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Abstract

RNA binding proteins (RBPs) are a large and diverse class of proteins that regulate all aspects 

of RNA biology. As RBP dysregulation has been implicated in a number of human disorders, 

including cancers and neurodegenerative disease, small molecule chemical probes that target 

individual RBPs represent useful tools for deciphering RBP function and guiding the production 

of new therapeutics. While RBPs are often thought of as tough-to-drug, the discovery of a number 

of small molecules that target RBPs has spurred considerable recent interest in new strategies 

for RBP chemical probe discovery. Here we review current and emerging technologies for high 

throughput RBP-small molecule screening that we expect will help unlock the full therapeutic 

potential of this exciting protein class.
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Introduction

RNA binding proteins (RBPs) are a large and diverse protein class (1000+ members) 

[1], which act as essential modulators of RNA function. RBPs regulate RNA splicing, 
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as well as initiation, elongation, and termination of translation. RBPs can also inhibit 

translation, modulate RNA subcellular localization, and regulate RNA degradation. RNA-

protein interactions (RPIs) play essential roles in stem cell maintenance, differentiation, and 

somatic cell reprogramming [2,3]. Dysregulated RPIs have been linked to cancers [4,5], 

cardiovascular diseases [6], and neurodegenerative disorders [7]. For example, misfolding 

and aggregation of RBPs in membraneless organelles, such as stress granules, has been 

associated with Alzheimer’s disease [8], Parkinson’s disease [9], and amyotrophic lateral 

sclerosis (ALS) [10].

Chemical probes are attractive tools to study and pharmacologically manipulate RBPs. 

Complementary to biologics, such as antibodies and peptides, small molecules offer 

several advantages, including cell permeability, oral availability, and cost-effectiveness. As 

demonstrated by the wild success of kinase inhibitors as both probes and drugs, chemical 

probes can be designed to inactivate individual members of highly homologous protein 

domains (e.g. RNA-binding domains, such as the RNA-recognition motif (RRM), hnRNP K 

homology (KH) domain, and the zinc-finger domain). Complicating matters, the absence of 

defined small molecule binding sites and the highly disordered structure of many RBPs has 

generally limited their tractability for small molecule probe development. This perception 

of ‘undruggability’ has begun to change, and recent advances in small molecule screens 

and RPI identification technologies have revealed the ‘druggable’ potential of this protein 

class. A number of chemical probes have been shown to function by targeting select RBPs 

(Table 1), including spliceosomal proteins [11–19], ribosomal proteins [20], HuR [21–23], 

EIF4 family proteins [24–26], toll-like receptors [27,28], stress granule-associated proteins 

[29,30], and microRNA-binding proteins [31–34]. For a comprehensive overview of RBP 

probes, we would direct the readers to the following review [35]. Here, we review the 

techniques that have advanced these efforts and highlight future opportunities and technical 

innovations that are well suited to enable RBP small molecule probe development.

RBP-RNA high-throughput small molecule screens

Conventional biophysical assays, including fluorescence polarization (FP) and Föter 

resonance energy transfer (FRET), are compatible with RBP small molecule screening. 

For FRET, a pair of donor/acceptor fluorophores with overlapping spectra are individually 

appended to the RNA and RBP. Small-molecule binding is reported by decreased emission 

of the acceptor fluorophore (Figure 1a). In a similar fashion, for FP, the polarized 

light emission of a fluorescently tagged RNA is monitored upon binding to an RBP. 

Decreased polarization corresponds to the increased tumbling speed of unbound RNA, 

indicative of a small molecule blockade of the RBP-RNA interaction (Figure 1b). These 

techniques have enabled RBP probe discovery for components of the spliceosome, the 

protein Lin28, HuR, MSUT2, MUSASHI family proteins, and EIF4 family proteins [23,31–

33,35,40,49,52,55]. Another proximity-based fluorescent assay, AlphaScreen® (ALPHA for 

Amplified Luminescent Proximity Homogeneous Assay; Figure 1c), has also been applied 

to screen for RPI inhibitors, most recently identifying an inhibitor of the tauopathy-inducing 

MSUT2-poly(A)RNA interaction [55]. In a similar format, a recent turn-off fluorescence 

screen takes advantage of the enhanced fluorescence observed when RBPs bind to RNAs 

appended to certain fluorophores (Figure 1d). Screening of the interaction between Lin28 
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and preE-NA identified both known and novel inhibitors. Extension of this assay to the 

RBP Roquin—implicated in the degradation of multiple immune-relevant mRNAs, such as 

tumor necrosis factor-α (TNF-α) mRNA—identified the well-characterized RPI inhibitor 

ATA as a Roquin binder [53]. While conventional fluorescent assays sometimes suffer from 

low specificity and sensitivity, the use of red-shifted dyes in this ‘enhanced fluorescence’ 

assay can prove useful in reducing the likelihood of spectroscopic interference from library 

members.

The catalytic enzyme-linked click chemistry assay (cat-ELCCA; Figure 2a) represents 

an exciting alternative for RBP screening, offering the potential for improved sensitivity 

compared with fluorescence-based assays. Cat-ELCCA combines copper-catalyzed azide

—alkyne cycloaddition (CuACC) bioorthogonal chemistry and enzyme-catalyzed signal 

amplification to identify small molecule modulators of RBPs [54,56,57]. While the cat-

ELCCA concept was developed using the RNA-processing protein Dicer, the application 

of cat-ELCCA to screen the oncogenic pre-let7 miRNA-Lin28 interaction identified several 

potent hits, including CCG-233094 and CCG-234459 [57]. Advantages of the cat-ELCCA 

screening platform include robustness (Z’ score > 0.5), sensitivity as a result of signal 

amplification, lack of interference from fluorescent compounds, and as with FRET and FP, 

generalizability to a range of RNA-RBP interactions [54,57].

Cell-based screening methods

A key limitation of the aforementioned assays is their general incompatibility with cell-

based screens, due, for example, to modest assay sensitivity that requires RNA and protein 

concentrations in excess of those feasible in cells and to low assay specificity in more 

complex biological mixtures caused by nonspecific binding of a reporter RNA to other 

RBPs. In-cell RBP screening has been achieved using a split luciferase engineered from 

NanoLuc (NanoLuc Binary Technology; NanoBiT) [58], in which the split luciferase’s 

subunits, SmBiT (13 kDa) and LgBiT (18 kDa), are conjugated to the biomolecules of 

interest, such that a luminescent signal is detected upon their interaction. Validation of 

this system was first achieved in vitro by assaying the interaction between Lin28 and 

the pre-let7 miRNA (Figure 2b). When trans-cyclooctene (TCO)-function-alized pre-let7 

RNA is mixed with the fusion proteins SmBiT-HaloTag and Lin28-LgBiT, together with 

a tetrazine-functionalized chloroalkane ligand, Lin28-pre-let7 binding promotes assembly 

of catalytically competent luciferase. Pretreatment with the previously identified Lin28 

inhibitor CCG-233094 abolished the luciferase signal. Extension of this platform to the 

cell-based assay, termed RNA interaction with Protein-mediated Complementation Assay, 

or RiPCA [59], enabled live cell detection of Lin28B interactions with a number of pre-

miRNAs, suggesting RiPCA will be compatible with future cell-based small molecule 

screens. Unlike in vitro approaches (e.g. cat-ELCCA), these cell-based assays do not 

differentiate between indirect and direct interactors.

Cell-based screens have also been developed to identify small molecule modulators of 

RNA splicing. Because dysregulated splicing has been implicated in many cancers and 

neurodevelopmental disorders, components of the spliceosome, particularly SF3B1, have 

been the focus of considerable interest as potential drug targets. In fact, the natural 
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product pladienolide B [41], its derivative E7107 [16], its synthetic analog H3B-8800 

[17], spliceostatin A [18], and Sudemycin D6 (SD6) [19] all function by acting on the 

spliceosome. The activity of the spliceosome modulator Sudemycin D6 (SD6) was validated 

in cells using a luciferase-MDMD2 fusion construct containing a premature stop codon in 

exon 4. Luciferase expression and the bioluminescent signal is only detected upon exon 

skipping [60]. Using this Triple Exon Skipping Luciferase Reporter (TESLR) assay, three 

antitumor agents were established as splicing modulators, and two novel antagonists of 

SF3B1 were also identified [47]. Comparable to the luciferase-based assays, two color exon 

skipping assays have also identified novel small molecules that target cellular splicing [61]. 

Whether these compounds function by binding directly to a putative RBP or indirectly, for 

example, by altering signaling cascades, remains to be seen.

RPI assays and their potential applications to small molecule screening

In looking beyond small molecule screens, many additional technologies have recently 

emerged that enable the high throughput identification of RBP-RNA interactions. While 

these methods are not specifically tailored to small molecule screening applications, given 

their widespread adoption and flexible design, we anticipate that these tools will facilitate 

RBP probe development efforts. For example, a number of mass spectrometry-based 

proteomic methods have been developed to identify RBPs. We would direct readers to the 

following reviews for more comprehensive surveys of all available technologies [62,63]. 

Many methods, including conventional crosslinking (cCL) [64] and photoactivatable-

ribonucleoside enhanced crosslinking (PAR-CL), rely on oligo(dT) resin for RNA-RBP 

enrichment, and thus, only capture RBPs bound to polyadenylated mRNAs. However, 

several new methods that rely on metabolic labeling with unnatural nucleosides have 

emerged to capture RBPs bound to all types of RNAs, including, for example, ncRNAs, pre-

mRNAs, and circRNAs [65,66]. In the click chemistry-assisted RNA interactome capture 

(CARIC) method [66], cellular RNAs are metabolically labeled with two analogs of the 

nucleotide uridine (5-ethynylurdine [EU] and 4-thiouridine [4SU]). The photoactive 4SU 

improves the efficiency of UV-crosslinking of RBPs to RNA, and the EU is used for 

unbiased enrichment of proteins bound to all types of RNAs using bioorthogonal labeling 

chemistries (e.g. CuAAC, strain-promoted click chemistry, and IEDDA labeling reactions). 

We expect that these methods will soon take advantage of new nucleoside probes that 

offer decreased toxicity and cell-specific labeling [67]. When combined with proteomic 

studies that employ isotopic labels, these methods should prove amenable to competitive 

small molecule screens for the identification of RPI modulators. However, complicating 

their application to small molecule screening, these approaches typically do not report the 

RBP-RNA contact sites. As a result, such methods may fail to capture compound-dependent 

changes in specific RNA-protein interactions for proteins that contain multiple RNA binding 

domains, with only one labeled by a lead compound, or for those where small molecule 

binding blocks interactions with only a subset of cognate RNAs. Proteins in these categories 

may show modest to no changes in enrichment upon compound-labeling.
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Photoactivatable RNA probes

Photocrosslinkable activity-based probes are poised to enable RBP small molecule 

screening and probe discovery. Synthetic diazirine-containing RNA photoprobes enabled the 

chemoproteomic identification of RBPs that bind to N6-methyladenosine (m6A) modified 

RNA [68]. In this method, the m6A-containing synthetic probe is photocrosslinked to its 

protein interactors, and chemoproteomic analysis is used to enrich and identify cross-linked 

proteins. Given the widespread adoption of photoaffinity probes for competitive activity-

based protein profiling (ABPP) and small molecule screening [69,70], we anticipate that 

when integrated into competitive ABPP small molecule screening workflows, the m6A 

photo probes should prove useful for identifying small molecules targeting readers and 

writers of epitranscriptomic modifications. More broadly, photoaffinity probes targeting 

additional RNA modifications (e.g. 7-methylguanosine (m7G) modification) will likely also 

prove compatible with ABPP and chemoproteomic studies.

Proximity-based labeling

Proximity-based biotinylation strategies, while not yet widely adopted for small molecule 

screening applications, represent another intriguing option for in situ RBP probe discovery 

campaigns. When fused with the MS2 coat protein (MCP), the APEX engineered 

peroxidase, which catalyzes promiscuous biotinylation of proximal proteins, can be applied 

to identify proteins located proximal to MS2-labeled transcripts [71]. Similarly, APEX 

fusion to a catalytically inactive Cas13 (dCas13) initiates biotinylation of proteins proximal 

to an RNA that is complementary to the Cas13 gRNA. When these methods were applied 

to uncover proteins proximal to the telomerase RNA, the MCP- and dCas13-APEX labeling 

strategies functioned comparably, with substantial overlap observed for both strategies [71]. 

We expect that these methods should readily extend to assaying compound-dependent 

changes to RBP-RNA interactions. It is worthwhile to note, however, that such proximity-

based labeling assays will likely be subject to off-target effects as a result of endogenous 

biotinylation and nonspecific APEX-mediated biotinylation of distal proteins. The use of 

properly controlled experiments (e.g. untargeted APEX as a negative control) and statistical 

filtering of quantitative proteomic data will mitigate the identification of false positives.

Ligandable RBPs identified by global chemoproteomic studies

Mass spectrometry-based chemoproteomic studies, using both irreversible and reversible 

probes (Figure 3), have generated proteome-wide maps of protein ligandability [69,72–75]

—ligandability in this context refers to proteins and protein domains found to bind to 

small drug-like molecules, which in some instances can serve as leads for more potent 

chemical probes or even drugs. Our prior screen of cysteine-reactive chemical probes using 

the chemoproteomic method isotopic tandem orthogonal proteolysis—activity-based protein 

profiling (isoTOP-ABPP), revealed that an astonishing 18% of ligandable cysteine residues 

are found in proteins annotated as RBPs (See Table S1 for examples, which includes 139 

total cysteines and 7 cysteines located within known RNA interaction sites) [72]. Consistent 

with these findings, RBPs are also known to be rich in cysteine residues, including redox-

sensitive residues and the numerous cysteines found in RNA-binding zinc fingers. For 

example, oxidative stress regulates the RNA binding activity of RBP Iron regulatory protein 
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2 (IRP2) in a cysteine dependent manner [76]. The Parkinson’s associated protein PARK7 

(also known as DJ-1) has a conserved redox-sensitive cysteine (Cys106) that has been 

implicated in Park7 mRNA binding. However, as Park7 lacks a canonical RNA binding 

motif, it remains to be determined whether Cys106 contributes directly to RNA interactions 

or whether this residue modulates RNA binding indirectly, by, for example, modulating 

other protein—protein interactions [77]. Whether compound-labeling at the many identified 

cysteine residues will impact RBP function remains an open question.

Chemoproteomic studies that assay lysine- and tyrosine-reactive compounds have similarly 

revealed an enrichment for reactive and ligandable residues in oligonucleotide-binding 

proteins, many of which are RBPs. Global analysis of lysine ligandability using the method 

isoTOP-ABPP and a lysine-reactive sulfotetrafluorophenyl (STP)-ester probe, revealed that 

over 26% of liganded lysines are found in annotated RBPs (Table S1, which includes 

32 total lysines and 4 lysines located within known RNA interaction sites) [73]. These 

results are perhaps not surprising, as RNA binding domains are known to be enriched 

for positively charged residues, including lysines and arginines. Sulfur—triazole exchange 

chemistry was used to identify ligandable tyrosines in the human proteome. 22% of 

ligandable tyrosines were found in RBPs (Table S1, which includes 82 total tyrosines and 

13 tyrosines located within known RNA interaction sites) [74]. As with irreversible probes, 

global chemoproteomic analysis of the protein targets of reversible inhibitors uncovered a 

substantial number of ligandable RBPs. In enrichment studies, 461 RBPs (Table S1) were 

found to interact with members of a fully functionalized fragment (FFF) library, which 

consists of compounds that feature both photocrosslinkable diazirine moieties and alkyne 

enrichment handles [69]. In more focused studies, chemoproteomic methodology has also 

validated that previously identified [78] 2,4-Diaminoquinazoline-containing scaffolds bind 

to the mRNA decapping scavenger enzyme DcpS, yielding both reversible photoprobes 

and irreversible sulfonyl-fluoride-containing inhibitors that react with an active site tyrosine 

residue [79]. Given the enrichment for tyrosine residues in RNA binding sites, this work, 

together with the aforementioned tyrosine-directed chemoproteomic study, highlights future 

opportunities to target RBPs with tyrosine reactive probes, containing electrophilic warheads 

such as sulfonyl fluoride, fluorosulfonate, and the recently reported sulfuramidimidoyl 

fluorides [80].

Conclusions and future prospects

RBPs function in a wide range of biological processes, both in the context of translation 

and other regulatory networks [2,3]. RBP dysregulation, including aberrant expression, 

altered RNA interactions, and aggregation and phase separation, has been implicated in 

many diseases, including neurodegenerative disorders [7], cardiovascular disorders [6], and 

cancers [4,5]. Consequently, RBPs are an attractive protein class to chemically target and 

functionally manipulate with chemical probes. As highlighted here and recently reviewed 

comprehensively [35], a number of small molecules, including some compounds in clinical 

trials, have been identified that function by binding to RBPs. Despite these considerable 

advances, RBPs are often still categorized as tough-to-drug. A central reason for this 

seeming intractability is the absence of suitable high throughput assays for RBP small 

molecule probe discovery.
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As we have discussed here, a number of recent assays have emerged that address this 

challenge and are poised to facilitate future RBP probe discovery campaigns. Conventional 

screening methods (e.g. FRET and FP) can be readily adopted to RBP screens. As many 

RBPs function in large complexes, screens of recombinant proteins may fail to yield 

compounds that are active in cells. Cell-based methods, such as RiPCA and established 

fluorescent and luminescent reporters of RNA splicing, address this limitation and enable 

small molecule screens for a subset of RBPs, including splicing factors and microRNA-

binding proteins.

In looking beyond these assays, numerous other technologies have emerged that are well 

suited to RBP probe discovery efforts, such as established proteomic methods for RBP 

identification, including proximity-based labeling strategies and photo-crosslinking and 

capture methods. The ubiquity of RBPs in several global chemoproteomic profiling studies 

further points to the general tractability of RBPs. Particularly intriguing is the number of 

RBPs labeled by FFFs, which points to the potential utility for fragment-based screens in 

targeting RBPs. Computational methods, such as in silico screening, will likely also prove 

useful for RBP probe discovery, as demonstrated by the recent identification of RBP probes 

targeting the stress granule-associated protein TDP-43 [29,30]. We anticipate that such in 

silico screens will likely prove most enabling when combined with secondary screens of 

potential hits by, for example, using one or more of the screening assays detailed above.

To unlock the full potential of RBP probes, a number of challenges still need to be 

addressed. As many RBPs still remain functionally unannotated, deconvolution of the 

functional impact of probe binding for these proteins may prove nontrivial. Resources 

such as accurate predictions of RBP-RNA contact sites [81] and the multiomic integration 

of genetic predictions of pathogenicity with chemoproteomics data [82], should facilitate 

prioritization of RBP-small molecule pairs for downstream functional validation and 

medicinal chemistry. Such meta-analyses will likely prove particularly impactful for 

prioritizing ligandable RBPs identified in global chemoproteomic screens.

Taken together, the application of innovative screening technologies to RBPs should yield 

chemical probes that can function both as useful tools to annotate RBP function and serve as 

leads for future drug development efforts.

Supplementary Material
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Figure 1. Fluorescence-based assays for RPI inhibitor screening.
(a) Förster Resonance Energy Transfer (FRET). Both RNA and RBP are appended to 

fluorophores with overlapping spectra, such that FRET emission is detected upon their 

interaction and abolished upon inhibition of their interaction. (b) Fluorescence polarization 

(FP). The RNA (or RBP) is appended to a fluorophore that is excited by plane-polarized 

light. If RBP binding is inhibited, the RNA will tumble faster in solution, increasing the 

detection of perpendicularly polarized light. (c) AlphaScreen®. RBP and RNA are appended 

to donor and acceptor beads, respectively. Excitation of donor beads leads to conversion 

of oxygen to singlet oxygen, which reacts to generate a chemiluminescent signal with 

the acceptor bead that then excites a fluorophore within the same bead, resulting in a 

fluorescent emission. No emission is detected upon small-molecule inhibition. (d) Enhanced 

fluorescence. The RNA is appended to a fluorophore whose fluorescence is enhanced upon 

RBP binding. Weak fluorescence indicates inhibition of interaction
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Figure 2. Bioorthogonal chemistry-based assays for RPI inhibitor screening.
(a) Catalytic enzyme-linked click chemistry assay (cat-ELCCA). Inhibition of Dicer-

mediated RNA processing is reported by CuAAC conjugation of alkyne-functionalized 

RNA to azide-HRP. The use of inverse electron demand Diels–Alder chemistry (IEDDA) 

can further increase the sensitivity and reproducibility of cat-ELCCA. (b) Nanoluciferase 

reporter assay. The combination of TCO-functionalized RNA with mTet-functionalized 

SmBiT affords a SmBiT-RNA fusion. Binding to a LgBiT-RBP fusion produces a detectable 

signal by luciferase formation. Inhibition of RNA-RBP binding abolishes such signal
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Figure 3. Detection of druggable RBPs through chemoproteomics.
A reactive ligand featuring a bioorthogonal handle is introduced to cells or cell lysates 

to react either covalently (top scheme) or reversibly (bottom scheme) with protein targets. 

Reversible probes harbor a photocrosslinkable moiety for covalent linkage to protein targets 

upon UV irradiation. Probe-labeled targets are enriched by conjugation to biotin via CuAAC 

and then identified by LC-MS/MS.
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