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Professor Philip Kellman, Chair 

 Shape is the predominant cue for object recognition in visual perception. Though many 

studies have demonstrated the psychological importance of shape information, much remains 

unknown about how the visual system forms representations of shape. Shape representations are 

unlikely to be a literal recording of an object’s boundary. Rather, representations of shape are 

abstract in that they encode relations between parts, are economical, selectively encoding 

information present in the physical stimulus, and are invariant to 2D transformations and changes 

to the properties of local elements.   

 In this dissertation, I examine evidence for the theory that representations of shapes are 

formed by partitioning a contour into regions of similar curvature and representing segments 

with a single curvature value. I first develop a computational model for how contours could be 

recoded abstractly as sets of constant curvature segments. I first experimentally tested two free 

parameters in the model and then tested the model’s ability to predict the perceptual difference 

between pairs of shapes. In Chapter 2, I showed how the visual system could encode constant 

curvature representations of shape from activations of oriented luminance contrast detectors in 

early vision, bridging a theoretical gap between subsymbolic activations that are responsive to 

light energy and symbolic representations that are concerned with objects, contours, and 

surfaces. 
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 In Chapters 3 and 4, I applied the constant curvature theory to two interesting domains of 

shape perception. First, I tested how and why people encode shape representations from arrays of 

unconnected dots. Consistent with the constant curvature theory of shape, dot arrays that were 

perceived to have curvilinear contours were more easily represented as shapes than dot arrays 

perceived to have straight edges joined at corners. In Chapter 4, I studied shapes with both global 

form and high frequency local contour features. Evidence was found for a hypothesis that local 

and global contour features are encoded independently and in separate systems. In this theory, 

global features are extracted from large curvature detectors and described in detail while local 

contour features are extracted from small curvature detectors and encoded with a few descriptive 

statistics rather than as individual features.  
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Introduction 

In this research, I put forward theoretical and empirical findings that aim to clarify how 

the shape of objects is perceived and represented in human vision. Many of the questions 

addressed in this document harken back to century-old insights from Gestalt psychologists, who 

emphasized that shape is a relational notion, and that a shape percept is largely divorced from the 

local elements that induce it (Wertheimer, 1923; Koffka, 1935). I begin from the premise that 

shape is relational, and that what we encode about an object’s shape is qualitatively different 

than the physical properties of its bounding contour. In this document, I am primarily concerned 

with two fundamental questions of shape perception. First, how does the visual system form a 

compact description of shape that is invariant to changes in size, orientation, position, or local 

elements? Second, how does the predominance of shape in human vision influence our 

perception of stimuli with no inherent structure like arrays of unconnected dots or allow us to 

find equivalence between objects with very different local elements but similar global form such 

as when we see objects in clouds.  

Implicit in the phenomenology and perceptual processing of shapes, is the idea that shape 

representations are abstract. Abstraction is a complicated notion, having several related 

meanings (see Barsalou & Weimer-Hastings, 2005, for useful discussion). In our use of 

"abstract" in the realm of shape perception, we intend three related ideas. The first is 

encompassed by the idea above that shape is a relational notion, i.e, by abstract, we mean at least 

relevant information consists in relationships defined over, but not by, lower order constituents; 

such relationships can be described as binding the value of a variable (Marcus, 2001; Overlan, 

Jacobs & Piantadosi, 2017). For instance, to be a square does not mean that a side of the form 

has to be of a certain length, but that the length of one side must equal the length of any other 
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side, formally expressible as, for any two sides a and b, length(a) is equal to length(b).  

Intuitively, we recognize shape representations as abstract when we notice that a cloud appears 

to resemble a dog, or when we notice that two objects of different sizes, composition, and 

orientation share the same shape. Our perceptual representations of shape allow these "matching" 

experiences despite radically different contexts or constituent elements.  A second, related, idea 

is that at least some shape descriptions, including, arguably, those used in the brain, capture 

information economically (Attneave, 1954); they comprise a summary description from which 

much specific stimulus information has been discarded. A third aspect of abstraction in human 

shape representation is more or less the converse: the representation is abstract in adding 

something that was not present in the stimulus. Baker & Kellman (2018) studied abstract shape 

perception experimentally using separated dot elements around virtual contours of unfamiliar, 

smooth, closed 2D shapes. We found that, beyond a very brief interval after stimulus offset, 

encoding of specific elements was poor or non-existent. In contrast, shape representations were 

encoded that supported accurate same / different judgments, across displays, despite 

transformations of position, orientation, and scale. Such results imply a representation that has 

captured relations among the inputs while discarding the concrete values of the inputs. 

Moreover, in these studies, no continuous contour shape information was actually given in the 

stimulus. The dots used in each display could have been connected in a virtually unlimited 

number of ways (or not at all). The particular shape representations that supported task 

performance were abstract in a) being derived from relations; b) being more economical 

descriptions in that the input elements were not stored; and c) in supplying connections across 

gaps in the physically specified input.  

 These criteria imply that abstract representations are symbolic representations. If a 
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representation encodes an object’s or a contour’s shape, it designates – symbolizes -- a property 

of a material object in the world (c.f., Newell & Simon, 1976). One of the deepest complexities 

of visual perception is that it involves a transition to symbolic descriptions of the environment 

from initially subsymbolic inputs. Early processing in the visual pathway involve units that 

respond to light or contrast. Encoding these properties of light energy, while crucial to vision, is 

not the goal of vision; rather, representing material properties of the world, such as objects, 

arrangements, and events are goals of vision (Gibson, 1966, 1979; Marr, 1982). The transition in 

visual perception from subsymbolic to symbolic coding appears to correspond to the distinction 

between coding of properties of incident light energy vs. representing properties of objects in the 

world. Arguably, the activation of a photoreceptor in the retina or a detector of oriented contrast 

in V1 are not symbolic, in that these activations do not represent properties of objects in the 

world. On the other hand, the perceptual description that one is seeing a rectangular table is 

symbolic. Representation of properties of objects, such as their unity, continuity, shape, and the 

material of which they are composed, are symbolic representations. A related notion of symbolic 

descriptions is that they include structured codes in which instances can be described by a 

relatively constrained set of numerical variables.  

The transition from subsymbolic to symbolic processing remains deeply mysterious in 

visual perception (Kellman, Garrigan & Erlikhman, 2013), and most research occurs on one side 

or the other of this divide. Although the research reported here focuses specifically on 

understanding the representation of contour shape, it also has a larger purpose of using this 

domain as an example and existence proof of how the visual system may obtain, symbolic 

descriptions from initial subsymbolic encodings. 
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 Consideration of how the visual system makes the transition from subsymbolic to 

symbolic representations led us to propose that 2D contours are organized into regions of similar 

curvature and recoded as a set of constant curvature primitives. There is evidence from research 

on early cortical areas that the visual system is sensitive to oriented luminance contrasts of 

different sizes across visual field (Hubel & Wiesel, 1962). Under the constant curvature theory, 

these local oriented contrast detectors are connected to larger curvature operators. These larger 

operators signal a unique curvature value but have tolerance for some variation in the true turn 

angle between local oriented contrast detectors. They are therefore abstract in the sense that they 

compress many similar curvatures into a single curvature value and symbolic in that the physical 

features of an object’s contour are represented by a small number of descriptive variables.  

Some theories of shape fail to capture the abstract qualities of shape representation. For 

example, the perceptual symbol system (Barsalou, 1999; Barsalou, 2003) proposes that we 

simulate activations from early subsymbolic areas when accessing a representation of an object. 

Deep convolutional neural networks also appear to never make the transition from subsymbolic 

activations from local elements to representations of the relations of parts (Baker, Lu, Erlikhman 

& Kellman, 2018; Brendel & Bethge, 2019; Baker, Lu, Erlikhman & Kellman, 2020).  Many 

other theories of shape representation are abstract, but it is unclear how they could be derived 

from subsymbolic inputs. For example, maximum a posteriori skeletal representations of shape 

(Feldman & Singh, 2006) abstract the contour in impressive ways, but are computed only 

through complex probabilistic algorithms that are divorced from subsymbolic inputs in early 

vision. Many computer vision algorithms use sophisticated mathematical tools to capture shape 

representation in, for example, flux graphs (Rezanejad & Siddiqi, 2013) or quadric polynomials 

(Bolle & Cooper, 1984). As engineering solutions, these systems might work well, but no 
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explanation is given for how they connect to outputs of subsymbolic systems. It has been argued 

that these models operate at the computational level of description and that the elaborate neural 

circuitry at the brain’s disposal can implement any good solution, but it also seems sensible that 

models in which the neural circuitry is plausible and straightforward are preferable.  

The theory of constant curvature has been supported by several sources of empirical 

evidence. Contours already made up of constant curvature were found to take less time to encode 

than contours made up of continuously changing curvature (Kellman & Garrigan, 2011). 

Constant curvature contours are also easier to detect among random distractors and to segment 

from each other than contours that differ in other ways (Baker, Garrigan & Kellman, 2020). In 

this dissertation, I build on the theory of constant curvature shape representation and test the 

hypothesis that constant curvature representations are stable and give predictable outputs that do 

not depend on task demands, individual differences, or visual attention. This means that we can 

develop models of shape representation that make specific predictions about perceptual 

performance. I also use the idea of constant curvature representations to clarify certain perceptual 

phenomena, such as why some dot arrays are seen as a shape while others are not and why two 

shapes with different boundary elements are perceived as the same. 

Ideas about abstraction in shape representation and the possibility that representations are 

built with segments of constant curvature led us to explore the phenomenon of shape 

representations forming from some configurations of unconnected dots. Unlike in complete 

objects, where the physical shape is specified by the object’s edge points, dot arrays do not have 

any explicit boundaries or structure. Mathematically, the visual system could interpolate 

contours between dots in an infinite number of ways or interpolate no contours at all. Still, 

experimental evidence suggests that we construct stable representations of shape from certain 
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arrangements of dots (Baker & Kellman, 2018). Understanding what spatial relationships 

between dots give rise to a shape percept gives critical insight into what kinds of computations 

the visual system makes in the formation of an abstract shape representation. We studied the 

percept of curvature in dot arrays, testing a prediction from the constant curvature theory that 

shape representations would be more easily formed by arrays that can be encoded with relatively 

few curved segments than by straight segments joined at corners.  

The transition from subsymbolic to symbolic shape representations also led us to consider 

objects that have a great deal of high frequency contour information along their boundary. In 

early visual areas, local edge detectors give dissimilar outputs for two objects that have the same 

global form but different local features. Still, when we see a cloud shaped like a dog or two pine 

trees with different local element features, the visual system finds a match between locally 

different objects with similar overall form. This equivalence can only be obtained at a symbolic 

level of contour description. The separation of global features from local elements also connects 

with the constant curvature theory of shape description, as one way of explaining how similar 

global forms are obtained from dissimilar local elements involves finding regions of similar 

curvature from large-scale curvature detectors proposed in the constant curvature model. Other 

possible explanations require interactions between local and global processing systems that 

experimental data do not support.  

  This document consists of four unpublished manuscripts, all of which pertain to abstract 

shape representation and constant curvature coding. They are written to be read independently 

but all touch on similar themes. In Chapter 1, I discuss a model for how a shape could be 

organized into relatively few segments of constant curvature at the computational level of 

description. I report psychophysical experiments that independently estimate the model’s two 
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free parameters, then test whether outputs of the computational model are predictive of human 

performance on a shape matching task. In Chapter 2, the model is reformulated to operate at the 

algorithmic level of description, starting from outputs of early detectors and forming a symbolic 

description of an object’s shape. In Chapter 3, I look at the perception of curved contours in dot 

arrays and analyze how experimental findings align with curve-based theories of shape 

representation. In Chapter 4, I propose a theory about how the visual system handles local and 

global information. I present empirical evidence that local and global contour features are 

processed in independent systems and that the local system primarily encodes statistical 

information about feature properties. 

 Taken together, the results of these studies support the idea that shape is abstract and 

separate from its local elements. They also support the notion that shapes are represented with 

segments of constant curvature in the visual brain and give a way that these representations could 

form from subsymbolic activations of early visual areas. These connections to early visual areas 

suggest solutions to several phenomena observed in reported experiments, such as how dot 

arrangements and noisy contours can be abstracted over to encode global form.  
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Abstract 

Abstract shape representation is an important unsolved problem in human visual perception. 

Previous work has suggested that the visual system encodes shapes with a set of connected 

constant curvature primitives. In this study, we describe a model for how the visual system might 

recode a set of boundary points into a constant curvature representation. The model includes two 

free parameters that correspond to the degree to which the visual system encodes shapes with 

high fidelity vs. the importance of simplicity in a shape representation. In Experiment 1, we 

tested the visual system’s sensitivity to differences in curvature. Subjects had to discriminate a 

contour made up of two curvature segments from one made up of one curvature segment. 

Subjects reached a 75% threshold when the ratio of curvatures between the two segments was 

1.18:1. In Experiment 2, we tested the amount of curvature variation over which the visual 

system abstracts. We measured subjects’ ability to discriminate a contour generated from cubic 

splines from a constant curvature approximation of the contour, generated at various levels of 

precision. Results indicated that up to a certain level of precision, subjects could not detect a 

difference between the original contour and a constant curvature approximation thereof, but there 

is a clear transition point beyond which detection performance monotonically improves. The 

results of these two experiments were used to fix the free parameters in our constant curvature 

model. We then assessed the validity of the parameterized model by generating shape pairs that 

were matched in physical similarity but differed in qualitative properties of their proposed 

constant curvature representations. These qualitative properties were found to be predictive of 

human performance in a shape recognition task. The results of this study provide evidence for 

the use of constant curvature shape representation in human visual perception and provide a 

testable model for how abstract shape descriptions might be encoded. 
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Shape is a fundamental aspect of object perception and recognition (Palmer, 1999; 

Biederman & Ju, 1988; Elder & Velisavljević, 2009; Landau, Smith & Jones, 1988; Imai, 

Gentner, Uchida, 1994; Xu, Carey & Quint, 2004). While shape can be defined in a physical 

sense as the set of points or curvatures along the bounding contour of an object, research in 

perception has found considerable evidence that shape representations differ from the physical 

features of a contour (Koffka, 1935; Pomerantz, Sager & Stoever, 1977; Kovacs & Julesz, 1993; 

Altmann, Bulthoff & Kourtzi, 2003; Kanizsa, 1976). Human visual shape representations appear 

to be a symbolic encoding of the shape contour which requires meaningful processing time to 

compute (Kellman, Garrigan & Erlikhman, 2013; Baker & Kellman, 2018).  

 One of the major reasons shape representations require abstraction is that they must be 

recognizable across a variety of viewing conditions (Rock, 1977). Research has shown that 

shapes and objects can readily be recognized across transformations in position (Biederman & 

Cooper, 1991; Lueschow, Miller & Desimone, 1994), size (Biederman & Cooper, 1992; Cooper, 

Schacter, Ballesteros & Moore, 1992; Ito, Tamura, Fujita & Tanaka, 1995), and orientation, both 

within the picture plane (Schmidt, Sprote & Fleming, 2016; Baker & Kellman, 2018) and in 

depth (Pizlo & Stevenson, 1999). Constancy across proximal changes to an object’s projection 

onto retinae requires abstract recoding of the stimulus from a pattern of luminance contrasts to a 

symbolic, object-centric description of the spatial relationships between contour features in an 

object. This recoding requires time for the visual system to compute. Psychophysical evidence 

shows that comparisons between transformed shapes are only possible after processing time 

beyond what is needed for registration of the position of local elements (Baker & Kellman, 2018) 

or the formation of a visual icon (Bertamini, Palumbo & Redies, 2019). 
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 Abstraction is also important for reducing the total amount of information along an 

object’s contour. While a huge amount of unprocessed information is available immediately after 

sensation (Sperling, 1960; Cotlheart, 1980), a much smaller amount is encoded in more durable 

memory stores (Luck & Vogel, 1997). Capacity for shape information may not be as limited as 

for conjunctions of visual features, but experiments testing detection of contour differences 

suggests that some contour features are not encoded in our shape representation (Barenholtz, 

Cohen, Feldman & Singh, 2003). As another example, consider Figure 1. Although the two 

shapes have none of the same curvature values, they are visually indistinguishable. Attneave 

(1954) proposed that the visual system preferentially encodes regions of high curvature along a 

contour, arguing that, from an information theory perspective, high curvature areas are more 

informative about the object’s shape (see also Feldman & Singh, 2005).  

 

Figure 1. Two shape contours. The two shapes differ in local curvatures but give rise to the 

same shape percept. 

 

 Many models of shape representation have been proposed, both from work in human 

perception and computer vision. One of the most prominent theories is that shapes are encoded 

as a set of skeletal branches that capture areas of local symmetry along a contour. This idea 

originates with Blum (1973), who proposed the medial axis transform (MAT), which recodes a 

set of contour points to a set of axial branches. The MAT is completely data-driven and gives a 
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perfect reconstruction of the original contour. It is therefore abstract in the sense that it can 

capture potentially important perceptual features of a contour, but it does not simplify the 

contour representation, nor would it be robust to small, imperceptible changes to an object’s 

contour. Newer skeletal models have corrected this, putting contour reconstruction accuracy in 

tension with representational simplicity (Feldman & Singh, 2006). These models are 

theoretically rigorous, but experimental evidence of their use has been limited. A few recent 

studies have found evidence that subjects’ similarity judgments for objects correlate with the 

objects’ skeletal similarity (Briscoe, 2008; Lowet, Firestone & Scholl, 2018; Ayzenberg & 

Lourenco, 2019). Crucially, however, the stimuli used in these experiments were generated from 

skeletal branches. Whether skeletal models are predictive of perceptual performance on shapes 

generated without a skeleton in mind remains an open question. One study found that there was 

no difference in subjects’ ability to do a same/different task for shapes that were metrically 

different (i.e., a difference in the number of branches) vs. shapes that were qualitatively different 

(i.e., a change in the curvature along a branch) (Baker & Kellman, 2017).  

 Other, contour-based models of shape representation have also been put forward. Though 

not a fully specified model, Hoffman & Richards (1984) proposed a theory for how a shape is 

decomposed into parts by identifying concavities along the contour. Subsequent research has 

found support for the notion that curvature minima are more salient than curvature maxima along 

a contour (Barenholtz et al., 2003). Kass, Witkin, and Terzopolous (1987), modeled shape 

representations as a series of deformations of a basic shape primitive. They used evolving splines 

to capture these deformations. Several newer models have used the same idea of template 

deformation but adjusted the algorithms to make the shape representations more robust to local 



 

15 
 

contour changes and partial occlusion (Kimia Tannebaum Zucker, 1995; Elder, Oleskiw, 

Yakubovich & Peyré, 2013).  

 Another model of shape that has been used in computer vision research involves dividing 

a contour into a set of line segments, then merging together adjacent segments that are 

sufficiently similar in orientation (Pavlidis, 1982). Gdalyahu and Weinshall (1999) showed how 

split-and-merge techniques with line segment primitives could be used as the basis for object 

recognition algorithms in natural images. Similar split-and-merge methods have been proposed 

with splines rather than straight segments to more efficiently code curvature along a contour 

(Lancaster & Salkauskas, 1990). Another possibility is to decompose shape contours into 

segments of constant curvature. Wuescher and Boyer (1991) developed an algorithm for constant 

curvature segmentation of contours and showed that they fit contours better and with fewer 

primitives than straight segment approximations.  

 The idea that 2D shape representations are made up of smoothly joined constant 

curvature segments is intriguing for several reasons. From a neurophysiological standpoint, 

Pasupathy and Connor (2001; 2002) found evidence of neuron populations in V4 of neurons 

tuned to a specific curvature and position. They argued that representations of part-based shape 

could be built up from populations of these neurons. From an ecological perspective, a great deal 

of work in natural scene statistics has examined the prevalence of co-circular contours in our 

visual environment (Sigman, Cecchi, Gilbert & Magnasco, 2001; Chow, Jin & Treves, 2002). 

While results differ on how many truly co-circular contours exist in the visual environment, there 

is agreement on the prevalence of curved, nearly co-circular contours that could be well-

estimated by constant curvature encoding.  
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 Garrigan & Kellman (2011) also found empirical evidence for the use of constant 

curvature primitives in contour representation. Open contour fragments made up of constant 

curvature segments were encoded more accurately under brief viewing durations than fragments 

made up of non-constant curvature. They attributed this to the greater similarity between the 

physical properties of the constant curvature contour and subjects’ abstract representation of the 

contour. Further tests have found evidence for the use of constant curvature primitives in contour 

representation, showing that constant curvature paths are easier to detect in visual search than 

non-constant curvature paths, and that people can learn to segment a contour made of two 

constant curvature segments much more accurately than a contour made of two segments with 

different physical properties (Baker, Garrigan & Kellman, under review). 

 In the current work, we adopt the hypothesis that abstract shape representations are built 

up from constant curvature primitives. Garrigan (2006) proposed a computational model for how 

a 2D contour might be represented a set of smoothly joined constant curvature segments. We 

briefly review the model below. 

Model 

 The constant curvature model takes an object’s bounding 2D contour as an input and 

outputs a representation of the shape made up of a small number of constant curvature 

primitives. 

 The model begins by computing the signed curvature at every point along the inputted 

shape contour. Signed curvature k is calculated as 
x′y′′−y′x′′

(𝑥′2𝑦′2)
3
2

.  

 Next, the contour is segmented into regions of similar curvature by identifying points at 

which the curvature changes from higher than the local average to lower than the local average, 

or vice versa. The segmentation process considers all adjacent points, a and b, along a contour 
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and places a segmentation boundary between them if the difference between the curvature at a 

and the mean curvature in a local window centered on a is positive and the curvature at b and the 

mean curvature in a local window centered on b is negative, or vice versa. The precision of this 

segmentation depends on the size of the local window, which we term the integration window, 

W, with which the curvatures at a and b are compared. Formally, if  

(ka – 
1

2𝑊+1
 ∑ 𝑘𝑖=𝑎+𝑊

𝑖=𝑎−𝑊 i)* (kb – 
1

2𝑊+1
 ∑ 𝑘𝑖=𝑏+𝑊

𝑖=𝑏−𝑊 i) < 0 

then the model will add a segment boundary between a and b. Here, W represents the amount of 

contour considered when deciding if a segment boundary exists between a and b. Mean 

curvatures are calculated in the interval (a – W, a + W) and along the interval (b – W, b + W). 

Larger values of W correspond to larger windows that are therefore more tolerant to variance in 

curvature when the model decides whether to partition the contour between points a and b. 

Smaller values correspond a smaller window that is less tolerant to curvature variation. 

 Once the segment boundaries have been identified, the model recodes all contour points 

between the segment boundaries into a single constant curvature segment. A constant curvature 

segment is a contour region in which all points within the region are represented with the same 

curvature. It is described by an object-centric spatial position, a signed curvature (defined as the 

mean of all curvatures between the segment boundaries), and an arclength. 

 Curvatures of adjacent segments are then compared to ensure that all segments are 

sufficiently dissimilar to merit a separate primitive representation. If the difference in curvature 

between any adjoined segments is below a threshold value, T, then the visual system will 

represent the pair of segments a single primitive. The curvature of the merged segment will be 

the mean of the curvature of the two segments, weighted by their respective arclengths. This 
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process continues until no pair of adjacent segments have a curvature difference below T. In 

mathematical terms, if  

|𝑘2 − 𝑘1| < 𝑇 

where k1 and k2 are the curvatures of adjacent segments, then the visual system will merge them 

into a single constant curvature segment with the weighted mean of their curvatures, given by  

𝑘12 =
𝑙1 ∗ 𝑘1 +  𝑙2 ∗ 𝑘2

𝑙1 + 𝑙2
 

where l 1 and l2 are the lengths of the adjacent segments. Here, T specifies the visual system’s 

sensitivity to differences in curvature between constant curvature segments. 

The final representation is the set of constant curvature segments composing the shape, 

each described by a position, curvature, and arclength (see Garrigan, 2006) for a more detailed 

description of the model).  

 The constant curvature model includes two free parameters: the size of the integration 

window (W) used in segmentation and the minimum difference in curvature (T) needed for two 

adjacent segments to be represented separately. Both of these parameters balance the 

representation’s fidelity to the original contour with a preference for simpler representations built 

up from fewer primitives. This tension is a classic concern in research on visual perception (von 

Helmholtz, 1909/1962; Hochberg & McAlister, 1953; van der Helm, 2000). Research on 

minimum tendencies has found that the visual system tends to represent visual information as 

simply as possible, up to a certain loss in fidelity to the original stimulus (Hochberg, 1964; 

Buffart, Leeuwenberg & Restle, 1983; Hatfield & Epstein, 1985). 

In shape perception, this tension has been formulated in Bayesian terms as the balance 

between a simplicity prior, where, in the absence of data, a representation that is more complex 

has less a priori probability, and a likelihood, where a representation is more probable if it more 
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closely matches the original contour (Feldman & Singh, 2006). The best representation, then, is 

one that matches the original contour reasonably well, but does not represent contour features 

that greatly increase the representational complexity while only marginally improving the 

representational fidelity. Note that the prior specified in Feldman and Singh’s model has no 

relationship with frequency statistics in typical visual environments. Their Bayesian formulation 

is mathematically equivalent to non-probabilistic models that define cost functions for both 

complexity and differences from the true contour. Of course, a Bayesian framework still has 

flexibility in how the prior and likelihood are quantified. A model with a narrow prior 

distribution and a wide likelihood distribution will emphasize simplicity, while one with a wide 

prior distribution and a narrow likelihood distribution will emphasize fidelity. 

In the constant curvature model, fidelity and simplicity are balanced by the values fixed 

to the integration window size (W)and curvature difference (T) parameters. For W, using a 

smaller window results in more segment boundaries approximating the original contour. 

Representations formed from small window sizes therefore have higher fidelity but more 

complex than representations formed from larger window sizes. For T, a larger threshold results 

in the combination of segments with larger curvature differences, resulting in fewer primitives 

but greater difference between the physical and represented curvature in a region of the contour.  

In order to test specific predictions of the constant curvature model, both of its free 

parameters must be specified. It is an open question how consistent the parameters are across 

people and viewing conditions. Garrigan (2006) hypothesized that they are flexible, and that the 

visual system uses smaller parameters for visual tasks that require a high degree of specificity, 

and larger parameters for tasks in which a loose approximation of the shape is adequate. On the 

other hand, if parameters are truly believed to vary flexibly, the visual system would be unable to 
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match same shapes that were viewed under different task conditions. It is possible that additional 

perceptual resources could be allocated for tasks that require an extremely high degree of shape 

fidelity, but it seems possible that the visual system always encodes a representation with a fixed 

level of specificity for general recognition.  

In the current work, we tried to estimate and evaluate the constant curvature model 

specifically as used for shape recognition. In Experiments 1 and 2, we used psychophysical 

experiments with simple open contour stimuli to fix the curvature difference threshold 

(Experiment 1) and integration window size (Experiment 2) in the computational model for 

constant curvature representation. In Experiment 3, we used the parameters fixed in Experiments 

1 and 2 to test the empirical validity of the fully parameterized constant curvature model. 

Experiment 1 

 In Experiment 1, we aimed to specify the threshold parameter (T) of the constant 

curvature model. The threshold parameter determines the point at which two adjacent constant 

curvature segments are represented as a single segment based on the difference in curvature 

between them. In other words, if the curvature difference between two smoothly connected 

segments is less than the threshold parameter, then the visual system should encode them as a 

single segment of constant curvature that extends the length of both constituent segments. The 

parameter acts in service of the simplicity constraint for the constant curvature model, ensuring 

that a shape is represented by as few primitives as possible provided that the representation still 

has sufficient descriptive capability to support recognition, discrimination, motor action, and 

reasoning about functional properties. 

 We used a simple psychophysics experiment to measure the visual system’s sensitivity to 

differences in curvature between two smoothly joined constant curvature fragments. Previous 

work by Baker et al. (2020, under review) found that the visual system is capable of accurately 
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separating two constant curvature segments at their point of transition, but not two segments of 

constantly accelerating curvature. In this experiment, we varied the difference in curvature 

between two CC segments in order to determine at which curvature differences the two segments 

are perceived as a single curvature as opposed to a composition of two distinct curvatures. We 

hypothesized that the maximum curvature difference that was undetectable to participants would 

be a natural threshold for the constant curvature model in deciding whether two adjacent 

segments should be represented as one or two segments of constant curvature. 

Method 

Participants 

  Twenty-six undergraduates (eight male, 18 female, Mage = 20.6) from the University of 

California, Los Angeles participated in Experiment 1 for course credit. All subjects had normal 

or corrected-to-normal vision. 

Stimuli 

 In each trial, we generated two open contour stimuli, one made up of a single constant 

curvature segment, and one made up of two smoothly joined constant curvature segments. The 

single CC contour was generated with a random length and curvature.  The length of the contour 

was between 240 and 500 pixels (5.76-12 degrees of visual angle), and the curvature was 

between 0.0059 and 0.020 pixels-1. Both contours made up of a single CC segment and contours 

made up of two constant curvature segments had lengths between 120 and 250 pixels. The mean 

length of contours for both conditions was equated. The angular extent of the single CC contour 

was determined by its length and curvature, but we added a constraint that the angular extent 

must be less than 360 degrees.  
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 The contour made of two connected CC segments was created by generating one constant 

curvature segment with random length (between 120 and 250 pixels) and curvature (between 

0.0059 and 0.020 pixels-1), then smoothly connecting a second segment to it. For the contour to 

be differentiable at all points, the second segment had to begin at the same angular position at 

which the first segment terminated. The second segment also had random length between 120 

and 250 pixels. The curvature of the second segment was determined by the first. We varied the 

difference in curvature across nine conditions as a ratio. The possible curvature ratios ranged 

from 1.03:1 to 1.9:1. The order of the two segments was randomized so that half the time the 

higher curvature segment was clockwise of the lower curvature segment, and the other half it 

was counterclockwise.  

Display and Apparatus 

Subjects were seated 70 cm from a 20-in. View Sonic Graphic Series G225f monitor. The 

monitor was set to 1024 x 768 resolution, with a refresh rate of 100 Hz. All stimuli were black 

contours shown on a gray background. One contour was shown in the center of the left half of 

the screen, and the other was shown in the center of the right half of the screen. 

Design 

 Experiment 1 had 225 trials, consisting of nine conditions with 25 trials each. The nine 

conditions corresponded to the ratio of curvatures between the two constant curvature segments 

from the two CC open contour. The nine ratios were 1.03:1, 1.06:1, 1.1:1, 1.3:1, 1.4:1, 1.6:1, 

1.75:1, and 1.9:1. The conditions were ordered in blocks from the highest ratio to the lowest so 

that better performance for higher ratios could not be explained by practice effects. Subjects 

completed five practice trials with the experimenter present to ensure that they understood the 

instructions before beginning the main experiment. 
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Procedure 

 In each trial, one open contour with a single curvature segment and one open contour 

made of two curvature segments were shown simultaneously, one in the left half of the screen 

and one in the right half. Position was randomly assigned in each trial. Participants were told to 

look at both open contours and judge which one they believed was more complex. They were 

then told to press “A” if they believed the contour on the left was more complex, or “L” if they 

believed the contour on the right was more complex. No explanation was given about what was 

meant by complexity, but the more complex stimulus (i.e., the open contour made of two 

constant curvature segments) was highlighted in blue in each trial after subjects had given their 

response. Subjects were free to look at the stimulus pair for as long as they wanted before 

responding.  

Results 

 Mean accuracy results are plotted for each curvature difference in Figure 2.  Performance 

was at chance for a ratio of 1.03:1 (t(25) = 0.18, p = .83, 95% CI = [.47, .54]). At a ratio of 

1.06:1, performance was marginally better than chance after correcting for multiple comparisons 

(t(25) = 3.71, p = .01, 95% CI for performance = [.53, .62]). For all other curvature ratios, 

subjects performed reliably better than chance even with a Bonferroni correction for multiple 

comparisons.  



 

24 
 

 

Figure 2. Performance as a function of curvature difference. The horizontal axis gives the 

Weber fraction between curvatures for the two-segment contour fragment. For example, if the 

Weber fraction is 0.1, then the curvature ratio between the two segments is 1.1:1. 

 

 Performance improved rapidly with larger curvature ratios up to a ratio of 1.3:1, after 

which it flattened out and improved only marginally as the ratio got larger. This suggests that the 

critical point at which the visual system encodes two contours of similar curvature as different 

occurs somewhere between a ratio of 1.03:1 and 1.3:1. Since chance was 50%, we found the 

75% performance threshold to estimate the value of T. We fit a psychometric function to the data 

using the Palamedes Toolbox (Prins & Kingdom, 2009) and found the 75% threshold to be a 

curvature ratio of 1.18:1.  

Discussion 
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Much of the foundational work in psychophysics was aimed at identifying the point at 

which a physical difference in a stimulus is detected by sensory systems (Weber, 2018; Fechner, 

2012). In Experiment 1, we used similar psychophysical methods to evaluate subjects’ perceptual 

ability to detect differences in curvature. Unlike the oldest detection work, this study did not test 

subjects’ sensitivity to energies such as light or sound, but to object features.   

Despite a physical difference in curvature, the visual system appears not to be able to 

detect curvature differences between contours when the curvature ratio is very small. Participants 

did not reliably perceive the contour made of two constant curvature segments as more complex 

when the ratio was 1.03:1, and perceived contours with a curvature ratio of 1.06:1 only 

marginally better than chance, presumably because these stimuli were encoded as a single 

segment of constant curvature. As the ratio between curvatures got larger, the probability of 

subjects encoding the contour with two curvature values increased, resulting in more accurate 

selection of the more complex contour. Subjects appear to reach ceiling accuracy when the 

curvature ratio is about 1.3:1 and are not more likely to judge the two-curvature contour as more 

complex for higher ratios of curvature. 

Importantly, subjects were instructed to choose the more complex stimulus, not the 

stimulus with more than one curvature. In fact, no mention of curvature was made at any point 

during Experiment 1. Still, for all but the most similar curvature pairs, subjects automatically 

chose the contour made of two curvature segments as the more complex stimulus. The ease with 

which subjects used curvature difference as an indicator of stimulus complexity furnishes 

additional evidence, beyond earlier work (e.g., Garrigan & Kellman, 2011; Baker et al., 2020, 

under review) evidence that constant curvature segments are indeed a basic unit of abstract shape 

representations. If a shape is represented by a set of primitives, it stands to reason that shapes 
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built up from more primitives are more perceptually complex than shapes built up from fewer 

primitives.  

Other notions of contour complexity do not make the same prediction. Hoffman and 

Richards (1984) hypothesized that a shape is decomposed into parts based on the presence of 

curvature minima. By this definition, the contours in Experiment 1 all have the same number of 

parts, as the sign of curvature never changes for either stimulus category. Our data suggest that 

there are perceivable differences in shape complexity even when part numbers are the same. 

Another account of contour complexity posits that stimuli with higher curvature are more 

complex (Attneave, 1954; Feldman & Singh, 2005). In our study, the one-segment contour will 

have higher curvature than the two-segment contour 50% of the time, but subjects reliably chose 

the two-segment contour as more complex. One explanation for this is that the visual system 

does not have lowest surprisal when a contour continues straight in the tangent direction as has 

been suggested (Feldman & Singh, 2005), but when its curvature is most similar to the curvature 

of contour areas nearby it.  

Experiment 1 helps us to fix the threshold parameter for the constant curvature model. 

The segment merging operation in our model is deployed after an initial segmentation of the 

contour into constant curvature segments has already been completed. It serves to prune the 

shape representation by encoding adjacent segments of similar curvature with a single CC 

segment. Two segments are merged into a single primitive if the difference in curvature between 

them is below a certain threshold. A likely candidate for what this threshold might be is the point 

at which two curvatures are detectably different more often than not. By fitting a psychometric 

function to the Experiment 1 data, we found the 75% threshold as an estimate of when curvature 

differences are reliably detected. This point corresponds to a curvature ratio of 1.18:1.  
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In Experiment 1, we used only segments of constant curvature. Certainly, out in the 

world, object contours have far more curvature variation (Chow, Jin & Treves, 2002). For our 

purposes, however, restricting our stimuli to one or two segments of constant curvature is more 

directly relevant to how the threshold parameter works in the constant curvature model. The 

threshold parameter merges segments of similar curvature after they have already been 

segmented and recoded into constant curvature primitives (see Model), so we restricted our 

stimuli to contours that were plausible inputs at that stage of the constant curvature model. 

Experiment 2 

In Experiment 2, we estimated the second free parameter of the constant curvature model: 

the size of the integration window used in segmenting a contour into constant curvature regions. 

In our model, the integration window size is parameterized as W, and corresponds to a 

percentage of the contour’s total length. W determines how contour regions with non-constant 

curvature are approximated by a relatively small set of constant curvature segments. In the 

constant curvature model, the visual system assigns adjacent points along a contour, a and b, to 

different segments if the difference between the curvature at a and the mean of curvature within 

the integration window centered on a is positive and the difference between b and the mean of 

curvature within a window centered on b is negative, or vice versa. W, then, determines how 

finely or coarsely a contour is segmented into regions of constant curvature. 

If the model uses large integration windows, a higher percentage of contour points will be 

shared in the integration window centered on a and the integration window centered on b, so a 

contour boundary will be drawn more rarely between two points. Consequently, model outputs 

with large W will tend to be coarser, abstracting over more curvature variety along an object’s 

contour. On the other hand, models in which W is small yield outputs with more constant 



 

28 
 

curvature segments, which are consequently much more visually similar to the original object 

boundary (see Figure 3).  

 

Figure 3. Two constant curvature representations of a shape contour. The original shape 

(left) is approximated with a small W (middle) and a large W (right). The smaller integration 

window has more segments and represents the contour more precisely. 

 

In the extreme, the visual system would represent every unique curvature along an 

object’s boundary with its own CC segment. This would give a perfect reproduction of the 

contour but would also likely tax the visual system far beyond the capacities of visual memory 

(Farah, Rochlin & Klein, 1994). More likely, the visual system abstracts over some curvature 

variation, but encodes a precise enough representation to allow it to discriminate between similar 

but nonidentical shapes, such as those in Figure 4.  

 

Figure 4. Shape pair with similar contour features. 
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 The degree of precision with which contours are encoded is an empirical question. If the 

visual system is segmenting contours into constant curvature segments and encoding the constant 

curvature representation, there should be a point at which the constant curvature representation 

of a contour is indistinguishable from the original contour in a visual memory task. To determine 

this point, we compared subjects’ ability to discriminate constant curvature representations of 

contour fragments from the real fragment across a variety of integration window sizes. We 

hypothesized that the visual system uses the largest integration window for which the model 

output indistinguishable from the inputted contour, since that will be the window size that is 

most economical while also representing the shape with sufficient precision.  

Method 

Participants 

 Twenty-three undergraduates (7 male, 16 female, Mage = 20.6) from the University of 

California, Los Angeles participated in Experiment 2 for course credit. All subjects had normal 

or corrected-to-normal vision. 

Display and Apparatus 

 All display conditions were the same as in Experiment 1.  

Design 

 Experiment 2 consisted of nine conditions, corresponding to nine integration window 

sizes. We initially specified window size as a contour length in degrees of visual angle. The nine 

sizes were 0.32, 0.64, 0.97, 1.29, 1.61, 1.93, 2.25, 2.58, and 2.90. There were 20 trials for each 

condition. In addition to the 180 experimental trials, we also had 180 trials (20 using each 

integration window size) in which the first contour fragment was made of constant curvature (see 
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Procedure). Results from these trials were not analyzed. Before beginning the experiment, 

subjects completed 10 practice trials. 

Stimuli 

 Each trial included a contour fragment with nonconstant curvature. The contour was 

obtained by first generating a closed contour by displacing 12 control points along a circle and 

fitting cubic splines between the control points (see Figure 4 for two examples), then taking a 

fragment from the closed contour, totaling 40% of the closed shape’s overall contour length, on 

average 12.88 degrees of visual angle. Every trial also had a constant curvature representation of 

the contour, generated with the fixed threshold parameter from Experiment 1 and various 

integration window sizes specified by the nine trial conditions. 

Procedure 

 In the analyzed trials, subjects were shown a fixation cross in the center of the screen for 

300 ms, followed by the nonconstant curvature contour fragment for 500 ms. A pattern mask was 

shown for 500 ms after exposure to the contour fragment, after which subjects were shown two 

contours simultaneously (one in the center of the left half the screen, one in the center of the 

right half of the screen) and asked which one exactly matched the first contour they had been 

shown. One of the two contours shown after masking was identical to the first contour. The other 

was the constant curvature representation of the contour generated with a window size 

determined by the trial condition (see Figure 5 for a sample trial). In the analyzed trials, the 

correct response was always the nonconstant curvature contour fragment. Subjects could view 

the two contours for as long as they wished before responding.  
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Figure 5. Sample trial for Experiment 2. The nonconstant curvature contour was shown first, 

followed by a mask. Then, a constant curvature representation and the original contour were 

shown side-by-side. Here, the constant curvature representation is generated with a window size 

of 2.25 degrees of visual angle.  

 

 To prevent subjects from using a strategy in which they always pick the contour fragment 

with constant curvature without comparison to the original contour, we also had 180 trials in 

which the constant curvature representation of the contour fragment was shown first instead of 

the nonconstant curvature contour fragment. After masking, the constant curvature contour and 

the nonconstant curvature contour were shown as in the main trials, but the correct response for 

the matching shape was the constant curvature contour. These trials were not analyzed because 

they do not require the visual system to abstract over local variations in contour curvature. 

Results 

 The results of Experiment 2 are shown in Figure 6. After correcting for multiple 

comparisons, subjects are at chance performance for the three smallest integration window sizes 

(t(21) = 1.75, p = .09, 95% CI  = [.49, .59], t(21) = 2.25 , p = .03, 95% CI  = [.51, .63], t(21) 

= .91, p = .37, 95% CI  = [.47, .57], respectively). Starting at an integration window size of 1.29 

degrees, subjects are able to reliably distinguish the constant curvature representation from the 

500 ms 

500 ms 
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original contour fragment (t(21) = 3.77, p = .001, 95% CI  = [.53, .61]). Performance improves 

monotonically for larger integration window sizes.  

 

Figure 6. Results from Experiment 2 with best-fitting piecewise linear regression. The 

dashed line shows the linear fit up to the transition point and the solid line shows the linear fit 

past the transition point.  

 

 Unlike the data from Experiment 1, which followed an S-shaped function, the data in 

Experiment 2 appear to be well described by two linear functions, one approximately flat for 

integration windows that are all indistinguishable from chance guessing, and another function 

with positive slope beginning at the point where the constant curvature representation is coarser 

than the shape representation encoded in visual memory. Because we were looking for the very 

first point in which accuracy as a function of W is described by a positive slope, we analyzed the 

data for a change in slope polarity rather than looking for the 75% threshold as we did in 

Experiment 1. We looked for the smallest integration window size at which people begin to 
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detect that the constant curvature representation of the shape was different than the original 

shape. This corresponds to a transition point in a continuous piecewise linear regression model 

from zero (or, in our case, slightly negative) slope to a positive slope. To identify this transition 

point, we fit the data with several continuous piecewise linear regression models, specifying 

different sizes of W at which the slope changes in order to determine which one explained the 

most variance. R2 was highest (.299) when the slope changed at W = 1.29 degrees of contour 

length, (F(2, 204) = 43.52, p < .001). For this regression, the slope before the transition point is 

not significantly different from zero (t(2) = -0.69, p = .49), while the slope beyond the transition 

point does significantly differ from zero (t(2) = 2.69, p = .008).  

Discussion 

 In Experiment 2, we sought to fix the constant curvature model’s second free parameter, 

the size of the integration window used to segment a contour into CC primitives. In the 

computational model, segmentation based on window size precedes CC segment merging 

governed by the threshold parameter we estimated in Experiment 1. The segmentation is an 

intermediate output in the model, and therefore not directly testable, so we estimated the 

threshold parameter first, then fixed it in the model for Experiment 2. Even though subjects were 

tested on model outputs with both parameters, only the integration window size was varied 

between trials, so performance differences can only be explained by the segmentation parameter. 

   Subjects had to encode an open contour into visual memory, then match that contour in 

a two alternative forced choice task. The distractor in the 2AFC task was always a constant 

curvature representation of the contour made with a varied integration window size and a fixed 

merging threshold parameter. When the integration window was small, subjects’ encoded 

contour representation was indistinguishable from the constant curvature representation, despite 
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substantial physical differences between the original stimulus and the constant curvature 

stimulus. For example, the constant curvature representation generated with a 0.97-degree 

integration window could not be discriminated from the original shape contour at better than 

chance rate, despite having, on average, 3.7% as many unique curvatures (9.83 vs. 266.45).  

 What integration window size is most likely to be used by the visual system for constant 

curvature segmentation? Any window size that falls along the positive slope region of our 

regression is likely too large because subjects perceive a difference between the constant 

curvature contour and the representation they have encoded. On the other hand, if two model 

outputs are equally indistinguishable from the encoded contour representation, the visual system 

is most likely using the simpler model output for reasons of efficiency. The best choice for the 

integration window size, then, is the point of slope change in our continuous piecewise 

regression analysis, or 1.29 degrees of contour length.  

 In Experiment 2, we operationalized the integration window size as an absolute measure 

of length in terms of degrees of visual angle. This is likely not how it is used in the visual 

system. We would not, for example, expect a difference in segmentation for a shape viewed at 

different distances. There is a great deal of evidence that shape representations are scale invariant 

(Biederman & Cooper, 1991; Cooper & Schacter, 1992; Lueschow, Miller & Desimone, 1994; 

Ito, Tamura, Fujita & Tanaka, 1995). One possibility is that the size of the integration window is 

a percentage of the overall contour. The 1.29 degrees in our data would correspond to 10% of the 

contour’s total length.  

Issues arrive, however, when we use contour fragments as in this experiment. It seems 

unlikely that the visual system would segment a contour differently if it was fragmented from a 

larger contour or if part of the contour was covered by an occluder. Ideally, the integration 
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window size would be invariant to changes in scale, while still depending only on curvatures 

relatively nearby to it. One way we could correct for this is by using window sizes that are a 

percentage of the contour but adjusted by the sum of the turn angle within that contour. Since 

object contours tend to be closed, we would expect the whole contour to have a sum turn angle 

of 2π. We can therefore estimate the amount of the contour visible as a ratio of the sum of the 

turn angle for the visible contour to 2π. In Experiment 2, for example, the average turn angle for 

the open contours subjects were shown was 2.48 radians, or 39.5% of the whole contour’s 

length. Then, instead of fixing the integration window size at 10% of the visible contour, we can 

fix it at 3.95% of the whole contour. We will use this formulation going forward because it 

allows us to make scale invariant segmentations that are nonetheless consistent across 

fragmentation and partial occlusion. 

Experiment 3 

Experiments 1 and 2 aimed to fix the two free parameters in the constant curvature 

model. In Experiment 3, we tested whether the parameterized constant curvature model explains 

human shape perception. Previous work by Baker et al. (2020, under review), found considerable 

evidence for the role of constant curvature segments as primitives of shape representations. 

However, it could not test predictions based on model outputs because the window size and 

curvature threshold were not fixed. Using the estimated parameters from Experiments 1 and 2, 

we tested whether features of the constant curvature representation of a shape pair could predict 

human performance on a matching task over and above physical contour differences. 

Specifically, we tested whether differences in a shape that necessitate a new constant 

curvature segment are more detectable than shape differences over which the constant curvature 

model ultimately abstracts. We generated pairs of shapes by deforming the contour of a novel 
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shape by a small amount. We then subjected both members of the pair to the parameterized 

constant curvature model to determine whether the deformation necessitated fewer or more 

constant curvature segments in the representation. We tested subjects’ sensitivity to a difference 

in shape for pairs that differed by zero, one, two, three, or four segments in the constant 

curvature representation produced by the model. If our model and parameters were correct, we 

predicted that shape pairs that differed by more constant curvature segments would be easier to 

discriminate from each other than shape pairs that differed by fewer segments, even if the 

physical difference between pairs was equated in both conditions. In general, a larger difference 

in segment number will correspond to a larger physical difference in two shapes’ contours. To 

account for this, we fixed the physical difference in pairs of shape contours across conditions 

before testing whether two shapes that differed more in segment number were more perceptually 

different despite being equally physically different.  

Methods 

Participants 

 Twenty-three undergraduates (7 male, 16 female, Mage = 19.65) from the University of 

California, Los Angeles participated in Experiment 3 for course credit. All participants had 

normal or corrected-to-normal vision. 

Display and Apparatus 

 All display conditions were the same as in Experiment 1.  

Design 

 There were 250 trials in total. Experiment 3 consisted of six conditions which differed in 

the segment number difference between a pair of shapes. In the first condition (125 trials), the 

two shapes were identical. In the other five conditions (25 trials each), the shapes were different. 
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Conditions were separated based on the difference in number of segments between the two 

shapes in a pair, from zero to four. All conditions were interleaved with each other, and subjects 

were never informed of these different conditions. Before beginning the main experiment, 

subjects completed five practice trials.   

Stimuli 

 Whole shapes were generated as in Experiment 2, by shifting 12 control points a random 

distance from a circle and radially fitting cubic splines between them. None of the contour 

regions in the shapes had constant curvature. “Different” shape pairs were generated by moving 

two adjacent control points a random distance to maintain equal contour length, and re-fitting a 

cubic spline between the new set of 12 control points.  

 For the different shapes, we wanted to create shape pairs that were equally different from 

each other across conditions. When we randomly generate shapes and subject them to the model, 

various displays will have different amounts of deviation in the representation from the 

physically given stimulus.  They also may have different numbers of constant curvature 

segments. We wanted to create shape pairs that had equal physical similarity despite differing in 

number of segments by various amounts. In other words, if in the condition where one shape had 

one more constant curvature segment than its pair, the two members of the pair were 95% 

similar, then pairs of shapes in conditions in which the segment number difference was zero, 

two, three, or four should also have an average similarity of 95%  To this end, we imposed a 

constraint on the physical difference between shape pairs, discarding pairs that were too 

physically different. We computed physical contour similarity by taking the ratio of the 

overlapping areas to the non-overlapping areas for both contours. Since this measure is 

asymmetrical, we computed the average:  
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Shape 1 and 2 overlap

Total area of Shape 1
+

Shape 1 and 2 overalap

Total area of Shape 2

2
. 

We generated hundreds of shape pairs and categorized them based on their constant 

curvature segment difference. We computed the segment difference by using the threshold 

parameter of 1.18:1 from Experiment 1 and the integration window size parameter of 4% of the 

whole contour from Experiment 2. After sorting them into five categories corresponding to a 

difference in number of segments of zero, one, two, three, or four, we confirmed that the 

physical difference of shape pairs was matched across categories. Mean difference and standard 

deviation for all five categories were matched to a hundredth of a percent at 97.51% similarity 

and 0.29% deviation. Sample pairs from each condition are shown in Figure 7. 

 

Figure 7. Sample shape pairs with different number of constant curvature segment 

differences.  

 

Procedure 

  In different trials, participants were shown both members of a pair of shapes and were 

asked to judge if they were the same or different. Though equally physically similar, the pair of 

shapes could have a segment number difference between zero and four. In same trials, 
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participants were shown exactly the same shape twice. Each trial began with a fixation cross 

shown in the center of the screen for 500 ms, followed by the first shape, which remained on the 

screen for 250 ms. The first shape was then masked by a pattern of black and white dots (600 

ms), after which the second shape was displayed, along with a prompt at the top of the screen 

asking subjects to decide if the second shape was the same or different as the first shape they had 

been shown. Participants were instructed to press A if the two shapes were the same, or L if the 

shapes were different. The second shape remained on the screen until subjects responded. Figure 

8 shows a sample trial. Subjects completed five practice trials with the experimenter present to 

make sure all instructions were understood before beginning the main experiment. 

 

Figure 8. Sample trial from Experiment 3.  

Results 

 One participant’s data was not analyzed because she was at chance performance across 

all conditions. The overall results are not affected by her inclusion or exclusion. We analyzed the 

data from Experiment 3 by computing subjects’ sensitivity to a shape change between the first 

250ms 

600ms 



 

40 
 

and second display. A hit was classified as a correct “different” response when the shape had 

changed, and a false alarm was classified as an incorrect “different” response when the second 

shape was the same as the first. The sensitivity results are shown in Figure 9.  

 

Figure 9. Results for Experiment 3. 

 To analyze whether there is a significant effect of segment number difference on 

subjects’ ability to detect a shape change, we fit a linear regression function to our data. The data 

was best fit by the function y = 0.83 + 0.08x. A repeated measures ANOVA confirmed a 

significant linear component, F(1,20) = 17.62, p < .001, η2
partial = .468, indicating a significant 

positive change in performance as the difference in segments gets larger.  

Discussion 

 After fixing the constant curvature model’s two free parameters, in Experiment 3, we 

aimed to assess the model by testing whether its outputs could explain aspects of human 
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perceptual capabilities. Experiment 2 furnished some evidence for constant curvature encoding 

of 2D shapes, as constant curvature representations generated with a sufficiently small 

segmenting window were indistinguishable from the original contour, which had no regions of 

constant curvature. In Experiment 3, we used one aspect of a constant curvature representation, 

the number of primitives from which it was composed, to assess the model’s validity.  

In our model, some differences in curvature are abstracted over as shapes are recoded 

into constant curvature regions, while other curvature differences necessitate a segment 

boundary. We predicted that those differences that result in a change to the number of constant 

curvature segments should be more salient to viewers. Consequently, when we generated shape 

pairs by deforming a contour, we predicted that if the contour changed did not lead to a segment 

number difference in the two shapes’ constant curvature representation, a difference between the 

two shapes should be harder to detect than in a pair of shapes where the deformation resulted in 

the gain or loss of constant curvature segments. Moreover, we predicted that larger changes in 

segment numbers should make shape differences more detectable. 

To test this, participants were shown shape pairs in sequence and told to do a 

same/different task. Participants were never told anything about the constant curvature model or 

given any kind of indication that the “different” shape pairs fell into five distinct categories. 

Nevertheless, they showed a clear difference in performance across the experimental conditions, 

getting better at the recognition task as the difference in constant curvature segments got larger. 

Importantly, differences in constant curvature number did not correlate with the magnitude of 

physical contour differences in this experiment. The distribution of contour differences was 

identical across all five conditions. Performance differences are therefore explained by how 
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shapes are perceived and encoded, not by differences in the contour that are independent of 

visual processing. 

The results of Experiment 3 are congruent with the parameters we fixed in Experiments 1 

and 2. Both the segmentation window and curvature threshold parameter balance 

representational efficiency with representational accuracy. In Experiment 3, if the outputted 

representations were too simple, contour differences that are important to our shape 

representations would not be captured and shape pairs that are perceptually different would often 

have the same number of curvature segments. If the representations were too precise, the model 

outputs would not sufficiently diverge from physical contour differences, making it difficult to 

predict performance differences between shape pairs whose physical contour similarities are 

equated.  

General Discussion 

In this work, we aimed to develop a model for abstract representations of 2D shape 

contours. Specifically, we focused on a curve-based model of shape representation in which 

contour regions are recoded as constant curvature segments. Constant curvature models of shape 

are appealing for neurophysiological (Pasupathy & Connor, 2002), ecological (Sigman et al., 

2001; Chow et al., 2002; Wuescher & Boyer, 1991), and behavioral reasons (Wu, Frund & Elder, 

2016; Baker et al., 2020, under review). In the current work, we went beyond testing whether 

constant curvature segments were plausible primitives for shape representation to propose and 

assess a specific model of shape encoding. 

The constant curvature model is generative, taking physical contours as inputs and 

proposing an internal representation of the shape as it is encoded in visual perception. In 

biological vision systems, the transformation from a physical contour to an abstract 
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representation involves recoding initial subsymbolic representations (e.g., detection of oriented 

contrast) into symbolic representations. Subsymbolic representations respond monotonically to 

luminance energy in a visual scene and can be thought of as a literal record of the pattern of light 

striking the retina. While rich in information, these representations are inflexible to changes in 

viewing condition and brittle, easily destroyed by masking or the passage of time (Coltheart, 

1980; Sligte, Scholte, & Lamme, 2008; Smithson & Mollon, 2006). Symbolic representations 

transform the subsymbolic information into representations of contours, shapes, and surfaces.  

In biological vision, our initial encoding has to do with activations of units sensitive to 

oriented contrast that are not organized together into contour tokens (Hubel & Wiesel, 1962). 

Symbolic recoding is needed for these activations to be perceived as a unified boundary defining 

a shape outline and then to recode regions into constant curvature primitives. In the current 

model, we focus on the second transition, going from a set of curvature points to a much smaller 

set of constant curvature regions. The set of curvature points is already symbolic in the sense that 

it defines of a property of a contour token but is much less abstract than the ultimate constant 

curvature representation. In the following chapter, we develop a biologically plausible 

implementation of the constant curvature model that goes from truly subsymbolic activations to a 

symbolic description of shape. 

The output of the constant curvature model is an object-centric representation that is 

invariant to rigid planar transformations. It is also substantially compressed with regard to the 

number of bits of information in the representation. Typical shape contours often consist of 

thousands of points along the contour boundary. The abstract shape representation consists of 

much fewer (generally less than 30) constituent primitives.  
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Compression in the constant curvature model depends on its two free parameters: the size 

of the integration window with which the contour is segmented, and the minimum curvature 

difference needed for two CC primitives to be represented separately. Together, these parameters 

determine the model’s balance between representing the original contour with high fidelity and 

encoding a representation that is simple and invariant to contour changes that are undetectable in 

human perception. In Experiments 1 and 2, we designed psychophysical experiments to estimate 

these two parameters. We hypothesized that the visual system represents shapes with the coarsest 

possible parameters at which curvature changes and curvature variability are not detected in 

human perception. 

In Experiment 1, we tested subjects’ sensitivity to differences in curvature. We created a 

contour fragment made up of two smoothly connected constant curvature segments and asked 

subjects to judge its complexity relative to a contour fragment made of just one constant 

curvature segment. We expected than any contour fragment that was encoded with primitives 

would be judged to be more complex than the single curvature contour, but that for stimuli with 

two curvatures that were sufficiently similar, subjects would encode the whole fragment with a 

single curvature value and perceive it to have equal complexity with the stimulus truly made up 

of a single curvature.  

The results revealed a psychometric function wherein subjects performed at chance 

picking out the more complex contour when the curvature ratio between segments was small, 

then improved monotonically up to a curvature ratio of about 1.3:1, after which increasing the 

curvature difference did not significantly improve performance. We fit a logistic regression to 

the data and found the 75% threshold at a curvature ratio of 1.18:1. This is the ratio we used to 



 

45 
 

fix the minimum curvature difference between adjacent segments in the constant curvature 

model. 

Participants in Experiment 1 were never given any instruction about how to judge 

contour complexity. Still, they had no confusion picking out the stimulus made up of two 

segments as more complex in any trial besides the ones in which the difference was extremely 

small. This subjective notion of contour complexity differs from previous theories in which 

complexity depends on the amount of curvature within a contour (Attneave, 1954; Feldman & 

Singh, 2005; Norman, Phillips & Ross, 2001). Under this view, whether the two-segment 

contour or the one-segment contour was more complex should depend only on whether the 

curvature in the one-segment contour was higher than the mean of the curvatures in the two-

segment contours. In Feldman and Singh’s (2005) derivation, a straight-line continuation of the 

contour in the direction tangent to the last point adds the least new information. Participants’ 

subjective reports in Experiment 1 seem to suggest that a continuation in the last point’s 

curvature adds the least amount of new information.  

The notion that contour complexity depends on the amount of curvature in a contour has 

been supported experimentally by studies in which subjects were asked to pick out the 10 most 

important points which, if connected by straight lines, would give the most accurate 

representation of the shape. Subjects reliably picked the points of highest curvature (Attneave, 

1954; Norman et al., 2001). However, the results of these experiments might be different if 

subjects were told to pick points to be connected by segments of constant curvature. In that 

situation, subjects would be best served by picking the 10 points of highest curvature change 

rather than highest absolute curvature. This is similar to what we observe in Experiment 1, where 
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subjects judge the stimuli with one curvature change as more complex than the stimuli with 

none.  

In Experiment 2, we tested subjects’ sensitivity to curvature variation within a contour 

region. In the constant curvature model, this is determined by the size of an integration window 

that convolves over a 2D contour and divides the boundary into regions of similar curvature. If 

the window is small, the model has low tolerance for curvature variation and divides the contour 

into many small pieces. As the window gets larger, it abstracts over more curvature variation, 

dividing the contour into fewer pieces. We estimated the integration window size that most 

closely corresponds to shape encoding in human perception by comparing subjects’ ability to 

discriminate between a contour with no constant curvature and a constant curvature 

representation of the contour produced from various window sizes.  

Subjects performed at near-chance levels for small window sizes, indicating that the 

constant curvature representation of the shape was at least as precise as subjects’ internal 

representation. For larger window sizes, subjects showed monotonic improvement in the 

discrimination task.  We analyzed these data with a continuous piecewise linear regression and 

found no evidence for a non-zero slope with a window size up to 1.29 degrees of contour length, 

but strong evidence for a positive slope for larger window sizes. We hypothesized that the visual 

system will use the largest window size at which the constant curvature representation is not 

distinguishable from the original contour, so we fixed it at this transition point.  

Subjects’ difficulty in distinguishing between contour fragments and constant curvature 

representations of the fragments gives some evidence that constant curvature primitives are used 

in human shape encoding. Other primitives like straight lines (e.g., Pavlidis, 1982; Gdalyahu, 

1999) could also approximate the contour well enough to be indistinguishable from the original, 
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but likely with far more components. Constant curvature representations that cannot be 

discriminated from the original contour are still relatively economical, generally consisting of 

eight to 12 segments.  

A possible problem with specifying the integration window in terms of degrees of visual 

angle is that model outputs will change with scale. Difficulty arises, however, in specifying the 

size of an integration window in a way that is both scale invariant and unaffected by fragmenting 

or partially occluding a contour. One solution could be to treat occluded contours and contour 

fragments as pieces of a whole contour, even if the whole contour is unseen. Rather than use an 

absolute integration window size, we specified the window size as a percentage of a closed shape 

contour. For open contours like the stimuli used in Experiment 2, we computed window size as a 

percentage of the contour fragment, then computed the percentage of the whole shape contained 

in the fragment. Since closed contours always have a sum turn angle of 360 degrees, we could 

estimate the percentage contained in a fragment by computing the sum turn angle of the open 

contour divided by 360 degrees. Using this correction, we found an object-centric integration 

window size from the data in Experiment 2, about 4% of a closed shape’s contour.  

An alternative solution for finding a scale-invariant window size might be to generate a 

description of object shape using biologically inspired local edge detectors. Classic work in 

neurophysiology has found that the visual system is specially tuned to straight, oriented 

luminance contrasts in various positions in visual field (Hubel & Wiesel, 1962). Rather than 

think of curvature in a mathematical sense, it can be considered as the turn angle between two 

contrast detectors connected end-to-end along a contour. Crucially, oriented edged detectors 

operate across different scales (e.g., Ringach, 2002; Sachs, Robson & Nachmias, 1971). 

Different shapes might be best captured by edge detectors of different scales. For example, a 
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shape with very high curvature likely needs small detectors to capture the rapid change along the 

contour, while a shape with low curvature might be captured almost equally well by larger 

detectors. 

If we hypothesize that the visual system uses the largest scale detectors that adequately 

capture the contour’s behavior, scale invariance naturally falls out of the constant curvature 

model: two shapes that differ only scale have the same number of detectors and the same turn 

angle between detectors, differing only in the size of the detectors (for more, see Kellman & 

Garrigan, 2007). In this construction, a constant curvature primitive is encoded not by its 

curvature and arclength, but by its turn angle and the number of detectors in the segment. 

Returning to the issue of integration window size, the window size might be specified neither by 

absolute distance, nor a percentage of the closed contour, but as a fixed number of detectors to be 

considered. In small shapes, the curvature is higher and the detectors will be smaller, while in 

large shapes the curvature will be lower and the detectors will be larger. Both shapes, however, 

will have the same number of detectors, and if the integration window is based on detectors 

considered, the segmentation will be the same.   

The results of Experiments 1 and 2 experimentally fixed both free parameters in the 

constant curvature model. In Experiment 3, we looked for evidence that the model outputs with 

these parameters resembled human subjects’ internal shape representations. As a test, we 

generated shape pairs and computed the number of CC segments in each member of the pair. We 

then sorted the pairs into five categories based on the difference in segments between the shapes 

in the pair. Importantly, shapes in all five categories were equated in terms of physical contour 

difference; the amount of contour overlap between pairs in the zero-segment-difference category 

was identical to that in the five-segment-difference category (and in all other categories). In 
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structural models of shape, there are two possible kinds of shape differences. Qualitative shape 

differences can be thought of as a change in the number of shape primitives composing the 

object, such as the addition or deletion of a constant curvature segment in our model, or of an 

axial branch in skeletal shape models. Metric shape differences are changes in the features of a 

shape primitive (see Briscoe (2008) for discussion). In our model, these might correspond to 

changes in the curvature or angular extent of one of the segments. The same amount of physical 

shape change can be achieved by different amounts of qualitative and metric shape changes. We 

expected that even though these changes give rise to the same amount of contour differences, 

qualitative changes (i.e., changes in the number of segments in a representation) will produce 

more perceptually different shape representations than metric changes. 

We therefore predicted that, if the constant curvature model’s outputs are similar to 

abstract shape representations, subjects should be better at detecting differences between shape 

pairs that had a greater segment number difference than shape pairs that differed by fewer 

segments. The results of Experiment 3 appear to validate the parameterized model, showing a 

clear linear trend in which shape pairs with smaller differences in CC segment number were 

more difficult to distinguish than shape pairs with larger segment number differences. The model 

is able to identify contour differences that will be perceptually salient, even when those 

differences do not correspond to larger changes to the physical contour.  

The parameters we estimated in Experiment 1 and 2 appear to reflect human perceptual 

performance well for shape recognition. It is an open question whether the visual system’s 

representational fidelity varies with perceptual task. Possibly, if people were encoding a shape 

representation for a task that required very high precision, some of the curvature variation that 

appears to be abstracted over in our experiments would be preserved, at least for as long as 
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subjects could hold the representation in working memory. On the other hand, as we have 

argued, it seems likely that even when the visual system encodes higher fidelity representations 

for specific perceptual task, a basic shape representation used for recognition will also be 

encoded with the parameters estimated in Experiments 1 and 2. Without this basic, task-

independent representation, recognition would only be possible when shapes were viewed under 

similar task conditions. 

Another open question is whether the complexity of the stimulus affects encoding 

precision. It seems possible that shapes with many parts and highly variable curvatures might be 

encoded more coarsely than simple shapes where perceptual resources are available to capture 

more subtle curvature variations. The results of Experiments 1-3, however, suggest that this 

might not be the case. In Experiments 1 and 2, we used simplified stimuli to estimate the model’s 

parameters. If the visual system takes advantage of this simplicity to encode higher-fidelity 

representations, then their predictive power on more complex stimuli, like those used in 

Experiment 3 should be fairly weak. We cannot rule out the possibility that parameters fixed 

with stimuli of similar complexity to those used in Experiment 3 might be more predictive of 

perceptual performance, but it seems more likely that the precision of shape encoding does not 

depend on contour complexity. 

Although the findings of our experiments lend evidence for constant curvature shape 

processing, we must note that this model does not exclude other theories of shape, such as 

skeletal or structural models. The constant curvature model aims to clarify how initial, 

subsymbolic boundary points are recoded abstractly. For some kinds of shapes, further 

processing might be needed to provide invariance under articulation, a task to which skeletal 

models are well-suited, or to allow recognition for objects in the same basic category (Rosch, 
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Mervis, Gray & Johnson, 1976), a task better suited to structural descriptions (e.g., Biederman 

1987). We hypothesis that any further processing is done on the outputted constant curvature 

representation, not the subsymbolic contour description. 

Conclusion 

 In this study, we have outlined a model of object shape representation that takes 

boundary points as inputs and produces an abstract representation made up of constant curvature 

primitives. The outputted representation is much more informationally compact than the 

activating stimulus, while still including perceptual features that appear to be essential in shape 

encoding and recognition. Representations from this model are also object-centric, invariant to 

planar transformations, and robust to fragmentation and partial occlusion. In Experiments 1 and 

2, we fixed free parameters that govern how the visual system might balance constraints for 

simplicity and fidelity. We then validated the parameterized model in Experiment 3, by testing a 

behavioral prediction about how shape pairs matched for physical similarity might be 

perceptually more similar or different. Taken together with other evidence of the importance of 

constant curvature in visual processing, these findings provide strong evidence for the encoding 

of constant curvature representations of shape from object boundaries.   
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Abstract 

A model of constant curvature representation is proposed that bridges the gap between 

subsymbolic and symbolic descriptions of a shape stimulus. The model begins with outputs from 

local oriented contrast detectors at twelve orientation channels. A new kind of detector called 

arclets is then proposed which are tuned to a specific turn angle between oriented detectors. The 

true curvature of points along a shape’s boundary is estimated by the population code of various 

arclets at a given spatial position. The model then uses curvature information to partition the 

shape’s contour into regions of similar curvature. This process is both local and invariant to 

scale. Finally, the shape is recoded symbolically as a set of constant curvature segments that each 

have a specified curvature and angular extent.  
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 In the previous chapter, we developed a model for how the visual system represents a 

shape contour with relatively few smoothly joined constant curvature segments. The proposed 

model was formulated at the computational level of description (Marr, 1982), taking a set of 

contour points as input and outputting an organization of similar curvatures into distinct 

segments. In this chapter, we will aim to go a step further and propose a more biologically 

inspired model for constant curvature shape representation that works at the algorithmic level of 

description. 

 The proposed model, which we call the detector model, aims to more fully bridge the 

theoretical gap between subsymbolic and symbolic visual representations. As discussed in the 

previous chapter, subsymbolic representations refer to neural activations in early visual areas that 

are primarily sensitive to energy contrasts. Though they are essential to vision, the goal of 

perception is not to detect contrast energies, but to infer properties of objects and events in the 

world (Gibson, 1966, 1979; Marr, 1982). Symbolic visual representations, including descriptions 

of contours, surfaces, and shape, encode properties that often do not have inherent energy, but 

about which inferences can be made from patterns of energy contrast.  

 The constant curvature model developed in the previous chapter makes some progress in 

connecting subsymbolic and symbolic codes. In the current work, we more fully develop the 

subsymbolic side of the model, beginning from outputs of oriented edge detectors known to 

operate at various scales in V1 (Hubel & Wiesel, 1962; Hubel & Wiesel, 1968) and going to a 

wholly symbolic description of shape through progressive layers of abstraction. In doing so, we 

aim to connect work being done in research on early vision with higher level notions of 

perception that often do not interact with low level research.  



 

59 
 

 In developing this model, we were motivated by four central goals. First, we wanted it to 

be biologically plausible. We recognize that orientation coding in early visual areas is extremely 

complex (Celebrini, Thorpe, Trotter & Imbert, 1993; Pei, Vidyasagar, Volgushev & Creutzfeldt, 

1994; Ringach, Hawken & Shapley, 1997), and we do not fully grapple with all of its nuances, 

but we aimed to simplify these complexities only in ways that are consistent with prevailing 

opinions about how the visual system operates.  

Second, we wanted the detector model to operate locally. By that we mean that the 

segmentation of part of a contour into constant curvature pieces should depend only on the 

features of that local region of the contour. In the computational model from the previous 

chapter, we used an integration window to compare curvatures in a local region, but the size of 

the integration window was a percentage of the total length of the contour. Consequently, if two 

shapes had the same local contour region, but one had a separate part that extended further than 

the other, the size of the integration window would differ for the two shapes, and the same local 

region would be segmented differently. Likewise, shapes in a real visual scene are often partly 

occluded, making it difficult to know what the contour’s true length is. If the visual system 

inaccurately estimated the length of a partly occluded shape, it would segment two identical 

shapes differently if one was occluded and the other was not. These struck us as unlikely 

predictions, so we aimed to amend the model so that only local curvatures affected a contour 

region’s segmentation.  

Third, we wanted the detector model to be scale invariant. It is well established that two 

shapes that differ in scale are perceived as the same, for many tasks or purposes, in both 

perception (Biederman & Cooper, 1992; Cooper, Schacter, Ballesteros & Moore, 1992; 

Schmidtmann, Jennings & Kingdom, 2015; Baker & Kellman, 2018) and neurophysiology of 
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high level regions in visual cortex (Lueschow, Miller & Desimone, 1994; Ito, Tamura, Fujita & 

Tanaka, 1995). When the scale of an object changes, all curvature values along its contours also 

change such that if a shape’s size is doubled, the variation in curvature values will be halved. In 

computer vision, one way to build in scale invariance is to normalize the representation by the 

contour’s total length (Belongie, Malik & Puzicha, 2002). We did something similar in the 

computational version of our constant curvature model by fixing the integration window size as a 

function of the contour length so that the same percentage of the contour was considered for two 

matched shapes that differed in scale. Of course, fixing the integration window size in this way is 

the very thing that violates the locality constraint described above. We aimed to satisfy both 

constraints in the detector model. 

 Finally, we wanted the detector model to give outputs that were similar to those 

generated from the computational model. Experiment 3 in the previous chapter found that the 

outputs of the parameterized computational model were predictive of perceptual performance on 

a shape recognition task, even when the physical similarity of shape pairs was equated across 

conditions. We would not want to replace this model with a different one that has less predictive 

capability, even if it satisfied certain other theoretical constraints. 

In the proposed model, we begin with a simple image of a white figure on a black 

background. We find activations of odd-symmetric gabors convolved over all positions in the 

image at 12 different orientations. We then propose a higher-order detector that is connected to 

spatially adjacent orientation detectors and is tuned to a specific turn angle. We show how the 

true curvature of a point along the contour can be estimated by the pattern of activations from 

detectors tuned to different turn angles at the same position in visual field. Next, we use the 

estimated curvatures at the finest scale to partition the shape into regions of similar curvature and 
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recode them into regions with constant curvature. Constant curvature segments are then assigned 

an appropriate scale based on their curvature, such that regions of low curvature are represented 

by larger scale detectors and regions of high curvature are represented by smaller scale detectors. 

Finally, we compute a symbolic code for the shape where each segment is described by a small 

number of abstract parameters. 

Model 

Input 

 The input to the model is a 512 x 512 pixel image with a black background and a filled in 

shape with uniform illumination. In most simulations, we used a white shape, but tests were also 

conducted on shapes with various luminance levels in grayscale. In all but the lowest contrast 

cases, outputs were the same regardless of luminance. An example input image is shown in 

Figure 1.  

 

Figure 1. Sample input stimulus to the detector model.  

Orientation Filters 

 The first stage of processing involved finding activation levels of oriented detectors for 

all positions along the contour. In vision research, Gabor filters have been used to model 
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activations of simple and complex cells in striate cortex (Kulikowski, Marcelja & Bishop, 1982; 

Daugman, 1985). We used a version of Gabors called S-Gabors developed by Heitger and 

colleagues that have the useful property of having zero activation in a field of uniform luminance 

(Heitger, Rosenthaler, Von Der Heydt, Peterhans & Kubler, 1992; Ludtke, Wilson & Hancock, 

2000; Hickinbotham, Hancock & Austin, 1997). Because we were dealing with filled shapes, we 

took activations only from odd-symmetric Gabors that had an excitatory response to luminance 

on one side of the line of symmetry and an inhibitory response to luminance on the other. 

Following Heitger et al, 1992, we define the odd-symmetric S-Gabor as: 

𝐺𝑜𝑑𝑑(𝑥) = 𝑒
−

𝑥2

2𝜎2 ∙ sin [2𝜋𝑣0𝑥ξ (x)]   (1) 

where σ determines the width of the Gaussian envelope and v0 is the frequency at the origin. The 

difference from the simple odd-symmetric Gabor is given by the additional function   ξ (x), a 

frequency sweep defined as: 

ξ (x) = 𝑘 ∙ 𝑒
−𝜆∙(

𝑥

𝜎
)

2

+ (1 − 𝑘) (2) 

where k is the relative amplitude of the frequency sweep (from Heitger et al., we used k = 0.5.) 

and λ is chosen so that 

∫ 𝑒
−

𝑥2

2𝜎2 ∙ cos[2𝜋𝑣0𝑥ξ (x)] = 0 
∞

−∞
 (3) 

ξ (x) changes the frequency selectivity slightly as distance from the receptive field center 

increases.The justification for this modification of the original Gabor function is that it gives 

zero response for a uniform field in quadrature pairs for all phases of filters, which may be a 

desirable characteristic both theoretically and empirically (see discussion in Heitger et al, 1992).  

Since the S-Gabor is operating on a 2D image, we rewrite (1) and (2) so they define a 

receptive field in 2D space: 
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𝐺𝑜𝑑𝑑(𝑥, 𝑦) = 𝑒
−

𝑥2+𝑦2

2𝜎2 ∙ sin (2𝜋𝑣0(𝑥 ∙ 𝑐𝑜𝑠𝛳 − 𝑦 ∙ sin 𝛳 ∗ ξ(𝑥, 𝑦)) (4) 

ξ (x, y) = 𝑘 ∙ 𝑒−𝜆∙(𝜎∙(𝑥∙cos 𝛳−𝑦∙𝑠𝑖𝑛𝛳))2

+ (1 − 𝑘)  (5) 

 

  A sample odd-symmetric detector is shown in position space in Figure 2. The S-Gabor 

defined in (4) is circular. Following Heitger et al., we elongated the filters to more closely reflect 

the characteristic shape of detectors in striate cortex (Ringach, 2002). In human perception, the 

finest scale of the detector depends on its retinal eccentricity. Though we were primarily 

interested in modeling foveal detectors, size estimations for them are extremely difficult, as even 

tiny eye movements in anesthetized animals make recordings difficult (Ringach, personal 

communication). Detectors near the fovea (5 degrees of eccentricity) have a peak spatial 

frequency sensitivity of about 10 cycles per degree (Hawken & Parker, 1987). For our purposes, 

since the number of pixels in a degree of visual angle depends on screen size and viewing 

distance, we chose a slightly larger detector (σ = 1.5) as our finest scale to better smooth over 

pixilation effects in how the shape was digitally rendered.  If the box enclosing the display in 

Figure 1 had physical dimensions of 13.54 cm by 13.54 cm on a 58.4 cm screen, and was viewed 

from 160 cm away, these filters would have a spatial frequency sensitivity of about 8.8 cpd. For 

such a stimulus rendered on a display screen at 512 by 512 pixels these filters would be approx. 

38 pixels (length) by 24 pixels (width), corresponding at this viewing distance to 13min of visual 

angle in width. 
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Figure 2. Sample odd-symmetric S-Gabor used in the detector model. The scale of the 

detector is increased for purposes of presentation. 

 

Following Heitger et al. (1992), we convolved the S-Gabor in 12 orientation channels from 

zero degrees to 360 degrees in 30-degree increments. To get the true orientation at the level of 

sensitivity found in human perception (Clifford, Wyatt, Arnold, Smith & Wenderoth, 2001), 

activations of these broadly tuned neurons had to be combined into a population code 

(Georgopoulos, 1986; Adelson, 1991; Ludtke et al., 2000). We estimated the true orientation at 

each position by taking the orientation channels with the top three activation scores and 

computing 

𝛳𝐸 = (𝛳1 ∗  𝐴1 +  𝛳2 ∗ 𝐴2 + 𝛳3 ∗ 𝐴3)/(𝐴1 + 𝐴2 + 𝐴3)  (6) 

where ϴE is the estimated orientation. ϴ1-3 are the three orientation channels with the highest 

activation, and A1-3 are the activations of each of the top three orientation channel. A comparison 

between the analytically computed orientation and the orientation estimated by population 

coding from the 12 detectors for a part of the shape is shown in Figure 3.  
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Figure 3. Comparison between analytically computed orientation (A) and orientation 

estimated by population coding from S-Gabors (B). The analytically computed orientation 

was computed by connecting straight lines between points along the contour and computing the 

orientation of the lines relative to the reference frame. 

 

Curvature Estimation 

 The goal of our model is to segment a contour into regions of similar curvature. In the 

computational version of our model, signed curvature (c) was computed from the contour points 

analytically with the equation  

𝑐 =  
𝑥′𝑦′′−𝑦′𝑥′′

(𝑥′2𝑦′2)3/2    (7) 

We shifted the detector model from this symbolic computation to something that can be 

computed from the outputs of oriented detectors. A more biologically plausible analogue for 

curvature is the turn angle between adjacent oriented detectors along a contour (Kellman & 

Garrigan, 2007). In the limit, as the scale of adjacent detectors becomes infinitesimally small, 

this curvature estimation will approach the analytically computed true curvature of the contour. 

 One way we considered estimating curvature by change in orientation was to take the 

estimates of true orientation we computed for points along the contour (Figure 3) and compute 

the difference in orientation for all adjacent points. Doing so would give accurate estimations of 
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curvature, but it also constitutes a change from a subsymbolic code to a symbolic code, as there 

must be a single unit that is tuned to every possible orientation for each point along the contour. 

Research on population codes suggests that individual neurons tuned to all possible continuous 

values are unlikely (Ma, 2010).  

 An alternative way of computing curvature would be to create arclets that are connected 

to pairs of oriented detectors and estimate a continuous curvature value from the population code 

of their activations in a given position in visual field. In our model, there are 12 oriented 

channels for each spatial position, so there are 144 arclets for each pair of adjacent edge 

positions corresponding to all possible pairings of orientation channels. Each arclet, then, is 

tuned to a single turn angle in the same way that S-Gabors are tuned to a single orientation, 

where turn angle is simply the difference in the preferred orientation of the two detectors to 

which the arclet is connected.  

  We computed “curvature columns” consisting of the 144 arclets spaced around the 

shape’s contour. Each arclet was comprised of two oriented detectors in coaxial spatial positions, 

one whose center was clockwise along the contour and one whose center was counterclockwise 

along the contour. The spacing between arclets was such that the Gaussian envelope of one 

arclet’s clockwise detector overlapped with (and only with) the Gaussian envelope of the next 

clockwise arclet’s counterclockwise detector (see Figure 4).  
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Figure 4. Arclets and oriented detectors. Here, we show an example of two arclets in adjacent 

spatial positions along the contour. Not shown is that for each arclet position, there should be not 

one but 144 possible arclets in a curvature column. 

 

 For each arclet position along the contour, we had the activation of the 144 arclets in our 

curvature column. Activation for a particular arclet in the column was determined by the 

activation of the oriented detectors to which it was connected. For simplicity, we calculated the 

product of the activations for each detector. We eliminated arclets that had high activation from 

the product of two negative activations of the oriented with the simple rule that if either detector 

had negative activation, the arclet activation was always set to zero. We also tried adding the 

arclet activations together which worked about equally well, but we ultimately preferred to use 

the product so that arclets with pairs of detectors that both had strong activation would be more 

responsive than arclets whose activation was driven by only one of the detectors.  

Once we had computed the activation for each arclet in the curvature column, we 

estimated the true turn angle of the contour using a population code from the activation of the 

144 arclets. Many sophisticated algorithms have been developed to decode a continuous 

response from activations of populations of cells (e.g., Chen, Geisler & Seidemann, 2006; 

Berens, Ecker, Cotton, Ma, Bethge & Tolias, 2012; Graf, Kohn, Jazayeri, & Movshon 2011). 
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Here, because we are dealing with idealized S-Gabors and because the stimulus is greatly 

simplified to a single white figure on a black background, we simply used a weighted 

combination to estimate the turn angle. We found the top seven arclet activations at a given 

position and computed 

𝜙𝐸 =  
∑ 𝜙𝑖∗ 𝐴𝑖

7
1

∑ 𝐴𝑖
7
1

     (8) 

where ϕE is the estimated turn angle, ϕi is the turn angle of the seven arclets with the highest 

activation, and Ai is the activation of the seven arclets with the highest activation.  

A comparison of the true curvature profile for the shape in Figure 1 and the curvature 

profile estimated from population coding of arclets is shown in Figure 5. Although the global 

trends are very similar in both plots, there is considerable noise in the curvature estimation. One 

source of this noise is from aliasing along the shape’s border. Figure 6 shows a part of the shape 

zoomed in. To get precise estimates of curvature, we use relatively small detectors, which results 

in more noise being introduced by these pixilation effects. Another possibility is that our simple 

calculation of arclet activation as the product of two detectors introduces undue influence from 

arclets that should have relatively low activation. We plan to consider more sophisticated ways 

of combining the detector activations in future simulations. 
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Figure 5. Comparison of the shape in Figure 1’s true curvature (A) and estimated 

curvature from population coding (B).  

 

 

Figure 6. Figure 1 zoomed in to show aliasing.  

Constant curvature segmentation  

 After estimating curvature profiles from population codes of arclet activations, we 

developed a local and scale invariant algorithm for segmenting nearby curvatures into segments 

that can be approximately described by a unique curvature value. In the algorithm, contour 
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regions of similar curvature are successively organized together until no pair of adjacent regions 

have a curvature difference below the model’s threshold.  

In the simulations reported in this section, we do not use the estimated curvature from 

population coding, but the true curvature calculated analytically. Ultimately, the goal of this 

model is to link up subsymbolic curvature descriptions with constant curvature segmentation, but 

we felt it would be easier to work with less noisy curvature estimates while developing the 

segmentation algorithm. The results of curvature estimation from population coding look 

promising and we are confident that local noise in the estimated curvature profile can be reduced, 

but until then we report findings using the true curvature profile.   

 The algorithm begins with the assumption that differences in curvature polarity always 

signal a segment boundary. A coarse initial segmentation of the shape is given by the set of 

contour points between zero crossings in the shape’s curvature profile. We then iteratively 

compared curvature for adjacent regions within a segment of matched polarity, combining 

regions with similar curvature together and drawing segment boundaries between regions with 

different curvature.    

This second, more precise, segmentation organized adjacent contour regions together if 

they satisfied one of two basic rules. The primary rule was that if the two regions’ difference in 

curvature was below some threshold, T, they were organized into a single segment. Based on 

findings from Experiment 1 in the previous chapter, the visual system appears to be sensitive to 

ratios of curvature differences, not absolute differences. We therefore fixed T as the proportional 

difference in curvature between the two segments. Formally, if |
(𝑘𝑖−𝑘𝑖+1)

𝑘𝑖
| < 𝑇, where ki is the 

curvature at the ith point along the contour and ki+1 is the curvature one point further along the 

contour, then the two regions are organized into a single segment. 
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We included a secondary rule for organizing points with very low curvature together, 

since a large proportional difference between them could still reflect a very small absolute 

difference. To preserve scale invariance, we analyzed the curvature profile for the fifth percentile 

of curvatures. Research in perception has shown that the visual system can quickly compute 

statistical features of a display (e.g., Sun, Chubb, Wright & Sperling, 2018), so we do not 

consider it implausible that the visual system could quickly assess the bottom percentile of 

curvatures. Any adjacent segments whose curvatures were both below the fifth percentile were 

organized together, even if their proportional difference exceeded the threshold from the primary 

segmentation rule.    

After two curvature regions were organized together, they were assigned a new curvature 

which was the weighted mean of the two segments’ curvatures. Curvatures were weighted by the 

number of detectors at the finest scale they had in their respective segments. The algorithm 

begins by combining individual points at the smallest scale, but as these points are organized into 

larger segments, it continues to merge together adjacent segments until the ratio of the curvatures 

of all adjacent segments is larger than T.  

Parameterizing and evaluating the segmentation algorithm 

The only free parameters in the segmentation algorithm are the proportional difference in 

curvature below which contour regions are represented together, and the curvature percentile 

under which contour regions are represented together regardless of their proportional curvature 

difference. The curvature percentile is useful for preventing the addition of many spurious 

segment boundaries in areas of low curvature along the contour, but its overall effect on the 

shape’s segmentation is small. We selected 5% arbitrarily, but simulations in which it was 

lowered to 1% or increased to 10% had little influence on the model’s outputs in most cases.  
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The more important parameter in the detector model is the threshold for proportional 

curvature differences, which determines the model’s degree of tolerance for curvature variety 

within a single segment. In practice, T serves the role that the integration window size and 

difference threshold serve together in the computational model. Consequently, the parameters 

experimentally estimated in the previous chapter are not directly applicable to the detector 

model. However, since we found behavioral evidence that the model outputs produced by the 

computational model with experimentally estimated parameters were predictive of human 

perceptual performance, we wanted the detector model’s outputs to have similar levels of 

efficiency and precision. 

We began by using outputs of the parameterized computational model to look for the 

threshold value in the detector model that most closely matched it in efficiency (i.e., in the 

number of segments in the outputted representation). We considered four different proportional 

difference thresholds, 50%, 55%, 60%, and 65%. Smaller thresholds correspond to more precise 

shape representations. As thresholds get larger, the model has greater tolerance for curvature 

variety and representations become simpler with fewer segments. We generated 20 shapes for 

each condition and applied both models to the same 20 shapes. In Figure 7, we plot the average 

difference in number of segments for the parameterized computational model as a function of the 

proportional difference threshold in the detector model. There was a strong linear relationship 

between the proportional difference threshold applied to the detector model and the number of 

segments by which the detector model differed from outputs of the parameterized computational 

model. We used this linear fit to estimate that the two models would, on average, be described by 

the same number of segments when the proportional difference threshold was 55.7%. 



 

73 
 

 

Figure 7. Relationship between proportional difference threshold and the average 

difference between constant curvature segments in the computational model and constant 

curvature segments in the detector model. The difference was averaged over 20 shapes and 

computed by subtracting the number of segments in the detector model from the number of 

segments in the parameterized computational model. The dashed line shows a linear fit for the 

data. 

 

 Once we had fixed the difference threshold in the detector model, we could compare the 

precision of the detector model with the precision of the computational model. Both models had, 

on average, the same number of segments in their representation, but it remained to be seen if 

one algorithm was more successful at segmenting the shape into regions of similar curvature. To 

assess this, we identified the segment boundaries placed on the same shape for the computational 

and detector model and measured the variance in the true curvature of the shape in each segment. 

We generated 30 shapes and computed the average variance in each segment for both models. 

The results are plotted in Figure 8. On average, the ratio of mean variance of the computational 

model to the detector model was 1.004:1.  
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Figure 8. Ratio of the average curvature variance in outputs from the computational model 

to outputs in the detector model. Each point is the ratio for one of the 30 shapes in our test, and 

the dashed line show the mean ratio across all 30 shapes.  

 

 Figure 9 shows a shape stimulus and constant curvature representations of the shape 

produced by the computational model and the detector model side-by side. The results of our 

simulation suggest that constant curvature shape representations produced by the detector model 

are very similar to outputs from the computational model developed in the previous chapter. We 

fixed the threshold parameter in the detector model using parameters we had fixed 

experimentally in the computational model to equate the average number of segments produced 

for a shape in both models. After doing so, we found that the average precision of both models 

was equated as well, suggesting a general equivalence between the two systems. This satisfies 

one of the initial constraints we had set for the detector model.  
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Figure 9. Constant curvature shape representation from the parameterized computational 

and detector models. Left: Output from the computational model. Middle: True shape. Right: 

Output from the detector model. 

 

 Another model constraint was that the segmentation should depend only on local 

curvature features. The detector model satisfies this constraint much more successfully than did 

the computational version of the model. Whereas the computational version included an 

integration window whose size depended on the overall length of the shape’s boundary, the 

detector model does away with the integration window and iteratively builds larger constant 

curvature segments based on the curvature ratio of neighboring regions along the contour. 

Consequently, stretching, compressing, or occluding non-neighboring regions has no effect on 

the model’s local curvature segmentation. 

 The model is also scale invariant in the sense that its constant curvature segmentation 

does not change depending on the size of the shape. If the scale of a shape was doubled, all its 

curvatures would be halved, but the ratio of curvatures would remain the same. Likewise, we 

fixed the minimum curvature below which regions are organized together regardless of curvature 

ratio as a percentile of the curvature distribution. If all curvatures change by the same amount, 

the contour points in the fifth percentile will not differ.  

Multiscale Representation 
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 In our evaluation of the detector model’s segmentation algorithm, we claimed that the 

detector model was scale invariant. This is true in one sense, as the detector model will partition 

a shape into the same set of segments regardless of its scale, but some abstraction is still needed 

for the visual system to find equivalence between representations of shapes at different scales. 

For example, consider the two shapes shown in Figure 10. They are segmented into the same 

contour regions, but if we analyze the properties of corresponding constant curvature segments in 

the two shapes, they will have very different properties. Since segmentation is done with arclets 

at the finest scale, the larger shape will have twice as many curvature detectors in its segment. 

Likewise, the curvature assigned to a segment in the smaller shape will be twice as high as in the 

larger one. 

 

Figure 10. Two shapes that differ by a scale factor of 2.  

 It has been proposed that the visual system gets scale invariant descriptions of shape by 

representing arclets at different scales (Kellman & Garrigan, 2007; Baker, Kellman & Garrigan, 

2020). When estimating the curvature profile of a contour through population coding, we used 

the smallest scale of arclets because those activations gave us the closest estimate of a contour’s 

true curvature. However, it seems plausible that for any scale of oriented detectors, there are 

arclets connected to adjacent pairs. In the visual system’s ultimate representation of a shape, a 
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constant curvature segment might not be described by the number of arclets at the smallest scale 

and the turn angle between them, but by relations of larger-scale detectors. The scale of detectors 

in the visual system’s ultimate description likely depends on the absolute size and curvature of 

the shape stimulus. 

 Following work from neurophysiology, curvature in our model is approximated by 

difference in orientation between straight detectors (Hubel & Wiesel, 1962). The best 

approximation of curvature with straight detectors will always be the finest scale; the 

approximation converges toward the curved segment as the length of the straight detectors 

approaches zero. However, in many cases, the approximation from larger detectors will be quite 

close to the true stimulus, even if it is never closer than the approximation from smaller 

detectors. The goodness of the description of larger scale detectors to a contour depends on the 

curvature of the contour in that region. For example, consider the two circle contours in Figure 

11. The green circle is twice as large as the blue circle. When detectors of the same size are 

placed along each circle’s edge, we find a reasonable fit along the larger circle, but a poor fit 

along the smaller circle. For a zero-curvature segment, detectors of any length less than or equal 

to the total segment length would give as good a description as smaller-scale detectors. 
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Figure 11. Oriented detectors placed along a circle of size S (blue) and 2S (green).  

 We propose that the visual system describes a constant curvature segment with the largest 

“good-enough” scale, by which we mean the largest-scale of detector that fits the stimulus with 

an error that falls below some error metric. One way to formalize this error is the area of the 

figure that falls in the inhibitory region of the detector plus the area of the ground that is in the 

excitatory region of the detector, normalized by the size of the detector. What the visual system’s 

actual tolerance is for error when choosing a scale of the detector is an empirical question, but 

psychophysical research on the perception of curvature in straight lined polygons could shed 

some light on the problem. 

The visual system might describe a region of the contour with the largest scale detectors 

that fit the actual curvature at or above some threshold tolerance. As discussed, this will result in 

large-scale detectors when curvature is low and small-scale detectors when curvature is high. 

When a shape is scaled up or down, the curvature of all segments increases or decreases by the 

same proportional amount. For example, consider the diagram in Figure 12. In the figure, two 

ellipses are shown that have identical form but a size ratio of 3:1. As discussed, the segmentation 

algorithm will partition both shapes into the same constant curvature primitives. Each primitive, 

then, will be described by a turn angle ()  a scale (k), and an extent (n). The scale variable 

refers to the size of the arclets that describe the contour. As Figure 12 shows, the largest-good-

enough scale for an arclet in the ellipse of size 3k is three times larger than for the ellipse of size 

k. Crucially, though, the extent (i.e., the number of detectors in the segment) and the turn angle 

between detectors will remain the same across shapes of different scale. The relative scale of 

detectors between segments of different curvature could be represented as the ratio of the best-

good-enough scale in the segment to the sum of all scales of segments throughout the shape. We 
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suggest that the visual system gets scale-invariant shape recognition by comparing segments’ 

curvature (turn angle), angular extent (number of detectors), and relative size (normalized scale 

of detector), but not their absolute scale (see Baker, Garrigan & Kellman (2020) for empirical 

support of this hypothesis).  

 

Figure 12.  Scale invariant and scale specific shape coding from arclets.  A) Large ellipse 

display. A contour fragment of approximately constant curvature initially activates 

oriented units along its boundary. Arclet units -- pairs of coaxial oriented units related by a 

constant turning angle – are activated along the contour segment. A constant curvature 

segment is encoded based on the extent of the boundary that fits arclets of a constant turn 

angle. The curve may activate arclets at several scales, but a crucial description is given by 
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the largest scale arclets that fit the segment adequately (below some threshold error). Here, 

the largest adequately fitting arclets for the segment are given as scale 3k. The turn angle 

along this segment is , and the extent of the constant curvature segment best responded to 

by arclets of this turn angle and scale is n units.  B) Small ellipse display. Arclet units are 

activated by small coaxial oriented units along the corresponding contour segment as in (A) 

that are related by a constant turn angle . Here, the largest adequately fitting arclet has 

scale k, turn angle , and extent of n units. A scale-specific representation of this segment 

of the ellipse is given by the three parameters of the fitting arclets: turn angle, scale, and 

number of oriented units comprising the extent of the segment. This scale-specific 

representation will differ for the large and small ellipse. Encoding at the largest adequately 

fitting scale makes available a scale-invariant representation. Omitting the scale 

parameter, the two segments of the two ellipses have the same shape because they match on 

the two parameters of turn angle and number of segments (of the largest adequately-fitting 

arclets in each case). The visual system’s use of isotropic operators at different scales and 

the detection of curvature from sets of straight oriented units related by constant turn 

angles makes this scale invariant code available without special computation (e.g., 

normalization). Other parts of the contour will have other best-fitting arclets to signal 

approximately constant curvature segments. The complete contour representation of each 

ellipse consists of several joined segments of approximately constant curvature. 

 

 In the detector model, we have proposed that the visual system extracts smoothly curving 

contours from a set of discrete straight segments related by a turn angle. The visual system’s 

earliest detectors are tuned to (and signal) straight oriented contrasts rather than curvature, even 

though ecological work on scene statistics suggests that most object contours are curved 

(Sigman, Cecchi & Magnasco, 2001; Chow, Jin & Treves, 2002). The multiscale representation 

scheme we have described is intriguing because it suggests a benefit for describing curves with 

small straight segments. If detectors in early visual areas were sensitive to true curvature rather 

than orientations of straight segments, then it would be much harder for the visual system to find 

equivalence between shapes whose absolute curvature differ due only to a change in scale. With 

straight segments, the curvature and extent of a contour will match across scales as long as the 

scale of the arclet used to describe the contour varies with the overall scale of the contour.  

Symbolic Description 
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 The final step in shape representation is to form a symbolic code of the shape. In this 

abstract description, the subsymbolic activations of oriented units are described by a small 

number of numerical variables. We propose that a shape’s code is a description of the constant 

curvature segments in the shape, which include curvature, orientation, position, angular extent, 

and scale. Below, we briefly describe how each of these variables are obtained from the detector 

model. 

 Curvature: A segment’s curvature is simply encoded as the turn angle between oriented 

units in that region of the contour. Turn angle at the finest scale is computed in the segmentation 

step. If the segment’s curvature is low enough to be represented by larger scale detectors, turn 

angle increases proportionally with change in scale of the detector. 

 Orientation: A single orientation value of a detector is enough to describe a constant 

curvature segment. Arbitrarily, the visual system’s symbolic code for a shape could include the 

orientation of the first unit in the counterclockwise direction of the segment. Then, the 

orientation of all other units will be fixed by their distance (i.e., the number of units) from the 

first unit and the curvature of the segment. Constancy across rotation can be obtained by 

computing segments’ orientations relative to each other. Then, if the whole object is rotated, 

relative orientations are preserved. 

 Position: As for orientation, the position of a segment can be encoded as the spatial 

position of a single detector in the segment. The positions of all other detectors can then be 

determined by the curvature of the segment and the number and size of detectors between them. 

A more object-centric code of relative position can be computed as the normalized distance 

between oriented units in different segments. 
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 Angular Extent: The angular extent of the segment is determined by its curvature and the 

number of oriented units in the segment. Since curvature is already a separate variable, angular 

extent can simply be encoded as the number of units in the segment.  

 Scale: The scale of detectors depends on the absolute curvature of the contour region, as 

described in the section about multiscale representation. The visual system describes a segment 

with the largest detectors whose error is still below some threshold. The lower the curvature of a 

contour region, the larger the detectors the visual system will use to describe it. Consequently, 

two shapes that differ by a factor of scale will have different scale variables, but all other 

variables will match. Ignoring or computing the relative scale of segments gives the symbolic 

description size invariance. 

Conclusion and Future Directions 

 In this chapter, we have sketched a model that bridges the gap from subsymbolic 

activations of units sensitive to light contrasts to a fully symbolic description of an object’s 

shape. First, it estimates curvature at the finest scale through a population code of arclets broadly 

tuned to various turn angles. The model then partitions the contour into segments of curvature, 

aiming to reduce the curvature variance within a segment. Next, it assigns a scale of detectors in 

each segment based on the curvature estimated by detectors at the smallest scale. Finally, a 

symbolic code for the shape is formed that describes each segment and relations between 

segments by a small number of numerical variables. 

 Though stages of the model have individually shown promising results, some work 

remains to be done developing a fully connected pipeline. First, we would like to reduce noise in 

the curvature profile estimated by population coding and use that as input to the segmentation 

algorithm instead of the contour’s true curvature. Experimental work also remains to be done 
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finding the visual system’s tolerance for error in describing curved regions of a contour with 

larger scale detectors. Once this error tolerance has been parameterized, we can model the 

largest-good-enough scale at which a segment is described by arclets and get a fully symbolic 

code for the shape. 

 While interesting problems remain to be solved, initial results for the detector model 

appear promising. The model is more biologically plausible than the computational model we 

previously proposed, as it is built up from oriented detectors and suggests a way of computing 

curvature subsymbolically instead of through computations unlikely to exist in neurophysiology. 

The detector model also offers a solution to the puzzle of locality and scale invariance that 

emerged in the computational model. Constant curvature segmentation is done based only on 

local curvature differences, but the use of relative curvature and multiscale representations offer 

equivalence between shapes that differ only in size. Finally, the detector model can be 

parameterized to have outputs that closely align with outputs of the computational model, which 

is beneficial because these outputs were found to account for unique predictions in perceptual 

performance. 
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Abstract 

A remarkable phenomenon in perception is that the visual system spontaneously organizes sets of 

discrete, spatially separated elements into abstract shape representations. We studied perceptual 

performance with dot displays in various tasks to discover what spatial relationships support 

contour and shape perception. In Experiment 1, we tested conditions that lead dot arrays to be 

perceived as smooth contours vs. having vertices. In preliminary work, we found that a dot triplet 

is perceived as a corner if virtual lines connecting the dots intersected at ninety degrees or less. 

We generated dot arrays with and without such “vertex triplets” and compared participants’ 

phenomenological reports of shape for dot arrays that were sampled from shapes with smooth 

curves vs. shapes with angular corners. People tended to give higher shape ratings for dot arrays 

from curvilinear shapes. In Experiment 2 we tested shape encoding using a mental rotation task 

(Shepard & Metzler, 1971). On each trial, subjects judged whether two dot arrays were the same 

or different. RT was measured at five angular differences. Subjects responded faster for displays 

without vertex triplets, suggesting economical encoding of smooth displays. We followed up this 

result in Experiment 3 using a visual search task. Shapes with and without vertex triplets were 

embedded in arrays with 25 distractor dots. Subjects were asked to detect which display in a 2IFC 

paradigm contained a shape against a distractor with random dots. Performance was better when 

the dots were sampled from a smooth shape than when they were sampled from a shape with vertex 

triplets. These results suggest that the visual system processes dot arrangements as coherent shapes 

automatically using precise smoothness constraints. This ability may be a consequence of 

processes that extract curvature in defining contour and object shape.
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 One of the primary functions of the visual system is the formation of abstract shape 

representations. In natural vision, encoding a representation of shape frequently involves 

organizing spatially distinct elements into a configural whole, as objects tend to occlude each 

other. Classic work by the Gestalt psychologists has shown that the whole that we encode from 

these fragments is fundamentally different from the sum of individual parts (e.g., Koffka, 1935; 

Lindemann, 1922). Wertheimer (1923) identified several stimulus features by which distinct 

elements could be organized together, such as similarity, proximity, common motion, and good 

continuation. Related work has also studied how we interpolate contours and surfaces behind 

occluders based on geometric and surface properties of the fragments (Michotte, 1964; Kellman 

& Shipley, 1991; Yin, Kellman & Shipley, 1997) and how we integrate paths between 

disconnected oriented elements (Field, Hayes & Hess, 1993).  

 One phenomenon that these research efforts do not explain, however, is how the visual 

system organizes an array of dots like the one shown in Figure 1a into a single shape description. 

The shape is unfamiliar, so no template matching can explain the percept. Nor can similarity in 

the elements’ size, color, or individual shapes account for their organization into a configural 

whole, as shown in Figure 1b-d. Moreover, unlike the displays used in research on path 

integration, the dot elements have no explicit orientation or tangent direction. The visual system 

could, in principle, interpolate any number of possible contours between this dot array. Despite 

these difficulties, research has shown that dot displays give rise to shape representations that are 

invariant to changes in size, orientation, and position (Baker & Kellman, 2018). There also 

seems to be a large degree of consistency across shape representations formed by different 

observers. We found that subjects had no ability to detect changes in dot positions when dots 

were moved along a never-before-seen virtual contour from which the first array of dots was 
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sampled. This suggests that the shape representation viewers form in their mind very closely 

resembles the physical contour from which the dots were originally sampled (see Figure 2).   

  

 

Figure 1.  Different dot displays for the same shape. We organize the elements in each of 

these four displays into a unified shape representation despite differences in element size, color, 

and shape.  

 

 
Figure 2. A: Trial from Baker et al. (2018) in which dots are shifted along a shape’s virtual 

contour. B: Sensitivity to shape change. When dots were shifted along the virtual contour, 

participants had no sensitivity to the change, even with 150ms of exposure time. 

 

 As remarkable as it is that the visual system encodes shape representations from 

unconnected dots, not all dot arrays give rise to a shape percept. Studies on the percept of shape 

from randomly placed dots have found that certain configurations are much more frequently 

perceived to have shape than others, depending on proximity and good continuation between the 

dot elements (van den Berg, 2006). Considerable research has been done on how the visual 

system organizes an array of dots into multiple distinct shapes, or into a single shape among 
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random dot distractors. Proximity appears to play a major role in these computations (van 

Oeffelen & Vos, 1983; Kubovy and Wagemans, 1995; Papari & Petkov, 2005), although 

similarity (Zucker, Stevens & Sander, 1983) and good continuation are also important cues 

(Smits, Vos & van Oeffelen, 1985; Lezama, Randall, Morel & van Gioi, 2016). 

Understanding what spatial relationships between dots influence whether an array is 

perceived as a shape could provide crucial insight into how the visual system perceives shapes in 

general. One important question that dot arrays could help answer is how the visual system 

encodes contour information. In typical shape displays, the contour is physically present in the 

stimulus, so it can be difficult to determine how the visual system abstracts and encodes the 

shape in visual memory. In dot arrays, no contour is physically present, so they provide unique 

insight into what contour features the visual system naturally imputes to a shape representation. 

 One way the visual system could form a contour representation from unconnected dots is 

by interpolating straight edges between adjacent boundary points (e.g., O’Callaghan, 1973).  

This process would be computationally simple and parsimonious in the sense that the contour 

representation is highly constrained by the set of points in the proximal stimulus. On the other 

hand, we have the phenomenological experience of perceiving smooth curves in displays like the 

dots in Figure 1. Moreover, connecting straight edges at each point is equivalent to encoding the 

spatial position of each non-colinear dot. Corners are perceptually important features of a 

contour (Attneave, 1954), so shifting dots along the contour would produce a very different 

shape representation if each dot was first order discontinuous corner. Past results have shown 

that this kind of shift is not detectable to human observers (Baker & Kellman, 2018).  

There is also empirical evidence that the visual system does not always represent dots as 

corners in a contour. Koffka (1931) placed points along a circle to estimate the number of dots at 
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which the virtual contour was perceived as smooth. He estimated that this transition occurred at 

around eight evenly spaced dots (i.e., an inclusive angle of 135 degrees). Bouma (1976) gave a 

more conservative estimate that 10 dots were needed for the virtual contour to be perceived as 

smooth. Smits and Vos (1987) used more systematic tests to estimate this transition point and 

found that when the angle between triplets of dots was sufficiently large (greater than about 140 

degrees), the dots were perceived as curvilinear (Figure 3a). In a later study, van Assen and Vos 

(1999) developed a more objective measure of perceived curvilinearity by measuring 

participants’ bias to say whether a target dot was below or above a virtual contour defined by 

four other dots. They found that when the inclusive angle between the central dots was 135 of 

150 degrees, participants’ bias was consistent with perceiving a curved contour. Feldman (1996) 

systematically varied the inclusive angle for three dot displays and found that the 50% threshold 

for curvilinear responses vs. angular responses was at around 120 degrees. He found that when a 

fourth dot was added to the configuration to create two similar angles from dot triplets, the 

threshold went down (Feldman, 1997) (Figure 3b). In a similar experiment, we created five-dot 

displays in which the sign of curvature for the triplets with the second and fourth dots as their 

vertex was the same or different than the sign of curvature for the triplet with the third dot as its 

vertex (Figure 3c-d). We found that the threshold for curvilinearity was much higher when the 

flanking vertices had the same sign of curvature as the central vertex than when their curvature 

was of opposite sign, but that there is a hard threshold at 90 degrees regardless of the geometry 

of other dots (Baker & Kellman, unpublished).  
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Figure 3. A: Dot triplets used by Smits and Vos (1987), reprinted from the original article. 

B: Comparison of a dot triplet and quadruplet from Feldman (1997). Feldman found that the 

addition of a fourth dot with similar turn angle increased the probability of a curvilinear 

response. C: Arrangement of five dots from Baker & Kellman (unpublished). Despite the 

two arrays having an identical configuration of the middle three dots, the percept of a corner at 

the center dot is affected by the position of the first and fifth dots. 

 

If forming a shape representation by encoding each dot position as a corner is both 

parsimonious and computationally simple, why would the visual system ever extract contour 

representations contour representations with smooth curves from arrays of dot arrays? One 

possibility is that shape contours with smooth curves are representationally simpler even if they 

are more complicated to compute. Past research on connected contours has shown that perceptual 

tasks requiring a shape representation are accomplished better and more quickly with smooth 

contours than with angular contours (Bertamini, Palumbo & Redies, 2019). Other work has 

shown that visual system has special facility for encoding contours of constant curvature (Baker, 

Garrigan & Kellman, under review). A perceptual corner has a first order discontinuity at its 

vertex, meaning there will always be a part boundary at that point. On the other hand, if the 

contour is perceptually smooth at that point, the entire segment could be represented as a single 

part. As a consequence, though there may be a greater upfront computational cost to 
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interpolating smooth curves between points in a dot array, the resulting shape representation will 

ultimately be simpler, as it is made up of fewer parts. Relatedly, the presence of a corner signals 

a L-junction, a common cue for intersecting contours belonging to different shapes in visual 

perception (Shipley & Kellman, 1990). L-junctions might make it more difficult to perceive the 

contour as naturally continuing at the corner point, forcing the visual system to assess if the 

junction is formed by one or two shape boundaries. All of this predicts that the abstract shape 

representation that is ultimately encoded by an array of dots might be stored more efficiently as a 

set of relatively few curved segments than a larger set of straight segments, even if this requires 

more initial processing to compute. If this is the case, we would expect that it will be easier to 

encode arrangements of dots that appear to have few or no sharp corners as a shape than 

arrangements of dots with many perceived contours.      

We tested whether dot arrays whose spatial relationships signaled smooth curves were 

more or less easily encoded as shapes using both subjective and objective measures. In 

Experiment 1, we sampled dots from shapes with smooth curves and from shapes with sharp 

corners and asked participants to judge how much each dot array looked like a shape. In 

Experiment 2, we showed pairs of dot arrays sampled from smooth or corner shapes at different 

orientations and measured the time it took for participants to judge whether the shape formed by 

the dots was the same or different. In Experiment 3, we hid dot arrays sampled from both kinds 

of shapes among randomly placed distractor dots and measured participants’ ability to detect the 

shape in both conditions.  

Experiment 1 

 The goal of Experiment 1 was to measure the subjective strength of a shape percept in 

three different kinds of dot displays. We created arrays of dots by sampling novel shapes with 
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smooth curves, by sampling novel shapes with sharp corners, and by randomly arranging them. 

We then asked subjects to rate the degree to which the dots appeared to form a shape outline. 

Our prediction was that dots sampled from smooth contours would be judged more shape-like 

than dots sampled from shapes with corners, which would in turn be judged more shape-like than 

random dot arrangements.  

Method 

Participants 

 Twenty-five undergraduates (3 male, 22 female, Mage = 20.6) from the University of 

California, Los Angeles participated in the study for course credit. All participants had normal or 

corrected-to-normal vision. 

Display and Apparatus 

Subjects were seated 70 cm from a 20-inch View Sonic Graphic Series G225f monitor. 

The monitor was set to 1024x768 resolution, with a refresh rate of 100 hz. Except when noted 

otherwise, all aspects of the displays and apparatus in subsequent experiments were the same as 

in Experiment 1. 

Stimuli 

 Experiment 1 included three different kinds of dot arrays: smooth, corner, and random. 

Smooth dot arrays were created by generating a smooth contour, which we formed by moving 12 

control points toward or away from the center of a circle a random distance, then fitting cubic 

splines through the 12 control points in polar space (see Figure 4a). We then sampled 25 points 

along the contour to get the dot array. The points were sampled nonuniformly by taking 25 

evenly sampled points and moving them in a random direction along the contour. Though not 

directly relevant to this experiment, we included jittering along the contour to prevent 
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participants from using local spatial relationships between a small set of dots rather than the 

overall shape of a dot array in future objective experiments (see Experiment 2 for more 

explanation). The distance points were moved from even spacing the contour was sampled from 

a normal distribution, with a mean distance of zero and a standard deviation equal to the contour 

length divided by 200. We constrained the display to never have two points fewer than 5 pixels 

away from each other (Figure 4d).  

The corner dot arrays were created by generating a smooth dot array and then changing 

the spatial relationships between dots so that they formed perceptual corners (i.e., the angle 

between them was 90 degrees or less). For a given dot triplet, ABC, we imposed a corner percept 

by interpolating a line between points A and C, then moving point B perpendicularly away from 

the interpolated line while simultaneously moving A and C along the line until the vertex at B 

was between 78 and 90 degrees. This range was chosen so that the angular shapes would be 

reliably perceived as corners while also including some natural variability in the angle between 

dot triplets. We then interpolated straight lines between the 25 repositioned points to get a shape 

contour with corners and sampled 25 new dots using the same nonuniform sampling procedure 

used for smooth dot displays to get 25 dots (Figure 4b and 4d).  

The random dot condition also began with the smooth dot array. Rather than moving dots 

to reduce the angle between them, dots were moved in a random direction. Each of the 25 points 

was moved a distance equal to the total length of the contour divided by 25 in a random 

direction, with the constraint that no two dots could be fewer than 5 pixels apart (Figure 4e). We 

used this method instead of truly random placement to prevent subjects from judging shape 

based on whether there was an open center within the dot array. The random condition also had a 

center with few or no dots, but we still expected it would not be perceived as a shape. 
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Dot arrays for each of the three conditions were matched in size, subtending on average 

12.0 degrees of visual field, and at most 20.7 degrees of visual field.  

 

Figure 4. Shape stimuli used in Experiment 1. Top: A smooth and angular shape. Bottom (left 

to right): Dots sampled from the smooth shape, dots sampled from the angular shape, and 

random dot arrays. 

 

Design 

 Experiment 1 had three conditions, with 70 trials in each condition. In the first condition, 

we showed dot arrays from smooth shapes. In the second condition, we showed dot arrays from 

shapes with corners. In the last condition, we showed random dot arrays. Trials with all three 

conditions were randomly interleaved. 

Procedure 

 On each trial, participants were shown one of the three stimulus types and asked to 

evaluate the degree to which the dot array seemed to form a shape outline. The dot array 

remained on the screen until a response was given. Participants were instructed to rate the 

display on a 6-point scale, ranging from “The dots look totally random” to “The dots look totally 
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like a shape”. By choosing an even number of points on the scale, there no neutral condition. 

Subjects always had to say if the dots looked more shape-like (ratings greater than 3) or more 

random (ratings 3 or less). We instructed participants to use the full range of numbers to reflect 

qualitative differences in the degree to which different dot arrays appeared to be shapes. Before 

beginning the main experiment, participants completed five practice trials to familiarize 

themselves with the response buttons and to expose them to all three stimulus types before 

giving recorded shape judgments. A sample trial is shown in Figure 5.  

         

Figure 5. A sample trial for each of the three conditions in Experiment 1. A: Trial with a 

curvilinear shape. B: Trial with an angular shape. C: Trial with randomly positioned dots. 

 

Results 

 The mean subjective rating for each of the three stimulus types is shown in Figure 6a. 

There is a clear ordering in which dots sampled from smooth contours are perceived as most 

shape-like, followed by dots sampled from angular contours, followed by randomly sampled 

dots. This pattern was reflected for every participant who completed the experiment. A one-way 

ANOVA confirmed a significant difference between the groups, F(2, 57) = 181.05, p < .001, and 

Bonferroni corrected paired sample t-tests confirmed that dots sampled from smooth contours 

were rated more shape-like than dots sampled from angular contours, t(19) = 13.22, p < .001, 

and that dots sampled from angular contours were rated more shape-like than randomly sampled 

dots, t(19) = 21.04, p < .001.   
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 We also analyzed the average number of trials in which subjects perceived a shape at all. 

For this measure, we included any display that received a subjective rating greater than 3. The 

results are shown in Figure 6b. Paired samples t-tests confirmed that subjects’ perceived 

significantly more of the dots sampled from smooth contours as a shape than they did dots 

sampled from angular contours, t(19) = 5.60, p < .001 and that dots sampled from angular 

contours were perceived as shapes significantly more often than randomly sampled dots, t(19) = 

12.65, p < .001.  

 

Figure 6. Experiment 1 results. A: Participants rating of shape for each of the three conditions. 

B: The percentage of ratings that were more shape-like (i.e., rating > 3) for each condition. 

Discussion 

 Experiment 1 gave evidence that dots sampled from smooth contours are more 

phenomenologically shape-like than dots sampled from contours with sharp corners. Every 

participant gave higher shape ratings for the smooth contour condition and reported perceiving 

more of the smooth contours as shapes than the angular contours. These results also support the 

notion that dots sampled from smooth shapes are a qualitatively different kind than dots sampled 

from angular shapes. Participants never saw the underlying contour from which the dot arrays 

were sampled. Geometrically, all the dots sampled from shapes with corners could be 

represented with curvilinear contours. If subjects perceived the dots sampled from angular 
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contours as smooth, we would expect very little phenomenological difference between the two 

non-random dot conditions. Instead, we find that dots sampled from angular contours are 

consistently perceived differently than the dots sampled from smooth contours. 

 Experiment 1 provided a subjective measure of a dot array’s perceived shape-ness but 

could be influenced by biases or demand characteristics. Still, it is important to know what 

subjects believe they are seeing, and subjective reports give a direct answer to this 

phenomenological question. We assess differences between the perceived shape-ness of dots 

sampled from smooth and angular contours with objective measures in Experiments 2 and 3. 

 

Experiment 2 

 One of the key functions that encoding an abstract shape representation serves is allowing 

comparison of shapes across different orientations (Baker & Kellman, 2018). In Experiment 2, 

we compared subjects’ ability to encode a shape representation for dots sampled from smooth 

and angular contours by testing them on a shape matching mental rotation task. Inspired by 

Shepard and Metzler (1971), we simultaneously presented two differently oriented dot arrays and 

asked subjects to judge whether they defined the same virtual contour. We expected that if dots 

sampled from smooth contours are more naturally perceived as shapes, subjects should have an 

advantage in the mental rotation task. 

Method 

Participants 

 Participants included 25 undergraduates (4 male, 21 female, Mage = 19.8) from the 

University of California, Los Angeles who enrolled in the study for course credit. All 

participants had normal or corrected-to-normal vision. 
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Stimuli 

 Smooth and angular dot arrays were generated as in Experiment 1. In Experiment 2, each 

array was a member of a pair with either the same shape or a different shape. When the shape 

was the same, we used the same virtual contour, but sampled a different set of dots so that local 

spatial relations between dots could not be used as a cue. When the shapes were different, we 

generated the second member of the pair by moving one of the control points for the original 

shape a random distance between 1.93 and 4.11 degrees toward or away from the center of the 

shape. We then randomly selected an adjacent control point to the one we just moved and moved 

it toward or away from the center such that the total contour length for the new shape was the 

same as the total contour length for the original shape (see Figure 7 for a pair). For angular 

shapes, we then applied the same set of changes described in Experiment 1 to the new shape. Dot 

arrays also differed in orientation. In each trial, the second dot array could be rotated 0, 45, 90, 

135, or 180 degrees relative to the first.  

 

Figure 7. Pairs of smooth and angular shapes used in Experiment 2.  

Design 

 The experiment consisted of 200 trials, half of which showed shape pairs sampled from 

smooth virtual contours, and half of which showed shape pairs sampled from angular contours. 
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For each of these two conditions, there were 20 trials at each of the five angular differences, 10 

of which included the same shape, and 10 of which included different shapes.  

Procedure 

 On each trial, two arrays of dots were shown on the screen simultaneously, one centered 

in the left half of the monitor screen, and one centered in the right half. Subjects were instructed 

to look at both dot arrays and determine whether the shape defined by each array of dots was the 

same or different, irrespective of a difference in orientation and the local positions of dots. The 

two dot arrays remained on the screen until subjects responded. Participants were told that 

response time was being measured, but that they should emphasize responding correctly over 

responding quickly. Before beginning the main experiment, subjects completed 12 practice trials 

to familiarize themselves with the task. Performance in the practice trials was not analyzed. A 

sample trial for each condition is shown in Figure 8.  

 
Figure 8. Sample trials from Experiment 2. Top left: Dots sampled from smooth contours with 

the same shape. Bottom left: Dots sampled from angular contours with the same shape. Top 

right: Dots sampled from smooth contours with different shape. Bottom right: Dots sampled 

from angular contours with different shape.  
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Results 

 Following Shepard and Metzler (1971), we analyzed the reaction time only for trials in 

which the two shapes were the same and subjects responded correctly. Mean response times for 

each angular difference are shown in Figure 9a. A repeated measures ANOVA confirmed a 

significant main effect for the type of shape from which the dots were sampled, F(1,25) = 5.33, p 

= .03. A linear regression test found no effect of angular difference on reaction time, either on 

the dots sampled from smooth contours, F(1, 128) = 0.39, p = .54, or on angular contours, 

F(1,128) = 0.48, p = .49.  

 Superiority in performance for dots sampled from smooth contours was also reflected in 

accuracy measures (Figure 9b). ANOVA analyses confirmed that accuracy was significantly 

higher in displays in which the dots were sampled from smooth contours than when they were 

sampled from contours with sharp contours F(1,25) = 40.92, p < .001.  
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Figure 9. Response time and accuracy for Experiment 2. Top: Response time on correct trials 

as a function of angular difference. Bottom: Accuracy as a function of angular difference. 

Discussion 

  Experiment 1 found that participants rated dots sampled from contours with sharp 

contours as less shape-like than dots sampled from smooth curves. In Experiment 2, we tested 

whether these subjective differences would be reflected in perceptual performance. Because they 

were rotated and had positions along the contour resampled, the target pairs of dot arrays we 

showed in Experiment 2 differed from each other both in absolute orientation and in terms of the 
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specific positions of the elements with respect to each other. Accurate responding for the task 

therefore required forming a representation of a shape’s contour from the set of dots that was 

object-centric and invariant to orientation changes. Differences in response time and/or accuracy 

for the two kinds of dot arrays therefore presumably correspond to the ease with which 

participants encoded the array as a shape. 

 We found that dots sampled from shapes with smooth contours could be compared across 

orientation changes more quickly than dots sampled from shapes with sharp corners, which 

suggests that these dot arrays are more easily encoded and perceived as orientation-invariant 

shapes than arrays sampled from shapes with sharp corners. Participants also made fewer errors 

when mentally rotating dots sampled from smooth contours than dots sampled from angular 

contours. Lower response times therefore cannot be explained by a speed-accuracy tradeoff. 

 One puzzling aspect of our data is that we found no reliable effect of magnitude of 

angular rotation on response time for either trial type. Shepard and Metzler’s work (1971), from 

which we modeled our experiment, showed a strong linear relationship between response time 

and degree of angular difference for shapes rotated in the picture plane. Response time has also 

been shown to vary with degree of change from a canonical orientation in naming tasks for 

familiar objects (Jolicoeur, 1985). One possibility for why angular difference had such a small 

effect in our study is that subjects responded after a somewhat fixed period of time, even if more 

or less time was needed to make an accurate decision. This could explain why we see a reduction 

in accuracy as a function of angular difference in the sharp corner condition even though 

response time does not increase. Importantly, though, even if subjects are using a more fixed 

period of time, this amount of time is different for the smooth and sharp corner conditions. 

Participants consistently require more time to decide if dots sampled from a shape with sharp 
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corners is the same or different, even if response times do not increase monotonically with 

angular differences in either condition. 

 Another intriguing possibility is that dot configurations represent a special class of 

stimuli whose time for recognition does not scale with angular difference. Past work on mental 

rotation has shown that certain kinds of stimuli with salient landmark features have much flatter 

recognition slopes than stimuli without salient landmarks (Hochberg & Gellman, 1977). Flat 

slopes have also been found for familiar objects when participants were informed ahead of time 

what object they would be shown (Cooper & Shepard, 1973). Why mental rotation of dot 

patterns would have flat slopes is mysterious in view of these findings, as they are neither 

familiar nor do they have salient local features. In fact, any salient local feature obtained from a 

local group of dots in one of the arrays would not be present in the other matching array, since 

dot positions along the contour are independently sampled in matched pairs. One possibility is 

that the simplicity of dot arrays gives rise to flat mental rotation slopes. According to Hochberg 

and Gellman (1977), mental rotation of shapes will scale with angular distance if representations 

must be built up from successive glances. Possibly, the relatively few bits of information in an 

array of 25 dots can be extracted with only one glance. This is partially supported by previous 

findings that the spatial positions of an array of 25 dots are registered within the first 30 ms of 

exposure (Baker & Kellman, 2018).  

. 

Experiment 3 

 As we have discussed, the visual system has an amazing capacity for form contour 

representations from unconnected dots. In Experiment 3, we further tested these capabilities by 

showing dot displays embedded among a field of random noise dots. The experimental paradigm 
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was similar to one used by Uttal (1973) for dots along a curved or straight line segment. Uttal 

found that for these simple segments, participants had significantly more trouble detecting the 

target when it deviated more from a straight line, but there seemed to be little difference for 

angular vs. curvilinear deviations. In the present study, we tested participants’ ability to detect 

whole forms defined by dots. 

To do this, we used a two-interval forced choice (2IFC) paradigm in which one stimulus 

contained a shape embedded in noise and the other stimulus contained noise alone. Participants’ 

task was to choose the interval that contained a coherent shape. In order to group together and 

describe the shape of a set of dots in noise, subjects would have to first use some spatial 

relationships between the dots in the array to identify which dots belonged to a shape outline and 

which were random. Critical cues like proximity could be potentially misleading for this kind of 

display. Manipulating the kind of shape contour that the target dots were sampled from, we 

tested participants’ ability to decide which of the two intervals contained a shape and which 

consisted only of noise dots. We predicted that unlike in the case for simple segments, dot arrays 

sampled from whole shapes with smooth contours would be more easily detected than dots 

sampled from whole shapes with sharp corners. 

Method 

Participants 

 Twenty-six undergraduates (6 male, 20 female, Mage = 21.6) from the University of 

California, Los Angeles participated in this study for course credit. All participants had normal 

or corrected-to-normal vision. One subject’s data was excluded prior to analyzing his results 

because he did not appear to understand the instructions by the time he had finished the practice 

portion of the experiment.  
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Stimuli 

 Dot arrays from smooth and cornered shape contours were generated as in Experiment 1. 

In Experiment 3, however, the dots sampled from contours were hidden among 25 distractor 

dots. Distractor dots were created by uniformly sampling from the rectangle that circumscribed 

the target dots. Each trial also included a dot display with no shape. Rather than placing all 50 

dots in the other display completely randomly, we created random displays of 25 dots as in 

Experiment 1, with the only difference being that we moved each dot twice the average distance 

between dots. This was to create displays with no shape that still had some emptiness in the 

middle of the array to prevent participants from using that as a low-level cue. We then added 25 

dots by uniformly sampling from the circumscribing rectangle as in the target displays. Figure 10 

shows a target display with dots from a smooth contour, a target display with dots from a corner 

contour, and a non-target display. 

 

Figure 10. Target and distractor displays for Experiment 3. Left: Target display with dots 

sampled from an angular contour. Middle: Target display with dots sampled from a curvilinear 

contour. Right: Non-target display. In each trial, one of the two kinds of target display and the 

distractor display would be presented in a randomized order.  

 

Design 

 The experiment had two conditions, one in which the target dots were sampled from a 

smooth contour and one in which the target dots were sampled from a corner contour. For both 
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conditions, half the trials had the target display shown first and half had the target display shown 

second. There were 120 total trials for each condition. Participants completed 12 practice trials 

before beginning the main experiment. 

Procedure 

 Experiment 3 involved a 2IFC task in which one display consisted of dots sampled from 

a smooth or angular contour among noise dots and the other display consisted only of noise dots. 

Before beginning the experiment, subjects were told they would be looking for shapes hidden in 

dots. We showed 20 examples of shape displays made out of 25 dots, half of which were 

sampled from smooth contours, and half of which were sampled from corner contours. In each 

trial, we first presented a fixation cross at the center of the screen for 600 ms, then showed the 

first of the two dot displays for 800 ms. The dot display was then masked by a pattern of black 

and white dots for 500 ms, after which the second dot display was shown, also for 800 ms. This 

display was masked for 500 ms, and then subjects were asked to report whether a shape was 

hidden in the first or second of the two dot displays. Subjects were not cued to look for any 

specific shape in the displays and were told to pick whichever one they thought had dot 

arrangements that contained any shape. During practice, subjects were given feedback telling 

them if they were correct or incorrect and showing the hidden shape highlighted in white dots. 

Sample trial from the curved and angular condition are shown in Figure 11. 
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Figure 11. Sample trials from Experiment 3. Left: The target shape is sampled from a curved 

contour and is shown first. Right: The target shape is sampled from an angular contour and is 

shown second.  

Results 

 The results for Experiment 3 are shown in Figure 12. Performance was significantly 

better than chance both when the dots were sampled from a smooth contour (t(24) 17.59, p 

< .001) and when they were sampled from a corner contour (t(24) = 15.69, p < .001). Participants 

were significantly better at detecting the target dots when they were sampled from a smooth 

contour than when they were sampled from a corner contour (t(24) = 10.3, p < .001, Cohen’s d = 

1.1).  
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Figure 12. Accuracy for Experiment 3.  

Discussion 

 In the target displays used in Experiment 3, the dot elements that formed the outline of a 

shape were physically identical to the distractor dots. The local spatial relationships between 

small groups of target dots are also not different from relationships between groups of distractor 

dots or groups that are a mix of targets and distractors. In this sense, the perceptual task subjects 

are performing is fundamentally different from the path detection task used by Field, Hayes and 

Hess (1993). In the classic path detection task, local orientation relationships between the dots 

determine whether the path is detected depending on the relatability of the local elements. The 

perceptual salience of paths likely depends on a contour-linking process that produces an 

intermediate representation in the process of contour interpolation (Kellman, Erlikhman & 

Kellman, 2016). Unlike the targets used by Uttal (1973), the local spatial relationships between 

target dots are not consistent. Neither the spacing nor the turn angle is the same between nearby 

dot triplets in our displays. In the Experiment 3 task, detection of the target depends on global 
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detection of a contour. The visual system might be considering multiple possible dot 

organizations and determining whether they configure into a global shape.  

 Participants’ good performance for target dots sampled from both smooth and corner 

contours suggests that the visual system has a quite robust capability to detect a variety of shapes 

from distractors. However, there is also a clear performance advantage for detection of shapes 

with smooth contours over detection of angular shapes. One explanation for this difference might 

be that detection of a shape depends critically on object closure (Kovacs & Julesz, 1993). While 

dot arrays from both smooth and angular shapes are closed, the variance in turn angle between 

dot triplets in the smooth shape arrays are relatively small, while for the angular shape arrays the 

turn angle accentuated in a few areas (i.e., the corners). Possibly, the more consistent trajectories 

towards closure signal the presence of a target more strongly than a few large turns to achieve 

closure. 

The observed difference is likely also a consequence of simpler representations for dots 

sampled from smooth shapes than those formed from dots sampled from shapes with sharp 

corners. If the visual system can represent the curvilinear shapes with a few structural primitives, 

but requires several to represent angular shapes, it follows that search for the more 

representationally complex targets would be less accurate. A similar effect and explanation have 

been given for search for constant curvature vs. non-constant curvature targets formed by 

oriented elements (Baker et al., under review).  

General Discussion 

 In this set of experiments, we compared participants’ perception of dot arrays sampled 

from angular contours with dot arrays sampled from smooth contours. We wanted to better 

understand how the visual system gets abstract representations of shapes from relatively 
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impoverished displays of dots. We considered the perceived smoothness of the edges defined by 

these dots to be one determining factor in their formation. We also wanted to better understand 

abstract shape representations in general. Using displays in which the contour is not physically 

present was a useful tool for doing so.  

 The results from our experiments provide strong evidence for an advantage of smooth 

contours over angular contours for processing form. In Experiment 1, participants’ subjective 

ratings revealed that dots sampled from smooth shapes were more often and more strongly 

perceived as shapes than dots sampled from angular shapes. In Experiment 2, we tested subjects’ 

ability to mentally rotate an array of dots, with the expectation that dot arrangements that were 

more easily encoded as shapes would be easier to recognize across changes in orientation. We 

found that participants judged that two dot arrays were the same more quickly and more 

accurately when they were sampled from smooth contours. In Experiment 3, we embedded a 

target arrangement of dots defining a virtual contour among an equal number of distractor dots. 

We found that subjects were more able to detect smooth virtual contours than angular virtual 

contours, likely because the shape representation the dots give rise to is simpler and therefore 

easier to search (see Baker et al., under review for a similar paradigm).  

 Greater facility in encoding shapes with fewer corners and more curvilinear segments 

would not be predicted by many other theories of shape and object perception. Much work in 

middle and high-level vision emphasizes the importance of junctions and non-accidental 

properties. Geons in Biederman’s (1987) work depend crucially on corners and junctions, for 

example. Under such a theory, we would expect the visual system to be particularly suited to the 

detection of corners. Indeed, neurophysiological work points to the importance of angular cusps 

in V4 (Pasupathy & Connor, 2001). Information theoretical work on contour complexity also 
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predicts that objects with straight edges will be perceptually simpler (Attneave, 1954; Norman, 

Phillips & Ross, 2001; Feldman & Singh, 2005). Structural information theory makes the same 

prediction, positing straight line connections between dots are more economical than curvilinear 

arcs because arcs are a continuation of both length and angle, thus requiring two bits of 

information for every one bit of information required for straight line connections (Smits & Vos, 

1987, personal communication with Leeuwenberg).  

 Why, then, are shapes with smooth contours easier to encode than shapes with sharp 

corners? As Bertamini et al. (2019) point out, there are several reasons to expect angular 

contours would be more easily processed. Angular contours are comparatively simple to 

compute, requiring only linear interpolation between salient key points of high curvature 

(Bertamini & Bates, 2013). There may also be evolutionary advantages to registering the shapes 

of angular contours quickly to assess danger (Bar & Neta, 2006). On the other hand, the 

evolutionary environment in which our visual system evolved had much fewer straight edges and 

sharp angles than the one in which we currently live. Even today, research on scene statistics has 

found that many of the contours people process in their daily lives are made up of smooth curves 

(Chow, Jin & Treves, 2002). An analysis of scene statistics can only take us so far, however. The 

visual system may have evolved to process smooth contours because there were more objects 

made from smooth contours in our visual environment, but we must still determine what specific 

visual mechanisms confer this advantage. 

 One possibility is that the primitives from which the visual system builds abstract shape 

representations more easily describe a shape with smooth contours. We have hypothesized that 

shape representations are built up from relatively few smoothly joined segments of constant 

curvature (Garrigan & Kellman, 2011; Kellman, Garrigan & Erlikhman, 2013; Baker et al., 
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under review, Baker & Kellman, in prep.). Under this theory, the presence of a corner would 

always need to be encoded with two segment primitives, but smoothly changing curvature could 

be capture by a single segment, provided that the variation in curvature was sufficiently small. 

Even when part of a smooth contour requires multiple constant curvature primitives, the 

smoothly joined segments might be perceived as belonging to a single part if they are smooth 

and monotonic. For example, consider the middle and center contour fragments in Figure 13. 

Both are made up of two different curvature segments, but the fragment made from two 

smoothly joined curves looks like a single token, while the fragment made from two straight 

segments does not.  

 

Figure 13. Contours made up of more than one curvature segment. Left: A contour made up 

of two smoothly joined constant curvature segments. Middle: A contour made up of two straight 

segments joined at an angle. Right: A contour made up of two smoothly joined constant 

curvature segments and one straight segment joined at an angle. Individual parts are marked by 

letters A, B, or C. 

 

 The observation that two smoothly joined curvature pieces are perceived as a single part 

goes back to classic work on good continuation by Wertheimer (1923). He showed a contour 

similar to the one in Figure 13 (right) and asked people to divide it into two parts, finding that 

people almost always organized the two smoothly joined curvature pieces together, separating it 

from the straight segment. In terms of derivatives, we may consider any continuous (unbroken) 
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contour to have zero order continuity. Wertheimer’s examples show that, despite zero-order 

continuity, a 1st-order discontinuity (undefined first derivative) produces some degree of 

perceptual segmentation. Figure 13 (right) also illustrates that higher discontinuities, such as the 

2nd-order discontinuity where two curves smoothly join (matched slope at the join point), do not 

produce obvious perceptual segmentation. Evidence from visual search in noise shows that 

search for a contour segment with a 0-order or first-order discontinuity from other segments is 

easy, but a segment having 0-order and first-order continuity, but a second-order discontinuity, is 

effortful, slow, and error-prone (Kellman, Garrigan Kalar & Shipley, 2003). If shapes made up 

of sharp corners are perceived to have significantly more parts than shapes made up of smoothly 

connected contours, it follows that they will be more representationally complex and therefore 

more difficult to encode. 

 Another reason that shapes with sharp corners may be harder to encode is that the corners 

are perceived as T-junctions or L-junctions, visual cues that are useful for identifying points at 

which one object might be occluding another (Ratoosh, 1949; Dinnerstein & Wertheimer, 1957; 

Rubin, 2001). The presence of a corner might force the visual system to consider the possibility 

that it is seeing two occluding objects rather than a single object. The additional computations 

needed to falsify this possibility might slow down form processing.  

Conclusion 

 The results from these experiments suggest that the formation of a shape representation 

depends on smoothness constraints in the spatial relationships between the dots. These 

constraints point to a more general phenomenon in shape perception that extraction of curvature 

is a fundamental process in the formation of an abstract shape representation. Virtual contours 

that can be described by a relatively constrained set of curvature primitives appear to give rise to 
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shapes more often, more quickly, and more precisely than virtual contours that are better 

described by straight segments connected at 1st order discontinuities.  
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Abstract 

The human visual system has a robust capability of extracting the global form of an object from 

a variety of local contour features that often have very little physically in common. We propose a 

new hypothesis about separate systems for processing high frequency local information along a 

contour and for encoding global information about the contour’s overall shape. We propose that 

these two systems are independent of each other and process information very differently. While 

the system encoding information about an object’s form represents low frequency contour 

variations accurately, the local system encodes only a small set of summary statistics to describe 

typical features of high frequency elements along the contour. In Experiment 1, we tested this 

hypothesis by sequentially showing pairs of shapes that differed in local features, global features, 

or both. Support for our hypothesis was found in participants’ low sensitivity to changes in local 

contour features and a lack of additivity for shapes that differed in local features and global 

features compared to shapes that differed only in global features. In Experiment 2, we tested 

sensitivity to local and global shape changes once again, this time controlling for the amount of 

physical dissimilarity between both kinds of shape changes. We found that sensitivity remained 

higher for global features even with physical similarity equated. In Experiment 3, we compared 

participants’ sensitivity to new sets of contour features with matched statistical properties with 

new features that differed in frequency and amplitude. Sensitivity was higher when the statistical 

properties of the contour changed than when new features were generated from the same 

distribution. We directly tested our hypothesis that local and global properties of a contour are 

independent features in Experiment 4 using a visual search task. Though local and global shape 

differences popped out on their own, integrating them together required focal attention. Taken 

together, these findings support the notion that separate mechanisms process local and global 
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contour information and that the kinds of information these mechanisms encode are 

fundamentally different. 
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What is the identity of the object shown in Figure 1a? The question elicits two distinct 

but equally automatic responses. On one hand, the object is clearly a cloud, as evidenced by its 

puffy white texture, its bright reflection of the sun, and its position in the sky. On the other hand, 

something about the shape of the cloud signals a horse in our perceptual systems. It would be 

simple to say that surface qualities and context support a cloud percept, while shape cues support 

a horse percept, but the contour features physically present in the image bear very little 

resemblance to the set of physical contour features typical in an actual horse. In Figure 1b, we 

find a horse in a similar pose to the cloud horse and compare the edge map (Canny, 1986) for the 

same local area in both images. The wisps and curls present in the cloud are visibly absent in a 

real horse.  

 

Figure 1.  Example of objects with different local contour features but matched global 

shape. A: Cloud shaped like a horse. B and C: Neck and shoulder blades for the cloud horse and 

a real horse, with corresponding edge maps. The edge maps were generated by MATLAB’s 

implementation of the Canny edge detection algorithm.  Cloud image reprinted with permission 

from https://live.staticflickr.com/5226/5636888777_63246b3359_z.jpgv 

 

 Any correspondence between the cloud in Figure 1 and a real horse must be at a higher 

level of abstraction than the extraction of local contour features. As the Gestalt psychologists 

observed long ago, the representations we ultimately form of a shape are not a simple 

https://live.staticflickr.com/5226/5636888777_63246b3359_z.jpg
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conjunction of the local elements present during sensation (Koffka, 1935). Wertheimer (1923) 

outlined several principles by which distinct local elements could be organized to form a 

relational whole. Although similarity was among these cues, the physical characteristics of these 

individual elements mattered much less than how they were arranged with respect to each other. 

Under these principles, two contours with very different local elements can be perceived as the 

same as long as the relations between their constituent elements are sufficiently similar.  

 There is a great deal of evidence from work on human perception that the visual system 

extracts global properties of shape before accessing features of individual elements. For example, 

when viewers are shown an S made up of small H’s or vice versa, they first perceive the letter 

formed by the composition of elements and perceive the identity of the composing elements only 

later (Navon, 1977). Shape representations also appear to be insensitive to changes in positions 

of elements provided that the curvature of contour they define is preserved (Baker & Kellman, 

2018). Research into the perception and recognition of line drawings has also found that 

simplified pictorial representations of shape are encoded more rapidly and accurately as the 

drawing’s fidelity to a photographic image deteriorates (Hochberg & Brooks, 1962; Biederman 

& Ju, 1988).  Such findings suggest that the visual system extracts an abstract form from a 

physical contour, and that when certain abstractions are already present in the image, the 

computation carried out in perception is simplified.  

 These findings from human perception stand in stark contrast with some recent studies on 

object recognition in deep convolutional neural networks (DCNNs). Comparisons between 

DCNNs’ and humans’ use of shape in object recognition has shown a large divergence in in each 

systems’ sensitivity to local and global information. Baker, Lu, Erlikhman & Kellman (2020) 

found that when silhouettes of objects were part-scrambled silhouettes such that many local 
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contour features were preserved but global shape was destroyed, deep networks continued to 

classify the altered shapes with equal accuracy and confidence as the unscrambled original 

images, but when we disrupted local contour features by adding a serrated edge to the boundary 

of objects while preserving global form, networks’ performance deteriorated to chance levels. By 

contrast, humans had difficulty classifying the part-scrambled images, but no trouble with the 

images with changed local contour features and preserved global shape (Baker, Lu, Erlikhman & 

Kellman, 2018). When we introduced a specialized training curriculum to bias networks towards 

global shape classification, networks learned to filter over larger variations in the contour but 

developed no sensitivity to an object’s global shape (Baker, Lu, Erlikhman & Kellman, 2020). 

The large influence of local contour features on deep network classification serves as contrasting 

evidence that humans have special capabilities for separating local and global shape information.   

 Many plausible models of shape description, however, are not well suited to handle 

variations in local contour features in a single system. For example, consider theories of part 

decomposition that separate objects into parts between local concavities (Hoffman & Richards, 

1984; Barenholtz, Cohen, Feldman & Singh, 2003). Typical objects like a real horse will be 

organized into a set of parts that more or less aligns with a semantic part decomposition for legs, 

neck, body and tail. For the cloud horse, small wisps and bumps around the outline create breaks 

in good continuation that would give rise to a very different (and more numerous) set of parts 

than would be seen in any real horse outline. We have proposed a theory of shape perception in 

which areas of similar curvature are represented by a single segment of constant curvature 

(Baker, Garrigan & Kellman, 2020; Baker & Kellman, in prep.). If curvatures are analyzed only 

with fine-scale detectors on the physical contour boundary, a constant curvature segmentation of 

shapes with high frequency contour information would be made of many tiny primitives and 
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would certainly not match up with a topographically similar shape in which the high frequency 

contour features were omitted.  

 One way the visual system could separate local contour features from global shape is by 

including a constraint for simplicity when encoding a shape representation. Feldman and Singh 

(2006) implemented such a method in their Bayesian estimation for shape skeletons. In the 

classical medial axis transform (Blum, 1973), the skeletal representation of a shape is purely 

data-driven, and a small bump or protrusion along the contour will always be captured by an 

axial branch. The maximum a posteriori skeletal transform proposed by Feldman and Singh 

forces the algorithm to tradeoff between simplicity in curvature and number of branches (a prior) 

and fidelity to the original contour (a likelihood), resulting in a representation that aims to 

capture the essential topography of a shape without including all local variations to the bounding 

contour.  

 Research on shapes formed from radial frequency (RF) patterns have also lent important 

insight into how the visual system might encode global shape irrespective of variation in local 

contour features. Radial frequency patterns are sinusoidal modulations of differing amplitude and 

frequency that can be independently added to a circle to change its shape (see Figure 2) 

Wilkinson, Wilson and Habak (1998) added RF patterns to circles to evaluate people’s 

sensitivity to global (low RF) and local (high RF) contour features. They found that participants 

had accurate recognition for shapes with any RF of 6 or less. Recognition for shapes with radial 

frequencies greater than 6 was considerably more error prone and deteriorated monotonically 

with larger RFs. Converging evidence for special sensitivity in low RF shapes was later found in 

a 2IFC task in which subjects discriminated an RF shape from a circle. Sensitivity to a difference 

from a circle was found to be better than predicted by local probability summation (i.e., the 
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probability that participants were attending to a region modulated by the RF pattern during 

presentation) for RFs between 3 and 5, but not for high frequency patterns (Loffler, Wilson & 

Wilkinson, 2003). The authors theorized that the visual system encodes shape as a combination 

of radial frequency patterns and that only low frequency RFs are ultimately used in our abstract 

representation of the shape. 

 
Figure 2. Shapes generated by the addition of radial frequency patterns (from Bell, 

Badcock, Wilson & Wilkinson, 2007). A: Circle deformed by the addition of a pattern with 

three cycles (RF3). B: Circle deformed by the addition of an RF24 pattern. C: Circled deformed 

by the addition of RF3 and RF24 patterns. 

 

 Clearly, the visual system has quite a robust capacity to filter high frequency local 

contour features out of a representation of shape to support matching across variations that are 

inconsequential to the object’s global topography. It would be a mistake, however, to think that 

local contour features are thrown out altogether. When we see a cloud that looks like a horse, we 

do not actually believe we are seeing a horse. This is true even if we remove all surface and 

context information and attend only to the object’s bounding contour, as evidenced by our visual 

memory for puffs and wisps around the cloud horse’s boundary in Figure 1. Any explanation for 

how we extract global shape from high frequency local contours should also explain what 

information about local contour variation does get preserved in visual representations. 

 In the current work, we propose a two-system theory of shape representation that includes 

separate mechanisms for local and global processing. The local processing system is responsible 
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for encoding high frequency variations along an object’s contour, while the global processing 

system encodes low frequency topographical information about the shape. In our theory, these 

systems operate independently from each other such that changes to the high frequency contour 

features of an object do not affect our representation of its overall shape, nor does our 

representation of the object’s shape interact with our description of local contour features. We 

posit that the two systems have very different levels of specificity. While the global processing 

system appears to encode a complete, robust description of the object’s overall shape, the local 

system encodes summary statistics about the local contour features, possibly estimating a 

distribution from which the contour variations were sampled.  

The idea that features are not represented individually but as a group has been proposed 

in other areas of object representation, such as what people choose to present in line drawings. 

When drawing a skyscraper, for example, one child chose not to individually draw every 

window, instead drawing a few accurately and writing “etcetera” for the rest (Arnheim, 1971). 

Kennedy (1974) found that both children and adults omit repetitive details in line drawings once 

a few detailed exemplars have been drawn that can be extrapolated to the others. One could well 

imagine that the information that is represented in visual memory uses similar simplifications to 

free up perceptual resources for other visual tasks.  

Some evidence for independent systems has already been found in research on radial 

frequency shapes showing that the addition of low frequency features does not affect 

participants’ sensitivity to differences between a high frequency contour and a circle or vice 

versa (Bell, Badcock, Wilsion & Wilkinson, 2007). Research on processing for different radial 

frequency patterns has given many valuable insights about differences between local and global 

shape processing, but the statistics of contours defined in this way tend to be much more 
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constrained than in typical object contours. For example, the bounding contour of a poodle or a 

pine tree has much more variety in its local contour variations than would be captured by a small 

number of RF patterns. For this reason, we developed a different system for generating high 

frequency contour noise along an object’s boundary with fewer statistical regularities than a set 

of sinusoids. 

In Experiment 1, we showed participants two shapes, one after the other, and then had 

them perform a two-alternative forced-choice task to decide if the shapes were the same or 

different. We tested for independence between local and global shape processing mechanisms by 

generating shape pairs that differed in local contour features, in global contour features, or in 

local and global contour features. We tested whether the inclusion of local and global contour 

differences conferred an advantage in detecting a difference in shape above what was conferred 

by one kind of difference. In Experiment 2, we once again used a 2AFC task, this time 

controlling for the physical similarity between pairs of shapes that differed in local and global 

contour features. We tested whether people have different sensitivity to local and global contour 

differences when the physical similarity between the two conditions was matched. The results of 

Experiments 1 and 2 indicated that local contour features were represented much more coarsely 

than global features in the visual brain. In Experiment 3, we tested the hypothesis that our 

descriptions of high frequency shape are statistical rather than fully descriptive. We compared 

sensitivity to contour changes that were sampled from the same distribution from which the first 

set of contour features were sampled with sensitivity to changes when the new features were 

sampled from a different distribution. In Experiment 4, looked for direct evidence for 

independence between local and global shape processing. We used a visual search paradigm that 

both provided converging evidence for separation of local and global systems and, following 
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predictions from Feature Integration Theory, tested a different behavioral prediction made by our 

independent systems hypothesis. .  

Experiment 1 

Experiment 1 tested sensitivity to changes in a contour that resulted in different global 

shape, in different local contour features, or different local and global contour features.  We used 

a forced choice same/different paradigm. We generated novel shape contours, displayed them to 

participants briefly, and then tested their ability to say whether a second shape was the same or 

different from the first. Of particular interest to us were differences in sensitivity to global shape 

changes and to changes to both the local and global features of the shape. We expected that if 

both kinds of features were processed in a single perceptual system, there should be some 

additive effect on sensitivity when both features were changed. On the other hand, if they were 

processed by separate systems and one system dominated the shape recognition task, there might 

be no added benefit to sensitivity when the other feature was also changed.  

Method 

Participants 

 Twenty-four undergraduates (17 female, 7 male, mage = 21.21) from the University of 

California, Los Angeles participated in Experiment 1 for course credit. All participants had 

normal or corrected-to-normal vision. The first seven participants completed the study in the 

laboratory under controlled conditions, while the other 17 completed the study online through 

Pavlovia due to social distancing orders related to COVID-19. When analyzed separately, similar 

patterns of results were observed in both the online and in-person groups. 

Display and apparatus  
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The participants we ran in lab were seated 70 cm from a 20-inch View Sonic Graphic 

Series G225f monitor. The monitor was set to 1024x768 resolution, with a refresh rate of 100 hz. 

For the online experiment, we instructed subjects to sit a comfortable distance from the screen. 

Stimulus sizes were dynamically adjusted to cover the same proportion of the screen regardless 

of participants’ display resolution.  

Stimuli 

 All stimuli were shown as black outlines on a gray background. The stimulus was shown 

in the center of the screen, extending over an average of 37.5% of the horizontal space and 60% 

of the vertical space on the screen. 

Experiment 1 included three conditions, with separate stimuli generated for each 

condition. In all conditions, a novel shape was generated by moving 12 control points toward or 

away from the center of a circle a random distance, then fitting cubic splines through the 12 

control points in polar space.  

In the local change condition, we added contour features to the boundary by moving 80 

control points on the shape boundary toward or away from its center. The average distance these 

control points were moved was 1/10th the distance they were moved when generating the global 

shape. We initially evenly spaced the control points along the boundary, then jittered some of 

them a small distance so that the spacing was not truly uniform. We then fit cubic splines 

through the 80 control points to create local contour features as we did for the 12 control points 

to create global contour features. A schematic for the formation of the stimuli is shown in Figure 

3. To create different pairs in the local change condition, we simply inverted the direction of 

each control point so that bumps that extended away from the center reversed to extend toward 
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the center and vice versa. This technique preserves as many statistical properties of the features 

as possible while still introducing a large amount of physical difference to the bounding contour.  

 
Figure 3. Schematic for global and local shape generation. A: First, a circle is deformed by 

moving 12 control points away from the center. B: Then, cubic splines are fit through the 12 

points. This creates a shape with global features but no local features. C: 80 control points along 

the shape’s contour are moved toward or away from the center of the shape. D: Cubic splines are 

fit through the 80 new control points.  

  

In the global change condition, we did not add any local contour features to the novel 

shape. We generated a different pair by moving one of the 12 control points a random distance 

between 7% and 17% percent of the total length of the contour toward or away from the shape’s 

center. We then randomly selected a point adjacent to the one we moved and shifted it toward or 

away from the center whatever distance was needed so that the total length of the different pair 

was the same as the original shape (see Baker & Kellman, 2018 for more detail).  

In the combined local and global change condition, we generated pairs of shapes as in the 

global change condition, but we added local contour features to both members of the pair as in 

the local change condition. Figure 4 shows pairs of shapes for all three conditions.  
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Figure 4. Stimulus pairs for Experiment 1. Left column: Shape pairs that differed in local 

features. Middle column: Shape pairs that differed in global features. Right column: Shape pairs 

that differed in local and global features. 

 

Design 

 The experiment consisted of three conditions, local, global, and local and global, with 80 

trials per condition. In half the trials for each condition, the same shape was shown in the first and 

second presentation. In the other half, a different shape was shown as described above. All trials 

were randomly interleaved, and there were five practice trials with feedback before participants 

began the main experiment.  

Procedure 

 On each trial, participants were first shown a fixation cross for 330 milliseconds, after 

which the first shape was shown for 150 milliseconds. Following presentation of the first shape, a 

mask was displayed for 500 ms to block any apparent motion cues (Braddick, 1973) or access to 

a visual icon (Smithson & Mollon, 2006). The second shape was then shown for 1000 ms. The 
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second shape’s orientation was always slightly different from the first, regardless of whether it was 

a same or different trial. We rotated the shape 10 to 30 in a random direction. After the second 

shape had been shown, it was masked again and we displayed a response screen in which 

participants were asked to decide if its outline was exactly the same as the first shape, irrespective 

of any orientation differences. Participants received no feedback during the main experiment. 

Sample trials are shown in Figure 5. 

 
Figure 5. Sample trials for the local, global, and local and global conditions.  

 

Results 

 We analyzed the results in terms of signal detection sensitivity, where a correct detection 

that the second outline was different from the first was counted as a hit and an incorrect response 

that the second outline was different was counted as a false alarm.  The same trials were identical 

for the local and the local and global condition, so we combined them when computing false 

alarm rates.  

Average sensitivity for each of the three conditions is shown in Figure 6. The results 

show a large difference in sensitivity between changes to the local contour features of the shape 

and changes to the global topography of the shape. A one way repeated measures ANOVA 

confirmed a main effect for condition type, F(2, 46) = 26.32, p < .001, η2
partial = .534. Paired 
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samples t-tests confirmed a significant difference in sensitivity between the local condition and 

the global condition, t(23) = 9.67, p < .001, Cohen’s d = 1.97, and between the local condition 

and the global and local condition, t(23) = 5.13, p < .001, Cohen’s d = 1.05. These effects 

remained significant after correcting for multiple comparisons. A one sample t-test found 

sensitivity to local shape changes to be greater than zero, t(23) = 6.83, p < .001, Cohen’s d = 

1.42. A paired samples t-test for the global and the local and global conditions revealed no 

significant difference, t(23) = 0.09, p = .92.  

 

Figure 6. Results from Experiment 1. The x-axis shows the three condition types, and the y-

axis shows the calculated sensitivity to each kind of shape change. Error bars show ± one 

standard error of the mean for each condition. 

 

Discussion 

 The results of Experiment 1 showed a clear difference in performance for trials in which 

the shape’s global topography changed compared to trials in which the global form remained the 

same and only local contour features changed. Under our two-system theory of shape 

representation, local contour features are not represented individually, but as a statistical 

distribution. The results of Experiment 1 are consistent with such a hypothesis. Note that the in 
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terms of local features, curvatures, etc., contour features differed at all locations between 

“different” pairs in the local condition. On the other hand, the statistics of the first and second 

shape were matched in terms of mean and standard deviation of the amplitude of features as well 

as the frequency of features along the contour. Sensitivity to actual contour sameness or 

difference in the local condition was very poor, indicating little encoding of precise contour 

features. Inspecting the two contours that differed by local features in Figure 4 (leftmost 

column), it is easy to see that the two are not the same during simultaneous presentation. 

However, when representing the shape in visual memory, these differences appear to be 

abstracted over.  Performance is consistent with encoding of an ensemble of statistical properties 

of the distribution from which the features were sampled. 

 Whereas sensitivity was low for the local change condition, statistical analyses confirmed 

that participants had significantly higher than zero sensitivity to local feature changes. This 

forces us to somewhat loosen our hypothesis about local contour features only being described as 

a few statistical parameters. A more plausible explanation is that people primarily encode 

statistical information about the local contour features, but they are able to encode a few 

individual contour features with greater specificity. Non-zero sensitivity in pairs with statistically 

matched local contour features would then be explained by the probability that participants 

detected a change in an attended local feature. This notion is somewhat similar to the idea of 

local probability summation from work with radial frequency patterns (Wilkinson et al., 19998; 

Loffler et al., 2003; Bell, Wilkinson, Loffler & Badcock, 2009). Our conjecture is that the 

encoding of individual features is effortful and done only when it would be directly helpful for a 

perceptual task at hand. 
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 The other major result from Experiment 1 is that participants showed the same sensitivity 

to changes in only the global features of a shape as they did to changes to both global and local 

features of the displays. This result is surprising given participants’ non-zero sensitivity to local 

contour features. In a simple summation model, even if the probability of detecting a local 

change is low, it should still increase participants’ overall sensitivity to a change in the local and 

global condition. For example, if the probability of detecting a local change is 30% and the 

probability of detecting a global change is 70%, then the probability of detecting either a local or 

a global change should be 79%. No such additivity was observed in Experiment 1.  

 One interpretation of this finding is that global information dominates local information 

when both cues are present. When participants need to detect a change based on only local 

features, they have some (albeit low) chance of success, however they appear to discard this 

information when global differences are present. Interestingly, because the conditions were 

interleaved, participants did not know whether the second shape would have only local contour 

differences or local and global differences while forming a representation of the first shape. They 

must, then, have encoded what local information they could about the first shape in both 

conditions and discarded it only after seeing the second shape. We take this as evidence that the 

visual system processes local contour features and global shape features independently, only 

choosing which description to use in its perceptual decision once the second shape has been seen. 

Possibly, the visual system first checks for different outputs in the global shape system and only 

compares outputs from the local contour system if no difference is detected.  

 This interpretation does not fully explain why there is not some performance gain from 

checking for local differences when the visual system does not detect a global difference in the 

local and global stimulus condition. The primary answer lies in the suggestion from the data that 
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the encoding of local contour features does not generally occur; to a first approximation, only 

some statistical summary is represented. In Experiment 1, where local changes disrupted the 

local contour position at essentially every location, use of local information for discrimination 

was still severely limited by the fact that the local variations were sampled from the same 

statistical distributions. Although performance in the local change condition is consistent with 

encoding of some specific local contour features, the low d’ value associated with local features 

suggests that, if people responded in an unbiased way, they would report a local contour 

difference in 56% of trials. Since chance performance is 50%, this means that an accurate 

detection of a local contour difference only occurred in 6% of trials. There are a number of 

possible explanations for why observers might occasionally encode some local contour 

information apart from the statistical summary. We return to this issue in the discussion 

following Experiment 2 and in the General Discussion. For the moment, the overall conclusion is 

that performance in Experiment 1 was generally consistent with the global – local divergence of 

encoding and the idea that the local system apprehends a statistical summary. The results were 

generally inconsistent with any idea of local encoding that preserves much information about 

specific contour fluctuations and their locations apart from global shape.  

 Based on our theoretical framework, we would predict different results if two shapes’ 

local contour features were sampled from different distributions. In that case, there should be 

both improved discrimination for pairs with instances differing in local contour characteristics as 

well as some evidence of additives effect in a combined local and global change condition. This 

prediction is tested in Experiment 3 below.  

 

Experiment 2 
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 In Experiment 1, we found that participants were less sensitive to changes in local 

contour features than they were to global shape. We interpreted this as a difference in the 

descriptive specificity of independent local and global shape processing systems. An alternative 

explanation is that the differences between pairs in the global condition were simply larger than 

differences in the local condition and were therefore easier to detect. In Experiment 2, we test 

this alternative explanation by equating the physical dissimilarity between local and global shape 

changes and comparing subjects’ sensitivity to each. We predicted that if the two systems were 

distinct and represented information differently, then subjects’ sensitivity to global shape 

changes should still be higher than their sensitivity to local contour feature changes, even if the 

physical dissimilarity was the same. 

Method 

Participants 

 Eighteen undergraduates from the University of California, Los Angeles (12 female, 5 

male, mage = 21.5) participated in Experiment 2 for course credit. Sixteen of the participants in 

Experiment 2 also participated in Experiment 1. All participants had normal or corrected-to-

normal vision and completed the study online through Pavlovia.  

Display and Apparatus 

 Since the experiment was conducted online, display conditions varied slightly from 

participant to participant. Subjects were instructed to sit a comfortable distance from the screen 

and stimulus sizes were adjusted to cover the same proportion of the screen regardless of 

participants’ display resolution. We allowed these variations for obvious practical reasons during 

the Covid-19 pandemic, but also because the perceptual abilities under study here should be 

robust across a range of ordinary screen sizes and viewing distances. 
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Stimuli 

All stimuli were shown as black outlines on a gray background. The stimulus was shown 

in the center of the screen, extending over about 37.5% of the horizontal space and 60% of the 

vertical space on the screen. 

 Pairs of locally and globally different shapes were generated as in Experiment 1. The 

only difference in how shapes were generated was that we reduced the amount the control point 

was shifted in the global condition from 7-17% in Experiment 1 to 2.7-6.7% in Experiment 2. 

This was done to better equate the physical contour difference between local and global shape 

pairs. To that end, we also used a measure of physical contour similarity to ensure that the shape 

pairs with local contour differences were as dissimilar from each other as the shape pairs with 

global contour differences. Similarity was measured as the ratio of the overlapping areas to the 

non-overlapping areas for both contours. The equation we used was as follows: 

Shape 1 and 2 overlap

Total area of Shape 1
+

Shape 1 and 2 overalap

Total area of Shape 2

2
 (see Chapter 1 (Baker & Kellman, in prep.) for more detail). 

We generated 120 shape pairs for each of the two conditions. The average total shape difference 

was 4.52% for pairs of shapes in the global change condition and 4.62% for pairs in the local 

change condition. Sample shape pairs for Experiment 2 are shown in Figure 7.  
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Figure 7. Shape pairs for Experiment 2. Left column: Pairs of shapes that differed in global 

features (A). Right column: Pairs of shapes that differed in local features (B). 

 

Design 

 

 Experiment 2 had two conditions: shapes that differed in local features and shapes that 

differed in global features. There were 120 trials in each condition. Local and global trials were 

randomly interleaved. There were five practice trials with feedback before the main experiment 

began.   

Procedure 

 The procedure for Experiment 2 was the same as in Experiment 1 except that there were 

no conditions in which both local and global contour features changed. If local contour features 

were varied the instances in a stimulus pair, then the second stimulus always had the same 

overall shape and could differ only in local contour features. Likewise, if the first stimulus had 

no local contour features, the second stimulus could differ only in global shape properties. 
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Results 

 As in Experiment 1, the results were analyzed in terms of sensitivity, where a hit was a 

correct detection of a shape change and a false alarm was an incorrect report of a change in 

shape. Sensitivity to both conditions is shown in Figure 8. A paired samples t-test confirmed a 

significant difference in sensitivity to global shape differences vs. local shape differences, t(17) = 

7.15, p < .001, Cohen’s D = 1.69.  

 

Figure 8. Results from Experiment 2. Error bars show the standard error for each condition. 

Discussion 

 In Experiment 2, we once again compared sensitivity to local and global shape changes. 

We created pairs of shapes that differed in either local contour features or global form and 

equated the physical similarity between pairs in both conditions. These were tested in a 

sequential forced-choice same/different paradigm. Despite having equally different physical 
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contours, pairs in the local change condition were significantly less discriminable from each 

other than pairs in the global change condition. These results clarify our interpretation of the 

results in Experiment 1. Participants’ lower sensitivity to local shape changes cannot be 

explained by a smaller amount of overall physical contour difference, but by a perceptual 

difference in how local features and global features are encoded. We would expect that, if one 

system processed both local and global contour information in the same way, then sensitivity to a 

difference in shape should depend only on the physical similarity of the two shapes. On the other 

hand, if local and global contour features are processed by distinct systems, the kind of 

information encoded in one system might be more discriminative between shape pairs than the 

other.  

Since, as in Experiment 1, local contour features were changed by inverting the curvature 

polarity of the bumps, the statistical properties of locally different shape pairs should have been 

very similar. Participants’ low sensitivity to local contour feature changes is consistent with the 

visual system encoding a statistical description of local contour features, but not encoding 

individual features specifically. It is true that sensitivity in local trials was significantly different 

from chance, but d’ values of 0.4 suggest that participants only detected the change in 8% of 

locally different trials. Possibly, some task-specific strategy or serendipitous alignment of local 

and global features allowed participants to answer accurately in the small proportion of trials in 

which a local change was detected. In both Experiments 1 and 2, a local contour change involved 

a change in all the contour’s all local features. If participants were encoding specific local 

information in any but a very small percentage of trials, their sensitivity to local changes should 

have been much higher, as specific comparison of any set of local contour features would lead a 

detection of a contour difference.  
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Experiment 3 

Experiments 1 and 2 supported our global – local theory by furnishing evidence that local 

contour feature changes were poorly detected. We interpreted this detection difficulty as being 

due to the use of the same summary statistics for the local contour features for non-identical 

instances in the local trials. Our interpretations thus far are also consistent with other possible 

interpretations. One is that there is a single general contour shape processing system, but that our 

local perturbations were relatively small changes, whereas our “global” differences were larger. 

Exp. 2 equated the total amount of change for global and local conditions, but there could be 

other metrics on which these differed, such as the largest local region of change. In general, the 

failure to distinguish two displays sharing the same contour statistics but having different local 

features is consistent with our statistical view of local encoding, but it is also consistent with 

rather poor encoding in general of local contour features. 

In Experiment 3, we addressed this issue directly by investigating participants’ sensitivity 

to changes in local contour features in the presence of changes to their summary statistics. Our 

hypothesis was that when the new set of contour features was sampled from a different 

distribution, participants would be more sensitive to the change than when the new set of features 

was sampled from the same distribution. 

Method 

Participants 

 Twenty-one (18 female, 2 male, 1 gender not specified, mage = 20.9) participants from the 

University of California, Los Angeles completed this study online for course credit. All 

participants had normal or corrected-to-normal vision. 

Display and Apparatus 
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 Since the experiment was completed online, screen size and distance were not fixed. The 

experiment adjusted the absolute size of stimuli so that it covered the same proportion of the 

screen for different monitors.  

Stimuli 

 All stimuli were shown as black outlines on a gray background. The stimulus was shown 

in the center of the screen, extending over 37.5% of the horizontal space and 60% of the vertical 

space on the screen. 

 We generated four kinds of shape pairs for comparison in Experiment 3: matched 

statistics, different frequency, different phase, and different amplitude. In the matched statistics 

condition, we sampled a new set of contour features from the same distribution from which the 

features for the first member of the pair was sampled. Both sets of contour features had 80 

control points and the mean of the distribution from which amplitudes were sampled was the 

same. We also wanted to ensure that shape pairs were not merely sampled from the same 

distribution but did in fact have matched statistics themselves. To that end, we computed the 

mean and standard deviation of the amplitude of bumps for both shape pairs and resampled until 

the differences in their means and standard deviations were both less than 0.01.  

 In the different frequency condition, we manipulated the number of bumps along the 

contour by a Weber fraction of 1.5, such that the original stimulus with 80 bumps was paired 

with another shape that had either 53 or 120 bumps. The mean and standard deviation of the 

amplitudes were matched as in the matched statistics condition. 

 In the different amplitude condition, the amplitude of the bumps were increased or 

decreased by a Weber fraction of 1.5. The frequency of the bumps was kept the same as the first 

member of the pair. Sample shape pairs for all four conditions are shown in Figure 9.  
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In the different phase condition, we shifted all the local contour features along the 

contour 1.67% of the contour’s total length. This had the effect of preserving all frequency and 

amplitude statistics but changing the spatial relationships between the local and global features. 

The local features were also moved so that their peaks and troughs were approximately halfway 

between peaks and troughs in the first member of the pair. Whereas the prediction from a 

summary statistics view of local contour processing is that changes in the amplitude and 

frequency would change the contour statistics sufficiently to enhance discrimination, the 

prediction for phase was the opposite. The essence of the local contour statistics hypothesis is 

that the visual system does not encode the local contour orientations or fluctuations at locations 

generally. If so, then preserving frequency and amplitude statistics, but moving the positions of 

particular features to different places along the contour (phase shift) should reduce 

discriminability. 

 

Figure 9. Sample shape pairs for Experiment 3. Columns from left to right: Matched statistics 

(A), different frequency (B), different phase (C), different amplitude (D). 

 

Design 
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 The experiment consisted of four change conditions with 40 trials per condition plus 

another 160 no-change trials. All conditions were randomly interleaved. Participants completed 

eight practice trials before beginning the main experiment. At least one trial from each of the 

four conditions was completed during practice.  

Procedure 

 Apart from the difference in stimuli, the procedure and instructions for Experiment 3 

were identical to those used in Experiments 1 and 2. Participants were shown two shapes, one 

after the other, then asked to determine whether the second shape was exactly the same as the 

first shape apart from a difference in orientation. 

Results 

 As in Experiments 1 and 2, we analyzed results in terms of sensitivity, where a hit was a 

correct detection of a change in shape and a false alarm was an incorrect report of a change in 

shape. Since there were no differences in the same trials between conditions, false alarm rates 

used to calculate d’ were the same for all four conditions.  

 The primary results are shown in Figure 10.  A one way repeated measures ANOVA 

confirmed a difference in sensitivity between conditions, F(3,60) = 28.84, p < .001, η2
partial = .59. 

Paired samples t-tests revealed a significant difference between the amplitude change and 

frequency change conditions, t(20) = 2.96, p = .008, Cohen’s D = 0.67, a significant difference 

between frequency change and matched statistics, t(20) = 2.47, p = .022, Cohen’s D = 0.52, a 

significant difference between amplitude change and matched statistics, t(20) = 5.35, p < .001, 

Cohen’s D = 1.16, and a significant difference between matched statistics and phase change, 

t(20) = 4.33, p < .001, Cohen’s D = 0.97. After correcting for multiple comparisons, the 

difference between frequency and matched statistics became marginally significant.  



 

149 
 

 

Figure 10. Sensitivity Results from Experiment 3 by Stimulus Condition. Error bars show ± 

1 standard error of the mean for each condition. 

Discussion 

 Experiment 3 tested the hypothesis that the system responsible for processing local 

contour features primarily encodes information about the distribution from which features are 

sampled, not the properties of individual features. We hypothesized that the statistical 

information people encode about high frequency contour features might include information 

related to the mean and standard deviation of the amplitude of features and the frequency of 

features along the contour. We therefore predicted that participants would have the greatest 

sensitivity to local contour feature changes that included a change in the frequency or amplitude 

of the features, and that participants should be relatively insensitive to changes that did not affect 

the summary statistics of the features, such as resampling from the same distribution or shifting 

the same features a small amount along the contour. 

 Our results broadly aligned with these predictions. Sensitivity was highest for amplitude 

and frequency differences and lowest for phase differences and matched statistics, more closely 

reflecting participants’ sensitivity to a global shape change in Experiments 1 and 2. This suggests 
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that outputs from the processing system responsible for local features is much more sensitive to 

differences in the statistical distributions from which local features are sampled than specific 

descriptions of individual features. These results show that local contour perturbations on the 

order of those used in Experiments 1 and 2 are not simply poorly encoded; rather, discrimination 

is poor when local contour features are changed but summary statistics are preserved. In 

Experiment 3, when summary statistics were varied, performance was reliably better than in the 

earlier experiments. 

Participants performed better for changes in the mean amplitude of contour features than 

changes in the frequency of features, and both of these were better detected than local feature 

differences that had matched statistics. In our design, we equated the Weber fraction for 

differences in amplitude and frequency, using a ratio of 1.5:1 for both conditions. It appears that 

the local processing system’s sensitivity to the frequency of features is coarser than its sensitivity 

to the amplitude of local features, resulting in less reliable detection of contour changes brought 

about by a change in frequency.  

 Sensitivity for contour features that were different but statistically matched to the first 

shape was 0.66. Performance was better for this condition than was observed in Experiment 1 (d’ 

= 0.32) or Experiment 2 (d’ = 0.44). We sampled an entirely new set of contour features for each 

stimulus pair with locally different instances in Experiment 3, whereas in the previous 

experiments we inverted the polarity of all contour features. We did this to test a more specific 

hypothesis about what statistical properties of the local contour the visual system represents. 

Statistics were matched in terms of mean amplitude, variance of the amplitude, and frequency. 

These statistics appear to play a large role in subjects’ sensitivity to a contour change, but 

people’s higher sensitivity to contour differences in Experiment 3 could suggest that the system 
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processing local contours encodes other kinds of statistical information about the local features 

in addition to those we matched. For example, the visual system might encode more information 

about the distribution of curvatures within a local contour feature.  

Despite the use of entirely new contour features for each member of a “different” pair, 

pairs with different frequency and amplitude statistics were better discriminated.  Conversely, 

and particularly striking, is how low participants’ sensitivity was to pairs in which the local 

features were phase-shifted a small distance along the shape’s contour. Unlike the other three 

conditions, the features in the phase condition were otherwise identical to those in the first 

display, so any statistical differences we may not have accounted for in the matched statistics 

condition would be precisely matched in phase-shifted shape pairs. At the same time, if local 

contour features were represented precisely in the same system as global features, we would 

expect very high sensitivity to changes in phase as the shift along the contour alters relationships 

between local and global features. Performance in the phase change condition suggests 

independence between local and global contour features, as there appears to be no precise 

binding between local features and their position on the shape’s global structure. 

 

Experiment 4 

In Experiments 1-3, we found evidence that the visual system is more sensitive to the 

global shapes of objects than to high frequency contour features along an object’s boundary. 

While global shape representations appear to include descriptions of global features and relations 

of parts, local contour features are seemingly described by a small set of statistical properties. 

Differences in processing for local and global shape information suggests that they are handled 



 

152 
 

by distinct systems. In Experiment 4, we developed a convergent measure and additional direct 

test for the independence of local and global shape features by measuring visual search time. 

In visual search, targets that differ from distractors by a single feature tend to “pop out” 

from the search array, resulting in a search time that is independent of the number of elements in 

the array. However, when the visual system must integrate two independent features, such as 

shape and color, search time becomes serial, increasing with the size of the array (Treisman 

Treisman & Gelade, 1980; Quinlan & Humphreys, 1987; McElree & Carrasco, 1999). According 

to Treisman and Gelade’s (1980) Feature Integration Theory, basic visual features are extracted 

automatically and in parallel across the visual field, but independent features of an object can 

only be integrated together with focused attention.  

Experiment 4 tested whether local and global aspects of shape are processed together or 

independently in human perception. If descriptions of local contour features and global form are 

represented in independent systems, we reasoned that models of feature integration from visual 

search might predict that they should require focused attention to be integrated together. If, on 

the other hand, our theory is incorrect and local and global features are processed in the same 

system, search time for a conjunction of local and global features should take no longer than 

search time for one feature or the other provided total difference is equated.  

Method 

Participants 

 Twenty-one (8 female, 11 male, mage = 31.9) people participated in this study. About half 

of the participants completed the study for course credit. The other half volunteered to complete 

the study without compensation. All but two participants were naïve to the purpose of the 
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experiment before completing it. No significant differences were found in the data with these 

two participants omitted. All participants had normal or corrected-to-normal vision. 

Display and Apparatus 

 All participants completed the experiment online and had variable screen sizes. They 

were instructed to sit 1.5 times the diagonal length of their screen away from the monitor while 

completing the experiment but were also told they could adjust if this distance was 

uncomfortable for them.  

Stimuli 

All shapes were shown as black outlines on a white background. Each shape extended 

over 16.7% of the horizontal space on the screen and about 22% of the vertical space. In each 

trial, there was a target shape and four, eight, or twelve shapes in a search array. The target was 

always shown in the top left of the screen outlined by a blue square. In target-present conditions, 

there was also an identical target in the search array. In the target-absent conditions, no shape in 

the search array was identical to the target. The shapes in the search array were displayed in a 

grid. The four-element search array was in a 2x2 grid, the eight-element search array was in a 

4x2 grid, and the twelve-element search array was in a 4x3 grid. Shapes in each search array 

were positioned so that the mean distance from participants’ fixation was equated for all three 

array sizes. All elements in the search array were rotated by the same magnitude and direction 

10-30 degrees off from the target exemplar in the top left. 

We had three different search array conditions: local, global, and conjunction. In the local 

condition, all shapes in the search array had the same global form as the target, but only the 

target had the same local contour features. The distractors all had different local contour features 

from each other, but the frequency of their contour features was matched, while the target had a 
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different frequency of features. In half the target-present trials, the target shape had 25 bumps 

along its contour while the distractors had 80 bumps, and vice versa in the other half. In terms of 

actual contour features, all shapes in the array were unique, but in terms of statistics of features, 

only the target was unique. This is different from most visual search studies in which distractors 

are typically uniform or fall into a small number of categories with identical items in each. Our 

design leverages the idea that pop-out might still actually be possible based on the common 

contour statistics of distractors, despite the actual uniqueness of the local contours of every item 

in the display (for displays where local information was varied between target and distractors).  

In the global condition, both the target and all shapes in the search array had the same set 

of local contour features added to them. The local contour features had 25 bumps in half of the 

trials and 80 in the other half. The target always had a different global form than any of the 

distractor. The distractors all shared the same global form and were identical to each other. 

In the conjunction condition, the target had a unique combination of local contour 

features and global form. All shapes in the array had added local contour features, half of which 

had the same frequency as the target and half of which had a different frequency. Likewise, half 

the shapes in the array had the same global form as the target and half had a different global 

form. No distractor had both the same global form and the same frequency of local contours as 

the target. A sample search array for each condition is shown in Figure 11.  
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Figure 11. Sample trials for Experiment 4. A: A four-element search array in which the target 

has different local contour features than the distractors. B: An eight-element search array in 

which the target has different global form than the distractors. C: A twelve-element search array 

in which the target has a unique combination of local features and global form. The black 

rectangles are added to separate trials. The blue rectangle within each condition was shown 

during the trial to show subjects the target they were supposed to look for in the search array. 

 

Design 

 Experiment 4 had three by three (condition type x search array size) design. Different 

condition types were done in blocks with randomly interleaved search array sizes in each block. 

Each block consisted of 20 target-present trials plus 20 target-absent trials for each of the three 

array sizes. The order of the three blocks was randomized for each subject to eliminate any 

systematic fatigue or practice effects. Participants completed six practice trials before beginning 

the main experiment. 

Procedure 

 On each trial, participants were first shown the search target shape by itself in the top left 

of the screen enclosed by a blue square. The target remained on the screen for 1500 ms. It then 
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disappeared and a red fixation cross was presented in the center of search array for 500 ms. The 

fixation cross disappeared, and the search array was shown on the screen. The target in the top 

left was also shown with the search array for participants to use as a reference if needed. 

Participants were instructed to decide if the target was present or absent from the search array. 

They were told to respond affirmatively as soon as they had found the target, but to check all 

shapes in the array before reporting that the target was absent. Participants were given feedback 

after each trial telling them if the target was present or absent.  

 During practice, we showed each of the three different target conditions and each of the 

three different array sizes. Feedback in practice was more detailed than during the main 

experiment. After participants responded, the target (if present) was circled in red and an 

explanation about how the target differed from the distractors was given. This explanation was 

different for each of the three conditions.  

 Before each block in the main experiment, participants were given a brief explanation of 

how the target would differ from distractors in the next block of trials. We did this to reduce any 

confusion participants might have in what to look for during the first few trials in the new 

condition.  

Results 

Two subjects were removed because their accuracy was below 65% in all three 

conditions. For the remaining subjects, we analyzed time to respond as a function of array size 

for the local, global, and conjunction condition. The results are shown in Figure 12. There 

appears to be a clear linear function showing response time increasing with set size in the 

conjunction condition. There were much flatter search functions across different array sizes in 

the local and global conditions. Following Quinlan and Humphreys (1987) we performed a 
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repeated measures ANOVA and tested for a linear component in within-subjects contrasts. We 

found a significant linear component for the local condition, F(1,18) = 16.39, p = .001, and for 

the global condition, F(1,18) = 13.92, p  = .002. Although the linear component was significant, 

the variance explained by the linear component for local and global conditions was small, 40.6% 

and 43.6% respectively. The slope for the two conditions was quite shallow. Search time 

increased by 46 ms per item in the local condition and 53 ms per item in the global condition. 

These increases are minimal relative to the intercept terms for each condition (2047 ms and 1869 

ms for the local and global condition respectively). When the target had a unique conjunction of 

local and global features, ANOVA confirmed a much more substantial linear relationship 

between response time and set size, F(1,18) = 40.51, p < .0001. The linear relationship explained 

a much higher proportion of the variance in the conjunction condition (72.2%), and the ratio of 

the slope (258 ms per item) to the intercept was more than five times larger than in either the 

local or global condition (.15 vs. .022 and .028, respectively). 
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Figure 12. Response times as a function of array size in Experiment 4. Error bars represent 

the standard error for each condition.  

 

 Differences in response time cannot be accounted for by a speed accuracy tradeoff. In our 

data, accuracy for the local, global, and conjunction condition was 93.7%, 95.4%, and 95.1% 

respectively. A repeated measures ANOVA confirmed that there were no significant accuracy 

differences between the conditions, F(2,36) = 0.61, p = .512. Some research has found a 

difference in accuracy for conjunction search trials compared to feature search trials (Treisman, 

1993; Wolfe, 1994), but we found no evidence for a loss in accuracy when searching for a 

conjunction of local and global shape features compared to searching for a single feature.  

 

Discussion 

 Experiment 4 compared visual search time for shapes that differed in local contour 

features and/or features of global form. Our hypothesis was that local and global features are 

0

1

2

3

4

5

6

4 8 12

R
es

p
o

n
se

 T
im

e 
(s

ec
o

n
d

s)

Array Size

Local Contour Features Global Shape Conjunction



 

159 
 

distinct and processed independently, and focal attention should be required to integrate both 

features together (Treisman & Gelade, 1980). An alternative hypothesis is that local and global 

features are processed by the same system and that global features are simply larger local 

features. Under this hypothesis, we might expect search time for a conjunction of local and 

global features should not be different from search time for local or global features on their own. 

Participants had flat or nearly flat search times for both local contour features and global form. 

This suggests that they are single features that can be searched for in parallel across the visual 

field. Although search times did increase slightly with larger array sizes, the increases were small 

enough relative to the intercepts that they are most likely explainable by the presence of more 

retinally eccentric shapes in the larger array (Palmer, 1995; Scialfa & Joffe, 1998; Eckstein, 

2011) and/or crowding effects from shapes being more close together in larger arrays (Vlaskamp 

& Hooge, 2006).  

 The speed at which participants could detect the target in the local difference condition is 

especially remarkable because all shapes in the array, including distractors, had different sets of 

local contour features. What made the target shape pop out among the distractors was not the 

uniqueness of its high frequency features but a unique set of statistical properties of the high 

frequency features. Shapes that had matched statistical properties, but different local elements, 

could only be differentiated by close scrutiny, but shapes with different statistical properties 

popped out in the array. In Experiment 3, we found a (statistically adjusted) marginal difference 

in discriminability for shape pairs with matched statistics and shape pairs with a frequency ratio 

of 1.5:1. We conjectured that the visual system’s sensitivity to differences in frequency might 

depend on a larger Weber fraction. Experiment 4 supports that conjecture—statistical differences 

in frequency result in a pop out when the ratio is increased to 3.2:1.  
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Support for our hypothesis that local and global shape features are distinct and 

independent comes from the large increase in search time as a function of array size observed in 

the conjunction condition. Pop out ceases when detection of the combined features is required in 

the search task. Even if one argued that the single-feature visual search tasks in the local and 

global condition are not truly parallel, the difference in slope for the conjunction condition 

indicates an integration of two independent features. Under the alternative hypothesis that local 

and global features are processed in the same system, we would expect the degree to which 

visual search varies with array size to depend on the similarity between the target and the 

distractors (Pashler, 1987), regardless of whether differences are local, global, or both. In the 

conjunction search task, the difference between the target and the distractor is never smaller than 

it is in either the global search task or the local search task. It differs from half the distractors the 

same amount as in the local search task and half the distractors the same amount as in the global 

search task. If global and local features are part of the same description, then, the slope in the 

conjunction condition should be no more than the mean of the slope of the local and global 

conditions. Instead, it is much higher than either slope, indicating that the two features are 

distinct, and the visual system must integrate them together in a process that requires focal 

attention.  

General Discussion 

The goal of this research was to investigate the relations of shape coding of the global 

form of an object and descriptions of the local features from which the object’s shape is 

composed. Logically, global shape must be computed from local elements, but a century of 

research in perception has shown that what is ultimately represented depends very little on the 

elements present during sensation (Koffka, 1935; Kanizsa, 1976; Navon, 1977; Tanaka, Kay, 
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Grinnell, Stansfield & Szechter, 1998; Pomerantz & Portillo, 2011; Baker & Kellman, 2018). At 

the same time, some information about local contour features is preserved after sensation (Erens, 

Kappers & Koenderink, 1993; Mamassian, Kersten & Knill, 1996). We aimed to clarify the 

degree to which local and global information are processed together and to better understand 

what information about a shape’s local contour features is represented beyond the visual icon.   

Our hypothesis was that the visual system handles local contour features and global shape 

descriptions are largely independently and in separate systems. This theory was partly inspired 

by past experiments studying the discrimination between circles and shapes formed by the 

addition of radial frequency patterns, which showed that detection of the target is different when 

high (local) and low (global) RF patterns are added to the contour (Jeffrey, Wang & Birch, 2002; 

Bell, Badcock, Wilson & Wilkinson, 2007). We also hypothesized that the visual system 

represents local contour features in a fundamentally different way than it represents global form. 

While representations of global form are highly descriptive about the curvature, relative size, and 

orientation of various parts, representations of local contour features do not specifically describe 

any of the individual elements. Instead, we proposed that the visual system estimates the 

distribution from which local contour features were sampled and that it is mainly sensitive to 

contour differences that change the properties of the distribution. 

Differences in participants’ sensitivity to global form and local contour features in 

Experiment 1 supported the idea that the two kinds of shape features are handled by different 

systems. Experiment 2 followed up on this finding by equating the amount of physical difference 

between locally and globally distinct shape pairs. If local and global information are processed in 

the same system, we expected the amount of physical difference between the pairs to be the main 

predictor for detectability of differences between the two shapes. Participants should therefore 
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have had similar sensitivity in the local and global condition when similarity was equated. To the 

contrary, sensitivity was markedly higher in shape pairs that differed in global features than 

shape pairs that differed in local features, implying that the two kinds of contour features are 

processed in different systems with different representational priorities.  

The data in Experiment 1 also found that sensitivity was as high for a global shape 

difference as for a global and local shape difference. The shapes in the local and global condition 

always had strictly more total dissimilarity than the global only condition. If local and global 

contour features are processed in a single system, we would predict larger differences in the 

contour to correspond to better accuracy in detecting a shape change. A lack of any indication of 

additivity in local and global features suggests that they are handled in separate systems and do 

not necessarily interact in recognition tasks.  

Participants’ low sensitivity for phase shifted contour features in Experiment 3 also 

suggests independent local and global processing systems.  In this condition, local contour 

features were preserved but shifted along the global form of the object. If participants 

represented local and global features together, then all the changes in the spatial relationships 

between the small and large features would result in a very different percept. Instead, the visual 

system’s description of local contour features appears to be independent of their position relative 

to the global features of the shape.   

Experiment 4 was an additional direct test of independence between local and global 

systems, using a converging method. Following Treisman and Gelade’s (1980) Feature 

Integration Theory, we predicted that if local and global aspects of shape are distinct feature 

dimensions, then they should require focal attention to be integrated together. This hypothesis 

was confirmed in a visual search task in which the target could differ from distractors in local 
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statistical properties, global form, or a conjunction of the two. While targets that differed only in 

local statistical properties or global form popped out in the search array, targets with a 

conjunction of local and global features required serial search time. Targets’ physical 

dissimilarity to distractors was just as high in the conjunction condition as in the local or global 

conditions, so a steeper search slope in the conjunction condition is evidence that the visual 

system needs to integrate to distinct features together to do the task. 

The results of our experiments also support the idea that the visual system represents 

statistical properties of local contour features rather than each feature individually. In 

Experiments 1 and 2, local change trials inverted the polarity of all bumps along the object’s 

contour. Even though no local contour feature was the same, participants had difficulty detecting 

a difference between locally different shape pairs. Participants’ poor performance suggests that 

matching shapes based on local features is not primarily done by probability summation of local 

detectors (Loffler, Wilson & Wilkinson, 2003). Because all bumps are inverted, representation of 

even a small number of local contour features would provide high sensitivity to local changes in 

Experiments 1 and 2. On the other hand, if the visual system’s primary tool for local feature 

comparison involves looking for a difference in the distribution from which features were 

sampled, sensitivity should be low for inverted bumps (assuming equal probability of positive 

and negative curvature bumps).  

In Experiment 3, we proposed that the visual system primarily encodes the mean and 

variance of the amplitude of bumps and the frequency of bumps. We tested this by generating 

shape pairs that had matched frequency, amplitude, and variance. We compared sensitivity to 

these statistically matched pairs with shape pairs that had different frequency or different mean 

and variance of the amplitude. We also compared the statistically matched pairs with pairs whose 
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local contour features were the same but shifted slightly along the contour. Results confirmed 

that sensitivity was highest when the summary statistics for shapes’ contour features differed in 

either frequency or amplitude.  

Pop out of the target in the local condition in Experiment 4 lent further support for the 

hypothesis that the visual system represents statistical properties of local contour elements rather 

than individually representing each element. Despite all shapes in the array having unique local 

contour features, we found that participants quickly detected the target in the local condition, 

irrespective of the size of the array. Though they were not physically identical, all distractors had 

the same number of bumps along their contour, while the target always had 3.2 times more or 

fewer bumps. Pop out for local features appears to depend on different statistical properties of 

the local contour elements, not differences in the individual elements. 

One aspect of our data that our hypothesis about statistical descriptions of local contour 

features does not explain is why sensitivity is greater than zero in statistically matched shape 

pairs. One possibility is that the visual system is sensitive to more kinds of statistical features 

than we equated in Experiments 1-3. Participants’ higher sensitivity to the statistically matched 

shape pairs than the phase shifted shape pairs in Experiment 3 suggests that this might be the 

case. Given that even sensitivity to the inverted bumps in Experiments 1 and 2 is non-zero, 

though, it seems likely that the visual system can represent some local contour features with 

specificity, albeit rarely. 

One possibility is that participants adopted a task-specific strategy for scrutinizing and 

memorizing a few local contour features and checking for their presence or absence in the 

second shape stimulus. This hypothesis is indirectly supported by the fact that sensitivity to local 

contour feature changes was lowest in Experiment 1, where shapes with high frequency contour 
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features could undergo a global change in addition to the local change. If memorizing a single 

local feature or small number of local contour features is effortful and unnatural, we would 

expect participants to do it less when other cues for discrimination are potentially available. A 

second explanation is that a local feature sometimes gets encoded as a global feature if, by 

random chance, it is particularly large or placed in a particularly salient position on the shape’s 

global form, such as a local maximum or minimum. While either strategy could potentially lead 

to better-than-zero sensitivity to differences between statistically matched local contour features, 

neither is used often, as the observed sensitivity to local contour feature changes suggested that 

participants only truly detected a local difference in a small number (less than 10%) of trials.  

  How does the visual system abstract global form from high frequency contour features? 

One possibility is that the global processing system uses oriented detectors at different scales to 

extract the low frequency features from a shape. Multi-scaled detectors in early visual areas are 

sensitive to a particular orientation in visual field (Hubel & Wiesel, 1962; Gur, Kagan & 

Snodderly, 2005). Curvature along a contour could be estimated by the difference in preferred 

orientation of nearby detectors. We have proposed the existence of arclets, a higher-order neuron 

that is connected to two nearby oriented detectors and is maximally sensitive to a certain turn 

angle between the detectors (Garrigan, 2006; Kellman & Garrigan, 2007; Baker, Garrigan & 

Kellman, under review).  

 For a contour with no high frequency features, the most precise description of curvature 

would be obtained from arclets connected to two detectors of the smallest scale—as the size of 

each detector approaches a point, the difference between the curvature estimated by the turn 

angle and the contour’s true curvature approaches zero. Still, arclets connected to larger-scale 

detectors have useful applications, including obtaining size invariance for contours scaled up or 
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down (Kellman & Garrigan, 2007). Another application of larger scale detectors might be to 

estimate the curvature of the contour’s global shape in the presence of high frequency contour 

features, as illustrated in Figure 13, which shows a zoomed-in portion of a contour with added 

local contour features. Detectors at the finest scale are sensitive to orientation changes 

precipitated by local contour features, but larger scale detectors would remain sensitive to more 

global properties of the shape. 

 

 

Figure 13. Comparison of two detectors’ sensitivity to high frequency contour features. 

Three small detectors in the bottom left pick out changes along the contour from local features 

while the larger detectors on the top abstract over them. 

 

 It is unlikely that the visual system processes global information with detectors larger 

than some fixed threshold and local information with detectors smaller than it. Small contour 

features are often processed as part of an object’s global shape when they are not accompanied 

by other similar small features. Likewise, we can still encode the global form of an object with 

high frequency contour features when it is scaled up, which would sometimes result in local 

elements crossing the threshold to be processed globally. A more likely hypothesis is that the 
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visual system settles on the scale of global detectors on a case-by-case basis depending on 

properties of the object’s contour. One simple way it could do this is by looking at the profile of 

curvatures outputted by detectors at multiple scales. Going from the largest scale detectors to the 

smallest, there should be a point in which the curvature profile dramatically changes in contours 

with high frequency features. For the shape in Figure 13, any detector large enough to not be 

turned by the orientation of local elements will output a curvature profile corresponding to the 

underlying global shape of the object. However, at a certain point the scale of the detectors will 

be small enough that they are influenced by the orientation of local features, resulting in a 

curvature profile that includes dozens of turns and reverses in curvature polarity. The visual 

system might use the curvature profile outputted from arclets at the finest scale at which the 

description of the contour’s curvature has a reasonable number of sign changes in forming an 

abstract representation of global shape. For now, this hypothesis is only a conjecture with some 

intriguing connections to other recent ideas in development about abstract shape representation 

(Baker, Kellman & Garrigan, under review; Baker, Kellman & Garrigan, in prep.). More specific 

future research is needed to develop a systematic theory of global shape extraction from multi-

scale filters. 

Conclusion 

 We conducted four experiments that point to a dissociation in human perception between 

local elements along a contour and the global form defined by relations between them. The 

system that encodes information about local elements does not precisely represent their 

properties individually, instead estimating a few statistical properties that are shared by local 

elements. The system that encodes global form represents parts of the object with much greater 

specificity and spatial precision. Although they are both concerned with representations of shape, 
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the local and global processing systems are distinct from each other and operate independently. 

Descriptions of the shape that require integration of local and global contour features can only be 

formed with focal attention as is needed for other distinct visual feature dimensions. 
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Conclusion 

Among the most fundamental questions in perception is how the visual forms abstract 

representations of shape. By abstract, we refer to representations that describe relations between 

parts, that are informationally economical, and that recode information so that constancy and 

similarity relations between shapes can be obtained. The first two papers put forward a model for 

how shape contours can be abstractly represented in a constant curvature framework. The third 

and fourth papers investigated situations which pose special challenges to abstract shape 

representation. In arrays of unconnected dots, the visual system encodes shape in the absence of 

a connected contour, imputing a contour based on the spatial relationships between elements. In 

shapes with local contour features, the visual system must obtain a global representation of shape 

that is invariant to contour noise. These cases offer unique insights and constraints into how 

representations of shape are formed in general. In both cases, features of the constant curvature 

model help to clarify how abstraction is ultimately accomplished. The reported studies span a 

wide range of stimuli and experimental paradigms. Participants were presented with novel 

contours, arrays of dots, and shapes built with random noise. Many experiments used the task of 

shape recognition in sequentially presented displays, but participants were also asked to give 

subjective reports, mentally rotate a stimulus, detect a target among random noise, and visually 

search in an array of distractors. Despite the diversity in stimulus types and perceptual tasks, the 

results of these chapters converge on a few general themes. 

 Constant Curvature Shape Representations. One theme that has emerged across these 

studies is the plausibility and empirical support for the use of constant curvature as a basic 

primitive for representing shape. In Chapter 1 and 2, we proposed a model for how a shape could 

be represented by constant curvature segments. The bounding contour of objects is very rarely 
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made up of regions of constant curvature. The task of the visual system, then, is not to detect 

regions of constant curvature along the physical contour of an object, but to organize various 

similar curvatures together and abstract them together into a single curvature value that 

approximates the curvature of that region. How contours are partitioned into constant curvature 

regions depends on the visual system’s priorities for efficiency and precision. In a model with 

very little tolerance for curvature variation, shape representations will be built up from a great 

many small regions of constant curvature. They will have a high degree of physical resemblance 

to the contour they represent, but they will also be complex, straining visual memory capacities 

and lacking invariance to small contour variations. Models with too much tolerance for curvature 

variation will output representations of shape that have abstracted over contour features to which 

the visual system has sensitivity. In Chapter 1, we explored this tension between precision and 

simplicity using simple psychophysics experiments to estimate the visual system’s tolerance for 

abstraction of contour properties. In Chapter 2, we showed how this model could be formed from 

initially subsymbolic inputs and adjusted the model so that partitioning was purely local and 

scale invariant.   

Chapter 3 tested a behavioral prediction made by the constant curvature hypothesis about 

shape perception in dot arrays. According to structural information theory, straight line 

connections between dots are more economical than curvilinear arcs because arcs are a 

continuation of both length and angle, thus requiring twice as many bits of information as a 

straight edge (Smits & Vos, 1987, personal communication with Leeuwenberg). However, our 

hypothesis that shape representations are composed of constant curvature segments suggests that 

a single curved segment is more informationally compact than two straight segments joined at a 

corner. We predicted that dot arrays that signaled smooth corners would be more easily encoded 
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as shape than dot arrays that signaled angular corners. Across three experiments, a greater 

facility for encoding dot arrays with angles that give rise to smooth curves was confirmed. 

Chapters 3 and 4 also contributed evidence to the multiscale filtering aspect of the 

constant curvature model proposed in Chapter 2. For both dot arrangements and contours that 

include local variations, the representation of shape that we ultimately encode appears to require 

integration over larger portions of the contour. In dot arrays, this is needed to get curvature from 

relations between spatially distant elements. In shapes with local contour features, the visual 

system must find the curvature of the shape’s global form irrespective of local curvature 

variations. Analytical methods that find the curvature at every point along a contour’s shape 

would be confounded by either stimulus type, but in our detector model framework, arclets exist 

at multiple scales, some of which will be large enough to get global shape representations with 

equivalence between a connected contour and 25 unconnected dots sampled therefrom or 

between two objects with the same overall shape but different local features.  

From Subsymbolic to Symbolic Coding in Vision. Another point of intersection 

between all four papers is the need for theories of shape that connect subsymbolic outputs of 

early visual cortex with symbolic representations of the object. This was most explicitly 

developed in Chapter 2 in which we showed how a model of constant curvature representation 

could begin as subsymbolic activations and become fully symbolic. One of the critical insights 

from this work is that curvature, a mathematical notion, can be neurally instantiated from 

population codes of arclets that respond to activation levels from pairs of oriented detectors. 

Developing a biologically plausible model for the formation of shape representations also 

provided solutions to certain perceptual problems. As discussed above, the hypothesis that arclets 

exist at multiple scales just as oriented contrast detectors exist at multiple scales (Hubel & 
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Wiesel, 1962; Hubel & Wiesel, 1968) gives a way for the visual system to abstract over certain 

kinds of contour noise or impute abstract contour relations to arrangements of dots. 

The results from Experiments 1 and 2 in Chapter 1 show how even simple contours 

undergo a recoding from subsymbolic to symbolic description in visual perception. In both 

experiments, participants were insensitive to physical differences along an open contour far 

beyond the stage when early neural circuitry could pick out a difference (Westheimer, 1976; 

Fahle, 1986). Although early foveal detectors are sensitive to all of the curvature differences 

tested in these experiments, the visual system only represents curvature differences that are large 

enough to be distinctly encoded in symbolic representation. The results of Experiment 3 also 

gave evidence that shapes are recoded into symbolic representations. We found a difference in 

how perceptually different two shapes were even when they were equally physically different 

and would thus have similarly different subsymbolic outputs. 

In Chapter 3, the transition from subsymbolic to symbolic representations of shape is 

necessary to explain many of the perceptual capabilities participants demonstrated in processing 

dot arrays. For example, participants were tasked with matching two dot displays that were 

sampled from different positions along the same underlying shape. All local relationships 

between pairs or triplets of dots differed, as sampling points were independently jittered along 

the contour, but participants found equivalence between the two displays accurately, even across 

differences in orientation. Subsymbolic outputs from the two displays likely consisted of a few 

“key-points” detected by early visual mechanisms (Von Der Heydt, Peterhans & Baumgartner, 

1984; Grossberg & Mingolla, 1985; Heitger, Rosenthaler, Von Der Heydt, Peterhans & Kubler, 

1992) that differed from each other in almost every way. Only by extracting a symbolic code 
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from outputs of early visual areas could the visual system determine that the two dot arrays were 

matched in shape.  

 Symbolic description is also needed to explain perceptual performance on shapes made 

up of both local and global features in Chapter 4. Although early oriented detectors would signal 

edge properties for both kinds of contour features, people’s sensitivity to local and global 

properties were very different. This suggests that global and local information are described with 

distinct symbolic codes. The local code appears to be a statistical description of local contour 

features rather than separate representation of individual features. Features processed in the 

global system appear to have much greater specificity.  

 Relations in Shape Perception. A third unifying theme that emerges from these studies 

is that representations of shape are descriptions of relations between elements rather than of 

elements themselves. In the models proposed in Chapters 1 and 2, partitioning depended not on 

the absolute orientation or position of edge fragments but on the angular relations between 

fragments—two parts of a contour were organized together if the angle between constituent 

elements was similar regardless of individual element features. Likewise, the angular and curved 

dot displays presented in Chapter 3 were matched in their physical properties such as the number 

of dots, the spacing between dots, and the properties of dots themselves, but participants were 

consistently better at perceiving and encoding shapes in displays where the dots signaled a 

curved contour. This suggests that the relations between dots affects people’s perception of the 

contour far more than properties of individual features. The preeminence of relational 

information is also observed in Chapter 4. Participants showed little ability to detect a change in 

shape when all the local elements were inverted or resampled altogether so long as the relations 

between elements were preserved. 
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Future Directions 

 More remains to be done connecting models of constant curvature representation to 

shapes and configurations like the ones used in Chapters 3 and 4. Findings from those studies 

suggest that contour representation happens at multiple scales, which should be more fully 

incorporated into our model. In the case of dot configurations specifically, it would be interesting 

to develop a more fleshed out theory about how shape representation can be formed from only 

key-points. Beginning by connecting dot arrays with virtual (straight) lines (Wallach & 

O’Connell, 1953) and deriving perceptual curvature at the symbolic stage from the turn angle 

between these lines first direction. 

 Many questions about how the visual system extracts local and global contour features 

separately also remain to be answered. For example, what determines whether a contour feature 

is processed as local or global? To the degree that this depends on the amplitude of local 

features, is the threshold amplitude relative to the length of the contour more important or does 

retinal amplitude of a feature play a larger role? 

 Finally, how do the findings of these papers relate to object perception in 3D? The 

curvature of an object’s projected contour will change when it is rotated in depth, due to 

foreshortening, so how does the visual system find equivalence between depth-rotated objects? 

More generally, is there a 3D shape description system that is built from surface patches, such 

that each patch is composed of two constant curvatures in orthogonal directions? (For example, 

the shape of a soda can along its sides is composed patches having constant curvature along cross 

sections of the can and zero curvature in the orthogonal direction.) Much of the effort of the 

reported chapters was aimed at connecting low level vision and middle level vision, but the 
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connection between middle vision and higher levels where the visual system obtains 3D 

structural descriptions of objects is equally important and interesting. 

Conclusion 

 Shape is a crucial notion – mathematically, perceptually, and ecologically. It poses 

fascinating challenges at multiple levels for scientific study and explanation. The work described 

here advances our understanding of shape as abstract, as spanning early visual coding to 

symbolic representations, producing high-fidelity yet flexible representations that are central to 

perception, action, and thought. 
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