel (b) shows the result for a periodic N = 72 site chain for various b values. The
fit to S(x) = c

3
ln(x) + const extrapolates to a central charge c = 1. Here x = N

π
sin(πl

N
), and

l is the subsystem length.
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Figure 2.9: (Color online) (a) ln ∆ versus ln |λ − 1/2| for b = 1 under periodic boundary
condition. Linearity implies ∆ ∼ |λ−1/2|α. (b) Gap exponent α for several values of b Note
that while c = 1 for all these b values the gap exponent varies.

Here σ1, . . . , σ6 designate the Ising variables on the six neighbours of i as depicted in
Fig. A.1(b), and the product Π<j,k> is performed over the six links connecting site i and its
six nearest neighbors. The non-trivial element of the ZT

2 transformation is given by

S−1 =
∏
∆

(−1)(
1−σ1

2
)(

1+σ2
2

)(
1−σ3

2
)K (2.17)

where σ1, σ2, σ3 are the ordered vertices on each triangle ∆. Again S−1H0S
−1
−1 = H1 and

S−1H1S
−1
−1 = H0.

We construct the hamiltonian to study the phase transition in exactly the same way as
in Equation (2.4). H(λ) is solvable for λ = 0 and 1. For intermediate value of λ it was
suggested (12) numerically that there is a first-order transition at λ = 1/2. Thus scenario (2)
in Fig. 2.1 is realized.

Phase transition between trivial and non-trivial phases of 1D
integer spin chain

For integer spin chains G = SO(3). The SPT phases are classified by Z2, i.e., there is a
trivial and a non-trivial SPT. For spin-1 chain, the non-trivial phase is also known as the
Haldane (23) or the AKLT phase (24). The continuum field theory describing the trivial and
non-trivial phases is given by the following O(3)-non linear sigma model(NLSM) with Θ = 0
and 2π, respectively

S =
1

2g

∫
dxdt(∂µn̂)2 + i

Θ

4π

∫
dxdt n̂ · ∂xn̂× ∂tn̂. (2.18)
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Here n̂ is a 3-component unit vector. The critical point between the trivial and the non-trivial
SPT is described by the SU(2)1 Wess-Zumino-Witten(WZW) theory in 1+1 dimensions (25):

S =
1

2g̃

∫
dxdt(∂µΩ̂)2

+
i

π

∫
dxdt

∫ 1

0

du εabcdΩa∂xΩb∂tΩc∂uΩd. (2.19)

Here Ω̂ ∈ S3 is a 4-component unit vector, and u is an extension paramater such that
Ω̂(u = 0, x, t) = (0, 0, 0, 1), and Ω̂(u = 1, x, t) is the physical Ω̂(x, t). If the extra term
−λ
∫
dxdtΩ4(x, t) is added to Equation (2.19), upon renormalization the low energy and

long wavelength effective action flows to Equation (2.18) with Θ = 0 or 2π depending on
the sign of λ. Hence λ tunes the phase transition between the two SPTs. The emergent
ZT

2 symmetry discussed in this chapter corresponds to reversing the sign of Ω4 followed by
complex conjugation (26). This symmetry is broken by the term −λ

∫
dxdtΩ4(x, t). When

ZT
2 and SO(3)(which rotates Ω1,Ω2,Ω3) symmetries are preserved, the 1+1d boundary will

either be gapless or degenerate (27).

2.6 Conclusion and Discussion

In this chapter we focus on the quantum phase transition between trivial and non-trivial sym-
metry protected topological states (SPTs) in d dimensions. We prove that if the non-trivial
SPT satisfies the “non double stacking condition” (see the theorem) all phase transition
scenarios between them are captured by the boundary of a d+1 dimensional G × ZT

2 sym-
metric SPT in the presence of ZT

2 symmetry breaking field. This result proves that at the
critical point of the topological phase transition in question there is always emergent non-
local symmetry. Moreover the symmetry operation associated with this non-local symmetry
transforms one SPT phase into another. In addition our results provide explicit recipes
for constructing d- dimensional lattice hamiltonians describing different phase transition
scenarios. As a byproduct we prove the conjecture made in Ref. (6), namely, the gapless
excitations at the critical point between a trivial and non-trivial SPT consists of delocal-
ized (or dynamically percolated) gapless boundary states of the non-trivial SPT. For future
studies, we shall study how to describe phase transition between SPTs which do not satisfy
the non double staking condition. We will also consider the ramification of the interesting
recent works which show the boundary of a three dimensional SPT can exhibit topological
order (14;15;16;17;18;19;20;21). We ask what is the implication of this possibility on transitions be-
tween SPTs. Of course we are also interested in generating simple lattice models, especially
in d > 1, describing the phase transition between SPTs, and in generalizing the approach
here to the fermionic case.
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Chapter 3

Which CFTs can describe phase
transitions between bosonic SPTs?

3.1 Introduction and the outline

Having understood quanlitatively that the physical picture that the critical point at a topo-
logical phase transition is a proliferated boundary states, we would like to make a more
quantitative statement about the nature of the critical point. Our goal is to understand the
difference (if any) between the traditional Landau type and this new kind of “topological”
phase transitions.

Because the Landau-type phase transitions are triggered by the fluctuations of bosonic
order parameters over space-time, to minimize the obvious difference we focus on the phase
transitions between bosonic SPT phases (5). Hence we do not address the phase transition be-
tween fermionic topological insulators or superconductors (3;4). Moreover, to make everything
as concrete as possible we shall focus on one space dimension and to topological phase tran-
sitions which have dynamical exponent equal to one (hence can be described by conformal
field theories (CFTs)).

We spend most of the space describing the study of a specific class of such phase transi-
tions – the phase transition between bosonic SPTs protected by Zn × Zn. Here we combine
a blend of analytic and numerical methods to arrive at a rather complete picture for such
critical points. From studying these phase transitions we observe an interesting fact, namely
whenever the transition is direct (i.e., when there are no intervening phases) and continuous
the central charge (c) of the CFT is always greater or equal to one. Near the end of the
chapter, we obtain a constraint on the central charge for CFTs describing bosonic SPT phase
transitions: namely, c ≥ 1. Therefore, none of the best known “minimal models (28)” can be
the CFT for bosonic SPT phase transitions!

According to the group cohomology classification (5), in one space dimension, the group
Zn×Zn protects n different topological classes of SPTs. If we “stack” a pair of SPTs (which
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can belong to either the same or different topological class) on top of each other and turn
on all symmetry allowed interactions, a new SPT will emerge to describe the combined sys-
tem. An abelian (cohomology) group H2(Zn × Zn, U(1)) = Zn (here the superscript “2”
refers to the space-time dimension) classifies the SPT phases and describes the stacking
operation. Here each topological class is represented by an element (i.e., 0, ..., n − 1) of
H2(Zn×Zn, U(1)) = Zn and the “stacking” operation is isomorphic to the mod(n) addition
of these elements.

To understand the phase transitions between different classes of SPTs it is sufficient to
focus on the transition between the trivial state (which corresponds to the “0” of Zn) and the
non-trivial SPT corresponding to the “1” of Zn. The transition between phases correspond
to other adjacent elements of Zn, e.g., (m,m + 1), will be in the same universality class as
that between (0, 1). Transitions between “non-adjacent” topological classes will generically
spit into successive transitions between adjacent classes.

There are 11 sections in the main text. In these sections we restrain from heavy math-
ematics, i.e., we simply state the main results and provide simple arguments. There are
6 appendices where mathematical details can be found. The outline of this chapter is the
follows. In section 3.2 we present the exactly solvable fixed point hamiltonians for the trivial
and non-trivial Zn × Zn protected SPT phases. In section 3.3 we present a hamiltonian
that interpolates between the fixed point hamiltonians in section 3.2. A single parameter
tunes this hamiltonian through the SPT phase transition. Section 3.4 introduces a non-local
transformation that maps the hamiltonian in section 3.3 to that of two n-state clock models
with spatially twisted boundary condition and Hilbert space constraint. In particular, at
criticality, we show that the partition function of the transformed hamiltonian corresponds
to an “orbifolded” Zn × Zn clock model. In section 3.5 we discuss the effects of orbifolding
on the phases of the clock model and show the results are consistent with what one expect
for the SPT phases. Section 3.6 gives the phase diagram of the hamiltonian given in section
3.3. In section 3.7 we show that from the point of view of the orbifolded clock model the
SPT transition corresponds to a Landau forbidden transition. In section 3.8 we present the
conformal field theories for the SPT phase transitions discussed up to that point. Section
3.9 presents our numerical density matrix renormalization group results. We compare these
results with the prediction of section 3.8. Section 3.10 presents the argument that the central
charge of the CFTs that describe SPT phase transitions must be greater or equal to one.
Finally, section 3.11 is the conclusion.

In appendix B.1, we provide a brief review of the key ingredients of the 1 + 1D group
cohomology, namely, the notions of cocycles and projective representations. After that, we
show how to use cocycles to construct solvable fixed point SPT hamiltonians. Appendix B.2
summarizes the non-local transformation that maps the hamiltonian in section 3.3 of the
main text to that of two n-state clock models with spatially twisted boundary condition and
Hilbert space constraint. In appendix B.3 we show that the partition function associated
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with the hamiltonian in appendix B.2 (and section 3.3 of the main text) corresponds to that
of “orbifolded” Zn×Zn clock model. Appendices B.4,B.5,B.6 present the modular invariant
partition functions of the orbifold Z2×Z2, Z3×Z3 and Z4×Z4 clock models, respectively. In
these appendices, we examine the primary scaling operator content of the modular invariant
conformal field theory. In addition, we study the symmetry transformation properties of
various Verma modules and the scaling dimension of primary scaling operators, particularly
that of the gap opening operator. Appendix B.7 summarizes the details of the density matrix
renormalization group calculation. Finally, in appendix B.8 we briefly review the symmetry
of the minimal model conformal field theories.

3.2 Exactly solvable “fixed point” Hamiltonians for

the SPTs

Each SPT phase is characterized by an exactly solvable “fixed point” Hamiltonian. In
appendix B.1 we briefly review the construction of these Hamiltonians using the “cocycles”
associated with the cohomology group (29;30). For the case relevant to our discussion the
following lattice Hamiltonians can be derived (31) so that its ground state belong to the “0”
and “1” topological classes of H2(Zn × Zn, U(1)) = Zn

H0 = −
N∑
i=1

(M2i−1 +M2i + h.c.)

H1 = −
N∑
i=1

(R†2i−2M2i−1R2i +R2i−1M2iR
†
2i+1 + h.c.) (3.1)

These Hamiltonians are defined on 1D rings consisting of N sites. For each site labeled by i
the local Hilbert space is spanned by |g2i−1, g2i〉 := |g2i−1〉⊗ |g2i〉 where (g2i−1, g2i) ∈ Zn×Zn
with g2i−1, g2i = 0, 1, ..., n − 1. The total Hilbert space is the tensor product of the local
Hilbert space for each site. For the convenience of future discussions from now on we shall
refer to (2i − 1, 2i) as defining a “cell”, and call |g2i−1〉 and |g2i〉 as basis states defined for
“site” 2i− 1 and 2i. The operators Mj and Rj in Equation (3.1) are defined by

Mj|gj〉 := |gj + 1〉 mod n, and

Rj|gj〉 := ηgjn |gj〉 where ηn = ei2π/n. (3.2)

From Equation (3.2) we deduce the following commutation relation between M and R:

RjRk = RkRj

MjMk = MkMj

RjMk = η
δjk
n MkRj. (3.3)
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Due to this commutation relation, it can be checked that the n×n matrices associated with
Mj and Rj form a projective representation of the Zn × Zn group multiplication law (see
appendix B.1 for the definition of projective representations). Finally periodic boundary
condition is imposed on Equation (3.1) which requires

g2N+1 = g1, and g2N+2 = g2. (3.4)

Under these definitions Equation (3.1) is invariant under the global Zn×Zn group generated
by

N∏
i=1

M2i−1 and
N∏
i=1

M2i. (3.5)

The form of Hamiltonians given in Equation (3.1) is quite asymmetric between M and
R. We can make it more symmetric by performing the following unitary transformation on
the local cell basis as follow

|g2i−1, g2i〉 → U |g2i−1, g2i〉 =
1√
n

n−1∑
g′2i=0

η
(g2i−1−g2i)g

′
2i

n |g2i−1, g
′
2i〉.

This results in the following transformations of the operators in Equation (3.1)

U †M2i−1U = M2i−1M2i

U †M2iU = R†2i−1R2i

U †R2i−1U = R2i−1

U †R2iU = M †
2i. (3.6)

It is straightforward to show that after these transformations the new operators obey the
same commutation relation as Equation (3.3). Moreover, it can also be shown that R obeys
the same boundary condition, namely, R2N+1 = R1 and R2N+2 = R2. In addition, it is
also straightforward to show that under Equation (3.6) the generators of the Zn×Zn group
become

U †

(
N∏
i=1

M2i−1

)
U =

2N∏
j=1

Mj and U †

(
N∏
i=1

M2i

)
U =

2N∏
j=1

R
(−1)j

j . (3.7)

Thus alternating “site” carries the projective and anti-projective representation of Zn ×Zn.

Under Equation (3.6) the Hamiltonian H0 and H1 become

H0 = −
N∑
i=1

(M2i−1M2i +R2i−1R
†
2i + h.c.)

H1 = −
N∑
i=1

(M2iM2i+1 +R2iR
†
2i+1 + h.c.) (3.8)
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These Hamiltonians are pictorially depicted in Fig. 3.1(a,b). Note that while H0 (Fig. 3.1(a))
couples sites within the same cell, H1 couples sites belong to adjacent cells (Fig. 3.1(b)). Be-
cause both H0 and H1 consist of decoupled pairs of sites (the coupling terms associated
with different pairs commute with one another) they can be exactly diagonalized. The re-
sult shows a unique ground state with a fully gapped spectrum for both H0 and H1. Using
Equation (3.7) it is simple to show that the ground states are invariant under Zn × Zn.

The fact that H0 and H1 describe inequivalent SPTs can be inferred by forming an
interface of H0 and H1 as shown in Fig. 3.1(c). A decoupled site (red) emerges. Localizing
on this site there are degenerate gapless excitations carrying a projective representation of
the Zn × Zn (32). The fact that gapless excitations must exist at the interface between the
ground states of H0 and H1 attests to that fact that these states belong to inequivalent
topological classes of H2(Zn × Zn, U(1)) = Zn.

(a)

(b)

(c)

Figure 3.1: (Color online) (a) H0 couples states associated with the same cell (each cell is
represented by the rectangular box). (b) H1 couples states associated with adjacent cells.
Each pair of black dots in a rectangle represents the sites in each cell. They carry states
|g2i−1〉 and |g2i〉 which form a projective representation of Zn × Zn. Each link represents a
coupling term in the Hamiltonian (3.8). (c) Hamiltonian describing the interface between
the two SPTs each being the ground state of H0 and H1. It is seen that there is a leftover
site (highlighted in red) transforming projectively at the interface.
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3.3 An interpolating Hamiltonian describing the

phase transition between Zn × Zn SPTs

To study the phase transition between the ground state of H0 and the ground state of H1

we construct the following Hamiltonian which interpolates between H0 and H1 as follows

H01(λ) = (1− λ)H0 + λH1

= −(1− λ)
N∑
i=1

(M2i−1M2i +R2i−1R
†
2i)− λ

N∑
i=1

(M2iM2i+1 +R2iR
†
2i+1)

+h.c. (3.9)

With both H0 and H1 present the Hamiltonian given in Equation (3.9) is no longer easily
solvable. However, in the following, we present analytic results showing (1) for 2 ≤ n ≤ 4
the phase transition occurs at λ = 1/2, (2) the central charge, the conformal field theory
and its associated primary scaling operators at the phase transitions. For n ≥ 5 there is a
gapless phase centered around λ = 1/2 hence the phase transition is not direct. Moreover for
the interesting case of n = 3 we will present the numerical density matrix renormalization
group results which confirm our analytic solution.

3.4 Mapping to “orbifold” Zn × Zn clock chains

In appendix B.2 we show that Equation (3.9) can be mapped onto a Zn × Zn clock model
with spatially twisted boundary condition and a Hilbert space constraint. In appendix B.3
we further show that these amount to “orbifolding”,

The mapping is reminiscent of the duality transformation in a single Zn clock model.
The mapping is achieved via the following transformations:

R†j−1Rj = M̃j for j = 2...2N, R†2NR1 = M̃1

and Mj = R̃†jR̃j+1 for all j. (3.10)

After the mapping, the Hamiltonian in Equation (3.9) is transformed to

H01(λ) = Heven(λ) +Hodd(λ)

Heven(λ) = −
N∑
i=1

[
(1− λ)M̃2i + λR̃†2iR̃2i+2

]
+ h.c.

Hodd(λ) = −
N∑
i=1

[
λM̃2i−1 + (1− λ)R̃†2i−1R̃2i+1

]
+ h.c. (3.11)

Here M̃ and R̃ obey the same commutation relations as M and R in Equation (3.3).
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Equation (3.11) is the quantum Hamiltonian for two Zn clock models (33), one defined
on the even and one on the odd sites, respectively. However, generated by the mapping,
Equation (3.11) is supplemented with a twisted spatial boundary condition and a constraint:

Boundary condition: R̃2N+1 := B̃R̃1 and R̃2N+2 := B̃R̃2, (3.12)

Constraint:
2N∏
i=1

M̃i = 1. (3.13)

Here B̃ is an operator that commutes with all the R̃s and M̃s. The eigenvalues of B̃ are
b̃ = 1, ηn, ..., η

n−1
n (recall that ηn = ei2π/n). In terms of the transformed variables, the

generators of the original Zn × Zn group are given by

B̃ and
N∏
j=1

M̃2j. (3.14)

The spatially twisted boundary condition Equation (3.12) and the constraint Equation (3.13)
(which turns into a time direction boundary condition twist in the path integral representa-
tion of the partition function) execute the “orbifolding” (see later).

By swapping the even and odd chains Equation (3.11) exhibit the

λ↔ (1− λ)

duality. This implies the self-dual point at λ = 1/2 is special. In particular, if there is a
single critical point as a function of λ, it must occur at λ = 1/2. Incidentally, if we put
aside Equation (3.12) and Equation (3.13), λ = 1/2 is where each of the clock chains in
Equation (3.11) becomes critical.

As we will show later the effects of Equation (3.12) and Equation (3.13) (i.e., orbifold) is
to change the primary scaling operator content of the critical CFT from that of the direct
product of two Zn clock models. However they do not jeopardize the criticality, nor do they
change the central charge. We shall return to these more technical points later. At the
meantime let’s first study the effects of Equation (3.12) and Equation (3.13) on the phases.

3.5 The effect of orbifold on the phases

Knowing the behavior of the single Zn clock chain, Equation (3.11) suggests for λ < 1/2
the odd-site chain will spontaneously break the Zn symmetry while the even chain remains
disordered. The ground state will lie in the b̃ (the eigenvalue of B̃) = 1 sector on account
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of the twisted boundary condition. For λ > 1/2 the behaviors of the even and odd chains
exchange, and the ground state remains in the b̃ = 1 sector. On the surface, such symmetry
breaking should lead to ground state degeneracy which is inconsistent with the fact that
both SPTs (for λ < 1/2 and λ > 1/2) should have unique groundstate.

This paradox is resolved if we take into account of the constraint in Equation (3.13). For
simplicity let’s look at the limiting cases. For λ = 0 the ground state of Equation (3.11) is

|g, g, ..., g〉odd ⊗ |p, p, ..., p〉even ⊗ |b̃ = 1〉 (3.15)

where g = 0, ..., n− 1. Here the “paramagnet state” |p〉 for each site is defined as

|p〉 :=
1√
n

(|0〉+ |1〉+ ...+ |n− 1〉) . (3.16)

As expected, such ground state is n-fold degenerate and it does not satisfy the constraint of
Equation (3.13). However, if we form the symmetric superposition of the odd-site symmetry
breaking states (

1√
n

n−1∑
g=0

|g, g, ..., g〉odd

)
⊗ |p, p, ..., p〉even ⊗ |b̃ = 1〉 (3.17)

the constraint is satisfied and the state is non-degenerate. Obviously, Equation (3.17) is
invariant under the Zn × Zn generated by Equation (3.14). Although Equation (3.17) is

non-degenerate, the two-point correlation function 〈R̃2j+1R̃
†
2k+1〉 still shows long-range or-

der. Almost exactly the same arguments, with odd and even switched, apply to the λ = 1
limit. The only difference is instead of observing |p, p, ..., p〉even being invariant under the

action of
∏N

j=1 M̃2j we need to observe that
(

1√
n

∑n−1
g=0 |g, g, ..., g〉even

)
is invariant. As λ

deviates from the limiting values, so long as it does not cross any phase transition the above
argument should remain qualitatively unchanged. In this way we understand the effects of
Equation (3.12) and Equation (3.13) on the phases.

3.6 The phase diagram

Since upon orbifolding the phases of the decoupled Zn × Zn clock models seamlessly evolve
into the SPT phases we shall construct that phase diagram using what’s know about the
phase structure of the clock model. It is known that a single Zn clock chain shows an order-
disorder phase transition at a single critical point for n ≤ 4, while there is an intermediate
gapless phase for n ≥ 5 we conclude the phase diagram is shown in Fig. 3.2(a,b). Since our
goal is to study the continuous phase transition between SPTs we focus on n ≤ 4.
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(a)

(b)

SPT0

0 1

SPT1

SPT0

0 1

SPT1

Intermediate
gapless phase

Figure 3.2: (Color online) Phase diagram for (3.9), which linearly interpolates between the
fixed point hamiltonians of Zn × Zn SPT phases. Red and blue mark the non-trivial and
trivial SPTs respectively. (a) For n ≤ 4, a second-order transition occurs between the two
SPT phases, and the central charge takes values of 1, 8

5
and 2 for n = 2, 3, 4, respectively.

(b) For n ≥ 5, a gapless phase intervenes between the two SPT phases. The entire gapless
phase has central charge c = 2.

3.7 SPT transitions as “Landau-forbidden” phase

transitions

According to Landau’s rule, transitions between phases whose symmetry groups do not have
subgroup relationship should generically be first order. Continuous phase transitions be-
tween such phases are regarded as “Landau forbidden” in the literature.

As discussed earlier, in terms of the orbifolded Zn × Zn clock chains, the two phases on
either side of the SPT phase transition correspond to the breaking of the Zn symmetry in
one of the clock chain but not the other. In the following, we elaborate on this statement.

For λ < 1/2 although the ground state in Equation (3.17) is non-degenerate, the two-

point correlation function 〈R̃2j+1R̃
†
2k+1〉 shows long-range order. When the odd and even

chains are switched the same argument applies to the λ > 1/2 limit. If we define

Qeven =
N∏
j=1

M̃2j and Qodd =
N∏
j=1

M̃2j−1 (3.18)

it is easy to show that equations (3.11), (3.12) and (3.13) commute with them, hence the
Z ′n × Z ′n group they generate are also the symmetry of the problem. However it is im-
portant not to confuse Z ′n × Z ′n with the original Zn × Zn group (which is generated by
Equation (3.14)).
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Symmetry group Central charge
Z2 × Z2 1
Z3 × Z3 8/5
Z4 × Z4 2

Table 3.1: The central charges associated with the critical point of the Zn × Zn SPT phase
transitions for n = 2, 3, 4.

With respect to the Z ′n×Z ′n symmetry the two phases (realized for λ < 1/2 and λ > 1/2)
breaks two different Z ′n factors, hence the symmetry groups of the two phases have no
subgroup relationship, thus if a continuous phase transition between them exists it is a
Landau forbidden transition. In fact, it is the original Zn × Zn symmetry that “fine tunes”
the system to realize such non-generic continuous phase transition.

3.8 The CFT at the SPT phase transition for n = 2, 3, 4

It is known that the central charge of the CFT describing the criticality of a single Zn clock
chain is c = 1/2, 4/5, 1 for n = 2, 3, 4. Thus the central charge of the CFT describing the
simultaneous criticality of two decoupled Zn clock chains should be c = 1, 8/5, 2 for Z2×Z2,
Z3 × Z3 and Z4 × Z4. This is summarized in Table 3.1.

Of course, we do not have two decoupled clock chains. The spatial boundary condition
twist (Equation (3.12)) and the constraint (Equation (3.13)), namely the orbifolding, couples
the two chains together. The purpose of this section is to address the effects of orbifolding
on the criticality of the two decoupled chains.

Let’s start with the conformal field theory of a single Zn clock chain. The partition
function of such CFT on a torus is given by

Z(q) =
∑
a,b

χa(q)Mabχ̄b(q̄). (3.19)

Here the indices a, b labels the Verma modules. Each Verma module is spanned by states
associated with a primary scaling operator and its descendants through the operator-state
correspondence. Each Verma module carries an irreducible representation of the conformal
group. The parameter q in Equation (3.19) is equal to e2πiτ , where τ is the modular param-
eter of the spacetime torus (see Fig. B.2). χa(q) and χ̄b(q̄) are, respectively, the partition
function associated with the holomorphic Verma module a and antiholomorphic Verma mod-
ule b. The matrix Mab has non-negative integer entries.
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The partition function of the two decoupled Zn clock chains that are simultaneously
critical is given by

Z(q)× Z(q) =
∑
a,b,c,d

χa(q)χc(q)(MabMcd)χ̄b(q̄)χ̄d(q̄). (3.20)

It turns out that the effect of orbifold is to change

MabMcd → N(a,c);(b,d) (3.21)

(N(a,c);(b,d) is a different non-negative integer matrix) so that

Zorbifold(q) =
∑
a,b,c,d

χa(q)χc(q)N(a,c);(b,d)χ̄b(q̄)χ̄d(q̄). (3.22)

In particular, N(1,1);(1,1) = 1, i.e., the tensor product of the ground state of the two clock
chains is also the ground state of the orbifold model. Moreover, for those N(a,c);(b,d) > 0 the
scaling dimension of the holomorphic primary operator (a, c) is h(a,c) = ha + hc and that of
the antiholomorphic primary operator (b, d) is h̄(b,d) = h̄b + h̄d. The fact that the ground
state of the orbifold model remain the same as the tensor product of the ground states of
the decoupled clock chains implies

corbifold = cdecoupled clock chains. (3.23)

The latter identity can be seen from the fact that the central charge can be computed from
the entanglement entropy, which is a pure ground state property. Thus, after the orbifold,
the system is still conformal invariant (i.e. quantum critical) and the central charge is un-
affected by the orbifold. This argument allows us to conclude that the central charge of the
Zn × Zn (n = 2, 3, 4) SPT phase transition is indeed given in table 3.1.

In appendices B.4,B.5 and B.6 we go through the details of obtaining the modular in-
variant partition function for the orbifold Zn × Zn (n = 2, 3, 4) clock chains. We examine
the primary scaling operator content of the modular invariant conformal field theory. In
addition, we study the symmetry transformation properties of various Verma modules and
the scaling dimension of primary scaling operators, in particular, that of the gap opening
operator. In Table 3.2 we list the first few most relevant scaling operators and their scaling
dimension for n = 2, 3, 4. Entries in blue are invariant under Zn × Zn.

3.9 Numerical DMRG study of the Z3×Z3 SPT phase

transition

In this section, we report the results of numerical density matrix renormalization group cal-
culation for the Z3 × Z3 transition. The purpose is to check our analytic predictions in the
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Table 3.2: (Color online) The first few primary operators, with the lowest scaling dimensions
(h + h̄), of the orbifold Zn × Zn CFT for n = 2, 3, 4. The momentum quantum numbers of
these operators are equal to (h− h̄)× 2π/N . Entries in blue are invariant under Zn × Zn.

n h+ h̄ h− h̄ Multiplicity

2

0 0 1
1/4 0 2
1 0 2+2
1 ±1 2

5/4 ±1 8

3

0 0 1
4/15 0 4
4/5 0 2

14/15 0 4
17/15 ±1 8
19/15 ±1 16
4/3 0 4

22/15 0 8
8/5 0 1

4

0 0 1
1/4 0 4
1/2 0 2
5/8 0 4
1 0 2

9/8 ±1 8
5/4 0 20
5/4 ±1 12
5/4 ±1 16
3/2 ±1 8
13/8 0 4
13/8 ±1 16

last section. The details of the numerical calculations are presented in appendix B.7.

First, we demonstrate that λ = 1/2 in Equation (3.9) is indeed a critical point. Let’s
look at the second derivative of the ground state energy with respect to λ for both open
and periodic boundary conditions with different system sizes (Fig. 3.3). The results clearly
suggest a second-order phase transition at λc = 1/2 where the second order energy derivative
diverges.
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(a) OBC (b) PBC

Figure 3.3: (Color online) Second order derivative of the ground state energy with respect
to λ for both open (OBC) and periodic (PBC) boundary conditions and different values of
N . The results suggest a divergent −d2E/dλ2 as λ → 1/2 and N → ∞. Hence it signifies
a second-order phase transition. As expected, we note that finite size effect is significantly
stronger for open as compared to periodic boundary condition.

Next, we compute the central charge at λ = 1/2. This is done by computing the en-
tanglement entropy, which is calculated from the reduced density matrix by tracing out the
degrees of freedom associated with N − l sites in a system with total N sites. In Fig. 3.4
we plot the von Neumann entanglement entropy S against x = N

π
sin(πl/N) where l is the

number of sites that are not traced out. CFT predicts S = c
6

ln(x) + const for the open
boundary condition and S = c

3
ln(x) + const for periodic boundary condition (34). From the

numerics we find c = 1.599(9). This result is in nearly perfect agreement with our analytic
prediction c = 8/5.

In addition to the above results, we have also calculated the gap as a function of λ. In
fitting the result to

∆ ∼ |λ− λc|α (3.24)

we estimate the gap exponent to be α = 0.855(1) for open boundary condition (Fig. 3.5) and
α = 0.847(1) for periodic boundary condition (Fig. 3.6). These results are in good agreement
with the analytic prediction α = 5/6 (see appendix B.5).

3.10 The constraint on the central charge

After an examination of Table I it is easy to notice that c ≥ 1 for all Zn × Zn SPT phase
transitions. Moreover, for all the cases we know, including SPTs protected by continuous
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(a) OBC, (b) PBC,

(c=1.65)
(c=1.66)
(c=1.67)

(c=1.593(1))
(c=1.597(1))
(c=1.600)

(c=1.599(9))

Figure 3.4: (Color online) Entanglement entropy is plotted against ln(x), (where x =
N
π

sin(πl/N) and l is the size of the subsystem which is not traced over) for a few differ-
ent total system length N . (a) For open boundary condition (OBC) the maximum N is 200.
(b) For periodic boundary condition (PBC) the maximum N is 60. Combining these results
we estimate c = 1.62± 0.03.

(a) OBC (b) OBC

Figure 3.5: (Color online) The energy gap ∆ as a function of λ for open boundary condition.
(a) The gap closes for λ > 1/2 because of the presence of edge modes associated with the
non-trivial SPT. (b) The gap exponent is extracted by approaching λc from the λ < 1/2
side. The value of α is found to be 0.855(1).

groups, all 1D (z = 1) bosonic SPT phase transitions are described by CFT with c ≥ 1.
In the following present an argument that the CFT of all 1D bosonic SPT phase transition
must have c ≥ 1.
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(b) PBC(a) PBC

Figure 3.6: (Color online) The energy gap ∆ as a function of λ for periodic boundary
condition. (a) Now there is a non-zero gap for both λ > 1/2 and λ < 1/2. (b) The gap
exponent is extracted and found to be α = 0.847(1).

We proceed by showing that the c < 1 CFTs cannot be the critical theory for bosonic SPT
transitions. The 1D CFTs that are unitary and have c < 1 are the so-called minimal models.
In appendix B.8 we summarize the argument in Ref. (35) where it is shown that the maximum
on-site internal symmetry (“on-site” symmetries are the ones consisting of product over local
transformations that act on the local, e.g. site or group of sites, Hilbert space.) that these
CFTs can possess are either Z2 or S3. Since the critical point of the bosonic SPT phase
transitions must possess the same on-site symmetry as the phases on either side, and neither
Z2 nor S3 can protect non-trivial bosonic SPTs in 1D (i.e., H2(Z2, U(1)) = H2(S3, U(1)) =
Z1), we conclude that the CFTs corresponding to the minimal model cannot possibly be
the critical theory for bosonic SPT phase transitions. This leaves the c ≥ 1 CFTs the only
possible candidates as the critical theory for bosonic SPT phase transitions.

3.11 Conclusions

In this chapter, we present an analytic theory for the phase transition between symmetry
protected topological states protected by the Zn × Zn symmetry group. We have shown
that for 2 ≤ n ≤ 4 a direct, continuous, topological phase transition exists. In contrast for
n ≥ 5 the transition from the topological trivial to non-trivial SPTs is intervened by an
intermediate gapless phase. Our theory predicts that for n = 2, 3, 4 the central charge of the
CFT describing the SPT phase transitions are c = 1, 8/5 and 2, respectively. We perform
explicit numerical density matrix renormalization group calculations for the interesting case
of n = 3 to confirm our analytic predictions.
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We expect treatment analogous to what’s outlined in this chapter can be generalized to
the phase transitions between SPTs protected by symmetry group Zn1×Zn2×.... In addition,
we provide the proof for a conjectured put forward in a previous unpublished preprint (36)

that the central charge of the CFTs describing bosonic SPT transitions must be greater or
equal to 1. Thus all c < 1 CFTs cannot be the critical theory for bosonic phase transitions.
However, we have not yet answered the question “are all CFTs with c ≥ 1 capable of de-
scribing topological phase transitions.”

Of course upon non-local transformation the c < 1 minimal models can be viewed as
the critical theory for parafermion SPT transitions. Indeed, the c = 1/2 Ising conformal
field theory describes the critical Majorana chain. The c = 4/5 three-state Potts model
CFT describes the critical point of Z3 parafermion chain. We suspect that the parafermion
models escape the classification of either the K theory or the cohomology group because of
its non-local commutation relation.

In space dimension greater than one, we do not know a model which definitively exhibits
a continuous phase transition between bosonic SPTs. This is due partly to the likelihood of
spontaneous breaking of the discrete protection symmetry when d ≥ 2. In addition, even
if the continuous phase transition exists, it is more difficult to study these phase transi-
tions, even numerically. However a “holograpic theory” was developed for phase transitions
between SPT phases which satisfy the “no double-stacking constraint” (30). That theory pre-
dicts the critical point should exhibit “delocalized boundary excitations” of the non-trivial
SPT, which are extended “string” or “membrane” like objects with gapless excitation resid-
ing on them. We expect this kind of critical point to be fundamentally different from the
Landau-like critical point. Clearly many future studies are warranted for the understanding
of these interesting phase transitions.



39

A

Appendix for Chapter 2

A.1 The ground state wavefunction and exactly

solvable bulk Hamiltonians from cocycles

We review the construction of bulk hamiltonians and wavefunctions from cocycles (5;29). In
this section we focus on lattices residing on closed d-dimensional manifolds. A n-cochain
with symmetry G is a map cn(g0, g1, . . . , gn) : Gn+1 → U(1) which satisfies cn(gg0, . . . , ggn) =
cn(g0, . . . , gn)ε, where ε = −1 if g is antiunitary and +1 for unitary g. A n-cocycle νn is a
n-cochain which also satisfies the cocycle condition: ∂νn = 1, where

(∂νn)(g0, . . . , gn+1) =
n+1∏
i=0

νn(g0, . . . , ĝi, . . . , gn+1)(−1)i .

(A.1)

(Here ĝi means gi is deleted). If νn = ∂cn−1 for some n − 1-cochain cn−1 we say it is
a coboundary. It may be checked that a coboundary also satisfies the cocycle condition,
namely ∂2cn−1 = 1. Two cocycles related by the multiplication of a coboundary are viewed
as equivalent.

νn ∼ ν ′n = νn · ∂cn−1. (A.2)

The equivalence classes of n-cocycles form Hn(G, U(1)) – the nth cohomology group. In
Ref. (5) it is proposed that bosonic G-symmetric SPTs in d space dimensions are “classified”
by Hd+1(G, U(1)), i.e., each SPT is in one to one correspondence with a equivalence class of
d+ 1-cocycles.

Suppose we have a triangulated d-dimensional closed manifold where vertices are the
lattice sites. The Hilbert space for each site is spanned by {|gi〉} where gi ∈ G, and the total
Hilbert space is spanned by the tensor product of the site basis, i.e., |{gi}〉 =

∏
i |gi〉. The

“fixed point” form (which is a particular representative) of the SPT states associated with
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the equivalence class of νd+1 is equal to (Ref. (5) Section IX)

|ψ0〉 =
∑
{gi}

φ({gi}) |{gi}〉

φ({gi}) =
∏
∆

[νd+1(e, {gi}∆)]σ(∆). (A.3)

Here e is the identity element,
∏

∆ is the product over the simplices of the triangulation,
{gi}∆ is a shorthand for the d+ 1 elements of G assigned to the ordered vertices of simplex
∆, and σ(∆) = ±1 depending on the orientation of the simplex.

The Hamiltonian whose exact ground state is Equation (A.3) is

H = −J
∑
i

Bi, (A.4)

where J > 0. The operator Bi only affect the state on site i and

〈{g′k}|Bi|{gk}〉 =

(∏
k 6=i

δg′k,gk

)
φ({g′k})
φ({gk})

. (A.5)

From Eqs A.3, A.4 and A.5 it is straightforward to show Bi is a projection operator,
Tr(Bi) = 1 and Bi|ψ0〉 = |ψ0〉. In addition using the cocycle condition it can be shown
that [Bi, Bj] = 0 ∀ i, j. So |ψ0〉 is the unique gapped groundstate of H. In addition using
the cocycle condition φ(g1, ..., g

′
i, ...gN)/φ(g1, ..., gi, ...gN) can be shown to depend on the g’s

in the neighborhood of site i, hence the hamiltonian is local. Examples for 1D and 2D are
given below.

In 1D φ({g′i})/φ({gi}) can be reduced via the cocycle condition into (Fig. A.1 (a)):

ν2(gi−1, gi, g
′
i)

ν2(gi, g′i, gi+1)

In 2D, suppose we have a triangular lattice, each site has six neighbors 1,...,6. In this
case φ({g′i})/φ({gi}) involves the g’s on six tetrahedrons (Fig. A.1 (b)):

ν3(g3, g4, gi, g
′
i)ν3(g4, gi, g

′
i, g5)ν3(gi, g

′
i, g5, g6)

ν3(g3, g2, gi, g′i)ν3(g2, gi, g′i, g1)ν3(gi, g′i, g1, g6)

A.2 Boundary basis and their symmetry

transformations

In this section we consider lattices on open d+1-dimensional manifolds. In general, a ground-
state wavefunction on an open manifold is defined subject to fixed boundary site configu-
rations. Then the wavefunction is given by (A.3) summed over all bulk site configurations
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Figure A.1: (Color online) The construction of the exactly solvable bulk SPT hamiltonians
from cocycles. Bi updates gi to g′i. a) For d=1 the phase 〈{g′i}|Bi|{gi}〉 involves the cocycles
associated with two triangles. b) For d=2 the phase 〈{g′i}|Bi|{gi}〉 involves the cocycles
associated with six tetrahedrons.

with the product carried out over simplices within the open manifold. In this way, if we
have two open manifolds with the same boundary, we may take the direct product of their
wavefunctions, identify their boundary sites and sum over all the possible boundary site
configurations to recover the wavefunction on a closed manifold.

Let the vertices (sites) of the triangulated d-dimensional boundary be labeled by Greek
index µ, and let there be a single “bulk site” labeled by “0”. Together with the boundary
sites they triangulate a d+1 dimensional open manifold. Our convention for vertex ordering
is that all arrows point from 0 to µ (see Fig. A.2). Note that the assumption of having
a single bulk site is purely for ease of manipulation, and does not put constraint on the
topology of the manifold considered. It can be checked that our final result, the boundary
transformation (A.11) remains unchanged even when more sites are added in the bulk.

The total Hilbert space is spanned by {|g0, {gµ}〉}, and using Equation (A.3) (except the
spatial dimension is d+ 1 rather than d) we write down the expression for the ground state
subject to boundary conditions {gµ} as discussed before

|{gµ}〉B =
∑
g0

∏
∆

[νd+2(e, g0, {gµ}∆)]σ(∆)|g0, {gµ}〉

(A.6)

Upon the action of the global symmetry group both the bulk and boundary states are
transformed. Let Sg be the representation of the symmetry operation g ∈ G, we have

Sg|g0, {gµ}〉 = |gg0, {ggµ}〉, (A.7)
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and

Sg|{gµ}〉B
=
∑
g0

∏
∆

[νd+2(e, g0, {gµ}∆)]εσ(∆)|gg0, {ggµ}〉

=
∑
g0

∏
∆

[νd+2(g, gg0, {ggµ}∆)]σ(∆)|gg0, {ggµ}〉

=
∑
g0

∏
∆

[νd+2(g, g0, {ggµ}∆)]σ(∆)|g0, {ggµ}〉

(A.8)

Using the cocycle condition

∂νd+2(g, e, g0, {ggµ}∆) = 1 (A.9)

the last line of Equation (A.8) can be equated with∑
g0

∏
∆

{
νd+2(g, e, {ggµ}∆)σ(∆)

×

[
d∏
i=0

νd+2(g, e, g0, {ggµ}∆i
)(−1)i+1σ(∆)

]
×νd+2(e, g0, {ggµ}∆)σ(∆)

}
|g0, {ggµ}〉

=

[∏
∆

νd+2(g, e, {ggµ}∆)σ(∆)

]
|{ggµ}〉B (A.10)

In the second line ∆i is the shorthand for the d − 1-dimensional simplex which is a face
of ∆ obtained by removing its ith vertex. In the last step we have used the fact that each
d − 1-dimensional simplex is the face to two opposite orientation d dimensional simplices
∆’s, hence their contributions cancel in the product. Therefore

Sg|{gµ}〉B =

[∏
∆

νd+2(g, e, {ggµ}∆)σ(∆)

]
|{ggµ}〉B

(A.11)

For example when d = 0, the edge of the 1D SPT are two points gL, gR. Under g they
transform as

Sg|gL, gR〉B =
ν2(g, e, ggR)

ν2(g, e, ggL)
|ggL, ggR〉B (A.12)
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Figure A.2: (Color online) A single site 0 represents all the bulk degrees of freedom. We use
a convention where arrows point from the bulk to the boundary.

The phase ν2(g,e,ggR)
ν2(g,e,ggL)

is interpreted as the edge states being carrying the projective represen-
tation of the symmetry group. For d = 1, the edge forms a ring labeled by µ = 1, . . . N . In
this case

Sg|{gµ}〉B =
N∏
µ=1

ν3(g, e, ggµ, ggµ+1)|{ggµ}〉B

(A.13)

In Ref. (37), this transformation with G = Z2 is an example of “Matrix Product Unitary
Operator”. They also show that if ν3 is non-trivial, then the edge states made up of linear
combination of |{gµ}〉B cannot be a short ranged entangled state.

A.3 Construction and the physical interpretation of

G× ZT
2 SPTs

The special subset of cocycles

In this section we use a particular cocycle of Hd+2(G × ZT
2 , U(1)) to construct the SPT in

d+ 1 dimensions. This cocycle is given by

νd+2(ρ0g0, ρ1g1, . . . , ρd+2gd+2)

= [νd+1(g1, . . . , gd+2)]
ρ1−ρ0

2 , (A.14)

where gi ∈ G, ρi = ±1 ∈ ZT
2 and νd+1 is a non-trivial cocycle of Hd+1(G,U(1)). It is

straightforward to verify that νd+2 indeed satisfies the cocycle condition.
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The non double stacking condition on the νd+1 in Equation (A.14)

In the following we prove that so long as νd+1 can not be written as the square of another d+1
cocycle, say, ν̃d+1, the νd+2 given by Equation (A.14) is a non-trivial cocycle of Hd+2(G ×
ZT

2 , U(1)). More precisely we will show νd+2 is trivial if and only if νd+1 = (ν̃d+1)2 · ∂c′d for
some (not necessarily trivial) G-symmetric cocycle ν̃d+1 and cochain c′d. Thus the higher
dimensional SPT constructed using Equation (A.14) is trivial if and only if νd+1 is a double-
stacking of another ν̃d+1.

To prove the “if” part, suppose νd+1 = (ν̃d+1)2 ·∂c′d. Substitute this into Equation (A.14)
we obtain

νd+2(ρ0g0, ρ1g1, . . . , ρd+2, gd+2)

= ν̃d+1(g1, . . . , gd+2)ρ1−ρ0∂c′d(g1, . . . , gd+2)
ρ1−ρ0

2

If we define

cd+1(ρ1g1, . . . , ρd+2gd+2)

:= ν̃d+1(g1, . . . , gd+2)ρ1c′d(g2, . . . , gd+2)
ρ1−ρ2

2

Then using the cocycle condition on ν̃d+1, it may be checked that cd+1 is a G×ZT
2 cochain

(hence is symmetric under the action of the group) and ∂cd+1 = νd+2. So νd+2 is a trivial
cocycle.

To prove the “only if” part, suppose νd+2 = ∂cd+1 for some G× ZT
2 cochain cd+1, i.e.

νd+2(ρ0g0, . . . , ρd+2gd+2)

= ∂cd+1(ρ0g0, . . . , ρd+2gd+2)

= cd+1(ρ1g1, . . . , ρd+2gd+2)

×
d+2∏
k=1

c
(−1)k

d+1 (ρ0g0, ρ1g1, . . . , ρ̂kgk, . . . , ρd+2gd+2) (A.15)

We will prove the cd+1 in question must satisfy

∂cd+1(g0, . . . , gd+2) = ∂cd+1(ρ0g0, . . . , ρd+2gd+2)
∣∣∣
ρi→1 ∀i

= 1, (A.16)

i.e., upon setting all ρi = 1 the cd+1 in question is a G-cocycle. In addition we shall prove
that if νd+2 = ∂cd+1 the νd+1 in Equation (A.14) must satisfy

νd+1 = c2
d+1

∣∣∣
ρi→1 ∀i

· ∂c′d (A.17)
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for certain G-coboundary ∂c′d. (Assuming (A.16) and (A.17) hold, then we choose ν̃d+1 =

cd+1

∣∣∣
ρi→1 ∀i

to complete the proof.)

To show (A.16), we first note that by taking ρ0 = ρ1 = 1 in Equation (A.14) and the
second line of Equation (A.15), we have

1 = ∂cd+1(g0, g1, ρ2g2, . . . , ρd+2gd+2) (A.18)

Then (A.16) follows directly by further setting ρi = 1 for all i.
To show (A.17), we let ρ0 = −1, ρi = 1 for i 6= 0 and g0 = g1 in (A.14) and (A.15). Then

νd+1(g1, . . . , gd+2)

= cd+1(g1, . . . , gd+2)

×
d+2∏
k=1

c
(−1)k

d+1 (−g1, g1, . . . , ĝk, . . . , gd+2)

= cd+1 · γ1 (A.19)

where γl is defined as follows. For l = 1, . . . , d+ 2,

γl(g1, . . . , gd+2)

:=
d+2∏
k=l

c
(−1)l−k+1

d+1 (−g1, . . . ,−gl, gl, . . . , ĝk, . . . , gd+2)

It turns out that γl ∼ γl+1, for l = 1, . . . , d+ 1. The proof is as follows

γl = c−1
d+1(−g1, . . . ,−gl, gl+1, . . . , gd+2)

×
d+2∏
k=l+1

c
(−1)l−k+1

d+1 (−g1, . . . ,−gl, gl, . . . , ĝk, . . . , gd+2)

= c−1
d+1(−g1, . . . ,−gl, gl+1, . . . , gd+2)

×
l∏

k=1

c
(−1)l−k

d+1 (−g1, . . . , −̂gk, . . . ,−gl+1, gl+1, . . . , gd+2)

× ∂c′(−1)l+1

d (g1, . . . , gd+2)

∼
l+1∏
k=1

c
(−1)l−k

d+1 (−g1, . . . , −̂gk, . . . ,−gl+1, gl+1, . . . , gd+2)

=
d+2∏
k=l+1

c
(−1)l−k

d+1 (−g1, . . . ,−gl+1, gl+1, . . . , ĝk, . . . , gd+2)

× ∂c(−1)l+1

d+1 (−g1, . . . ,−gl+1, gl+1, . . . , gd+2)

= γl+1
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where c′d is a G-symmetric cochain defined by:

c′d(g̃1, . . . , g̃d+1) := cd+1(−g̃1, . . . ,−g̃l, g̃l, . . . , g̃d+1)

and in the last line we used

∂cd+1(−g1, . . . ,−gl+1, gl+1, . . . , gd+2) = 1

which follows from (A.18). Thus

γ1 ∼ γd+2

= c−1
d+1(−g1, . . . ,−gd+2) = cd+1(g1, . . . , gd+2). (A.20)

In the last line we have used the fact that cd+1 is a G×ZT
2 symmetric cochain. Substituting

Equation (B.21) into (A.19), (A.17) is proven.

Interpreting the wavefunction as decorated domain walls

The wavefunction,

ψ({ρigi}) =
∏
∆

[νd+2(e, {ρigi}∆)]σ(∆), (A.21)

constructed from (A.14) can be viewed as having time-reversal domain walls decorated with
lower dimensional SPT.

To demonstrate this, we first derive an alternative form for the groundstate wavefunction
discussed in Appendix A.1 in general. In this subsection it is assumed the system is a closed
manifold. Suppose we have a G protected SPT in d-dimensions with associated cocycle
Hd+1(G, U(1)). Applying the cocycle condition ∂νd+1(e, {gi}∆, e) = 1 on the ground state
wavefunction (A.3), we obtain

φ({gi}) =
∏
∆

[νd+1(e, {gi}∆)]σ(∆)

=
∏
∆

[ν
(−1)d+1

d+1 ({gi}∆, e)]
σ(∆)

×

(
d∏
j=0

ν
(−1)d+j

d+1 (e, {gi}∆j
, e)

)σ(∆)

(A.22)

The last factor is identity because each simplex ∆i is the face to two simpices ∆ whose
contribtions cancel. Therefore we may alternatively write the groundstate wavefunction as

φ({gi}) =
∏
∆

[νd+1({gi}∆, e)]
σ(∆)(−1)d+1︸ ︷︷ ︸

:=φ∆({gi})σ(∆)

(A.23)
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Now with G = G× ZT
2 and using Equation (A.21), we have

ψ({ρigi}) =
∏
∆

[νd+1({gi}∆0 , e)]
ρ1(∆)−ρ0(∆)

2
σ(∆)(−1)d+2

=
∏
∆

[φ∆0({gi})]σ(∆)(
ρ1(∆)−ρ0(∆)

2
) (A.24)

Here ∆0 is the simplex ∆ with the first of its ordered vertices deleted, and 0(∆), 1(∆) stand
for the integers labeling the first and second vertices of the simplex ∆.

We now assume the system is on a (n = d + 1)-dimensional torus T n with a specific
triangulation defined as follows. Let the vertices form a simple hypercubic structure on
T n. Each hypercube is identified with the region {(x1, . . . , xn) : 1 ≥ xi ≥ 0}. Now cut
the hypercube into n! simplices ∆(P ), each labelled by a permutation P of (1, . . . , n). The
simplex ∆(P ) occupies the region with 1 ≥ xP (1) ≥ · · · ≥ xP (n) ≥ 0. There are 2n vertices
in the hypercube, each has all its coordinates equal to 0 or 1. For each vertex v, let N (v)
be the number of 1’s in its coordinate. The arrows defining the ordering of the vertices run
from a vertex with a smaller N to a vertex with larger N . In each simplex, there are exactly
one vertex with any given N , which ranges from 0 to n. One may check that such ordering
of vertices is consistent on faces shared by two hypercubes. For every simplex, the lowest
vertex is the origin v0 with all coordinates zero. The second lowest vertex has exact one 1
in its coordinates, which we label vk such that its j-th component is δkj. We also let Fk to
be the face on the hypercube whose vertices gas all their k-th coordinate = 1. Fk is itself
a n − 1-dimensional hypercube. A domain wall between v0 and vk lives in the hyperplane
equidistant from v0 and vk, which we associate to Fk via a translation of (1

2
, . . . , 1

2
).

The orientation of simplex σ(∆(P )) is given by sgn(P ). This induces an orientation on
the face ∆(P )0 given by σ(∆(P )0) = σ(∆(P )). Now the interpretation of (A.24) is that,
if there is a domain wall between v0 and vk, then on Fk there will live a lower dimensional
SPT with ground state wavefunction given by Equation (A.23) or its complex conjugate
depending on whether the orientation of Fk points from the ρ = +1 vertex to the ρ = −1
vertex or vice versa.

An example is given in Fig. A.3. for the case where d+1 = 2. Here the dashed red line is
the actual domain wall and the solid red line is where the d dimensional G-symmetric SPT
resides. The wavefunction with ZT

2 variables fixed as in Fig. A.3 is

ψ({gi}) =
∏3

j=0[ν2(g3j, g3(j+1), e)]

=
∏3

j=0[ν2(e, g3j, g3(j+1))]

Thus the SPT wavefunctions constructed using cocycles satisfying Equation (A.14) are
indeed decorated domain wall wavefunctions.
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Figure A.3: (Color online) The wavefunction for the 2-D G×ZT
2 -symmetric SPT (constructed

from Equation (A.24)) with frozen configuration of the ZT
2 variable (denoted by + (blue)

and - (green) on each site). Upon examining the dependence of such wavefunction on the
unfrozen gi ∈ G on each site it is noted that the value is the same as the wavefunction of a
1-D G-symmetric SPT living on the solid red line, which is the domain wall (dashed red line)
slightly displaced. Here the top and bottom edges are identified by the periodic boundary
condition.

A.4 A G× ZT
2 invariant boundary subspace of the

d + 1 dimensional G× ZT
2 symmetric SPT that is

transplantable to d dimension.

According to Equation (A.6) and Equation (A.14)

|ρµgµ〉B =
∑
ρ0,g0

∏
∆

[νd+2(e, ρ0g0, {ρµgµ}∆)]σ(∆)|ρ0g0, {ρµgµ}〉

=
∑
ρ0,g0

∏
∆

{
[νd+1(g0, {gµ}∆)](ρ0−1)/2

}σ(∆)

|ρ0g0, {ρµgµ}〉

:=
∑
ρ0,g0

χ(ρ0, g0, {gµ})|ρ0g0, {ρµgµ}〉 (A.25)

It is important to note

χ(ρ0, g0, {gµ}) =
∏
∆

{
[νd+1(g0, {gµ}∆)](ρ0−1)/2

}σ(∆)
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is independent of {ρµ}. Therefore

|{gµ}〉B :=
1

(2|G|)1/2

1

2N/2

∑
{ρµ}

|{ρµgµ}〉B, (A.26)

where N is the number of boundary sites, form an orthonormal basis

B〈{g′µ}|{gµ}〉B =
∏
µ

δg′µ,gµ (A.27)

for the sub-Hilbert space spanned by

|ρ0〉|g0〉
∏
µ

(
|ρµ = +1〉+ |ρµ = −1〉√

2

)
|gµ〉

.
The subspace spanned by {|{gµ}〉B} is isomorphic to that spanned by the usual site basis

{|{gµ}〉} for G-symmetric SPTs in one dimension lower (d dimensions).
Since

νd+2(g, e, gρ2g2, . . . , gρd+2gd+2)

= νd+1(e, gg2, . . . , ggd+2)0 = 1 (A.28)

for g ∈ G, Equation (A.11) implies

Sg|{gµ}〉B = |{ggµ}〉B, (A.29)

i.e., the boundary basis {|{gµ}〉B} transform in exactly the same way as the usual site
basis under group G. However the ZT

2 := {+1,−1} group transforms the boundary basis
differently:

S+1|{gµ}〉B = |{gµ}〉B
S−1|{gµ}〉B = φ({gµ})K|{gµ}〉B, where

K = complex conjugation and

φ({gµ}) =
∏
∆

[νd+1(e, {gµ}∆)]σ(∆). (A.30)

Because νd+1 is a pure phase

|φ({gµ})|2 = 1 (A.31)

Eqs.A.29 and A.30 are the basic transformation laws of the boundary basis.



A. APPENDIX FOR CHAPTER 2 50

Breaking the ZT
2 symmetry and the resulting G- symmetric SPT

Let’s come back to the basis defined by Equation (A.26) and their transformation law, Equa-
tion (A.30), under G×ZT

2 . Now consider the following G-symmetric boundary Hamiltonian

H0 = −J
∑
µ

∑
gµ,g′µ

|{g′µ}〉B B〈{gµ}|, (A.32)

where J > 0 (and can be taken to very large values). Under the action of Sg

SgH0S
−1
g = H0 (A.33)

while under the action of ZT
2 transformation it becomes

S−1H0S
−1
−1 = −J

∑
µ

∑
gµ,g′µ

φ({g′µ})
φ({gµ})

|{g′µ}〉B B〈{gµ}| := H1 (A.34)

where | 〉B stands for the complex conjugate. Equation (A.34) has exactly the form of(A.4),
namely the Hamiltonian for the d-dimensional non-trivial (assuming νd+1 is non-trivial and
can not be expressed as the square of another d + 1 cocycle) G-symmetric SPT. We note
that H1 is also invariant under the action of Sg, i.e.,

SgH1S
−1
g = H1. (A.35)

Moreover due to Equation (A.31)

S−1H1S
−1
−1 = H0. (A.36)

The Hamiltonian (H0 + H1)/2 is symmetric under G × ZT
2 , then based on the theorem

of Appendix A.5 we conclude that either its spectrum is gapless or the G×ZT
2 symmetry is

spontaneously broken. In the Appendix A.6 we give an example where (H0+H1)/2 is gapless.

A.5 A Lieb-Schultz-Mattis type theorem

In this section we present a proof stating that a d dimensional system with G×ZT
2 symmetry

(where ZT
2 acts according to Equation (A.30) can not be gapped without degeneracy.

Proposition: Let |{gi}〉 (gi ∈ G) be the site basis of a d-dimensional lattice problem,
and under the group G they transform as

Sg|{gi}〉 = |{ggi}〉. (A.37)
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Let there be an additional group ZT
2 = {+1,−1} which acts on the basis as

S+1|{gi}〉 = |{gi}〉
S−1|{gi}〉 = φ({gi})K|{gi}〉. (A.38)

In addition we assume φ({gi}) is the ground state wavefunction of a d-dimensional SPT
constructed out of cocycle νd+1 which can not be expressed as the square of another cocycle,
i.e.,

φ({gi}) =
∏
4

νd+1(e, {gi}4)σ(4). (A.39)

Then it follows that it is impossible to find a local G × ZT
2 -symmetric Hamiltonian which

possesses an unique gapped ground state without breaking any symmetry.

The situation described above arises naturally at the boundary of a d+1 dimensional G×
ZT

2 symmetric SPT. It can also be regarded as a d-dimensional problem with a G symmetry as
well as a non-local ZT

2 symmetry. In either case the ZT
2 symmetry ensures the impossibility

to have a totally symmetric gapped ground state without breaking any symmetry. This
theorem is similar to the Lieb-Schultz-Mattis theorem (38;39;40) for translationally invariant
spin 1/2 chain. The difference is the group G× ZT

2 can be discrete.
We prove the above proposition by reductio ad absurdum. Let’s assume it is possible to

find an unique G× ZT
2 symmetric ground state that is separated from all excited states by

an energy gap. Let |ψ〉 be such a ground state:

|ψ〉 =
∑
{gi}

χ({gi})|{gi}〉. (A.40)

Since |ψ〉 is symmetric under G it must lie in certain equivalent class of a G-symmetric SPT
having the fixed point form for χ

χ({gi}) =
∏
4

ν̃d+1(e, {gi}4)σ(4). (A.41)

Since |ψ〉 is also invariant under S−1

S−1|ψ〉 =
∑
{gi}

χ∗({gi})φ({gi})|{gi}〉

= |ψ〉 =
∑
{gi}

χ({gi})|{gi}〉. (A.42)

Since {gi} is an orthonormal set we must have

χ∗({gi})φ({gi}) = χ({gi}), (A.43)
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or

φ({gi}) = χ({gi})2 =
∏
4

[
ν̃d+1(e, {gi}4)2

]σ(4)
. (A.44)

This contradicts the assumption that φ in Equation (A.39) can not be constructed from the
square of another cocycle. Therefore this d-dimensional problem must be either gapless or
it spontaneously break the G× ZT

2 symmetry.

A.6 Gapless Z2 × Z2 × ZT
2 symmetric hamiltonian in

1D and the transition between the Z2 × Z2 SPTs

The Z2×Z2-symmetric SPTs in 1D is classified by H2(Z2×Z2, U(1)) = Z2. Let g = (σ, τ) ∈
Z2 × Z2 where σ = ±1, τ = ±1. Following Appendix A.1, the bulk Hamiltonian is

H1 = −J
∑
i

Bi, (A.45)

where

〈{g′k}|Bi|{gk}〉 =
ν2(gi−1, gi, g

′
i)

ν2(gi, g′i, gi+1)

∏
k 6=i

δg′k,gk . (A.46)

The trivial cocycle is ν2 ≡ 1, hence the Hamiltonian associated with the trivial SPT is

H0 = −J
∑

i(σ
x
i + τxi ). (A.47)

The nontrivial cocycle is

ν2(e, σ1τ1, σ2τ2) = τ
(1−σ1σ2)/2
1 , (A.48)

hence

ν2(gi−1, gi, g
′
i)

ν2(gi, g′i, gi+1)

= (τi−1τi)
(

1−σiσ
′
i

2
)(τiτ

′
i)

(
1−σ′iσi+1

2
)

=


1 if (σ′i, τ

′
i) = (σi, τi)

σiσi+1 if (σ′i, τ
′
i) = (σi,−τi)

τi−1τi if (σ′i, τ
′
i) = (−σi, τi)

σiσi+1τi−1τi if (σ′i, τ
′
i) = (−σi,−τi)

(A.49)



A. APPENDIX FOR CHAPTER 2 53

Therefore the Hamiltonian associated with the non-trivial SPT is

H1 = −J
∑
i

[
1 + τ zi−1σ

x
i τ

z
i + σzi τ

x
i σ

z
i+1

+(τ zi−1σ
x
i τ

z
i )(σzi τ

x
i σ

z
i+1)
]
. (A.50)

Note that each term of the Hamiltonian commutes with all others. In fact because the fourth
term is the product of the 2nd and 3rd terms we may drop the constant term and the fourth
term without changing the ground state wavefunction or closing the gap. Thus H0 and the
simplified H1 read

H0 = −J
∑
i

(σxi + τxi )

H1 = −J
∑
i

(τ zi−1σ
x
i τ

z
i + σzi τ

x
i σ

z
i+1). (A.51)

Now enlarge the symmetry group to Z2×Z2×ZT
2 and go through the steps in Appendix

A.3 it is straightforward to show is given by

S−1 =
∏
i

(τ zi )(1−σzi σzi+1)/2K, (A.52)

which transforms H0 and H1 into each another.
The critical Hamiltonian (H0 +H1)/2 can be solved exactly by the Jordan-Wigner trans-

formation

σxi = 2n2i−1 − 1, τxi = 2n2i − 1, ni = f †i fi

σzi = (f †2i−1 + f2i−1)eiπ
∑
j<2i−1 nj

τ zi = (f †2i + f2i)e
iπ
∑
j<2i nj , (A.53)

where fi are fermionic operators. The Hamiltonian is further simplified by introducing the
Majorana fermion operators

c2j−1 = f †j + fj, c2j = (fj − f †j )/i. (A.54)

In terms of the Majorana fermion operators

H0 = −J
∑
j

ic2j−1c2j

H1 = −J
∑
j

ic2j−2c2j+1

Hcritical = −J
2

∑
j

[ic2i−1c2i + ic2i−2c2i+1] .

(A.55)
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a)

b)
c4i-3 c4i-2 c4i-1 c4i

σi  τi

c)

H0

H1

Hcritical

Figure A.4: (Color online) H0 (a) and H1 (b) in terms of Majorana fermions. Each bond
represents a Majorana fermion hopping term. For panel (b) there are two uncoupled Ma-
jorana fermions on each of the right and left end, leading to a 22 = 4 fold degeneracy. (c)
A graphical representation of Hcritical = 1

2
(H0 + H1). There are two independent Majorana

chains each contributing 1/2 to the total central charge. The dashed lines enclose one unit
cell. Each solid rectangle encloses a spin 1/2. The blue dots denote Majorana fermions.

The hopping patterns of these Hamiltonian are shown in Fig. A.4. Because the critical
Hamiltonian describes two translational-invariant gapless Majorana chain each characterized
by central charge 1/2, the total central charge of the critical Hamiltonian is 1.

Each site of the above problem can also be viewed as composing of two spin 1/2s each
carrying a projective representation of Z2 × Z2, or a linear representation of the quaternion
group Q8. The unitary transformation between the (σ, τ) basis discussed above and the spin

1/2 basis is U =
∏

i
1+iτyi√

2
(

1+σzi
2
− 1−σzi

2
τxi ). Under the new basis

H0 =
∑
i

J(σxi τ
x
i + σzi τ

z
i )

H1 =
∑
i

J(τxi−1σ
x
i + τ zi σ

z
i+1)

Sρ =
∏
i

(
1 + σzi σ

z
i+1

2
+

1− σzi σzi+1

2
τxi )K

(A.56)

Upon renaming σi → σ2i−1, τi → σ2i and setting J = 1, we obtain (2.8), (2.9) of the main
text.

A.7 Some details of the density matrix

renormalization group calculations

We determine the ground state phase diagram and properties of the model Hamiltonian
Eq.(2.13) by extensive and highly accurate density-matrix renormalization group(DMRG)
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simulations. For the DMRG simulation, we consider both a periodic boundary condition
(PBC) and open boundary condition (OBC). We study many system sizes for a more reliable
extrapolation to the thermodynamic limit. We keep up to m = 1024 states in the DMRG
block with around 10 sweeps to get converged results. The truncation error is of the order
10−8 or smaller.

For the a critical theory in one dimension, the central charge of the conformal field theory
can easily be extracted by fitting the entanglement entropy to the analytical form (41)

S(x) =
c

3η
ln(x) +O(1), (A.57)

where x = ηN
π

sin(πl
N

) is the so-called chord distance for a cut dividing the chain into segments
of length l and N−l, and periodic (open) boundary conditions are indicated by the parameter
η = 1 or 2, respectively. Performing such a fit to the data in Fig.2.8 with different system
sizes, we get the central charge c = 1.

A.8 Z2 SPT in 2D

In this subsection we follow the framework set in previous sections to construct a lattice model
describing phase transition between by 2D Z2-symmetric SPTs. Because H3(Z2, U(1)) = Z2,
according to the cohomology group classfication there are two inequivalent Z2-symmetric
SPTs in 2D. The non-trivial cocycle is

ν3(σ1, σ2, σ3, σ4) = (−1)(
1−σ1σ2

2
)(

1−σ2σ3
2

)(
1−σ3σ4

2
) (A.58)

To construct the lattice model we consider a triangular lattice. For each site i there is
an Ising variable σi := σzi = ±1. The trivial SPT hamiltonian is

H0 = −J
∑
i

σxi . (A.59)

The non-trivial SPT Hamiltonian is

H1 = −J
∑
i

Bi, (A.60)
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where

〈{σ′i}|Bi|{σi}〉 =
∏
k 6=i

δσkσ′k×

ν3(σ3, σ4, σi, σ
′
i)ν3(σ4, σi, σ

′
i, σ5)ν3(σi, σ

′
i, σ5, σ6)

ν3(σ3, σ2, σi, σ′i)ν3(σ2, σi, σ′i, σ1)ν3(σi, σ′i, σ1, σ6)

=
∏
k 6=i

δσkσ′k×1 if σ′i = σi

−
[
Π<j,k>i

(
1−σjσk

2

)] [
i(
∑6
j=1 σj)

]
if σ′i = −σi

(A.61)

Here σ1, . . . , σ6 designate the Ising variables on the six neighbors of i as depicted in Fig. A.1(b),
and the product Π<j,k> is performed over the six links connecting site i and its six nearest
neighbors. After dropping a constant term we obtain

H1 =
∑
i

[
Π〈j,k〉i

(
1−σjσk

2

)] [
i(
∑6
j=1 σj)

]
σxi . (A.62)

It was shown in Appendix D of Ref. (29) that H1 is related to the Levin-Gu (11) Hamiltonian

HLG =
∑

i

[
Π〈j,k〉i

(
1−σjσk

2

)]
σxi by a local unitary transformation. The non-trivial element of

the ZT
2 transformation is given by

S−1 =
∏
∆

(−1)(
1−σ1

2
)(

1+σ2
2

)(
1−σ3

2
)K (A.63)

where σ1, σ2, σ3 are the ordered vertices on each triangle ∆. Again S−1H0S
−1
−1 = H1 and

S−1H1S
−1
−1 = H0.

We construct the hamiltonian to study the phase transition in exactly the same way as
in Equation (2.4). H(λ) is only solvable for λ = 0 and 1. For intermediate value of λ it was
suggested (12) numerically that there is a first-order transition at λ = 1/2.
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B

Appendix for Chapter 3

B.1 Construction of fixed point Zn × Zn SPT

Hamiltonian in 1D

We briefly review the relation between of cocycles and projective representation, and recall
a procedure (5;29) to construct fixed point SPT hamiltonians (3.1) that are relevant to this
chapter.

Cohomology classification of 1D SPT

Recall from Appendix A.1 that bosonic G-symmetric SPTs in 1 space dimensions are “clas-
sified” by H2(G,U(1)), i.e., each equivalent class of SPTs is in one to one correspondence
with an element of the abelian group H2(G,U(1)). The binary operation of the abelian
group corresponds to the “stacking” operation, i.e., laying two SPTs on top of each other
and turning on all symmetry allowed interactions. It turns out that in 1D, the cohomology
group has the physical interpretation of projective representations of the boundary degrees
of freedom.

Projective representation

In quantum mechanics, symmetry operators are usually realised as matrices R(g) acting on
Hilbert space. Usually these matrices form a linear representation of the symmetry group,
namely,

R(g1)R(g2) = R(g1g2). (B.1)

However, two quantum states differ by an U(1) phase are regarded as the same quantum
mechanically. Thus, one should relax Equation (B.1) by allowing a phase ambiguity ω,
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namely,

R(g1)R(g2) = ω(g1, g2)R(g1g2). (B.2)

When Equation (B.2) is satisfied we say that R(g) form a projective representation of the
original symmetry group. Obviously, linear representation where ω(g1, g2) = 1 is a special
case of projective representation. In the literature linear representations are usually viewed
as “trivial” projective representations. Associativity under group multiplication, namely,

[R(g1)R(g2)]R(g3) = R(g1)[R(g2)R(g3)] (B.3)

requires

ω(g1, g2g3)ω(g2, g3) = ω(g1, g2)ω(g1g2, g3) (B.4)

In addition the phase ambiguity of quantum states obviously allows one to multiply all R(g)
by an U(1) phase φ(g), namely,

R(g)→φ(g)R(g).

This phase transformation results in

ω(g1, g2)→ φ(g2)φ(g1)
φ(g1g2)

ω(g1, g2) (B.5)

Consequently ωs related by Equation (B.5) should be regarded as equivalent.

To see how to interpret cocycles of group cohomology as projective representations, define
ω(g1, g2) and φ(g1) in terms of the cocycle ν and the coboundary c defined in sectionA.1,
namely,

ω(g1, g2) :=ν(e, g1, g1g2)

φ(g1) :=c(e, g1).

where e is the identity group element of G. In terms of ω the cocycle condition becomes

(∂ω)(g1, g2, g3) := (∂ν)(e, g1, g1g2, g1g2g3)

=
ν(g1, g1g2, g1g2g3)

ν(e, g1g2, g1g2g3)

ν(e, g1, g1g2g3)

ν(e, g1, g1g2)

=
ω(g2, g3)

ω(g1g2, g3)

ω(g1, g2g3)

ω(g1, g2)
= 1

=⇒ ω(g1, g2g3)ω(g2, g3) = ω(g1, g2)ω(g1g2, g3), (B.6)
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namely Equation (B.4). In terms of c the coboundary equivalence relation becomes

ω ∼ ω′ if ω′ = ω · ∂φ, (B.7)

where

(∂φ)(g1, g2) := (∂c)(e, g1, g1g2)

=
c(g1, g1g2)c(e, g1)

c(e, g1g2)

=
φ(g2)φ(g1)

φ(g1g2)
, (B.8)

which is exactly the factor appearing in Equation (B.5).

Construction of Hamiltonian

Recall from Appendix A.1 that the groundstate wavefunction for an SPT is given in terms
of the cocycles by

|ψ0〉 =
∑
{gi}

φ({gi}) |{gi}〉, where

φ({gi}) =
L∏
i=1

[ν(e, gi, gi+1)]σ(0,i,i+1). (B.9)

Here e represents the identity element of G. It is attached to “0” site at the center of the
ring as shown in Fig. B.1. σ(i, i + 1) = ±1 depending on the orientation of the triangle
0, i, i + 1. The orientation of each link in the triangle is represented by an arrow pointing
from the site labeled by a smaller site index to the site labeled by the bigger index. From the
link orientation we determine the triangle orientation by following the majority of the link
orientation and the right-hand rule). Finally periodic boundary condition requires gN+1 = g1.

Recall from Appendix A.1, the Hamiltonian whose exact ground state is Equation (B.9)
is

H = −J
∑
i

Bi, (B.10)

where J > 0. The operator Bi only changes the basis states on site i, and

〈{g′k}|Bi|{gk}〉 =

(∏
k 6=i

δg′k,gk

)
ν(gi−1, gi, g

′
i)

ν(gi, g′i, gi+1)
. (B.11)
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Figure B.1: (Color online) Construction of the 1D groundstate SPT wavefunction from the
cocycle. Here the physical degrees of freedom labelled by g1, . . . , gN live on the boundary of
the figure. At the center, there is an auxiliary “0” site to which we attach the identity group
element e. A phase can be assigned to each triangle by evaluating the cocycle on the group
elements on the vertices. The wavefunction is the product of the phases from all triangles.

For G = Zn × Zn, there are n inequivalent SPT classes and H2(Zn × Zn, U(1)) = Zn.
Each equivalent class of H2(Zn × Zn, U(1)) is represented by a cocycle

ν((e, e), (g1, g2), (g3, g4)) = ηkg2g3
n , where ηn = ei2π/n

In the above (g2i−1, g2i) ∈ Zn × Zn are the Zn elements associated with site i, and k ∈
{0, 1, . . . , n − 1} each correspond to a different element of Zn (H2(Zn × Zn, U(1))). In the
main text, we refer to |g2i−1, g2i〉 as the “cell basis” which is the tensor product of the
“site basis” |g2i−1〉 and |g2i〉. The fixed point Hamiltonian constructed using the procedure
discussed above is

H = −
∑
i

(B2i−1 +B2i + h.c.),

where B2i−1 changes the state |g2i−1〉 and B2i changes the state |g2i〉. Explicitly calculating
the matrix element (Equation (B.11)) for the cases, i.e., k = 0 and k = 1, relevant to our
consideration (recall that we are interested in the quantum phase transition between SPTs
correspond to the “0” and “1” elements of Zn) it can be shown that

k = 0 : B2i−1 = M2i−1, B2i = M2i

k = 1 : B2i−1 = R†2i−2M2i−1R2i, B2i = R2i−1M2iR
†
2i+1, (B.12)

where Mj and Rj are defined by Equation (3.2) of the main text.
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B.2 The mapping to Zn × Zn clock models with

spatially twisted boundary condition and a

Hilbert space constraint

In this section, we show that Equation (3.8) and Equation (3.9) of the main text can be
mapped onto an “orbifold” Zn × Zn clock models. The mapping is similar to the “duality
transformation” of the Zn clock model. The mapping is given by

R†j−1Rj = M̃j, for j = 2...2N, and R†2NR1 = M̃1.

Mj = R̃†jR̃j+1 for all j. (B.13)

Here the tilde operators obey the same commutation relation as the un-tilde ones. Due to
the periodic boundary condition on R, namely, R2N+1 = R1 and R2N+2 = R2 the line of
Equation (B.13)implies

2N∏
i=1

M̃i = 1. (B.14)

Moreover, if we also impose the periodic boundary condition on R̃j a similar constraint on
Mi, namely,

2N∏
i=1

Mi = 1. (B.15)

is obtained. Since there is no such constraint on Mi in the original problem we need to
impose a “twisted” boundary condition on R̃j:

R̃2N+1 = B̃R̃1

R̃2N+2 = B̃R̃2 (B.16)

where B̃ commutes with all R̃j and M̃j. Moreover B̃ has eigenvalues b̃ = 1, ηn, ..., η
n−1
n , i.e.,

B̃|b̃〉 = b̃|b̃〉.

Substituting Equation (B.13) into Equation (3.8) and Equation (3.9) of the main text
we obtain the following expression of the transformed Hamiltonian

H01(λ) = Heven
01 (λ) +Hodd

01 (λ) where

Heven
01 (λ) = −

N∑
i=1

[
(1− λ)M̃2i + λR̃†2iR̃2i+2

]
+ h.c.

Hodd
01 (λ) = −

N∑
i=1

[
λM̃2i+1 + (1− λ)R̃†2i−1R̃2i+1

]
+ h.c. (B.17)
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It is important to note that Equation (B.17) is supplemented with the spatially twisted
boundary condition

R̃2N+1 := B̃R̃1 and R̃2N+2 := B̃R̃2 (B.18)

and the constraint Equation (B.14). In addition, after the transformation the two generators
of the Zn × Zn group become

B̃ and
N∏
j=1

M̃2j. (B.19)

On the surface Equation (B.17) describes two decoupled Zn clock models living on even
and odd sites, respectively. However the notion of “decoupled chains” is deceptive because
the constraint in Equation (B.14) couples them together.

B.3 The notion of “orbifold”

A useful way to implement the constraint Equation (B.14) is to apply the projection operator

1

n

n−1∑
q=0

Qq (B.20)

to states in the Hilbert space, where the operator Q is given by

Q :=
2N∏
j=1

M̃j. (B.21)

Because the eigenvalues of Q are 1, ηn, ..., η
n−1
n . Equation (B.20) projects onto those states

in the Hilbert space that are symmetric under the action of Q. The partition function of the
Hamiltonian (B.17), subject to constraint Equation (B.14) and summed over twisted spatial
boundary condition sectors is therefore

Z =
1

n

n−1∑
qτ=0

n−1∑
qs=0

Tr
[
Qqτ e−β(Heven+Hodd)

]
qs
, (B.22)

where Tr[...]qs denotes the trace under the spatially twisted boundary condition

R̃2N+1 = ηqsn R̃1 and R̃2N+2 = ηqsn R̃2. (B.23)

Moreover in the path integral the action of Qqτ at τ = β and be viewed as imposing a twisted
boundary condition in the time direction.
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Thus Equation (B.22) can be written as

Z =
1

n

n−1∑
qs,qτ=0

Zn-clock
qs,qτ × Zn-clock

qs,qτ (B.24)

where Zn-clock
qs,qτ represents clock model partition function under the space and time twisted

boundary condition characterized by qs and qτ . In Equation (B.24) Zn-clock
qs,qτ appears twice

on right-hand side because without orbifold (i.e., summing over space and time twisted
boundary conditions) we have two independent n-state clock models. Averaging over the
partition function under space and time boundary condition twists is the “orbifolding” (42).
Note that here the spatial boundary condition twist is generated by one of the Zn generator,
namely B̃, in Equation (B.19). However, the time twist is generated by Q =

∏2N
j=1 M̃j, which

is a symmetry of the Zn×Zn clock Hamiltonian, Equation (B.17), but it is not the generator
for the other Zn in Equation (B.19).

B.4 The modular invariant partition function and the

primary scaling operators of the orbifold critical

Z2 × Z2 clock model

Review of modular invariant partition function for the Ising model

The Ising model shows an order-disorder phase transition. At the critical point, the Hamil-
tonian is given by

HIsing = −
∑
i

[Mi +RiRi+1]

where Mi, Ri are Pauli matrices σx and σz respectively (we use M,R rather than σx, σz for
the consistency of notation). The central charge of a single critical Ising chain is c = 1

2
.

Its conformal field theory is theM(4, 3) minimal model. The primary scaling operators are
labeled by two pairs of indices (r, s) and (r′, s′) each label the “holomorphic” and the “anti-
holomorphic” part of the operator. The ranges of these indices are given by 1 ≤ s ≤ r ≤ 2
and 1 ≤ s′ ≤ r′ ≤ 2. The scaling dimensions of the holomorphic and anti-holomorphic parts
of these operators are given by

hr,s =
(4r − 3s)2 − 1

48
, h̄r′,s′ =

(4r′ − 3s′)2 − 1

48
(B.25)

Equation (B.25) gives rise to three primary holomorphic (and anti-holomorphic) scaling
operators with distinct scaling dimensions. The corresponding (r, s) indices are (1, 1), (2, 1)
and (2, 2). Through the operator-state correspondence, each of these primary fields and
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10

Figure B.2: (Color online) The spacetime torus with modular parameter τ is obtained from
identifying opposite edges of a parallelogram with vertices 0, 1, τ and 1 + τ in the complex
plane. Here τ is a complex number in the upper complex plane.

their associated “descendants” form the basis of a Hilbert space (the “Verma module”)
which carries an irreducible representation of the conformal group.

Now consider the partition function of the CFT on a spacetime torus (see Fig. B.2).
The prototype torus is obtained from identifying opposite edges of the parallelogram having
(0, 1, 1 + τ, τ) as the complex coordinates of its four vertices (τ ∈ upper half complex plane).
On such a torus, the partition function is given by

Z(τ) =
∑
r,s;r′,s′

M(r,s);(r′,s′)χr,s(τ)χ̄r′,s′(τ̄), (B.26)

where M(r,s);(r′,s′) is a matrix with integer entries, and

χr,s(τ) = q−
c
24 Tr(r,s)q

hr,s

χ̄r′,s′(τ̄) = (q̄)−
c
24 Tr(r′,s′) (q̄)h̄r′,s′ , (B.27)

with q = ei2πτ and q̄ = e−i2πτ̄ Here the trace Tr(r,s) and Tr(r′,s′) are taken within the Verma
module labeled by (r, s) and (r′, s′). In the literature χr,s and χ̄r′,s′ are referred to as “char-
acters”.

For the CFT to be consistent, its partition function must be “modular invariant” (43). The
modular group consists of discrete coordinate transformations that leave the lattice whose
fundamental domain is given by Fig. B.2 invariant. This group is generated by the T (τ →
τ + 1) and the S (τ → −1/τ) transformations. When acted upon by these transformations
the characters χr,s (with a similar expression for χ̄r′,s′) transform according to

T : χr,s(τ + 1) =
∑
(ρ,σ)

T(r,s),(ρ,σ) χρ,σ(τ)

S : χr,s(−1/τ) =
∑
(ρ,σ)

S(r,s),(ρ,σ) χρ,σ(τ).
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Here S,T are known matrices and the transformation matrices for the anti-holomorphic χ̄
are the complex conjugate of those of the holomorphic ones.)

The requirement of modular invariance,namely,

Z(τ + 1) = Z(−1/τ) = Z(τ) (B.28)

impose stringent constraints on the possible M(r,s);(r′,s′) in Equation (B.26). For c = 1/2 if
we require M(1,1),(1,1) = 1, i.e., a unique ground state, there is only one such possible M ,
namely, M(r,s);(r′,s′) = δ(r,s),(r′,s′). The corresponding partition function is given by:

ZIsing(τ) = |χI(τ)|2 + |χε(τ)|2 + |χσ(τ)|2

where

χI := χ1,1, χε := χ2,1, χσ := χ2,2 (B.29)

The explicit form of χ(r,s) is given by equation (8.15) of Ref.[ (44)]. The conformal dimensions
of primary fields and their eigenvalues under the action of the Z2 generator are summarized
in table B.1 (44).

Table B.1: Conformal dimensions of the primary fields of the Ising model, and their trans-
formation properties upon the action of the Z2 generator.

(r, s) (1,1) (2,1) (2,2)
h(r,s) 0 1/2 1/16
Z2 1 1 −1

Constructing the orbifold partition function for the Z2×Z2 critical
theory

With the brief review of the modular invariant partition function of the critical Ising model
we are ready to construct the partition function for the orbifolded Z2×Z2 model defined by
of Equation (B.24):

ZZ2×Z2(τ) =
1

2

1∑
qs=0

1∑
qτ=0

ZIsing
qs,qτ (τ)× ZIsing

qs,qτ (τ). (B.30)
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Figure B.3: (Color online) The transformation of the boundary twisted partition function
Zqs,qτ (τ) under the S and T transformations.

ZIsing
(0,1) is given in Ref.[ (44)]. It is also shown in the same reference that ZIsing

qs,qτ (τ) =

ZIsing
qs,qτ qs(τ + 1) = ZIsing

q−1
τ ,qs

(−1/τ) (see Fig. B.3), hence

ZIsing
0,0 (τ) = |χI(τ)|2 + |χε(τ)|2 + |χσ(τ)|2

ZIsing
0,1 (τ) = |χI(τ)|2 + |χε(τ)|2 − |χσ(τ)|2

ZIsing
1,0 (τ) = SZIsing

0,1 (τ)

ZIsing
1,1 (τ) = T ZIsing

1,0 (τ) (B.31)

Using the known S,T matrices of the Ising model we can compute ZIsing
1,0 and ZIsing

1,1 . Substitute
the results into Equation (B.30) we obtain the orbifolded Z2 × Z2 partition function:

ZZ2×Z2(τ) = (|χI |2 + |χε|2)2 + 2|χ2
σ|2 + (χ̄Iχε + χ̄εχI)

2 (B.32)

where the τ dependence is suppressed. When expanded in terms of χr,sχ̄r′,s′ the first term
yields 4 terms (henceforth referred to as group I terms). The second term yields 2 terms
(group II terms). The third term yields 4 terms (group III terms). Due to the prefactor 2
in the second term on the right-hand side of Equation (B.32), terms in group II appear with
multiplicity 2. It turns out that this partition function is the same as the XY model. The
first few energy levels with h+ h̄ < 2 and their quantum numbers are listed in Table B.2.

Transformation properties under the action of Z2 × Z2

To see how the contributing Verma modules of Equation (B.32) transform under the action
of Z2 × Z2, we construct operators that project the Hilbert space into subspaces carrying
various irreducible representations of Z2 × Z2. Let GA = B̃ and GB =

∏
i∈even M̃i be the

generators of Z2 × Z2. The operator that projects into subspace with eigenvalues (ηa2 , η
b
2)

(here η2 = −1 and a, b = 0, 1) under the action of GA and GB is given by

Pab =

(
1 + η−a2 GA

2

)(
1 + η−b2 GB

2

)
(B.33)
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Table B.2: The quantum numbers of the first few primary operators of the orbifold Z2 ×Z2

CFT.

h+ h̄ h− h̄ Multiplicity Terms in ZZ2×Z2

0 0 1 |χI |4
1/4 0 2 2|χσ|4
1 0 4 4|χI |2|χε|2
1 ±1 2 χ̄2

Iχ
2
ε + c.c.

5/4 ±1 8 2|χσ|4(due to the first descendant)

To filter out the Verma modules that transform according to this particular irreducible
representation, we compute

PabZZ2×Z2 :=
1

2

1∑
qτ=0

1∑
qs=0

Tr
[
PabQ

qτ e−β(Heven+Hodd)
]
qs

=
1

8

1∑
µ,ν=0

1∑
qτ=0

1∑
qs=0

η−aµ−bν2 Tr
[
Gµ
AG

ν
BQ

qτ e−β(Heven+Hodd)
]
qs

=
1

8

1∑
µ,ν=0

1∑
qτ=0

1∑
qs=0

η−aµ−bν2

[
ηqsµ2 (ZIsing

qs,qτ )(Z
Ising
qs,qτ+ν)

]
(B.34)

For example,

P00ZZ2×Z2 = (|χI |2 + |χε|2)2, (B.35)

which means only group I transform as the identity representation of Z2×Z2. For other Pab
the results are summarized in table B.3

Table B.3: Transformation properties of the contributing Verma modules in Equation (B.32)
under the action of GA and GB. For group II, the doublet records the transformation
properties of the multiplicity two Verma modules in Equation (B.32) .

Group GA GB

I 1 1
II (1,−1) (−1, 1)
III −1 −1
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Scaling Dimension for the operator driving the Z2 × Z2 SPT
transition

The operator that drives the SPT phase transition must be (1) relevant, (2) translational
invariant and (3) invariant under Z2 × Z2. In Equation (B.32) the only term that contains
operators (there are two such operators due to the multiplicity 2) satisfy these conditions
is 2|χIχε|2. The scaling dimension of (Iε)(Īε) is h + h̄ = 1 < 2 hence it is relevant. The
momentum of this operator is h− h̄ = 0 hence is translation invariant. Moreover according
to Table B.3 there operators are invariant under Z2 × Z2. It turns out that one of these
two relevant operators drives a symmetry breaking transition while the other drives the SPT
transition (See Fig. B.4). From the scaling dimension h+ h̄ = 1 we predict the gap exponent
to be 1

2−1
= 1.

Figure B.4: (Color online) A schematic phase diagram near the Z2 × Z2 SPT critical point
(the black point). The vertical and horizontal arrows correspond to perturbations associated
with the two relevant operators found in section B.4. The relevant perturbation represented
by the horizontal arrows drives the transition between the trivial SPT(blue) and the non-
trivial SPT (red). The perturbation represented by the vertical arrows drives a Landau
forbidden transition between spontaneous symmetry breaking (SB) phases where different
Z2 symmetries are broken in the two different phases (turquoise and green).

B.5 The modular invariant partition function and the

primary scaling operators of the orbifold critical

Z3 × Z3 clock model

Review of modular invariant partition function for the 3 states
Potts model
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The construction of the orbifold partition function for the Z3 × Z3 case closely mirrors the
Z2×Z2 case. But instead of two critical Ising chains, we now have two critical Potts chains.
We first review the known results for the modular invariant Z3 clock model (equivalent to
the 3-state Potts model). The 3-state Potts model shows an order-disorder phase transition.
At the critical point the Hamiltonian is given by

HPotts = −
∑
i

[
Mi +R†iRi+1 + h.c.

]
where Rj = 1, η3, η

2
3 (η3 = ei2π/3) and RjMk = η

δjk
3 MkRj. The conformal field theory for the

critical 3-state Potts model belong to the well known “minimal” model M(6, 5) (44;45). The
central charge is

c =
4

5
(B.36)

and the primary scaling operators are labeled by two pairs of indices (r, s) and (r′, s′) each
label the “holomorphic” and the “anti-holomorphic” part of the operator. The range of these
indices are given by 1 ≤ s ≤ r ≤ 4 and 1 ≤ s′ ≤ r′ ≤ 4. The scaling dimensions of the
holomorphic and anti-holomorphic parts of these operators are given by

hr,s =
(6r − 5s)2−1

120
, h̄r′,s′ =

(6r′ − 5s′)2−1

120
. (B.37)

It is easy to check that hr,s = h5−r,6−s and h̄r′,s′ = h̄5−r′,6−s′ hence there are 10 distinct
primary fields in the holomorphic and anti-holomorphic sector each.

Requiring modular invariance (B.28) for c = 4/5 yields two possible such M ’s: one with
M(r,s);(r′,s′) = δ(r,s),(r′,s′) describing the “tetra-critical Ising model”, and the other corresponds
to the 3-state Potts model described by the following partition function (44):

Z3-Potts(τ) = |χI(τ)|2 + |χε(τ)|2 + 2|χψ(τ)|2 + 2|χσ(τ)|2, (B.38)

where

χI := χ1,1 + χ4,1, χε := χ2,1 + χ3,1, χψ := χ4,3, χσ := χ3,3 (B.39)

Note that out of the 10 possible primary operators in each holomorphic/anti-holomorphic
sector only six of them contribute to the partition function. In addition, the diagonal com-
bination of the (3, 3) and (4, 3) operators from each sector appear twice. The explicit form
of χ(r,s) is given by equation (8.15) of Ref.[ (44)]. The conformal dimensions of primary fields
and their eigenvalues under the action of the Z3 generator are summarized in table B.4 (44).
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Table B.4: Conformal dimensions of the primary fields of the 3-states Potts model, and their
phases under the transformation of the Z3 generator.

(r, s) (1,1) (2,1) (3,1) (4,1) (3, 3)1,2 (4, 3)1,2

h(r,s) 0 2/5 7/5 3 1/15 2/3
Z3 1 1 1 1 (η3, η̄3) (η3, η̄3)

Constructing the orbifold partition function for the Z3×Z3 critical
theory

With the brief review of the modular invariant partition function of the critical 3-state Potts
model we are ready to construct the partition function for the orbifolded Z3 × Z3 model
defined by of Equation (B.24):

ZZ3×Z3(τ) =
1

3

2∑
qs=0

2∑
qτ=0

Z3-Potts
qs,qτ (τ)× Z3-Potts

qs,qτ (τ) (B.40)

Z3-Potts
(01) and Z3-Potts

(02) are given in Ref.[ (44)]. Using Z3-Potts
qs,qτ (τ) = Z3-Potts

qs,qτ qs (τ+1) = Z3-Potts
q−1
τ ,qs

(−1/τ),

we have

Z3-Potts
(00) (τ) = |χI(τ)|2 + |χε(τ |2 + 2|χψ(τ)|2 + 2|χσ(τ)|2

Z3-Potts
(01) (τ) = |χI(τ)|2 + |χε(τ)|2 + (η3 + η̄3)|χψ(τ)|2 + (η3 + η̄3)|χσ(τ)|2

Z3-Potts
(02) (τ) = Z3-Potts

(01) (τ)

Z3-Potts
(10) (τ) = Z3-Potts

(01) (−1/τ) = SZ3-Potts
(01) (τ)

Z3-Potts
(20) (τ) = SZ3-Potts

(02) (τ)

Z3-Potts
(12) (τ) = Z3-Potts

(10) (τ + 1) = T Z3-Potts
(10) (τ)

Z3-Potts
(11) (τ) = T Z3-Potts

(12) (τ)

Z3-Potts
(21) (τ) = T Z3-Potts

(20) (τ)

Z3-Potts
(22) (τ) = T Z3-Potts

(21) (τ) (B.41)

Using the S,T matrices of the 3-states Potts model we can compute all these terms. Substi-
tuting the results into Equation (B.40) we obtain the orbifolded Z3 × Z3 partition function:

ZZ3×Z3 = (|χI |2 + |χε|2)2 + 4(|χψ|2 + |χσ|2)2 + 4|χI χ̄ψ + χεχ̄σ|2, (B.42)

where the τ dependence is suppressed. When expanded in terms of χr,sχ̄r′,s′ the first term
yields 64 terms (henceforth referred as group I terms). The second term yields 16 terms
(group II terms). The third term yields 64 terms (group III terms). Due to the prefactor of
4 in the last two terms of Equation (B.42) group II and III terms appear with multiplicity 4.
Thus there are in total 144 terms, each corresponds to a primary scaling operator. In Table
B.5 we give the first few energy (h+ h̄) and momentum (h− h̄) eigenvalues
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Table B.5: The quantum numbers of the first few primary operators of the orbifold Z3 ×Z3

CFT.

h+ h̄ h− h̄ Multiplicity Terms in ZZ3×Z3

0 0 1 |χI |4
4/15 0 4 4|χσ|4
4/5 0 2 2|χI |2|χε|2

14/15 0 4 4|χε|2|χσ|2
17/15 ±1 8 4(χ̄I χ̄σχψχε + c.c)

4/15+1 ±1 16 4|χσ|4(due to the first descendants)
4/3 0 4 4|χI |2|χψ|2

22/15 0 8 8|χσ|2|χψ|2
8/5 0 1 |χε|4

Transformation properties under the action of Z3 × Z3

Following the same procedure in B.4 we construct operators that project the Hilbert space
into subspaces carrying various irreducible representation of Z3 × Z3 which is generated by
GA = B̃ and GB =

∏
i∈even M̃i. The projector into subspace with eigenvalues (ηa3 , η

b
3) (here

η3 = ei2π/3 and a, b = 0, 1, 2) under the action of GA and GB is given by

Pab =

(
1 + η−a3 GA + ηa3G

2
A

3

)(
1 + η−b3 GB + ηb3G

2
B

3

)
(B.43)

Analogous to Equation (B.34) we filter out the Verma modules that transform according to
this particular irreducible representation by computing

PabZZ3×Z3 :=
1

27

2∑
qτ ,qs,µ,ν=0

η−aµ−bν3

[
ηqsµ3 (Z3-Potts

qs,qτ )(Z3-Potts
qs,qτ+ν)

]
(B.44)

For example,

P00ZZ3×Z3 = (|χI |2 + |χε|2)2, (B.45)

which means only group I transform as the identity representation of Z3×Z3. For other Pab
the results are summarized in table B.6

Scaling Dimension for the operator driving the Z3 × Z3 SPT
transition

From Table B.5 and Equation (B.45) it is seen that the translation-invariant (i.e. h− h̄ = 0),
relevant(i.e. h + h̄ < 2), Z3 × Z3 invariant operators either have scaling dimensions 4/5 or



B. APPENDIX FOR CHAPTER 3 72

Table B.6: Transformation properties of the contributing Verma modules in Equation (B.42)
under the action of GA and GB. For group II and group III, the quadruplet records the
transformation properties of the multiplicity four Verma modules in Equation (B.42) .

Group GA GB

I 1 1
II (η3, η̄3, 1, 1) (1, 1, η3, η̄3)
III (η3, η3, η̄3, η̄3) (η3, η̄3, η3, η̄3)

8/5. Through a comparison with the numerical result for the gap exponent in section 9 of
the main text, we identify one of the operators with scaling dimension 4/5 as responsible
for the opening of the energy gap in the SPT phase transition. The predicted gap exponent
is 1

2−4/5
= 5/6 which agrees reasonably well with the numerical gap exponent. Moreover

similar to the Z2 × Z2 case there are two operators with the same scaling dimension (4/5).
Again one of these operators drives a symmetry breaking transition while the other drives
the SPT transition, hence the phase diagram is similar to Fig. B.4.

B.6 The modular invariant partition function and the

primary scaling operators of the orbifold critical

Z4 × Z4 clock model

Review of modular invariant partition function for the Z4 clock
model

The Z4 clock model undergoes an order-disorder transition. The Hamiltonian at criticality
between the ordered is given by

HZ4 = −
N∑
i=1

[
Mi +R†iRi+1 + h.c.

]
(B.46)

where Rj = 1, η4, η
2
4, η

3
4 where η4 = ei2π/4, and RjMk = η

δjk
4 MkRj. With periodic boundary

condition, RN+1 = R1, it can be exactly mapped onto two decoupled periodic Ising chains (46)

as follows. For the Z4 clock model the Hilbert space for each site j is 4-dimensional. In the
following, we shall regard this 4-dimensional Hilbert space as the tensor product of two 2-
dimensional Hilbert spaces associated with site 2j − 1 and 2j. We then view each of the
2-dimensional space as the Hilbert space of an Ising spin. In this way the Z4 clock model
with N sites can be viewed as an Ising model with 2N sites.
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More explicitly, under the unitary transformation U =
∏

i Ui, where

Ui =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,

Equation (B.46) becomes

U †HZ4U = −
N∑
i=1

(X2i−1 + Z2i−1Z2i+1)−
N∑
i=1

(X2i + Z2iZ2i+2) (B.47)

= H Ising
odd +H Ising

even

where Xi and Zi denote the 2× 2 Pauli matrices σxi and σzi . Thus the partition function of
the Z4 clock model under periodic boundary condition is given by

Z4-clock
(0,0) (τ) = ZIsing

(0,0) (τ)× ZIsing
(0,0) (τ)

The fact that Ising model has central charge c = 1/2 implies the central charge of the critical
Z4 clock model to be 1/2 + 1/2 = 1.

CFT with c = 1 has infinitely many Verma modules (47). The scaling dimension of the
primary fields, which can take any non-negative values, is parametrized by h = x2/4 where
x is a non-negative real number. The characters associated with these Verma modules are
given (48) by

χh(q) =

{
1
η(q)

qx
2/4, for x /∈ Z

1
η(q)

(
qx

2/4 − q(x+2)2/4
)
, for x ∈ Z

(B.48)

where

η(q) = q1/24

∞∏
n=1

(1− qn) . (B.49)

Because later on we shall perform orbifolding it is necessary to consider the Z4 clock model
under twisted spatial boundary condition. With the spatial boundary condition twisted
by the Z4 generator, i.e., RN+1 = η4R1, the last two terms, namely Z2NZ2 + Z2N−1Z1 in
Equation (B.47), are replaced by

Z2NZ2 + Z2N−1Z1 → Z2NZ1 − Z2N−1Z2

In the language of Ising model, the above replacement creates an overpass connecting the
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(a) (b)

(c) =

Figure B.5: (Color online) The mapping of Z4-clock model with different spatially twisted
boundary conditions to Ising models. Each black dot represents the Xi term in the Hamil-
tonian and each blue bond represents the term ZiZj (an antiferromagnetic bond). The red
bond represents −ZiZj. (a)With periodic boundary condition, the Z4 clock model maps to
two decoupled Ising chains. (b)When the boundary condition is twisted by a Z4 generator,
the Z4 clock model maps to a single Ising chain twice as long with one antiferromagnetic
bond. (c)When the boundary condition is twisted by the square of the Z4 generator, the Z4

clock model maps to two decoupled Ising chains, each having an antiferromagnetic bond.

even chain to the odd chain and a sign change of one bond (the red bond in Fig. B.5(b)).
Thus we arrive at an Ising chain twice as long and with the spatial boundary condition
twisted by the Z2 generator. As a result

Z4-clock
(1,0) (τ) = ZIsing

(1,0) (τ/2). (B.50)

The reason the modular parameter of the Ising partition function is half that of the Z4 clock
partition function is because the Ising chain has twice the length in the spatial direction.
The same argument applies if the boundary is twisted by the inverse of the Z4 generator
(RN+1 = η3

4R1) instead, i.e.,

Z4-clock
(3,0) (τ) = ZIsing

(1,0) (τ/2). (B.51)

Similarly, when the spatial direction is RN+1 = η2
4R1, the Hamiltonian of the Ising model

becomes that of two decoupled Ising chain each having a sign-flipped bond equivalent to the
Z2 twisted boundary condition (See Fig. B.5(c)). The resulting partition function is given
by

Z4-clock
(2,0) (τ) = ZIsing

(1,0) (τ)× ZIsing
(1,0) (τ)
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Using the known S and T matrices for the Ising model, other Z4-clock
(qs,qt)

(τ) can be determined

Z4-clock
(0,1) (τ) = Z4-clock

(0,3) (τ) = SZ4-clock
(1,0) (τ) = ZIsing

(0,1) (2τ)

Z4-clock
(1,3) (τ) = Z4-clock

(3,1) (τ) = T Z4-clock
(3,0) (τ) = ZIsing

(1,0) (τ/2 + 1/2)

Z4-clock
(1,1) (τ) = Z4-clock

(3,3) (τ) = SZ4-clock
(1,3) (τ) = ZIsing

(1,1) (τ/2 + 1/2)

Z4-clock
(1,2) (τ) = Z4-clock

(3,2) (τ) = T Z4-clock
(1,3) (τ) = ZIsing

(1,1) (τ/2)

Z4-clock
(2,1) (τ) = Z4-clock

(2,3) (τ) = SZ4-clock
(1,2) (τ) = ZIsing

(1,1) (2τ)

Z4-clock
(0,2) (τ) = SZ4-clock

(2,0) (τ) = ZIsing
(0,1) (τ)× ZIsing

(0,1) (τ)

Z4-clock
(2,2) (τ) = T Z4-clock

(2,0) (τ) = ZIsing
(1,1) (τ)× ZIsing

(1,1) (τ) (B.52)

Orbifold partition function for the critical Z4 × Z4 CFT

Using these result and Equation (B.24) we can calculate the orbifolded Z4 × Z4 partition
function

ZZ4×Z4(τ) =
1

4

3∑
qs=0

3∑
qτ=0

Z4-clock
qs,qτ (τ)× Z4-clock

qs,qτ (τ)

=
(
|χI |2 + |χJ |2 + 2|χY |2 + |χε|2 + χ̄αχβ + χ̄βχα

)2

+
(
χ̄IχJ + χ̄JχI + 2|χY |2 + |χε|2 + χ̄αχβ + χ̄βχα

)2

+ 2
(
|χα|2 + |χβ|2 + |χε|2 + χ̄Y (χI + χJ) + (χ̄I + χ̄J)χY

)2

+ 4
(
|χσ|2 + |χτ |2

)2
+ 4 (χ̄σχτ + χ̄τχσ)2

+ 4|χ̄O1χO3 + χ̄O3χO2 + χ̄O2χO4 + χ̄O4χO1|2, (B.53)
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where

χI = χ0 +
∑
n>0

(χ8n2 + χ4n2)

χJ =
∑
n>0

(
χ8n2 + χ(2n−1)2

)
χY =

∑
n>0

χ2(2n−1)2 ; χε =
∑
n

χ(4n+1)2/2

χα =
∑
n

χ(8n+1)2/8; χβ =
∑
n

χ(8n+3)2/8

χσ =
∑
n

χ(8n+1)2/16; χτ =
∑
n

χ(8n+3)2/16

χO1 =
∑
n

χ(16n+1)2/32; χO2 =
∑
n

χ(16n+7)2/32

χO3 =
∑
n

χ(16n+3)2/32; χO4 =
∑
n

χ(16n+5)2/32. (B.54)

The χh in the above equations are given by Equation (B.48). The scaling dimensions of
the highest weight states associated with the Verma modules that generate these χh are
summarized in Table B.7.

Table B.7: Scaling dimensions of the extended primary fields of the Z4 clock model.

field I J Y ε α β σ τ O1 O2 O3 O4

h 0 1 2 1/2 1/8 9/8 1/16 9/16 1/32 49/32 9/32 25/32

Let’s refer to the six terms in Equation (B.53) as Group I, II, III, IV, V, and VI re-
spectively. Due to the prefactor of 2, Group III elements appear in doublets. Due to the
prefactor of 4, Group IV, V and VI elements appear with multiplicity 2. In Table B.8 we
list the first few primary fields with scaling dimension h+h̄ < 2 and their quantum numbers.

Transformation properties under the action of Z4 × Z4

Similar to section B.4 and B.5 we resolve the Verma modules that generate the partition
function in Equation (B.53) into different irreducible representation spaces of Z4 × Z4. As
done in previous sections we construct the symmetry projection operators

PabZZ4×Z4 :=
1

64

3∑
qτ ,qs=0

3∑
µ,ν=0

η−aµ−bν+qsµ
4

[
Z4-clock
qs,qτ Z4-clock

qs,qτ+ν

]
(B.55)

The results are summarized in Table B.9.
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Table B.8: The quantum numbers of the first few low scaling dimension primary operators
of the orbifold Z4 × Z4 CFT.

h+ h̄ h− h̄ Multiplicity Terms in ZZ4×Z4

0 0 1 |χI |4
1/4 0 4 4|χσ|4
1/2 0 2 2|χα|4
5/8 0 4 4|χO1χO3|2
1 0 2 2|χIχε|2

9/8 ±1 8 4
(
χ̄2
O1
χO3χO4 + c.c.

)
5/4 0 16+4 16|χσχτ |2 + 4|χαχε|2
5/4 ±1 8+4 4 (χ̄σχτ )

2 + 2|χI |2χ̄αχβ + c.c.
5/4 ±1 16 4|χσ|4(first descendants)
3/2 ±1 8 2|χα|4(first descendants)
13/8 0 4 4|χO1χO4|2
13/8 ±1 16 4|χO1χO3|2(first descendants)

Table B.9: Transformation properties of the contributing Verma modules in Equation (B.53)
under the action of GA and GB. For Group III to VI, the multiplet records the transformation
properties of the corresponding degenerate Verma modules in Equation (B.53).

Group GA GB

I 1 1
II −1 −1
III (1,−1) (−1, 1)
IV (1, 1, η4, η̄4) (η4, η̄4, 1, 1)
V (−1,−1, η4, η̄4) (η4, η̄4,−1,−1)
VI (η4, η4, η̄4, η̄4) (η4, η̄4, η4, η̄4)

The term 2|χIχε|2 in Equation (B.53) yields two primary fields with scaling dimension
h+ h̄ = 1 (hence are relevant) and are invariant under Z4 ×Z4 and translation. Hence they
are qualified as the gap generating operator. The gap exponent is 1

2−1
= 1. Similar to the

Z2 × Z2 and Z3 × Z3 cases there are two operators with the same scaling dimension (1). As
the above two cases one of these operators drives a symmetry breaking transition while the
other drives the SPT transition, hence the phase diagram is similar to Fig. B.4.
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B.7 Some details of the density matrix

renormalization group calculations

The truncation error estimate

We determine the ground state phase diagram and properties of the model Hamiltonian in
Equation (3.9) by extensive and highly accurate density-matrix renormalization group (22)

(DMRG) calculations. We consider both periodic (PBC) and open (OBC) boundary condi-
tions. Careful study of the dependence on the finite system sizes enables the extrapolation
to the thermodynamic limit. For OBC, we keep up to m = 1000 states in the DMRG block
with around 24 sweeps to get converged results. The truncation error is estimated to be no
bigger than ε = 5× 10−9. For PBC, we keep up to m = 1100 states with around 60 sweeps
for converged results. In this case, the truncation error is of the order ε = 10−5.

The entanglement entropy

For conformal invariant system in one dimension, the central charge can be extracted by
fitting the von Neumann entanglement entropy to the following analytical form (34)

S(x) =
c

3η
ln(x) + constant. (B.56)

Here η = 1(2) for the periodic (open) boundary condition, respectively. The parameter x
is given by x = ηN

l
sin(πl

N
) for a cut dividing the chain into segments of length l and N − l.

For each system size under both OBC and PBC, we first calculate the entanglement entropy
by keeping a fixed number of states m, hence yielding finite truncation error ε. We then
perform systematic m dependence study which allows us to extrapolate to the ε = 0 limit.
For each system size the resulting entanglement entropy is fit to Equation (B.56) to generate
the data shown in Fig. 3.4. This result enables us to estimate the central charge to be c = 8

5
.

The exponent for the energy gap is obtained in a similar way.

B.8 The on-site global symmetry of conformal field

theories

In order to determine which CFT can describe the critical points between bosonic SPT
phases, it is important to understand the on-site symmetries of CFTs. This is because the
critical theory should at least contain the protection symmetry (which is on-site for bosonic
SPTS) of the SPT phases on either side. In Ref. (49) it is shown that a particular type of
lattice models (the “RSOS models”) reproduce the minimal model CFTs in the continuum
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limit. Moreover, the symmetry of such lattice model is related to that of the Dynkin dia-
grams which are used to classify the modular invariant partition functions (50;49). However
this elegant result does not answer the question whether the continuum theory has emergent
symmetry beyond that of the lattice model. In this appendix we briefly review the results
of Ref. (51;35) which answers this question.

Figure B.6: (Color online) The space-time torus with spatial and temporal boundary con-
dition twisted by group elements gs and gτ . The path in red picks up the group element
gτgs, while the path in blue picks up the group element gsgτ . Since the path in red can be
deformed into the path in blue, gs and gτ need to commute so that the boundary condition
is self-consistent.

The key idea of Ref. (35) is the following. Let’s assume the CFT in question has an on-site
symmetry group G. This means G commutes with the Virasoro algebra hence each Verma
module must carry an irreducible representation of G. Let Zm be any abelian subgroup of G.
We can use Zm to perform orbifolding. (Note that in order for the space and time symmetry
twists to be consistent with each other on a torus the respective elements we use to twist
the space and time boundary conditions must commute (see figure B.6). Moreover, if the
Zm irreducible representations are correctly assigned to the Verma modules the resulting
orbifolded partition is modular invariant. Therefore to detect whether an on-site symmetry
group contains Zm as an abelian subgroup we just need to see whether it possible to assign
Zm irreducible representations to the Verma modules so that after orbifolding the partition
function is modular invariant. For discrete groups after knowing all abelian subgroups we
can reconstruct the total group G. This is essentially the strategy followed by Ref. (35).

More explicitly, let the Hilbert space consistent with a spatial boundary condition in-
volving a twist generated by ρgs (ρ is the generator of certain abelian subgroup Zm and
gs = 0, ...,m− 1)

H(gs) = ⊕i,j ⊕
M(gs)

ij

k=1 (Vi ⊗ V̄j)k (B.57)
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where Vi (V̄i) is the ith Verma module in the holomorphic (anti-holomorphic) sector and

M(gs)
ij is a non-negative integer labeling the multiplicity of the Vi ⊗ V̄j modules. Moreover,

for the CFT to have a unique ground state, we require the vacuum module (i = 1) only

shows up once in the periodic sector, i.e., M(gs)
11 = δ0,gs .

Next we assign irreducible representation to the Verma modules:

ρgτ (Vi ⊗ V̄j)k = ηQ(gτ ;gs,i,j,k)
m (Vi ⊗ V̄j)k (B.58)

where gτ = 0, ...,m − 1, ηm = e
i2π
m and Q(gτ ; gs, i, j, k) ∈ 0, ...,m− 1 is called “symmetry

charge” in Ref. (35). Combine Equation (B.57) and Equation (B.58) we obtain the following
space-time boundary twisted partition function on a torus with modular parameter τ

Zgs,gτ (τ) = TrH(gs)(qL0−c/24q̄L̄0−c/24qτ ) =
∑
i,j

M
(gs)
ij∑

k=1

ζ
Q(gτ ;gs,i,j,k)
N χi(τ)χ̄j(τ)


(B.59)

The consistency conditions

So far the abelian subgroup Zm as well as M(gs)
ij and Q(gτ ; gs, i, j, k) are unknown. They

need to be determined subjected to the following consistency conditions. (1) When there
is no spatial boundary condition twist the Hilbert space in Equation (B.57) must return
to that of the periodic boundary condition. Moreover in the case where there is also no
time boundary condition twist the partition function must agree with the modular invariant
partition function Z0,0(τ). (2) The Zgs,gτ (τ) in Equation (B.59) must transform under the
generators (S and T) of the modular transformation as (see Fig. B.3):

Zgs,gτ (τ) = Zgs,gτgs(τ + 1) = Zg−1
τ ,gs

(−1/τ)

(3) M(gs)
11 = δ0,gs , M

(gs)
ij = non-negative integer, and Q(gτ ; gs, i, j, k) = 0, ...,m − 1. (1)-(3)

pose strong constraints on the possible abelian subgroup Zm and the allowed assignment of
the irreducible representations (i.e. Q(gτ ; gs, i, j, k)) to each Verma module.

The on-site symmetry of minimal models

Under constants (1)-(3) in the previous subsection Ref. (35) solved the possible abelian sub-
groups and their symmetry representations for the all minimal models. By patching these
abelian subgroups together the author reached the following conclusion: the on-site symme-
tries of the unitary minimal models are exactly the same as those predicted by the lattice
RSOS models (49). Hence there is no emergent symmetry! Thus, for most of the unitary
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minimal models the symmetry is Z2. The only exceptions are 3-states Potts and tri-critical
3-state Potts models where the symmetry is S3. Finally for the minimal model labeled by
E7, E8, where there is no symmetry.
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