
Lawrence Berkeley National Laboratory
LBL Publications

Title
Dynamic Extension of the Simulation Problem Analysis Kernel (SPANK)

Permalink
https://escholarship.org/uc/item/5ms995rc

Authors
Sowell, E F
Buhl, W F

Publication Date
1988-07-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ms995rc
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

LBL-26262

ITtI Lawrence Berkeley Laboratory
II;t UNIVERSITY OF CALIFORNIA

APPLI ED SCI ENCE
DIVISION

Presented at the USER-1 Conference,
Ostend, Belgium, September 6-8, 1988

Dynamic Extension of the Simulation
Problem Analysis Kernel (SPANK)

E.P. Sowell and W.P. Buhl

July 1988

For Reference

Not to be taken from this room

APPLIED SCIENCE
DIVISION

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

tv -a.
r.O .
LII
0

r
r tv r
un I
-j a ru
(1.1"0 (F'o
-j"< ru
"< f]". ru

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

•

Proceedings of the USER-l Conference
Ostend, Belgium September 1988

Abstract

Dynamic Extension
of the

Simulation Problem Analysis Kernel

(SPANK)

E. F. Sowell
Department of Computer Science

California State University Fullerton
Fullerton, California

w. F. Buhl
Simulation Research Group

Applied Science Division
Lawrence Berkeley Laboratory

Berkeley, California

July 15, 1988

LBL-26262

The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation
environment for general simulation purposes. Among its unique features is use of the
directed graph as the primary data structure, rather than the matrix. This allows
straightforward use of graph algorithms for matching variables and equations, and
reducing the problem graph for efficient numerical solution. The original prototype
implementation demonstrated the principles for systems of algebraic equations, allowing
simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how
the same principles can be extended to include dynamic objects, allowing simulation of
general dynamic systems. The theory is developed and an implementation is described.
An example is taken from the field of building energy system simulation.

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building and Community Sys­
tems, Building Systems Division of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098.

1

Review of SPANK Methodology

The Simulation Problem Analysis Kernel (SPANK) allows the user to describe prob­
lems in terms of user-defined and/or library objects, interconnected as specified with a
simple network specification language (Sowell 1986). The objects consist of interface
variables and a mathematical model expressing a relationship among these variables.
Importantly, the interface variables carry no input/output specification; rather, all
viable inverses of the equation are defined, and the SPANK matching algorithm selects
an appropriate inverse for each object that will be consistent with the needs of the
overall system solution procedure. This matching results in a one-to-one correspondence
between equations and problem variables.

The idea of specifying objects without a priori identification of the input/output
variables is central to the SPANK methodology. For one thing, it allows the above­
described matching process, which ensures a formula for every variable and a variable
for every formula. Without such a matching, automatic selection of iteration variables
and algorithm generation is, in general, not possible. Moreover, omitting input/output
designation makes object models more transportable. For example, if a particular physi­
cal process involves three variables, x,y, and z, three different models are possible if we
insist on a priori identification of input/output variables, whereas there is a single model
if we do not.

After the matching, the overall solution procedure is determined automatically by
analysis of the problem represented as a directed graph. In this graph, the vertices are
the objects, which may be viewed either as equations or the associated "output" vari­
ables, since there is a one-to-one correspondence. Viewing the vertices as equations, the
edges represent the output variables, which become inputs to other vertices. In the
analysis of this graph, the presence of possible cycles is detected, and a small cutset is
identified. This minimizes the number of variables that need to be iterated in the
numerical phase of the solution, and consequently, minimizes the size of t,he Jacobian.
In a second step, the cut variables allow construction of an acyclic directed graph that
represents the direct computation of each cut variable given only the estimated values of
cut variables and the exogenous variables. Obviously, the estimated values together
with the calculated values can be used to calculate new estimates using a variety of non­
linear solution algorithms. In the current implementation, the Newton-Raphson algo­
rithm is employed.

The acyclic directed graph can be viewed as a dataflow model of the nonlinear core
of the problem. In the current implementation, this graph is used directly in the numer­
ical phase of the solution, following the dataflow computation model. That is, at any
time there may be one or more vertices with all inputs known; these are said to be
"fireable". Initially, these will be those vertices with only exogenous and cut variable
estimates as inputs. The solution process employs a stack that always contains all
fireable vertices. The top of the stack is repeatedly popped and fired. Firing means that
the method of the vertex object is executed, thereby determining its output variable.
The output variable is put into the data structure, and any adjacent vertices are
updated with regard to their fireability. Thus each fired vertex may result in one or
more new vertices being placed on the stack. The process is continued until the stack

In the object-oriented language (OOL) terminology, we can think of the selected inverse as the "method" for the object. During the
numerical phase, the associated interface variable will be calculated by means of this inverse, and then may appropriately be thought
of as an "output" variable.

2

becomes empty, indicating that all vertices have been fired and all calculated cut vari­
able values are available. We say that the estimates have been "pushed through" the
dataflow graph, resulting in calculated values of the same variables. The Jacobian is
then evaluated (numerically in the present implementation), and the Newton-Raphson
formula is used to calculate new estimates of the cut variables.

~ Although not done in the current implementation, the acyclic directed graph could
alternately be used to construct a symbolic form of the solution algorithm, e.g., a COffi-

~.J pilable module.

The current SPANK implementation solves only algebraic equations, and therefore
solves only static problems. In most dynamic simulations there are many nonlinear alge­
braic equations in addition to the differential equations, so that solution of systems of
nonlinear algebraic equations is the central numerical task in dynamic simulation. In
what follows we show that the dynamic part of the simulation also reduces to coupled,
nonlinear, algebraic equations, so that the SPANK methodology can be directly applied
to dynamic as well as static problems.

Dynamic Problems

A dynamic system model with N variables Xi can be described in general by m alge­
braic equations and n=N-m differential equations, i.e.,

o = f1(Xl,X2, ••• ,XN)

o = f2(xl,X2' •.• ,XN)

Yl = gl(Xl,X2' ••. ,XN)

Y2 = g2(xl,x2' ••• ,xN)

Yn = gn(Xl,x2' ... ,XN)

where it is understood that the Yi are derivatives of a subset of the variables, i.e.,

Yi = dXJ(i/dt ; i = l .. n

(1)

(2)

(3)

Here J(i) is the x index of Yi. Thus the XJ are called the dynamic variables, and the
\.1 y variables are their derivatives. (The XJ variables are sometimes called state variables.)

In the most general case, the algebraic and differential equations are coupled, so
that the algebraic set must be solved in order to evaluate the derivative formulas gj.

The numerical solution of such systems is accomplished by choosing a formula for
calculation of the dynamic variables at the next time point, often called an integrating
form ula. The two major classes of integrating formulas are "open", which are functions

3

only of past values and derivatives, and "closed" formulas which involve values and
derivatives at future time points as well. Here we shall focus on the predictor-corrector
methods (CONTE 1980) which employ closed formulas because these are the most
difficult to implement; modification of the technique to use the simpler open formulas is
staightforward.

The fourth-order Milne corrector formula can be written as

XI(i),k+1 = al XI(i),k-1 + dt(a2 Yi,k+1 + a3 Yi,k + a4 Yi,k-l) (4)

where I(i) is the y index of Xi and k indicates the time step index. Thus the (k+1)st
value is based on the value at k-1, and on the derivatives at k+1, k, and k-l. Because
the (k+1)st derivative is present, and these derivatives involve (k+1)st variable values,
these formulas are implicit in the (k+1)st variables.

It will be observed that by introduction of the y variables we have added n new
variables to the set of system variables x, so that there are N+n variables in the aug­
mented set. There are also N+n equations, namely, m algebraic (Eq(l)), N-m derivative
equations (Eq(2)), and n integration formulas (Eq(4)). If we take the view that the Xi in
Eq(l) are the (k+1)st values, these can be solved simultaneously, yielding 'the (k+1)st
values of all variables Xi and all derivatives Yi. Mterwards, time is advanced by dt, and
the process is repeated. A suitable predictor formula would be used to calculate the
starting x values for the next time step.

The above procedure neglects the start-up process. Typically, a Runge-Kutta tech­
nique could be employed to get the predictor-corrector process started. In many prob­
lems, however, it is sufficient to assume that the dynamic variables have been at their
initial conditions for the required number of prior time steps, and that all prior deriva­
tives are zero. Then no special start-up procedure is required. This is the approach
being taken in the prototype dynamic SPANK now under development.

It is clear from the above that the central problem in dynamic simulation is solution
of simulta.neous algebraic equations. The integrating formulas and derivative formulas
simply augment the algebraic set. When the integrating formulas are of the closed type,
they are implicit in the simulation variables. This is not much of an added burden,
however, since the nonlinear nature of the algebraic set requires iterative solution
regardless.

Using SPANK Methodology to Solve Dynamic Problems

An example will show how the SPANK methodology applies to problems as
described above.

Figure 1 shows a simplified diagram of a room in which the ceiling height is negligi­
bly small relative to the other room dimensions. The floor is massive, but the ceiling
closure has negligible mass. The room air is also considered to be massless. The floor 'i
and ceiling are considered to be black radiators, and also convect to the room air. We
consider the problem of finding the dynamic variation of floor and ceiling temperature,
starting from some initiai floor temperature T 2(0) while air temperature is held constant
at T3 =F T2(0).

4

'~J

. .,

Conservation of energy and radiant flux at model vertices yields the system equa­
tions, Eq(5)-Eq(7). These are augmented by the Milne fourth-order corrector formula,
Eq(8).*

where

T I
qf
h

0:
()"

al .. a4
dt

El:

E2:

E3:

-
-
-
-
-
-
-

o = -hT l,k+1 + hT3,k+1 - aTt,k+1 + aTi,k+1

0= qg,k+l + hTl,k+1 + hT2,k+1 - 2hT3,k+1

T2.k+l = [-hT2,k+1 + hT3,k+1 + aTt,k+1 - aTi,k+1] /0:

node temperature (K)
source heat at node i (W jm2

)

convective heat transfer coefficient (W jm2_K)
floor therma.l capacitance (Jjm2-K)
Stefan-Boltzmann constant (5.67xlO-8 W /m2_K4)
integrating formula coefficients
time step (sec)

The variables are:

T 1 - ceiling temperature (K)
T 2 - floor temperature (K)
1'2 - derivative of floor temperature (K/sec)
qg - heat added/removed at air node (W)

(5)

(6)

(7)

(8)

Figure 2 shows the bipartite graph for matching variables to equations. The upper
vertices represent the equations, and the lower represent the variables. An edge is shown
from an upper vertex to each lower vertex whose variable is in the equation. In the
SPANK implementation, matching is done automatically. Here we do it manually to
demonstrate the technique. Following conventional practice, we match T 2 to E4. (This
ensures that the integrating formula is used for integration instead of being solved for
the derivative!) Once that decision is made, it is imperative to match E3 to 1'2. Also, we
have no choice but to match E2 to qg. Finally, by elimination we are left with El
matched with T 1. Thus we see that the matching is unique in this example; in general,
matchings are not unique, and an arbitrary decision is made by the algorithm. (SP ANK
could be improved by devising a weighted matching algorithm, perhaps using numerical

* The predictor formula acts only to provide a starting value for the solution at the new time. It is not part of the system of equa­
tions to be solved simultaneously.

5

information from the problem to set the weights.) The final matching is shown by the
heavy lines in the diagram. Based on this matching, the formulas for each variable are:

T1,k+l = T 3,k+l - (crjh) Tt,k+l + (crjh) Ti,k+l (9)

qj',k+l = -hT1,k+l - hT2,k+l + 2hT3,k+l (10)

T2,k+l = (-hT2,k+l + hT3,k+l + aTt,k+l - aTi,k+l) la (11)

(12)

Figure 3 shows the directed graph for the problem after the matching. Note that
the graph is cyclic, due to the implicit formula for T 1 (due in turn to the 4th-power radi­
ation model), and the integration formula. The SPANK implementation would apply a
cutset algorithm to this graph, but due to its simplicity we can see that a minimum
cutset (breaking all cycles) is {T1,T2}. Alternately, {T1,T2} could be used. Arbitrarily
selecting {T l' T 2} leads to the acyclic directed graph of Fig. 4, where we have added ver­
tices for the cutset variables, Tf and T~. This is the "dataflow" graph upon which the
numerical solution procedure is based. Tf and T~ are guessed, whereupon T 1 and T2
can be calculated. This allows calculation of T 2' and finally qg. Having calculated
values of TI and T 2, we can apply the Newton-Raphson formula to get new guess values.
Thus the dataflow graph guides the iterative solution process.

Time Loop Algorithm

The time loop algorithm for a program implementing SPANK is shown in Fig. 5. It
is seen to be exactly like a normal predictor-corrector implementation. The only
differences are that the flow· graph is created prior to starting the time loop, and the
corrector step is in fact an invocation of the static SPANK solver.

It will be noted that the time loop suggested here has a single call to the solver dur­
ing the time step. This limits the current dynamic SPANK to predictor-corrector
integration methods or others of similar structure. Methods that require multiple
evaluation of the derivative functions during a time step, such as Runge-Kutta, are not
allowed; future developments may allow removal of this limitation. Moreover, when the
basic methodology is predictor-corrector, all of the problems as well as the virtues of
that method are retained. For example, the well-known potential instability of the
Milne method will still be a consideration if these are the formulas used for the integra­
tor object. SPANK aims to improve the manner in which dynamic simulation problems
are specified and converted to a form suitable for solution, and not necessarily the
underlying numerical methods.

6

Extensions to SPANK Syntax

When problems such as those described above are examined, it is seen that the only
new object needed is an "integrator" with the corrector formula as its method, and hav­
ing two interface variables, namely the dynamic variable and its derivative. For user
convenience, however, we define a macro integrator object (see SOWELL 1986) that
embodies the predictor object as well as the corrector object. The predictor object is not
placed in the problem graph. Instead, it is used in the predictor step of the time loop to
initialize the dynamic variables prior to iterative solution with the dataflow graph. Fig­
ure 6 shows the example problem definition file.

SP ANK input for the Example
Figure 6 shows a block diagram of the example problem. There is an object for

each of the physical objects in the problem, namely the ceiling, floor and air node.
Additionally, there are a predictor object and a corrector object, which together
represent the integrating formulas. The interfaces of the objects are interconnected so
as to indicate equivalence with the problem variables. The interfaces to be specified as
problem constants are also connected and labeled with the constant symbols. This
diagram bears a strong resemblance to the physical problem and is used to guide the
user in preparation of the SPANK input.

Figure 7 shows the example coded in the Network Specification Language (NSL).
The object definitions for the problem are given in Figure 8. In the interest of brevity,
we show only the supporting C functions that are selected by the matching, Figure 9.
In practice, one would provide all functions referenced in the object definitions.

Referring to Fig. 7, we see that five objects are declared. The ceiling (ceil) is
defined as an instance of the "massless" class of objects. From Figs. 7 and 8, it can be
seen that such objects enforce equation Eq.(l). Similarly, the floor is declared to be of
the "massive" class, enforcing E3, and the air node is of the "air" class, enforcing E2.
Note that all inverses of the these equations are included in the object definitions, so
that the matching process is free to make a suitable choice for each variable. There is a
LINK statement for each problem variable, and an INPUT statement for each problem
constant. Both the LINK and INPUT statements have a symbol preceding the
parenthetic expression that becomes the symbol for the problem variable or constant.
(Values for constants are provided at run time.) In the parentheses is placed a list of all
interfaces to which the variable or constant applies. The form of these interface
specifications is

objecLinstance.internaLinterface-llame.
Thus, ceil.h refers to the h interface variable in the ceiling object instance of the class
massless.

The dynamic nature of the problem is indicated by the presence of the predictor
and corrector objects, milne_4p and milne_4c, and the "history" object. History is a

1./ SPANK predefined class that provides storage for histories of dynamic variables, as
needed by integrating formulas, e.g. Eq(5). The predictor and corrector object classes
are user-defined, as exemplified in in Figure 8, with the supporting C functions in Figure
9. One limitation in the version currently being implemented is that the predictor and
corrector formulas can only employ historical data stored in the predefined history class.
In a more ambitious implementation, the user should be allowed to define special history
classes to allow a wider range of integrating formulas.

7

The C functions in Fig. 9 show that all arguments are passed in an array of unions,
predefined in SPANK as type VAL. This is in contrast to the static implementation
which passes an array of doubles. Unions (called variant. records in Pascal) allow the
data item to be of various types. This was a necessary enhancement because dynamic
SP ANK must pass pointers to dynamic variable histories as well as doubles. The VAL
union allows doubles (dval) integers (ivaI) dynamic pointers (dp), and character pointers
(cval).

Status and Future Work

The implementation described above is expected to be operational sometime this
year. When completed, a series of trial problems from various disciplines will be devised
to explore its capabilities and limitations. Based on the outcome of these tests, new
features will probably be suggested. Already mentioned is the need for user-defined his­
tory objects. We also see the need for integration methods other than predictor­
corrector. In a completely flexible system, the user should be allowed to define the
overall strategy for time advancement in an object-oriented manner.

Acknowledgements

This work was undertaken as part of the international Energy Kernel System
development effort. Contributing to the ideas expressed here were members of the Simu­
lation Research Group at LBL, including Fred Winkelmann and Ender Erdem, and
several individuals from other collaborating institutions in the U.S. and Europe.

References

CONTE 1980

SOWELL 1986

ELEMENTARY NUMERICAL ANALYSIS:
AN ALGORITHMIC APPROACH, by S.D. Conte and
C. DeBoor, McGraw-Hill, NY, 3rd Edition, 1980.

PROTOTYPE OBJECT-BASED SYSTEM FOR HV AC SIMULA­
TION, E.F. Sowell, W.F. Buhl, A.E. Erdem, and F.C. Winkelmann,
presented at the Second International Conference on System Simu­
lation in Buildings, Liege, Belgium, December 1986.

8

",:,.

.y

1
Massless Ceiling •

-3 Air

2

VZZZZZ/'ZZZZZ/1 Massive Floor

Figure 1: Physical System

9

v

Figure 2: Matching Graph

10

.W

Figure 3; Directed Graph of l-.1atched Equations

11

Figure 4: Dataflow Graph

12

\. ..

Initialize all arrays

Set up a flow_graph for the problem

Set start.ing guess and limits for break variables

Initialize and write initial-state reports

/* Loop over the time steps: * /

while (t < tlimit) {

Predictor Step

Increment time and related things

Corrector Step (invoke SPANK solver)

Update the history of dynamic variables

Write time-step reports

} /* End of time loop * /

Figure 5: Algorithm for Time Loop

13

AIR

dt

T3

INPUTS h

(J

a

•
.
.

qO
~ T1
T1
t-- T2
T2
f---

T3
f---

h

CEILING

(J /h IT1/T2/T3

~ -

~

- - - -

- -
- -

- - - I-

- - - - -
- - - ~ -
I-

I

a I (J I h I T1 I T21 T31 T2

FLOOR

Figure 6: Block Diagram

14

T1

• T2 OUTPU TS

0
• q3

r--- dt
t--

X PRED.
I--• X

dt
I--

X CORR.
I--•

• X
T2

u

\~

1* Dynamic Test Problem 2
*
*

Two Surface Room with Mass in Floor
two....surLrm.ps

*/
declare massless ceil;
declare massive floor;
declare air air;
declare milne_4_p p;
declare milne_Lc C;

/* Constant inputs * /

1* Massless ceiling * /
1* Massive floor slab * /

1* Massless air * /
/* Milne 4th order predictor* /
/* Milne 4th order corrector * /

input h(ceil.h,floor.h,air.h)[W11Kj /* Film coefficient * /
input T3(ceil.T3,fioor.T3,air.T3)[K] /* Fixed air temperature* /
input alpha(fioor.alpha)[generic] 1* Slab heat capacity * /
input dt(c.dt,p.dt)[TlME] /* Time step * /
input sigma(ceil.sigma,fioor.sigma)[generic] 1* Stefan-Boltzmann * /

/*Links* /

link Tl(ceil.Tl,floor.Tl,air.Tl)[K] /* Ceiling temperature * /
link T2(ceiI.T2,floor.T2,air.T2,c.x,p.x)[Kj 1* Floor temperature * /
link T2_dot(floor.T2_dot,c.xdot)[generic] 1* Derivative of T2 * /
link qo3(air.qo3)[W] /* Air heat rate * /

/* History 0 b j ect * /
history T2-hist(c.x-hist,p.x-hist)

/* End of Problem * /

1* History of T2 * /

Figure 7: Problem Specification File

15

/*
*
*j

Massless Surface
massless.obj

define massless(Tl, T2, T3,sigma,h)
double Tl[KJ,T2[KJ,T3[KJ,sigma[genericJ,h[WMKJ;
{

}

/*
*
*j

Tl = ceilJuD-Tl(Tl,T2,T3,sigma,h);
T2 = ceiUuD-T2(Tl,T2,T3,sigma,h);
T3 ... ceiUuD-T3(Tl,T2,sigma,h);

Massive Surface
massive.obj

define massive(Tl, T2, T2_dot, T3,sigma,h,alpha)
double Tl[K],T2[K],T2_dot[generic],T3[K],sigma[generic],h[WMK],alpha[generic];
{

}

Tl = floor JUIL Tl (Tl, T2, T2_dot, T3,sigma,h,alpha);
T2 = floorJuILT2(Tl,T2,TLdot,T3,sigma,h,alpha);
T2_dot = floorJuILTLdot(Tl, T2, T3,sigma,h,alpha);
T3 = floorJuILT3(Tl,T2,TLdot,sigma,h,alpha);

/* Air Node
air.obj *

*/
define air(Tl,T2,T3,qo3,h)
double Tl[K],T2[K],T3[K],qo3[W],h[WMK];
{

}

/*
*

Tl = airJuILTl(T2,T3,qo3,h);
T2 = airJuILTl(Tl,T3,qo3,h);
T3 = airJuILT3(Tl,T2,qo3,h);
qo3 = airJuD-qo3(Tl,T2,T3,h);

Milne 4th Order Predictor
milne_Lp.obj

*/
define-pre
milne_4_p (x,dt,X-hist)
double x,dt[TIME];
DYNAMIC-PTR X-hist;
{

}

/*
*
*j

x = milne_Lp(X-hist,dt);

Milne 4th Order Corrector
milne_Lc.obj

define milne_4_c(x,xdot,dt,X-hist)
double x,xdot,dt[TTh1Ej;
DYNAMIC-PTR X-hist;
{

}
x - milne_4_c(X-hist,xdot,dt);

Figure 8: Object Definitions

16

,

, I

"

~
oti·
~ ..,
('l)

~ ..
~
~
i=l
(")
c+

..... o·
'-I i=l

t:j
('1)

::n
i=l
c+ o·
i=l en

..--..
'1:l
p:l ..,
c+

~
l"
(ii'
c+

1*
*
*1

--
Air Q Function
airJun_qo3.c

#include "val.h"
#deline Tl arg 0j.dval
#Jetine T2 arg I .dval
#define T3 arg 2 .dval
#define h arg[3 .dval
#define qo3 result.dval
VAL
air Jun_qo3brg)
VAL arg[];
{

VAL result;

}

qo3= h * (2.0*T3 -Tl - T2);
ret urn(resu It);

r
*
*1

#include "val.h"

Ceiling Tl Function
ceilJuIl-Tl.c

#define Tl arglOj.dval
#define T2 arg 1 .dval
#defille T3 arg 2 .dval
#define sigma arg[3].dval
#define h arg[4].dval
#define Tir result.dval
VAL
ceilJun_Tl(arg)
VAL arg[];
{

VAL result;

I)

TIr ... T3 - sigma*(Tl*Tl*Tl*Tl - T2*T2*T2*T2}/h;
return(result);

*
*1

#incillde "val.h"

Floor T2-dot Function
floor Jun_T2_dot.c

#define Tl argIOj.dva,
#define T2 arg 1 .dval
#define T3 arg 2 .dval
#define sigma arg[3J.dval
#deline h arg[4J.dval
#deline alpha arg[5J.dval
#detine T2_dot result.dval
VAL
floor JUII_ TLdot(arg)
VAL arg[];

.. (c,

{
VAL result;

}

T2-dot = (h*(T3-T2) + sigma*(Tl*Tl*Tl *Tl-T2*T2*T2*T2}}/alpha;
return(result);

1*
*

#*/ I d " II" IIlC U e va. I

Milne 4th Order Predictor Function
milne_Lp.c

#define x_p (arg[OJ.dp)
#define dt arg[IJ.dval
#define tpll result.dval
#define al 1
#define a2 2.666667
#define a3 -1.333333
#define &4 2.666667
VAL
mil ne_Lp(arg)
VAL argll;
{

VAL result;
tpll ,.

al·x_p->tm3 + dt*(a2*x-p->dot + a3*x-p->dotml + a4*x_p->dotm2);
x_p->tpl "" tpll ;
return(result);

}

I· •
·1

#include "val.h"

Milne 4th Order Corrector
milne_4..c.c

#define x_p (argIOj.dp)
#define xdot arg 1 .dval
#define dt arg[2J.dval
#define tpll result.dval
#define al 1
#define a2 .333333
#define a3 1.333333
#define a4 .333333
VAL
milne_Lc(arg)
VAL arg[];

{
VAL result;
x_p->dotpl = xdot ;
tpll =
al*x_p->tml + dt*(a2*x_p->dotpl + a3*x_p->dot + a.I*x-p->dotmJ);

x_p->tpl = tpIl;
return(rcslllt);

}

.-.-
LAWRENCE BERKELEY LABORATORY

TECHNICAL INFORMATION DEPARTMENT
1 CYCLOTRON ROAD

BERKELEY, CALIFORNIA 94720

;-..~ "1

