
UC San Diego
UC San Diego Previously Published Works

Title
Molecular mechanisms underlying cellular effects of human MEK1 mutations

Permalink
https://escholarship.org/uc/item/5mt1w93g

Journal
Molecular Biology of the Cell, 32(9)

ISSN
1059-1524

Authors
Marmion, Robert A
Yang, Liu
Goyal, Yogesh
et al.

Publication Date
2021-04-19

DOI
10.1091/mbc.e20-10-0625

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, available at 
https://creativecommons.org/licenses/by-nc-sa/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5mt1w93g
https://escholarship.org/uc/item/5mt1w93g#author
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


974 | R. A. Marmion et al. Molecular Biology of the Cell

MBoC | ARTICLE

Molecular mechanisms underlying cellular effects 
of human MEK1 mutations

ABSTRACT Terminal regions of Drosophila embryos are patterned by signaling through ERK, 
which is genetically deregulated in multiple human diseases. Quantitative studies of terminal 
patterning have been recently used to investigate gain-of-function variants of human MEK1, 
encoding the MEK kinase that directly activates ERK by dual phosphorylation. Unexpectedly, 
several mutations reduced ERK activation by extracellular signals, possibly through a nega-
tive feedback triggered by signal-independent activity of the mutant variants. Here we pres-
ent experimental evidence supporting this model. Using a MEK variant that combines a muta-
tion within the negative regulatory region with alanine substitutions in the activation loop, we 
prove that pathogenic variants indeed acquire signal-independent kinase activity. We also 
demonstrate that signal-dependent activation of these variants is independent of kinase sup-
pressor of Ras, a conserved adaptor that is indispensable for activation of normal MEK. Fi-
nally, we show that attenuation of ERK activation by extracellular signals stems from tran-
scriptional induction of Mkp3, a dual specificity phosphatase that deactivates ERK by 
dephosphorylation. These findings in the Drosophila embryo highlight its power for investi-
gating diverse effects of human disease mutations.

INTRODUCTION
Somatic mutations in genes encoding components of the RAS path-
way have been recognized as drivers of tumorigenesis since the 
1990s (Hanahan and Weinberg, 2000; Avruch, 2007; Roberts and 
Der, 2007; Hanahan and Weinberg, 2011; Poulikakos and Solit, 
2011; Chapman et al., 2014). More recently, germline mutations in 
the same genes have been associated with developmental dis-
eases, collectively known as RASopathies (Rauen, 2013; Edwards 
and Gelb, 2016). These mutations, estimated to affect ∼1/1000 

human births, produce a broad spectrum of phenotypes, including 
heart defects, stunted growth, and neurocognitive impairments 
(Tartaglia and Gelb, 2010; Maher et al., 2016, 2018b). Hundreds of 
such mutations have already been identified and many more are 
likely to be discovered by personalized sequencing projects. What 
is sorely lacking, however, is a rigorous strategy for investigating the 
functional consequences of these mutations in vivo. To address this 
challenge, we have recently started to use quantitative experiments 
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in Drosophila, capitalizing on the reproducible nature of endoge-
nous signaling events and on the large suite of techniques for tar-
geted genetic perturbations at essentially all levels of the RAS path-
way (Ashton-Beaucage and Therrien, 2017).

The present study is motivated by a feedback model that has 
emerged from our work on mutations affecting MEK1 kinase (Goyal 
et al., 2017a), a core component of pathway (Bromberg-White et al., 
2012; Futran et al., 2013). Kinase activity of MEK requires its phos-
phorylation by RAF, an upstream kinase of the RAS cascade (Futran 
et al., 2013). We discovered that although pathogenic variants are 
clearly activating at the molecular level, they can cause both ectopic 
pathway activation and reduction of its sensitivity to extracellular 
signals (Jindal et al., 2015; Goyal et al., 2017a, b). Both effects could 
be explained using a mathematical model whereby the RAF-inde-
pendent activity of a mutant kinase triggers the expression of inhibi-
tors that desensitize the pathway to future activation by extracellular 
cues. Here we provide direct proof of this model by identifying the 
molecular nature of the negative feedback. Furthermore, we extend 
our mechanistic analysis of activating mutations and show that they 
make MEK1 independent of KSR, an adaptor protein which is es-
sential for ligand-dependent signal transduction under normal con-
ditions (Patel and Shvartsman, 2018).

Our approach to quantitative studies of disease mutations relies 
on imaging pathway activation in the early Drosophila embryo, a 
time when all intracellular pathway components are uniformly ex-
pressed but remain inactive until signal transduction is initiated by 
locally secreted extracellular ligands of the cell surface receptor ty-
rosine kinases (RTKs) (Figure 1A). The first of these RTKs is Torso, 
which is provided with the active form of ligand (Trunk) at the poles 
of the embryo (Goyal et al., 2018). Torso signaling is responsible for 
the RAS-dependent induction of genes involved in the formation of 
the nonsegmented terminal structures of the future larva. RAS sig-
naling induced by Torso can be visualized in several ways, including 
immunohistochemistry using antibodies recognizing the dually 
phosphorylated form of ERK (dpERK), the terminal kinase of the RAS 
pathway, and a direct substrate of active MEK (Gabay et al., 1997). 
We established a robust approach for pairwise comparison of ERK 
activation between normal (wild type [WT]) and genetically per-
turbed embryos (Coppey et al., 2008). In particular, one can study 
the effect of targeted expression of disease variants of MEK.

We used the Gal4-UAS system to overexpress MEK variants on 
top of normal levels of WT MEK (Duffy, 2002). We used GFP-labeled 
WT embryos as internal control for all experimental quantification 
Additionally, we have previously demonstrated that mutant MEK 
has no difference in protein stability or localization (Goyal et al., 
2017a). Importantly, we additionally showed that increased levels of 
WT MEK do not affect the pattern of ERK activation, which means 
that MEK is not a limiting pathway component and provides a refer-
ence point for quantifying the effects caused by targeted expression 
of disease variants (Goyal et al., 2017a). We use this feature of RAS 
signaling in the early embryo to experimentally test the main as-
sumptions of our model: ligand-independent MEK activity and tran-
scriptional induction of a negative regulator. Most of our experi-
ments use the MEKF53S variant, which was identified in individuals 
with cardiofaciocutaneous syndrome (CFC), a form of RASopathy 
that is characterized by mild craniofacial dysmorphia and pulmonary 
valve stenosis (Figure 1, B and C) (Rauen, 1993). Since the MEKF53S 
substitution impacts the negative regulatory region (NRR) which 
keeps MEK inactive in the absence of phosphorylation by RAF, ME-
KF53S can be partially active even in cells not exposed to RTK signal-
ing (Fischmann et al., 2009). Here we provide direct proof of RAF-
independent activity in vivo and show that it causes the expression 

of an ERK phosphatase. We used genetic experiments to show that 
it is indeed the critical component of the feedback loop. We also 
show that MEKF53S is more sensitive to activation by ligands and 
suggest that this is a common property of disease variants.

RESULTS
RAF-independent kinase activity
In contrast to what is observed with WT MEK, overexpression of 
MEKF53S and other disease variants leads to significant changes in 
the spatial pattern of active ERK: it is significantly elevated in the 
middle of the embryo and strongly down-regulated at the poles 
(Goyal et al., 2017a). Ectopic activation in the region maximally re-
moved from the poles, where the diffusible ligand of Torso is pro-
duced, can be explained in two, nonmutually exclusive ways. Mu-
tant MEKs can be enzymatically active even in the absence of 
ligand-dependent phosphorylation by RAF, which can be caused by 
disrupted intramolecular interactions with the NRR of MEK 
(Fischmann et al., 2009; Jindal et al., 2017a). Mutant MEKs can also 
be more sensitive to extracellular ligands, which can induce RAF-
dependent phosphorylation and kinase activation even at residual 
levels of Torso ligand that are insufficient for causing activation of 
WT MEK (Yeung et al., 2020).

The differential contributions of two effects can be probed using 
a protein that combines the MEKF53S substitution with two alanine 
substitutions of the two serines that are phosphorylated by RAF and 
are essential for activation of WT MEK (Mansour et al., 1996). If ec-
topic activation in the middle of the embryo is caused solely by 
RAF-independent activity, it should be indistinguishable from the 
effect caused by overexpression of the unphosphorylatable MEKF53S 
variant (MEKF53S SSAA) (Figure 1D). To test this prediction, we gener-
ated transgenic flies in which the UAS construct controlling such a 
variant is inserted in the same region of the genome as the UAS-
MEK constructs used in our earlier studies. We found that the 
midembryo ERK activation by the double mutant was significantly 
increased relative to the WT (p = 0.000131), just like the variant with 
an intact activation loop (p = 0.000471) (Figure 1, E–G; Supplemen-
tal Figure S1). We also detected significant down-regulation of ERK 
activation at the poles, since strongly overexpressed mutant protein 
competes with endogenous MEK and interferes with its phosphory-
lation and activation by RAF. Caution should be utilized when com-
paring the poles of these two mutants, since this dominant-negative 
effect caused by the SSAA mutation is different from the induced 
negative feedback that we have previously described with GOF mu-
tations (Goyal et al., 2017a). We will address this in the final section 
of the paper. What is more important for the current work is the ef-
fect in the middle of the embryo, which unambiguously establishes 
small but measurable catalytic activity of unphosphorylated MEKF53S 
and is consistent with previous kinetic data from studies with puri-
fied MEK and ERK proteins (Jindal et al., 2017a; Yeung et al., 2020).

Increased sensitivity to activation by RAF
Several MEK disease variants, including MEKF53S, display an in-
creased rate of phosphorylation by RAF in vitro, suggesting that 
they are more sensitive to activation by extracellular signals in vivo 
(Yeung et al., 2020). However, in vitro studies that led to this conclu-
sion relied on a binary system containing MEK1 and preactivated 
RAF, whereas MEK activation in vivo requires kinase suppressor of 
Ras (KSR), a protein scaffold essential for the RTK-dependent ERK 
signaling (Therrien et al., 1995; Udell et al., 2011). KSR forms hetero-
trimeric complexes with both MEK and RAF, which is critical both 
for the allosteric activation of RAF and for the RAF-dependent 
activation of WT MEK (Brennan et al., 2011; Dhawan et al., 2016; 
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Lavoie et al., 2018). Given the critical role of KSR in the activation of 
WT MEK, we examined the effects on disease variants.

Consistent with its essential role in the RTK-dependent signaling, 
we found that ERK activation by Torso is abolished when ksr expres-
sion is depleted by RNA interference (RNAi) (Figure 2, A and D). 
Remarkably, this effect could be significantly rescued by expressing 
the MEKF53S variant (Figure 2, B and E). Importantly, expression of 
the WT MEK could not rescue the effect of ksr knockdown (Figure 2, 
C and F). The rescuing effect is also seen by examining the transcrip-

tional effects of ERK activation by Torso (Casanova and Struhl, 1989; 
Smits and Shvartsman, 2020). Specifically, ERK signaling at the ter-
mini induces the expression of zygotic genes needed for the forma-
tion of the terminal structures of the future larva. One of these 
genes, tailless (tll), is expressed in both anterior and posterior do-
mains (Strecker et al., 1986). The anterior domain of tll reflects the 
joint action of several patterning cues, but the posterior domain 
depends on Torso alone and serves as a sensitive readout of path-
way activation (Figure 2G) (Kim et al., 2013). Consistent with the 

FIGURE 1: Testing ligand-independent signaling. (A) Simplified schematic of the Drosophila RAS signaling pathway, 
showing the key components. Drosophila gene names are listed under their conserved homologue. (B) Structural model 
of MEK1 from two perspectives. Mutated positions utilized throughout the paper are colored in magenta. The NRR is 
indicated by a bracket. (C) Multiple alignment showing conservation domain residues. Highlighted (in magenta) are 
three mutations used in this study: two from RASopathies (F53S and Y130C) and one from cancer (E203K). (D) In the 
presence of signaling through RAF, MEK is phosphorylated at serines at positions 218 and 222. Dually phosphorylated 
MEK then phosphorylates ERK at a threonine-tyrosine pair at positions 202 and 204, respectively. (E, F) Pairwise 
comparisons of the spatial dpERK profiles in nuclear cycle 14 embryos for WT (gray) and mutant (red) embryos. (E) WT 
(n = 12) and MTD>MEKF53S (n = 13) (Goyal et al., 2017a). (F) WT (n = 13) and MTD>MEKF53S S218A S222A (referred to as 
MTD>MEKF53S SSAA) (n = 26). Error bars denote standard error of the mean. (G) Bar graphs of the in vivo constitutive 
activity in the middle of the embryo (blue dashed box in E and F) of MTD>MEKF53S and MTD>MEKF53S SSAA. The WT 
controls are in gray, while the mutants are in red. P values are obtained by Student’s t test (two-sided, homoscedastic): 
***P < 0.001.
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effects of ksr depletion on Torso-dependent ERK activation, we 
found that complete loss of posterior tll expression in the ksr knock-
down embryos is substantially rescued by the concurrent overex-
pression of MEKF53S but not WT MEK (Figure 2, H and I). Thus, in 
contrast to WT MEK, the disease MEK variant can be activated by 
RAF independently of KSR. The middle of the embryo, which nor-
mally is not subject to ERK signaling, provides a readout of the quan-
tity of constitutive activity by mutant MEK. The slight increase that 
we see in the middle of the MEKF53S mutant is not enough to explain 
the substantial increase of signaling that we measure in the termini, 
which strongly suggests that rescue is indeed ligand dependent.

This conclusion is further supported by analyzing the morphoge-
netic effects of terminal signaling, such as the formation of the larval 
filzkörper, tubular structures needed for respiration (Figure 3, A and 
A’, green arrowhead) (Jurgens et al., 1984; Dalton et al., 1989). Con-
sistent with previous studies, embryos with RNAi-depleted ksr or raf 
fail to form filzkörper (Figure 3, B–C’, B’ and C’, gray arrowhead). 
However, filzkörper are restored in a significant fraction of embryos 
where ksr depletion is combined with expression of MEKF53S (Figure 
3, D and D’). Importantly, overexpression of WT MEK does not res-
cue filzkörper (Figure 3, E and E’). Even though the rescuing capac-
ity of the MEKF53S variant does not require KSR, we found that it still 
depends on RAF and is lost in embryos where expression of MEKF53S 
was combined with the knockdown raf (Figure 3, F and F’). This 

means that the rescuing effect of MEKF53S is strictly dependent on 
upstream signaling. Importantly, the KSR-independent rescuing 
ability was not limited to a single MEK variant and was also ob-
served for the E203K and Y130C variants that were identified in 
human cancer and CFC syndrome, respectively (Figure 3, G and I) 
(Rodriguez-Viciana et al., 2006; Bentivegna et al., 2008).

Transcriptional induction of Mkp3 by constitutively active 
MEK
How can MEK variants that have signal-independent activity and 
are also more prone to activation by extracellular signals cause a 
strong reduction of ERK activation by Torso in the terminal regions 
of the embryo? We proposed that this paradoxical behavior is 
caused by a hypothetical inhibitor of ERK activation that is induced 
by constitutive activity of MEK variants and desensitizes the ERK 
cascade to activation by RTK ligands (Goyal et al., 2018). Genetic 
studies in Drosophila and other model systems have identified sev-
eral inhibitors, such as Sprouty, that are transcriptionally induced by 
ERK and can inhibit ERK activation at multiple points within the ERK 
cascade (Musacchio and Perrimon, 1996; Sawamoto et al., 1996; 
Casci et al., 1999; Neben et al., 2019). Negative regulators may be 
expressed in a tissue-specific manner, rendering certain tissues par-
ticularly sensitive to increased RAS signaling as was suggested for 
germline mutations of HRAS in mice (Chen et al., 2009). Functional 

FIGURE 2: Increased sensitivity to extracellular signals. (A–C) Pairwise comparisons of the spatial dpERK profiles in 
nuclear cycle 14 embryos for WT (gray) and mutant (red) embryos. (A) WT (n = 11) and MTD> ksr RNAi (n = 11). (B) WT 
(n = 10) and MTD>MEKF53S + ksr RNAi (n = 23). Error bars denote standard error of the mean. (C) WT (n = 10) and 
MTD>MEKWT + ksr RNAi (n = 24). (D–F) Comparative analysis of dpERK levels in the anterior (A), middle (M), and 
posterior (P). regions of the embryo. The analysis performed corresponds to the same embryo data used to generate 
the spatial plots in A–C. P values were obtained by Student’s t test (two-sided, homoscedastic): ****P < 0.0001, 
**P < 0.01, *P < 0.05, NS: P > 0.05. Error bars denote standard error of the mean. (G–I) Fluorescence in situ hybridization 
for tailless (tll) in nuclear cycle 14 embryos. Arrows denote the boundaries of tll expression. (G) WT. (H) MTD>MEKF53S + 
ksr RNAi, tll expression was rescued in the posterior. (I) MTD>MEKWT + ksr RNAi, tll expression was eliminated in the 
posterior of the embryo. Scale bar, 75 µm.
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effects of these feedbacks on pathway activation and function in 
vivo are underexplored.

As an unbiased way of identifying the candidate regulators that 
could potentially explain the observed desensitization of the ERK 
cascade in our system, we used RNA sequencing (RNA-seq) to com-
pare maternally deposited transcripts in embryos from mothers ex-
pressing either MEKF53S or WT MEK (Figure 4A). We found that sig-
nal-independent constitutive activity of MEKF53S leads to pronounced 
ERK activation in the nurse cells, which are connected to the oocyte 

by stable cytoplasmic bridges and supply the future oocyte with 
multiple cytoplasmic components, including all maternally depos-
ited transcripts encoding the RAS pathway components (Supple-
mental Figure S2). This observation is crucial, since it highlights that 
previous stages of development contribute to subsequent develop-
mental events. We hypothesized that ectopic ERK signaling changes 
the sensitivity to subsequent ERK signaling through transcriptional 
feedbacks in the maternal contribution in the unfertilized embryo. 
This is important, since we have not observed the negative feedback 

FIGURE 3: Rescue of posterior patterning in the absence of KSR. (A–H’) Cuticle phenotypes from indicated genotypes. 
Posterior regions are enlarged to show the presence or absence of filzkörper. Green arrowheads denote the presence 
of filzkörper and gray arrowheads denote the absence of the filzkörper. (A) WT. (B) MTD>raf RNAi. (C) MTD>ksr RNAi. 
(D) MTD>MEKF53S + ksr RNAi. (E) MTD>MEKWT + ksr RNAi. (F) MTD>MEKF53S + raf RNAi. (G) MTD>MEKE203K + ksr RNAi. 
(H) MTD>MEKY130C + ksr RNAi. Scale bar, 130 µm. All primes are all insets to zoom in on the filzkörper of the 
corresponding image. (I) Quantification of filzkörpers for indicated genotypes.
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in optogenetic stimulation of the ERK pathway, where pathway stim-
ulation was limited to the early embryo (Johnson et al., 2017).

Our analysis revealed significant changes in the expression of 
known transcriptional targets of ERK signaling, such as pnt, aos, and 
mkp3, demonstrating that maternal expression of constitutively ac-
tive MEK indeed changes the composition of maternally deposited 
transcriptome. We focused on Mkp3, a dual specificity phosphatase 
that dephosphorylates dually phosphorylated ERK and is transcrip-
tionally induced by the ERK pathway in developing and adult tissues 
(Figure 4B) (Keyse, 2008; Haagenson and Wu, 2010; Seternes et al., 
2019). We note that these signaling changes occur before the ma-
ternal-zygotic transition, which leaves no time for a patterned tran-
scriptional response. The up-regulation of Mkp3 that we measure in 
our RNA seq experiments must therefore be occurring already dur-
ing oogenesis in the nurse cells and this RNA is then imported into 
the oocyte during oogenesis. Therefore, if the additional maternal 
Mkp3 remains uniformly distributed in the early embryo as it is in 
WT (Gomez et al., 2005), we expect a global effect on ERK signal-
ing, both at the poles and the middle of the embryo. Indeed, that is 
what we see. Furthermore, if the MEK-induced induction of Mkp3 is 
responsible for the reduction of ERK signaling at the poles (Figure 4, 
C, E, F, and I), knockdown of mkp3 should restore normal levels of 
ERK signaling. We could directly test this prediction by using the 
same maternal driver to express both constitutively active MEK and 
RNAi targeting Mkp3. Remarkably, embryos from these mothers 
had near-normal levels of active ERK at the poles and even in-
creased active ERK in the middle of the embryo, confirming a global 
effect of Mkp3 (Figure 4, D, E, G, and J). Importantly, maternal RNAi 
knockdown of Mkp3 had no effect without constitutively active MEK 
(Figure 4, H and K). These results strongly support the model 
whereby the Mkp3-dependent feedback is activated by the consti-
tutively active MEK and causes reduction of the ERK pathway activa-
tion by Torso (Goyal et al., 2017a).

DISCUSSION
Understanding how coding mutations in human MEK1 affect ERK 
signaling in vivo is important both for clinical applications and for 
fundamental research. First, since multiple components of the ERK 
cascade, including MEK, are drug targets in oncology and other 
therapeutic areas, it is critical to determine how the effects of candi-
date drugs are impacted by mutations (Ohren et al., 2004; Caunt 
et al., 2015). Second, it is important to investigate how disease mu-
tations perturb the elaborate mechanisms that have been eluci-
dated by decades of work on MEK regulation and function. In the-
ory, one could start from structural information for WT MEK and try 
to predict the effects of mutations using molecular dynamics simula-
tions (Nikolaev et al., 2011; Ordan et al., 2018). In practice, however, 
computational tools are yet to access the timescales relevant for 
protein complexes involved in MEK regulation and function. An-
other approach is based on reconstitution of isolated processes in 
vitro, such as MEK phosphorylation by RAF (Jindal et al., 2017a; 
Yeung et al., 2020). While this approach is commonly used as a use-
ful step in functional characterization of disease mutations, extrapo-
lating the results of in vitro studies to signaling in crowded and com-
partmentalized intracellular systems is nontrivial.

Given the challenges faced by computational and reconstitution 
strategies to mechanistic studies of disease mutations, it appears 
more promising to analyze how they influence ERK signaling in cells 
and tissues. The terminal patterning system is well suited for this 
purpose because it is readily accessible to quantitative analysis of 
ERK signaling and its transcriptional and morphogenetic defects 
and can be genetically perturbed at multiple levels of the ERK cas-

cade (Goyal et al., 2018). We used these advantages to investigate 
the signaling properties of MEK variants that have been predicted 
to cause signal-independent activity of MEK and/or accelerate sig-
nal-dependent MEK activation (Fischmann et al., 2009; Jindal et al., 
2017a; Yeung et al., 2020). Using a variant that combines alanine 
substitutions with the activation loop with mutations within the neg-
ative regulation of MEK, we established that disease variants indeed 
have enzymatic activity even in the absence of upstream phosphory-
lation by RAF. We also found that signal-dependent activation of 
disease variants is independent of KSR, a critical signaling adaptor 
and a recent target of potent allosteric inhibitors (Dhawan et al., 
2016). Our results suggest that these inhibitors may be ineffective 
for individuals with activating mutations in MEK.

Measurements of ERK activation offer a striking example of a 
context-dependent response to mutations in a ubiquitously ex-
pressed pathway component. Depending on their location in the 
embryo, cells respond to gain-of-function MEK variants with either 
up-regulating or down-regulating their ERK activation levels. We 
proposed that this divergent response reflects a feedback loop 
whereby mutation-imparted constitutive activation of the pathway 
triggers expression of negative pathway regulators, making it less 
sensitive to activation by endogenous patterning cues. We pro-
vided clear support for this mechanism by identifying the dual speci-
ficity ERK phosphatase Mkp3 as a critical component of the hypoth-
esized feedback and showing that RNAi knockdown of Mkp3 
eliminates the divergent response to expression of activating MEK 
variants. Mkp3 was also found to be up-regulated in cardiomyocytes 
from an individual with a developmental abnormality with a germ-
line mutation in RAF, suggesting that this effect is not limited to 
Drosophila (Jaffre et al., 2019). Importantly, we have previously de-
tected CIC binding to the Mkp3 locus (Keenan et al., 2020). Further-
more, while this study was in review, the mammalian homologue to 
Mkp3, DUSP6, was demonstrated to be transcriptionally regulated 
by CIC promoter binding (Ren et al., 2020). Thus, this regulatory 
loop through Mkp3 is highly conserved. Studies in systems amena-
ble to quantitative imaging, such as the terminal system, offer an 
opportunity to explore these effects in the most controlled and 
comprehensive way. We have done this for MEK, but the presented 
approach can be readily extended to the rest of the RAS pathway 
(Rauen, 2013; Maher et al., 2018a; Tajan et al., 2018; Taylor et al., 
2019). In particular, all of our approaches are directly useful for quan-
titative investigation of newly discovered human mutations affecting 
ERK, the only known enzymatic substrate of MEK and an emerging 
drug target in cancer (Futran et al., 2013; Taylor et al., 2019; Motta 
et al., 2020; Smorodinsky-Atias et al., 2020).

METHODS AND MATERIALS
Request a protocol through Bio-protocol.

Fly stocks
Fly stocks were maintained under standard conditions and crosses 
were performed at 25°C unless otherwise specified. OregonR, 
Histone-GFP, MTD-GAL4, UAS-MEKWT, UAS-MEKF53S, UAS-
MEKY130C, and UAS-MEKE203K flies were described in Jindal 
et al. (2017b). S218A/S222A were introduced into UAS-MEKF53S 
construct to generate UAS-MEKF53S SSAA with site-directed mutagen-
esis using Q5 hot start DNA Polymerase (NEB M0493) with the prim-
ers mek_218_228S2A_F: CCAACgCCTTTGTGGGCACCCGTA and 
mek_218_228S2A_R: CCATCGcGTCGATCAGTTGACCGGAG and 
verified by sequencing. The UAS-MEKF53S SSAA construct was inte-
grated into attP40 site using the ΦC31-based integration system. 
UAS-ksr RNAi (41598) and UAS-RAF RNAi (41589) were from the 

https://en.bio-protocol.org/cjrap.aspx?eid=10.1091/mbc.ehttps://en.bio-protocol.org/cjrap.aspx?eid=10.1091/mbc.e20-10-0625
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FIGURE 4: Transcriptional feedback attenuating ERK activation by Torso. (A) Volcano plot of maternally deposited 
mRNA transcript abundance of MTD>MEKF53S vs. MTD>MEKWT (overexpressed WT MEK). All core components of the 
RAS pathway remain unchanged. Known transcriptional targets of RAS signaling, pnt and aos, are significantly up-
regulated. Mkp3, encoding a dual specificity ERK phosphatase is also significantly up-regulated. (B) Model of the 
negative feedback loop induced by constitutively active MEK. (C–E) Representative images of nuclear cycle 14 embryos 
stained for active, dually phosphorylated ERK (dpERK) for different genetic backgrounds. Scale bar, 100 µm. 
(F–H) Pairwise comparison of the spatial dpERK profiles for WT (gray) and mutant (red) embryos. (F) Maternal 
overexpression of MEKF53S results in ectopic ERK activation in the central positions of the embryo and attenuates 
RTK-dependent ERK activation at the poles. WT (n = 6) and 67;15>MEKF53S (n = 17). (G) Disruption of the Mkp3-
dependent feedback loop counteracts signal down-regulation at the poles and enhances ectopic ERK activation. WT 
(n = 6) and 67;15>MEKF53S + Mkp3 RNAi (n = 23). (H) Down-regulation of Mkp3 in embryos without activating MEK has 
no effect on the pattern of ERK activation. WT (n = 10) and 67;15>Mkp3 RNAi (n = 19). (I–K) Comparative analysis of 
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Bloomington Drosophila Stock Center. The UAS-Mkp3 RNAi line 
was generated by integrating a previously established RNAi con-
struct HMS04475 (a gift from Norbert Perrimon) onto the third chro-
mosome by ΦC31 integration into attP2 (Sopko et al., 2014). The 
newly developed fly lines are available on request. Egg lays and 
embryonic development were conducted at 22°C.

Cuticle phenotyping
Embryos were dechorionated after being aged for more than 24 h 
as previously reported (Goyal et al., 2017a; Johnson et al., 2017). 
Dechorionated embryos were shaken in methanol and heptane (1:1) 
and incubated overnight in a media containing lactic acid and Hoy-
er’s media (1:1) at 65°C. Embryos were imaged on a Nikon Eclipse 
Ni in darkfield.

Immunostaining and FISH
dpERK antibody staining and tailless FISH protocols were per-
formed as described previously (Goyal et al., 2017a). Rabbit anti-
dpERK (1:100; Cell Signaling Technology #4370S), sheep anti-GFP 
(1:1000, Bio-Rad #4745-1051), and sheep anti-digoxigenin (DIG) 
(1:125; Roche #11333089001) were used as primary antibodies. 
DAPI (1:10,000; Molecular probes #D1306) was used to stain for 
nuclei, and Alexa Fluor conjugates (1:500; Invitrogen) were used as 
secondary antibodies.

Microscopy and image processing
Fluorescent imaging of fixed embryos for immunostaining and FISH 
experiments were performed on a Nikon A1-RS scanning confocal 
microscope with a 20× objective, similar to previously reported pro-
cedures (Goyal et al., 2017a). For pairwise comparisons of WT and 
mutant backgrounds, embryos were collected, stained, and imaged 
together under the same experimental conditions. Our software al-
lows the MEK measurements to be quantified while the experi-
menter is blinded to the genotype. Broken embryos, embryos with 
intact vitelline membrane, or embryos undergoing mitosis were ex-
cluded from the analysis.

RNA-seq analysis
MTD>MEKWT and MTD>MEKF53S overexpressing females were 
mated to sterile males of the βTub85DD genotype (Bloomington 
Stock #2149). One half-hour collections of ∼20 embryos were stored 
at 4°C in RNAlater solution, transferred to TRIzol, and prepped with 
a TRIzol RNA column from Zymo Research. Directional RNA-seq was 
conducted in biological triplicates for each genotype by the Princ-
eton Sequencing Core. The raw data and gene expression measure-
ments will be available on NCBI GEO with the accession identifier: 
GSE162684.

Each RNA-seq library was inspected for quality and subsequently 
mapped to the fly transcriptome (r6.19) using Salmon (v0.8.2) in 
quasi-mapping mode with GC content and sequence-specific bias 
corrections to produce a gene-level read count matrix. Differential 
expression analysis was performed between the MEKWT and the 
MEKF53S replicate per-gene read counts using the edgeR software 
package’s exact test option after removing lowly expressed genes. 
Specifically, we removed genes with fewer than 1 count per million 
(corresponding to approximately 37 mapped reads in the smallest 
library) in at least half of the samples. False discovery rate control 

was applied to the per-gene p values using the Benjamini–Hochberg 
procedure, and genes with FDR < = 0.01 were determined to be dif-
ferentially expressed. The limits set on the axes of the volcano plot 
does limit the display of several extreme examples for visual clarity.
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