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The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation 
environment for general simulation purposes. Among its unique features is use of the 
directed graph as the primary data structure, rather than the matrix. This allows 
straightforward use of graph algorithms for matching variables and equations, and 
reducing the problem graph for efficient numerical solution. The original prototype 
implementation demonstrated the principles for systems of algebraic equations, allowing 
simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how 
the same principles can be extended to include dynamic objects, allowing simulation of 
general dynamic systems. The theory is developed and an implementation is described. 
An example is taken from the field of building energy system simulation. 

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building and Community Sys­
tems, Building Systems Division of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. 
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Review of SPANK Methodology 

The Simulation Problem Analysis Kernel (SPANK) allows the user to describe prob­
lems in terms of user-defined and/or library objects, interconnected as specified with a 
simple network specification language (Sowell 1986). The objects consist of interface 
variables and a mathematical model expressing a relationship among these variables. 
Importantly, the interface variables carry no input/output specification; rather, all 
viable inverses of the equation are defined, and the SPANK matching algorithm selects 
an appropriate inverse for each object that will be consistent with the needs of the 
overall system solution procedure. This matching results in a one-to-one correspondence 
between equations and problem variables. 

The idea of specifying objects without a priori identification of the input/output 
variables is central to the SPANK methodology. For one thing, it allows the above­
described matching process, which ensures a formula for every variable and a variable 
for every formula. Without such a matching, automatic selection of iteration variables 
and algorithm generation is, in general, not possible. Moreover, omitting input/output 
designation makes object models more transportable. For example, if a particular physi­
cal process involves three variables, x,y, and z, three different models are possible if we 
insist on a priori identification of input/output variables, whereas there is a single model 
if we do not. 

After the matching, the overall solution procedure is determined automatically by 
analysis of the problem represented as a directed graph. In this graph, the vertices are 
the objects, which may be viewed either as equations or the associated "output" vari­
ables, since there is a one-to-one correspondence. Viewing the vertices as equations, the 
edges represent the output variables, which become inputs to other vertices. In the 
analysis of this graph, the presence of possible cycles is detected, and a small cutset is 
identified. This minimizes the number of variables that need to be iterated in the 
numerical phase of the solution, and consequently, minimizes the size of t,he Jacobian. 
In a second step, the cut variables allow construction of an acyclic directed graph that 
represents the direct computation of each cut variable given only the estimated values of 
cut variables and the exogenous variables. Obviously, the estimated values together 
with the calculated values can be used to calculate new estimates using a variety of non­
linear solution algorithms. In the current implementation, the Newton-Raphson algo­
rithm is employed. 

The acyclic directed graph can be viewed as a dataflow model of the nonlinear core 
of the problem. In the current implementation, this graph is used directly in the numer­
ical phase of the solution, following the dataflow computation model. That is, at any 
time there may be one or more vertices with all inputs known; these are said to be 
"fireable". Initially, these will be those vertices with only exogenous and cut variable 
estimates as inputs. The solution process employs a stack that always contains all 
fireable vertices. The top of the stack is repeatedly popped and fired. Firing means that 
the method of the vertex object is executed, thereby determining its output variable. 
The output variable is put into the data structure, and any adjacent vertices are 
updated with regard to their fireability. Thus each fired vertex may result in one or 
more new vertices being placed on the stack. The process is continued until the stack 

In the object-oriented language (OOL) terminology, we can think of the selected inverse as the "method" for the object. During the 
numerical phase, the associated interface variable will be calculated by means of this inverse, and then may appropriately be thought 
of as an "output" variable. 
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becomes empty, indicating that all vertices have been fired and all calculated cut vari­
able values are available. We say that the estimates have been "pushed through" the 
dataflow graph, resulting in calculated values of the same variables. The Jacobian is 
then evaluated (numerically in the present implementation), and the Newton-Raphson 
formula is used to calculate new estimates of the cut variables. 

~ Although not done in the current implementation, the acyclic directed graph could 
alternately be used to construct a symbolic form of the solution algorithm, e.g., a COffi-

~.J pilable module. 

The current SPANK implementation solves only algebraic equations, and therefore 
solves only static problems. In most dynamic simulations there are many nonlinear alge­
braic equations in addition to the differential equations, so that solution of systems of 
nonlinear algebraic equations is the central numerical task in dynamic simulation. In 
what follows we show that the dynamic part of the simulation also reduces to coupled, 
nonlinear, algebraic equations, so that the SPANK methodology can be directly applied 
to dynamic as well as static problems. 

Dynamic Problems 

A dynamic system model with N variables Xi can be described in general by m alge­
braic equations and n=N-m differential equations, i.e., 

o = f1(Xl,X2, ••• ,XN) 

o = f2(xl,X2' •.• ,XN) 

Yl = gl(Xl,X2' ••. ,XN) 

Y2 = g2(xl,x2' ••• ,xN) 

Yn = gn(Xl,x2' ... ,XN) 

where it is understood that the Yi are derivatives of a subset of the variables, i.e., 

Yi = dXJ(i/dt ; i = l .. n 

(1) 

(2) 

(3) 

Here J(i) is the x index of Yi. Thus the XJ are called the dynamic variables, and the 
\.1 y variables are their derivatives. (The XJ variables are sometimes called state variables.) 

In the most general case, the algebraic and differential equations are coupled, so 
that the algebraic set must be solved in order to evaluate the derivative formulas gj. 

The numerical solution of such systems is accomplished by choosing a formula for 
calculation of the dynamic variables at the next time point, often called an integrating 
form ula. The two major classes of integrating formulas are "open", which are functions 
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only of past values and derivatives, and "closed" formulas which involve values and 
derivatives at future time points as well. Here we shall focus on the predictor-corrector 
methods (CONTE 1980) which employ closed formulas because these are the most 
difficult to implement; modification of the technique to use the simpler open formulas is 
staightforward. 

The fourth-order Milne corrector formula can be written as 

XI(i),k+1 = al XI(i),k-1 + dt( a2 Yi,k+1 + a3 Yi,k + a4 Yi,k-l ) (4) 

where I(i) is the y index of Xi and k indicates the time step index. Thus the (k+1)st 
value is based on the value at k-1, and on the derivatives at k+1, k, and k-l. Because 
the (k+1)st derivative is present, and these derivatives involve (k+1)st variable values, 
these formulas are implicit in the (k+1)st variables. 

It will be observed that by introduction of the y variables we have added n new 
variables to the set of system variables x, so that there are N+n variables in the aug­
mented set. There are also N+n equations, namely, m algebraic (Eq(l)), N-m derivative 
equations (Eq(2)), and n integration formulas (Eq( 4)). If we take the view that the Xi in 
Eq(l) are the (k+1)st values, these can be solved simultaneously, yielding 'the (k+1)st 
values of all variables Xi and all derivatives Yi. Mterwards, time is advanced by dt, and 
the process is repeated. A suitable predictor formula would be used to calculate the 
starting x values for the next time step. 

The above procedure neglects the start-up process. Typically, a Runge-Kutta tech­
nique could be employed to get the predictor-corrector process started. In many prob­
lems, however, it is sufficient to assume that the dynamic variables have been at their 
initial conditions for the required number of prior time steps, and that all prior deriva­
tives are zero. Then no special start-up procedure is required. This is the approach 
being taken in the prototype dynamic SPANK now under development. 

It is clear from the above that the central problem in dynamic simulation is solution 
of simulta.neous algebraic equations. The integrating formulas and derivative formulas 
simply augment the algebraic set. When the integrating formulas are of the closed type, 
they are implicit in the simulation variables. This is not much of an added burden, 
however, since the nonlinear nature of the algebraic set requires iterative solution 
regardless. 

Using SPANK Methodology to Solve Dynamic Problems 

An example will show how the SPANK methodology applies to problems as 
described above. 

Figure 1 shows a simplified diagram of a room in which the ceiling height is negligi­
bly small relative to the other room dimensions. The floor is massive, but the ceiling 
closure has negligible mass. The room air is also considered to be massless. The floor 'i 
and ceiling are considered to be black radiators, and also convect to the room air. We 
consider the problem of finding the dynamic variation of floor and ceiling temperature, 
starting from some initiai floor temperature T 2(0) while air temperature is held constant 
at T3 =F T2(0). 
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Conservation of energy and radiant flux at model vertices yields the system equa­
tions, Eq(5)-Eq(7). These are augmented by the Milne fourth-order corrector formula, 
Eq(8).* 

where 

T I 
qf 
h 

0: 
()" 

al .. a4 
dt 

El: 

E2: 

E3: 

-
-
-
-
-
-
-

o = -hT l,k+1 + hT3,k+1 - aTt,k+1 + aTi,k+1 

0= qg,k+l + hTl,k+1 + hT2,k+1 - 2hT3,k+1 

T2.k+l = [ -hT2,k+1 + hT3,k+1 + aTt,k+1 - aTi,k+1 ] /0: 

node temperature (K) 
source heat at node i (W jm2

) 

convective heat transfer coefficient (W jm2_K) 
floor therma.l capacitance (Jjm2-K) 
Stefan-Boltzmann constant (5.67xlO-8 W /m2_K4) 
integrating formula coefficients 
time step (sec) 

The variables are: 

T 1 - ceiling temperature (K) 
T 2 - floor temperature (K) 
1'2 - derivative of floor temperature (K/sec) 
qg - heat added/removed at air node (W) 

(5) 

(6) 

(7) 

(8) 

Figure 2 shows the bipartite graph for matching variables to equations. The upper 
vertices represent the equations, and the lower represent the variables. An edge is shown 
from an upper vertex to each lower vertex whose variable is in the equation. In the 
SPANK implementation, matching is done automatically. Here we do it manually to 
demonstrate the technique. Following conventional practice, we match T 2 to E4. (This 
ensures that the integrating formula is used for integration instead of being solved for 
the derivative!) Once that decision is made, it is imperative to match E3 to 1'2. Also, we 
have no choice but to match E2 to qg. Finally, by elimination we are left with El 
matched with T 1. Thus we see that the matching is unique in this example; in general, 
matchings are not unique, and an arbitrary decision is made by the algorithm. (SP ANK 
could be improved by devising a weighted matching algorithm, perhaps using numerical 

* The predictor formula acts only to provide a starting value for the solution at the new time. It is not part of the system of equa­
tions to be solved simultaneously. 
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information from the problem to set the weights.) The final matching is shown by the 
heavy lines in the diagram. Based on this matching, the formulas for each variable are: 

T1,k+l = T 3,k+l - (crjh ) Tt,k+l + (crjh ) Ti,k+l (9) 

qj',k+l = -hT1,k+l - hT2,k+l + 2hT3,k+l (10) 

T2,k+l = ( -hT2,k+l + hT3,k+l + aTt,k+l - aTi,k+l ) la (11) 

(12) 

Figure 3 shows the directed graph for the problem after the matching. Note that 
the graph is cyclic, due to the implicit formula for T 1 (due in turn to the 4th-power radi­
ation model), and the integration formula. The SPANK implementation would apply a 
cutset algorithm to this graph, but due to its simplicity we can see that a minimum 
cutset (breaking all cycles) is {T1,T2}. Alternately, {T1,T2} could be used. Arbitrarily 
selecting {T l' T 2} leads to the acyclic directed graph of Fig. 4, where we have added ver­
tices for the cutset variables, Tf and T~. This is the "dataflow" graph upon which the 
numerical solution procedure is based. Tf and T~ are guessed, whereupon T 1 and T2 
can be calculated. This allows calculation of T 2' and finally qg. Having calculated 
values of TI and T 2, we can apply the Newton-Raphson formula to get new guess values. 
Thus the dataflow graph guides the iterative solution process. 

Time Loop Algorithm 

The time loop algorithm for a program implementing SPANK is shown in Fig. 5. It 
is seen to be exactly like a normal predictor-corrector implementation. The only 
differences are that the flow· graph is created prior to starting the time loop, and the 
corrector step is in fact an invocation of the static SPANK solver. 

It will be noted that the time loop suggested here has a single call to the solver dur­
ing the time step. This limits the current dynamic SPANK to predictor-corrector 
integration methods or others of similar structure. Methods that require multiple 
evaluation of the derivative functions during a time step, such as Runge-Kutta, are not 
allowed; future developments may allow removal of this limitation. Moreover, when the 
basic methodology is predictor-corrector, all of the problems as well as the virtues of 
that method are retained. For example, the well-known potential instability of the 
Milne method will still be a consideration if these are the formulas used for the integra­
tor object. SPANK aims to improve the manner in which dynamic simulation problems 
are specified and converted to a form suitable for solution, and not necessarily the 
underlying numerical methods. 
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Extensions to SPANK Syntax 

When problems such as those described above are examined, it is seen that the only 
new object needed is an "integrator" with the corrector formula as its method, and hav­
ing two interface variables, namely the dynamic variable and its derivative. For user 
convenience, however, we define a macro integrator object (see SOWELL 1986) that 
embodies the predictor object as well as the corrector object. The predictor object is not 
placed in the problem graph. Instead, it is used in the predictor step of the time loop to 
initialize the dynamic variables prior to iterative solution with the dataflow graph. Fig­
ure 6 shows the example problem definition file. 

SP ANK input for the Example 
Figure 6 shows a block diagram of the example problem. There is an object for 

each of the physical objects in the problem, namely the ceiling, floor and air node. 
Additionally, there are a predictor object and a corrector object, which together 
represent the integrating formulas. The interfaces of the objects are interconnected so 
as to indicate equivalence with the problem variables. The interfaces to be specified as 
problem constants are also connected and labeled with the constant symbols. This 
diagram bears a strong resemblance to the physical problem and is used to guide the 
user in preparation of the SPANK input. 

Figure 7 shows the example coded in the Network Specification Language (NSL). 
The object definitions for the problem are given in Figure 8. In the interest of brevity, 
we show only the supporting C functions that are selected by the matching, Figure 9. 
In practice, one would provide all functions referenced in the object definitions. 

Referring to Fig. 7, we see that five objects are declared. The ceiling (ceil) is 
defined as an instance of the "massless" class of objects. From Figs. 7 and 8, it can be 
seen that such objects enforce equation Eq.(l). Similarly, the floor is declared to be of 
the "massive" class, enforcing E3, and the air node is of the "air" class, enforcing E2. 
Note that all inverses of the these equations are included in the object definitions, so 
that the matching process is free to make a suitable choice for each variable. There is a 
LINK statement for each problem variable, and an INPUT statement for each problem 
constant. Both the LINK and INPUT statements have a symbol preceding the 
parenthetic expression that becomes the symbol for the problem variable or constant. 
(Values for constants are provided at run time.) In the parentheses is placed a list of all 
interfaces to which the variable or constant applies. The form of these interface 
specifications is 

objecLinstance.internaLinterface-llame. 
Thus, ceil.h refers to the h interface variable in the ceiling object instance of the class 
massless. 

The dynamic nature of the problem is indicated by the presence of the predictor 
and corrector objects, milne_4p and milne_4c, and the "history" object. History is a 

1./ SPANK predefined class that provides storage for histories of dynamic variables, as 
needed by integrating formulas, e.g. Eq(5). The predictor and corrector object classes 
are user-defined, as exemplified in in Figure 8, with the supporting C functions in Figure 
9. One limitation in the version currently being implemented is that the predictor and 
corrector formulas can only employ historical data stored in the predefined history class. 
In a more ambitious implementation, the user should be allowed to define special history 
classes to allow a wider range of integrating formulas. 
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The C functions in Fig. 9 show that all arguments are passed in an array of unions, 
predefined in SPANK as type VAL. This is in contrast to the static implementation 
which passes an array of doubles. Unions (called variant. records in Pascal) allow the 
data item to be of various types. This was a necessary enhancement because dynamic 
SP ANK must pass pointers to dynamic variable histories as well as doubles. The VAL 
union allows doubles (dval) integers (ivaI) dynamic pointers (dp), and character pointers 
( cval). 

Status and Future Work 

The implementation described above is expected to be operational sometime this 
year. When completed, a series of trial problems from various disciplines will be devised 
to explore its capabilities and limitations. Based on the outcome of these tests, new 
features will probably be suggested. Already mentioned is the need for user-defined his­
tory objects. We also see the need for integration methods other than predictor­
corrector. In a completely flexible system, the user should be allowed to define the 
overall strategy for time advancement in an object-oriented manner. 
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Figure 2: Matching Graph 
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Figure 3; Directed Graph of l-.1atched Equations 
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Figure 4: Dataflow Graph 
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\. .. 

Initialize all arrays 

Set up a flow_graph for the problem 

Set start.ing guess and limits for break variables 

Initialize and write initial-state reports 

/* Loop over the time steps: * / 

while (t < tlimit) { 

Predictor Step 

Increment time and related things 

Corrector Step (invoke SPANK solver) 

Update the history of dynamic variables 

Write time-step reports 

} /* End of time loop * / 

Figure 5: Algorithm for Time Loop 
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1* Dynamic Test Problem 2 
* 
* 

Two Surface Room with Mass in Floor 
two....surLrm.ps 

*/ 
declare massless ceil; 
declare massive floor; 
declare air air; 
declare milne_4_p p; 
declare milne_Lc C; 

/* Constant inputs * / 

1* Massless ceiling * / 
1* Massive floor slab * / 

1* Massless air * / 
/* Milne 4th order predictor* / 
/* Milne 4th order corrector * / 

input h( ceil.h,floor.h,air.h)[W11Kj /* Film coefficient * / 
input T3(ceil.T3,fioor.T3,air.T3)[K] /* Fixed air temperature* / 
input alpha(fioor.alpha)[generic] 1* Slab heat capacity * / 
input dt( c.dt,p.dt )[TlME] /* Time step * / 
input sigma( ceil.sigma,fioor.sigma)[generic] 1* Stefan-Boltzmann * / 

/*Links* / 

link Tl(ceil.Tl,floor.Tl,air.Tl)[K] /* Ceiling temperature * / 
link T2( ceiI.T2,floor.T2,air.T2,c.x,p.x)[Kj 1* Floor temperature * / 
link T2_dot(floor.T2_dot,c.xdot)[generic] 1* Derivative of T2 * / 
link qo3(air.qo3)[W] /* Air heat rate * / 

/* History 0 b j ect * / 
history T2-hist( c.x-hist,p.x-hist) 

/* End of Problem * / 

1* History of T2 * / 

Figure 7: Problem Specification File 

15 



/* 
* 
*j 

Massless Surface 
massless.obj 

define massless(Tl, T2, T3,sigma,h) 
double Tl[KJ,T2[KJ,T3[KJ,sigma[genericJ,h[WMKJ; 
{ 

} 

/* 
* 
*j 

Tl = ceilJuD-Tl(Tl,T2,T3,sigma,h); 
T2 = ceiUuD-T2(Tl,T2,T3,sigma,h); 
T3 ... ceiUuD-T3(Tl,T2,sigma,h); 

Massive Surface 
massive.obj 

define massive(Tl, T2, T2_dot, T3,sigma,h,alpha) 
double Tl[K],T2[K],T2_dot[generic],T3[K],sigma[generic],h[WMK],alpha[generic]; 
{ 

} 

Tl = floor JUIL Tl (Tl, T2, T2_dot, T3,sigma,h,alpha); 
T2 = floorJuILT2(Tl,T2,TLdot,T3,sigma,h,alpha); 
T2_dot = floorJuILTLdot(Tl, T2, T3,sigma,h,alpha); 
T3 = floorJuILT3(Tl,T2,TLdot,sigma,h,alpha); 

/* Air Node 
air.obj * 

*/ 
define air(Tl,T2,T3,qo3,h) 
double Tl[K],T2[K],T3[K],qo3[W],h[WMK]; 
{ 

} 

/* 
* 

Tl = airJuILTl(T2,T3,qo3,h); 
T2 = airJuILTl(Tl,T3,qo3,h); 
T3 = airJuILT3(Tl,T2,qo3,h); 
qo3 = airJuD-qo3(Tl,T2,T3,h); 

Milne 4th Order Predictor 
milne_Lp.obj 

*/ 
define-pre 
milne_4_p ( x,dt,X-hist) 
double x,dt[TIME]; 
DYNAMIC-PTR X-hist; 
{ 

} 

/* 
* 
*j 

x = milne_Lp(X-hist,dt); 

Milne 4th Order Corrector 
milne_Lc.obj 

define milne_4_c( x,xdot,dt,X-hist) 
double x,xdot,dt[TTh1Ej; 
DYNAMIC-PTR X-hist; 
{ 

} 
x - milne_4_c(X-hist,xdot,dt); 

Figure 8: Object Definitions 
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1* 
* 
*1 

--
Air Q Function 
airJun_qo3.c 

#include "val.h" 
#deline Tl arg 0j.dval 
#Jetine T2 arg I .dval 
#define T3 arg 2 .dval 
#define h arg[3 .dval 
#define qo3 result.dval 
VAL 
air Jun_qo3brg) 
VAL arg[]; 
{ 

VAL result; 

} 

qo3= h * (2.0*T3 -Tl - T2); 
ret urn( resu It); 

r 
* 
*1 

#include "val.h" 

Ceiling Tl Function 
ceilJuIl-Tl.c 

#define Tl arglOj.dval 
#define T2 arg 1 .dval 
#defille T3 arg 2 .dval 
#define sigma arg[3].dval 
#define h arg[4].dval 
#define Tir result.dval 
VAL 
ceilJun_Tl(arg) 
VAL arg[]; 
{ 

VAL result; 

I) 

TIr ... T3 - sigma*(Tl*Tl*Tl*Tl - T2*T2*T2*T2}/h; 
return(result); 

* 
*1 

#incillde "val.h" 

Floor T2-dot Function 
floor Jun_T2_dot.c 

#define Tl argIOj.dva, 
#define T2 arg 1 .dval 
#define T3 arg 2 .dval 
#define sigma arg[3J.dval 
#deline h arg[4J.dval 
#deline alpha arg[5J.dval 
#detine T2_dot result.dval 
VAL 
floor JUII_ TLdot( arg) 
VAL arg[]; 

.. (c, 

{ 
VAL result; 

} 

T2-dot = (h*(T3-T2) + sigma*(Tl*Tl*Tl *Tl-T2*T2*T2*T2}}/alpha; 
return( result); 

1* 
* 

#*/ I d " II" IIlC U e va. I 

Milne 4th Order Predictor Function 
milne_Lp.c 

#define x_p (arg[OJ.dp) 
#define dt arg[IJ.dval 
#define tpll result.dval 
#define al 1 
#define a2 2.666667 
#define a3 -1.333333 
#define &4 2.666667 
VAL 
mil ne_Lp( arg) 
VAL argll; 
{ 

VAL result; 
tpll ,. 

al·x_p->tm3 + dt*(a2*x-p->dot + a3*x-p->dotml + a4*x_p->dotm2); 
x_p->tpl "" tpll ; 
return(result); 

} 

I· • 
·1 

#include "val.h" 

Milne 4th Order Corrector 
milne_4..c.c 

#define x_p (argIOj.dp) 
#define xdot arg 1 .dval 
#define dt arg[2J.dval 
#define tpll result.dval 
#define al 1 
#define a2 .333333 
#define a3 1.333333 
#define a4 .333333 
VAL 
milne_Lc(arg) 
VAL arg[]; 

{ 
VAL result; 
x_p->dotpl = xdot ; 
tpll = 
al*x_p->tml + dt*(a2*x_p->dotpl + a3*x_p->dot + a.I*x-p->dotmJ); 

x_p->tpl = tpIl; 
return(rcslllt); 

} 
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